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Two-dimensional flow of foam around a circular
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We investigate the two-dimensional flow of a liquid foam around a circular obstacle
by measuring all the local fields necessary to describe this flow: velocity, pressure, and
bubble deformations and rearrangements. We show how our experimental set-up, a
quasi-two-dimensional ‘liquid pool’ system, is adapted to the determination of these
fields: the velocity and bubble deformations are easy to measure from two-dimensional
movies, and the pressure can be measured by exploiting a specific feature of this
system, a two-dimensional effective compressibility. To describe accurately neighbour
swapping (so-called ‘T1’ processes), we propose a new, tensorial descriptor. All these
quantities are evaluated via an averaging procedure that we justify by showing that
the fluctuations of the fields are essentially Gaussian. The flow is extensively studied
in a reference experimental case; the velocity presents an overshoot in the wake of
the obstacle, and the pressure is maximum at the leading side and minimal at the
trailing side. The study of the elastic deformations and of the velocity gradients shows
that the transition between plug flow and yielded regions is smooth. Our tensorial
description of T1s highlights their correlation both with the bubble deformations and
the velocity gradients. A salient feature of the flow, notably for the velocity and T1
distribution, is a marked fore–aft asymmetry, the signature of the elastic behaviour of
the foam. We show that the results do not change qualitatively when various control
parameters (flow rate, bubble area, fluid fraction, bulk viscosity, obstacle size and
boundary conditions) vary, identifying a robust quasi-static regime. These results are
discussed in the framework of the foam rheology literature. A movie is available with
the online version of the paper.

1. Introduction
Liquid foams have a ubiquitous mechanical behaviour: depending on the strength

of an external applied perturbation, they can exhibit simultaneously an elastic, plastic
and viscous response (Weaire & Hutzler 1999; Höhler & Cohen-Addad 2005). This
complex behaviour is used in many industrial applications (Khan & Prud’homme
1996), such as ore flotation, oil extraction, and the food and cosmetic industry.
Liquid foams are also of fundamental interest as models for studying complex fluids,
since their constituent, bubbles, are experimentally easily observable, unlike colloids or
polymers. The need to understand of foam rheology has motivated research; a series of
seminal studies has first focused on the elastic properties of foams, such as elastic
moduli or yield stress (Derjaguin 1933; Princen 1983; Stamenović & Wilson 1984;
Khan & Armstrong 1986). The plasticity of foams originates from topological rear-
rangements, called T1s (figure 2c, below). This coupling between local rearrangements
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of constitutive entities and a macroscopic plastic behaviour is a general feature of
many materials (emulsions, pastes, slurries), that have been described generically as
soft glassy materials (Sollich et al. 1997). Viscous dissipation in foams has also been
studied for more than two decades (Kraynik 1988 and references therein; Buzza, Lu
& Cates 1995; Gopal & Durian 2003; Cohen-Addad, Höhler & Khidas 2004), with
a recent interest in describing friction between bubbles and walls (Kern et al. 2004;
Denkov et al. 2005; Cantat & Delannay 2005; Dollet et al. 2005b).

Much effort is currently being devoted to integrating elastic, plastic and viscous
behaviours into a single constitutive equation (Höhler & Cohen-Addad 2005; Janiaud,
Weaire & Hutzler 2006). To achieve such a goal, a precise knowledge of the
mechanical behaviour of the foam is required. This is why foams are often studied
in quasi-two-dimensional geometries (Cox, Vaz & Weaire 2003; Vaz & Cox 2005),
where foams are confined so that they are only one bubble thick (confinement
between two parallel plates, between one horizontal plate and the surface of a
soap solution, or at the free surface of a soap solution). Imaging is easier in these
quasi-two-dimensional geometries than in to an opaque three-dimensional foam.
A classical way to study quasi-two-dimensional foams is to use rheometric flows
(Larson 1999), like simple shear flows (Wang, Krishan & Dennin 2006) or cylindrical
Couette geometries (Debrégeas, Tabuteau & di Meglio 2001; Lauridsen, Twardos &
Dennin 2002), which are easy to analyse. The study of heterogeneous flows is com-
plementary: they are less easy to analyse and to understand, but the variety of
observed effects is larger. This is the case for example for flows in constrictions
(Asipauskas et al. 2003), or for Stokes experiments, i.e. flows around obstacles (Cox
et al. 2000; de Bruyn 2004; Dollet et al. 2005a; Cantat & Pitois 2005; Dollet, Aubouy
& Graner 2005a; Dollet, Durth & Graner 2006).

We have studied extensively Stokes experiments for foams, focusing on the effect of
the foam on the obstacle: drag (Dollet et al. 2005c), lift (Dollet et al. 2005a) and torque
(Dollet et al. 2006). The variations of these quantities with various control parameters,
especially the foam flow rate, illustrate the interplay between elastic, plastic and viscous
behaviour of the foam. To go beyond these force and torque measurements, here we re-
visit some of these experiments with a complementary approach: studying using local
measurements the effect of the presence of an obstacle on a flowing foam. We present
a method developed to analyse precisely and completely this local response, quantified
by various local fields. We extract velocity and velocity gradients, bubble deformations,
and pressure, which describe the elastic and viscous parts of the foam response. We
also define a new tensorial descriptor of the bubble rearrangements, and present the
corresponding field, which quantifies accurately the foam plastic response. The results
highlight the differences between the foam local response and simple viscoplastic and
viscoelastic responses. On one hand, the flow presented a marked fore–aft asymmetry,
which is not captured by simple viscoplastic models. On the other hand, we identify
regions where the foam yields and experiences a plastic flow, for which the mechanical
load exerted by velocity gradients is compensated by stress relaxations associated with
T1s. Our results thus motivate modeling coupling elastic, plastic and fluid behaviour,
and they also constitute an extensive database to test and constrain such models.

2. Materials and methods
2.1. Experiment

We perform a Stokes experiment (de Bruyn 2004; Dollet et al. 2005c; Cox et al. 2000;
Asipauskas et al. 2003), i.e. we study the flow of foam around obstacles (figure 1),
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(a)

(b)

h0

Figure 1. (a) A photograph of foam flowing from left to right (arrows) around a circular
obstacle of diameter 30 mm. The bubble size is 16.0 mm 2 (note the monodispersity of the
foam), and the flow rate is 176 mlmin−1. The walls of the channel (width 10 cm) are visible
at the top and bottom of the picture. The surface of the observed field is 15.4 × 10.2 cm2. A
movies is available with the online version of the paper. (b) Side view of the set-up. The foam
is constituted by a monolayer of bubbles and the black rectangle represents the obstacle.

using a foam channel fully described in Dollet et al. (2005c). Briefly, a tank is filled
with a bulk solution obtained by adding 1 % of commercial dish-washing liquid
(Taci, Henkel) to desionized water. Its surface tension, measured with the oscillating
bubble method, is γ =26.1 ± 0.2 mN m−1, and its kinematic viscosity, measured with
a capillary viscosimeter, is 1.06 ± 0.04 mm2 s−1 unless explicitly stated otherwise.
Nitrogen is blown into the solution through a nozzle or a tube at a computer-
controlled flow rate. This generates a ‘liquid pool foam’ foam (Vaz & Cox 2005),
constituted by a horizontal monolayer of monodisperse bubbles (the polydispersity,
measured as the relative width of the bubble area distribution, is less than 3 %) of
average thickness h0, confined between the bulk solution and a glass top plate. This
is a quasi-two-dimensional foam (Cox et al. 2003; Vaz & Cox 2005): despite the
three-dimensional geometry of the bubbles (figure 1b), it undergoes a two-dimensional
horizontal flow. Moreover, there is an equilibrium between the water in the bulk
solution and in the films separating bubbles; the equilibration is much quicker than
the transit of the bubbles to the obstacle, hence the effect of drainage is minimized.
Two other quasi-two-dimensional foams exist: the bubble raft (no confinement), and
the Hele-Shaw cell (confinement between two horizontal plates). Unlike these two
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systems, the liquid pool foam has an effective in-plane compressibility (Dollet et al.
2005c), which enables pressure to be measured easily, as described in § 2.3.1. The fluid
fraction is adjusted by changing the foam thickness (Raufaste et al. 2007). The foam
flows around an obstacle placed in the middle of the channel; we choose the flow
rate between 24 and 515 ml min−1 (corresponding velocities: 0.11 to 2.5 cm s−1). We
will study a reference case characterized by the following values of the parameters:
circular obstacle of diameter 30 mm, flow rate of 176 ml min−1, bubble area of
16.0 mm2, foam thickness of 3.5 mm (fluid fraction 4.3 %), and bulk viscosity of
1.06 mm2 s−1. We will study the influence of each control parameter separately.

This set-up allows us to measure forces on obstacles (Dollet et al. 2005a, c) and
pressure drops associated with the flow of foam (Dollet et al. 2005b). For every
experiment we record 750 images, representing a movie of 30 s. From these movies, we
extract all relevant quantities describing the flow of foams: velocity, pressure, elastic
stress, bubble deformations, and bubble swapping (topological rearrangements, or
T1s) using a procedure that we developed, as follows.

2.2. Image analysis

2.2.1. Skeletonization of experimental images

With the NIH Image software, we invert the grey levels of the images, then threshold
them, to clearly separate the black network of edges from white bubbles. We have
defined several zones on the image, each with different thresholds, to compensate for
slight remaining spatial variations of light intensity. We then extract the network of
bubble edges from the experimental images by a classical skeletonization procedure,
which reduces the foam to a network of one-pixel-thick edges (figure 2a).

This procedure conserves the topology between the real and the skeletonized bubbles
(figures 1a and 2b), which enables a proper evaluation of the bubble deformation, as
explained in § 2.3.3. It has two limitations: first, it distorts the geometry and curvature
of the bubbles edges and vertices, which prevents us from precisely evaluating the
elastic stress, since this requires integration along all edges (Batchelor 1970). Second,
it is not adapted to the boundaries; we therefore systematically eliminate the data
near the obstacle and the channel walls.

2.2.2. Treatment of skeletonized images

For a two-dimensional skeletonized foam, the bubbles are bounded by thin edges,
which merge in threefold vertices. Bubbles are thus easily labelled, and a vertex can
be unambiguously defined as a black pixel for which, among its eight neighbouring
pixels, one can find three pixels belonging to three different bubbles. Boundary vertices
are defined as pixels on boundaries, with two neighbouring pixels belonging to two
different bubbles.

We scan an image in two steps. In a first step, each individual bubble is labelled with
a given number. The program records a list of bubbles, each bubble being represented
by its number b, its number of pixels Nb, and the position xb of its centre of mass.
In a second step, vertices are identified and labelled, and the program records them
in a second list, each vertex being represented by its number, its coordinates and
the labels of its neighburing bubbles. The subsequent analysis does not require the
image.

To compute the fields, we mesh the image by a rectangular grid. We have checked
that there exists a range of mesh sizes for which the results do not change (figure 3):
this validates our choice, and is a first indication of the continuous character of the
foam (see § 3.1). We have chosen to mesh the image with a rectangular grid of 26×17
(nearly) square boxes of side 6 mm: such a choice enables us to capture well the
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(a)

(b)

(c)

r–

r+

Figure 2. (a) Skeletonized image of foam. (b) Enlargement of the zone framed by the dashed
rectangle in (a): the network of bubble edges is shown with thin lines, and the (triangular)
centre network with thick lines. (c) Sketch of a side-swapping event (topological rearrangement,
also called a T1 event). Left: the edge to disappear is dotted; middle: definition of the vectors
r+ and r−; right: the new edge is dashed.
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Figure 3. Plot of the velocity vx along the axis of symmetry of the flow, as a function of the
streamwise coordinate x, for a flow rate of 24 mlmin−1 and for two mesh sizes (×: boxes of
area 6.0 × 6.2 mm2, �: boxes of area 4.1 × 4.1 mm2). The error bar at the bottom right of the
plot is estimated from the statistical dispersion of the data at ±3 × 10−3 cm s−1, i.e. 2 % of the
average velocity.

variations at the macroscopic scale, and the statistics is sufficient for these variations
to be smooth (during the whole movie, about 2 × 103 bubbles are computed per box).
Each bubble is attributed to the box in which its centre lies.
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2.2.3. Direct measurements from skeletonized images

From the list of bubbles, we compute the network of the vectors r linking the two
centres of bubbles in contact, which we call the centre network (figure 2b). To be
precise, each vector r is attributed to the two boxes (with a coefficient 1/2 each) of the
two bubble centres it binds. We then compute the texture tensor (Aubouy et al. 2003):

M = 〈r ⊗ r〉, (2.1)

which is the second-order tensor of components: Mij = 〈rirj 〉. The average is
performed over 750 images and all vectors in the box. This tensorial quantity has
proved to be a good descriptor of bubble deformation: it reproduces the size,
direction and amplitude of deformation of bubbles in studies where it has been
computed over the bubble edges network � (Asipauskas et al. 2003; Courty et al.
2003; Janiaud & Graner 2005). Here, we calculate it over the centre network, making
it much more general: it applies to three-dimensional foams, and to wet foams such
as the ones considered herein. It is also more robust, because the centres of mass,
hence the vectors r , are much less biased by skeletonization than the bubble edges.
However, the two possible network choices are equivalent at low bubble deformation,
where they give the correct expression for the shear modulus of the foam (Dollet).

In order to compute the velocity field, we compare successive frames. In the range
of flow rates studied, the displacement of a bubble between two successive frames
is small compared to its size; the displacement of the bubble centres is thus easy to
calculate, and we average all displacements in each box to get the velocity field (an
Eulerian rather than Lagrangian point of view).

The detection of the T1s is also based on the correlation of two successive images;
a T1 is a topological neighbour-swapping event, during which a bubble edge dis-
appears and a new one is created (figure 2c). The program tracks independently the
disappearing and appearing edges, by comparing the list of edges of two successive
frames. This decoupling of the disappearing and appearing edges is necessary for
two reasons: first, the duration of a T1 event is sometimes longer than the time
interval between two successive frames (0.04 s); second, the transient fourfold vertex
(middle of figure 2c) contains a certain amount of liquid. After skeletonization, this is
often erroneously recognized as an artificial small four-sided bubble between the four
bubbles experiencing the T1, which we remove by imposing a lower threshold on the
bubble area. A T1 covers two distinct instantaneous events: one disappearance and
one appearance of a link between two bubbles. To a disappearing (appearing) edge is
associated the vector of the centre network r− (r+) which links the centres of the two
separating (attaching) bubbles. A complete quantification of T1s, including not only
their frequency but also their direction, must rely on these vectors, whose direction is
irrelevant by definition. We thus define the tensor T± = f±〈r± ⊗ r±〉, where f− (f+) is
the frequency of separation (attachment) events per link r of the centre network. In
this paper, we use an alternative definition, based on unit vectors: Tadim

± = f±〈r̂± ⊗ r̂±〉,
which has the advantage of being directly proportional to the frequency of T1s.

2.3. Computation of the fields

We present here the relevant fields describing the flow of foams, and the way in which
they are computed from the image analysis detailed in the previous section.

2.3.1. Pressure

As already mentioned in Dollet et al. (2005c), in a quasi-two-dimensional set-up
with foam confined between a top plate and a liquid pool, the depth of bubbles
adjusts to pressure variations. The three-dimensional compressibility of the bubbles
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Figure 4. (a) Shape of a bubble of area 16.0 mm2, and of volume V = 16.0 × 3.5 mm3,
calculated by Simon Cox with the Surface Evolver. To fit to the experimental situation, both
hexagonal symmetry and buoyancy are input in the computation; as an only simplifying
assumption, the junction between lateral faces and the top plate is assumed orthogonal. (b)
Pressure difference P − P0 as a function of the bubble area. The dots are from the calculations
with the Surface Evolver, and the curve is from (2.2), without free parameters.

is negligible here: for an ideal, isothermal gas, the compression modulus is of order
105 Pa, which is four orders of magnitude higher than the measured local variations of
pressure, as shown later (figure 12). Hence, the volume of a given bubble is constant.
Therefore, the horizontal bubble area varies with its pressure: the foam thus has an
effective two-dimensional compressibility in the plane of the top plate.

To obtain an accurate relation between area and pressure variations, we refine our
earlier estimate (Dollet et al. 2005c). On the time scales of the flow, the pressure P

is constant in the bubble, and at the bottom of the bubble can be written: P = P0(x)+
ρgh + γ C, where P0 is a reference pressure, ρ the volumetric mass of the solution, h

the depth of the bubble and C its curvature at the bottom. Note that the reference
pressure takes into account the pressure drop along the channel (Dollet et al. 2005b).
The shape of the bubble is quite complex (figure 4a); to simplify, we assume its
bottom has the shape of a truncated sphere of radius a related to the bubble area:
A= πa2. Hence, C ≈ 2

√
π/A. Writing V ≈ Ah for the (constant) volume of the bubble,

we obtain the following relation between area and pressure:

P − P0(x) =
ρgV

A
+ 2γ

√
π

A
, (2.2)

with ρ = 103 kg m−3 the volumetric mass of the solution, g = 9.8 m s−2 the gravitational
acceleration, and V the constant bubble volume. The average bubble area is easily
computed in each box with the image analysis program. Since the pressure field is
scalar, it as convenient to represent it as grey levels.

To validate our approximate evaluation, we compared it to the more realistic
shape of a bubble computed with the Surface Evolver software (Brakke 1992) and
represented in figure 4(a). Starting from a bubble of fixed volume V = 16.0×3.5 mm3,
corresponding to our reference area and thickness, we compare the pressure computed
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from (2.2) and from the Surface Evolver (figure 4b). The gap between the computations
is only 2 %, which validates our simple evaluation of the pressure. From (2.2), we
evaluate the in-plane compressibility as K = −A∂P/∂A= ρgh + γ

√
π/A= 46 Pa for

our reference values h =3.5 mm and A= 16.0 mm2, which is more than three orders
of magnitude smaller than the gas compressibility.

2.3.2. Velocity and velocity gradients

The image analysis program provides the velocity field directly, which we represent
as usual with arrows. The velocity gradient is computed by finite differences; we
evaluate this gradient in the middle of the four boxes (i, j ), (i, j + 1), (i + 1, j )
and (i + 1, j + 1). We use the symmetric velocity gradient, the deformation rate:
D= (∇v + t∇v)/2, and the antisymmetric velocity gradient, the vorticity, which is a
scalar for two-dimensional flows: ω = (∂vy/∂x − ∂vx/∂y)/2. We will explain how we
plot the deformation rate, and the other tensorial quantities in § 2.3.3. We will also
use the scalar dissipation function (Guyon, Hulin & Petit 2001), defined as

‖D‖ =
√

D2
xx + 2D2

xy + D2
yy, (2.3)

which is a scalar measure of the amplitude of the velocity gradient.

2.3.3. Tensorial fields: texture, statistical elastic strain, T1

As stated in § 2.2.2, we use the texture tensor as a descriptor of bubble deformations.
To be more quantitative, we will use the statistical elastic strain tensor, defined as
(Aubouy et al. 2003):

U = 1
2
(ln M − lnM0), (2.4)

where M0 is a reference value, that we choose to be isotropic: M0 = λ0I. Here, λ0 is
the average of the eigenvalues of the texture tensors evaluated at the upstream and
downstream extremities of the observation field (left and right on figure 1), where the
bubbles are less perturbed by the presence of the obstacle, and I is the two-dimensional
identity tensor. We have λ0 = r2

0/2, with r0 the average length of a link between two

bubble centres. For a hexagonal network, r0 =

√
2A/

√
3, hence λ0 = A/

√
3.

We use the statistical elastic strain tensor because it quantifies the elastic strain
in foams with a wide generality. At small deformations, it coincides very closely
with the classical elastic strain (Landau & Lifshitz 1981), and it extends it at large
deformations (Asipauskas et al. 2003; Courty et al. 2003; Janiaud & Graner 2005). The
precision of the statistical strain tensor as a measure of the elastic strain is estimated
as 2 %, from previous comparisons of the shear modulus of foams estimated with
the statistical strain and independently measured (Courty et al. 2003) or calculated
(Asipauskas et al. 2003). Furthermore, the statistical strain is also well-defined in
flow situations, where nonlinear elastic descriptions of foams accounting for large
deformations (Höhler, Cohen-Addad & Labiausse 2004) do not hold.

The trace of the statistical elastic strain tensor quantifies the relative variation of
the area of the bubbles, which remains lower than 10 % (Dollet et al. 2005c); hence,
in general, this tensor will have one positive eigenvalue and one negative one. We
choose to represent such a tensor by two orthogonal lines, as shown in figure 5(a).
The positive (negative) eigenvector represent the direction and amplitude of traction
(compression) of deformed bubbles compared to the reference state. We also use this
representation for the deformation rate which, like the statistical elastic strain, is an
almost traceless tensor, since the flow remains weakly compressible. Here, the positive
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y

x

λ– λ+
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λ+

θ+

(a) (b)

Figure 5. Representation of symmetric tensors (i.e. with orthogonal eigenvectors): (a) repre-
sentation of a tensor with two eigenvalues of different sign (λ− < 0 < λ+). The thick (thin)
line represents the direction and magnitude of the positive (negative) eigenvalue; (b) elliptic
representation of a tensor with strictly positive eigenvalues (0< λ− < λ+).

(negative) eigenvector represent the direction and amplitude of maximal elongation
(compression) rate.

Finally, we represent the T1s by the two tensors Tadim
+ and Tadim

− (§ 2.2.2), which are
symmetric with strictly positive eigenvalues; they are therefore suitably represented
by ellipses (figure 5b) of parameterized equations:(

x±(t)
y(±t)

)
= Tadim

± ·
(

cos t

sin t

)
=

(
(T adim

± )xx cos t + (T adim
± )xy sin t

(T adim
± )xy cos t + (T adim

± )yy sin t

)
.

In this case, the major axis is the preferred direction for T1s to occur. We justify this
(new) way to quantify T1s in § 3.2.5.

3. Results
In this section, we present the local measurements for a foam flowing around

an obstacle. We first focus on a reference case: the flow of a monodisperse foam
(bubble area: 16.0 mm2, foam thickness: 3.5 mm, bulk viscosity: 1.06 mm2 s−1, flow
rate: 176 ml min−1) around a circular obstacle of diameter 30 mm. We compare
averages and fluctuations of a local field to show that the foam behaves like a
continuous medium (§ 3.1). We then present a full study of the reference case (§ 3.2),
and separate the influence of each control parameter (§ 3.3).

3.1. Averages versus fluctuations

Can we consider the foam as a continuous medium in our case? This is not obvious
a priori, since the steady flow arises from a balance between the load experienced
by the bubbles passing around the obstacle and the discrete relaxations occurring
during T1 events (Langer & Liu 1997): locally defined quantities such as elastic
stress or statistical elastic strain fluctuate around an average value. We consider
here the influence of such fluctuations and their correlations, since various studies in
cylindrical Couette geometries have shown their great importance, especially when
T1 ‘avalanches’ occur (Debrégeas et al. 2001; Kabla & Debrégeas 2003), leading to
large stress drops (Lauridsen et al. 2002; Pratt & Dennin 2003).

To address this question, we analyse the temporal fluctuations of a local quantity
for our reference case, in the same spirit as Janiaud & Graner (2005). We have
chosen the statistical elastic strain tensor U, but the analysis would be similar for
other local quantities such as velocity or pressure. More precisely, we have chosen to
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Figure 6. Temporal evolution of [λ+(U) − λ−(U)]2, which scales as the elastic energy.
(a) Results for a box of size 1.2 × 1.1 cm 2 (sketched at the right side). (b) Results for a
box of size 3.6 × 6.2 cm2.

analyse one scalar quantity extracted from U: the square of the difference between
the two eigenvalues [λ+(U) − λ−(U)]2. Since U is proportional to the elastic stress up
to large deformation within 2 % (see § 2.3.3), this quantity scales as the elastic energy
associated with shear strain; hence, it is expected to exhibit very large drops if T1
avalanches occur, since they release a lot of elastic energy. We have analysed the
fluctuations in a box close to the trailing side of the obstacle (figure 6a, right), where
fluctuations are expected to be strong; we will see later that this is also a region where
T1s are frequent. The temporal variation of the elastic energy is reported in figure
6(a). Qualitatively, we do not observe a behaviour dominated by T1 avalanches:
it would correspond to a succession of small increases (load) and fast decreases
(relaxation) of the elastic energy. Quantitatively, we analyse the increments of the
bubble deformation between two successive images, and show the histogram of the
distribution of these increments in figure 7(a). This histogram is fitted well by a
Gaussian curve, characteristic of a white noise, and we do not observe an asymmetric
distribution with the many small increases and a smaller number of large decreases,
which would correspond to T1 avalanches.

However, the box considered is small, where only seven bubbles in average are
present at a given instant. One could thus argue that fluctuations are dominated by
advection, not by possible T1 avalanches occurring at larger scale. We thus analyse
the fluctuations at a larger scale, choosing a box 18 times bigger, in the wake of the
obstacle (figure 6b, right). The relative fluctuations are much smaller (figure 6b), and
the increments are here again fitted well by a Gaussian curve (figure 7b).

We have performed this quantitative analysis of the fluctuations only in our
reference experiment, but we observed in the other experiments analysed here that
the fluctuations do not present large-scale correlations; they are similar to a random,
white noise and play a negligible role at large scales. We will thus only focus on
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Figure 7. Histogram of the increments of [λ+(U) − λ−(U)]2. (a) Results for a box of size
1.2×1.1 cm 2 (average: 3.7×10−5, standard deviation: 1.8×10−2). (b) Results for a box of size
3.6 × 6.2 cm 2 (average: −8.4 × 10−6, standard deviation: 3.0 × 10−3). The curves superimposed
are Gaussian curves with the same mean and standard deviation as the histograms.

coarse-grained average quantities, and treat the foam as a continuous medium. The
generality of such an approach is discussed in § 4.1.

3.2. Study of a reference case

For each field studied, we proceed as follows: we first present a map of the whole
field, and we then study the variation of the field components along various lines:
two directed streamwise, one being on the axis of the obstacle and the other beside it,
2.5 cm from the axis of symmetry of the flow; and three directed spanwise, one passing
through the centre of the obstacle, one upstream and a symmetric downstream one,
both lines being 2.4 cm from the middle axis (figure 8).

3.2.1. Velocity

The whole velocity field is presented in figure 9. Qualitatively, the flow far from the
obstacle is a plug flow, as already observed for foam flows in narrow channels (Cantat,
Kern & Delannay 2004). The obstacle imposes two symmetric stagnation points, one
upstream and one downstream, and the flow is constricted, and thus accelerated, at
the sides of the obstacle.

To study the velocity quantitatively, we divide it by the averaged velocity v0 obtained
from the upstream and downstream extremities of the observation region, where the
flow is less perturbed: v0 is therefore the velocity of the plug flow. We report the two
components of (v − v0)/v0, which is the dimensionless velocity deviation from the
plug flow, in figure 10. This figure shows a striking feature: the velocity is fore–aft
asymmetric. More precisely, on the axis y = 0, the component vx has an overshoot
downstream, in the wake of the obstacle, whereas it varies monotonically upstream.
The asymmetry is also obvious in the comparison of vx between the axes x = −2.4
and 2.4 cm: the perturbation from the plug flow is higher upstream than downstream
for vx , and vice versa for vy . As expected, the vy component vanishes on the y =0 axis.
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y
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2.5

2.4 2.4

θ

Figure 8. Sketch of the lines along which the fields are evaluated. The streamwise direction
is x, the spanwise is y. We choose five lines: the axis of symmetry of the flow, y = 0; an
axis at the side of the obstacle, |y| = 2.5 cm (the dashed axis means that there are two such
symmetric axes; the evaluated quantities will be averaged on these both axes); and three axes
perpendicular to the flow direction: x = −2.4, 0 and 2.4 cm.

Figure 9. Velocity field around a circular obstacle.

3.2.2. Pressure

The whole pressure field is presented in figure 11. The pressure is maximal at the
leading side of the obstacle, and minimal at its trailing side. We can also note that
the increase in pressure upstream is very progressive, extending farther than the limits
of the observation field. Figure 12 displays the evolution of the pressure along the
five axes of figure 8. We also observe a fore–aft asymmetry; unlike the velocity, this
asymmetry is more obvious on the side of the obstacle than on the axis y =0: the
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Figure 10. Velocity components around a circular obstacle: (vx − v0)/v0 (+), and vy/v0 (×),
along the axes shown in figure 8. The length unit is centimetres.
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Figure 11. Pressure field around a circular obstacle, expressed in Pa. The higher the pressure,
the darker the grey level. In the white regions, the bubble area, hence the pressure, cannot be
reliably evaluated.

pressure perturbation changes sign at y = 2 cm. Note also that along the axis x = 0,
the decrease of the perturbation in pressure with the distance to the obstacle is faster
than the perturbation in velocity.

3.2.3. Statistical elastic strain

We now study the statistical elastic strain field, defined by (2.4), to quantify the
bubble deformation, as explained in § 2.3.3. We display this field in figure 13 using
the representation explained in figure 5(b). We note that the deformation is not
negligible for the bubbles entering the observation field: they are slightly stretched in
the spanwise direction. The bubbles are stretched in the x-direction at the sides and
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Figure 12. Pressure evolution (in Pa) around a circular obstacle. The pressure is evaluated
from (2.2); more precisely, we report here the difference between the local pressure and an
average one corresponding to the average bubble area A0.

Figure 13. Statistical elastic strain field around a circular obstacle. The thick (thin) line
is a direction of maximal elongation (compression), see figure 5(a).

in the wake of the obstacle, and in the y-direction at the leading side of the obstacle
and at the sides of the wake.

The statistical elastic strain field U is a symmetric tensor, hence it has three
independent components Uxx , Uxy and Uyy . Instead of these three components, we
have chosen to represent the combinations Uxx + Uyy , Uxx − Uyy and Uxy . The trace
Uxx + Uyy gives access to the dilatation, whereas the difference Uxx − Uyy compares
the bubble deformation in the directions parallel and perpendicular to the flow,
and the Uxy component indicates the deviation of the deformation from the x- and
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Figure 14. Combinations Uxx + Uyy (+), Uxx − Uyy (×) and Uxy (∗) of the statistical
elastic strain field around a circular obstacle.

y-directions. These combinations are plotted in figure 14 along the five axes of figure 8.
First, the trace has a weak amplitude (its absolute value remains lower than 0.1), and
its evolution is strongly anti-correlated to the pressure (figure 12). The explanation
of such a trend is easy: when the pressure increases, the bubble area decreases as
explained in § 2.3.1. Hence, the length of the vectors r linking centres of neighbouring
bubbles decreases, and so does Uxx + Uyy ≈ ln r/r0 from equation (2.4).

Second, we consider the parameter Uxx − Uyy . It tends towards a negative value
far from the obstacle, which confirms the spanwise stretch observed on figure 13.
This trend is observed both upstream and downstream, hence it is probably due
to the longitudinal pressure gradient due to the pressure drop along the channel.
More interestingly, the presence of the obstacle strongly modifies the deformation of
the bubbles: considering the downstream axis (x =2.4 cm), the bubbles are stretched
streamwise in the wake, and spanwise at the sides of the wake, the transition occurring
at |y| =1.5 cm. On the other hand, on the upstream axis (x = −2.4 cm) the bubbles
are stretched spanwise close to the symmetry axis of the flow, and streamwise at the
sides, the transition occurring at |y| = 2 cm.

Third, the Uxy component at the sides of the obstacle (|y| =2.5 cm) changes sign
at two different points (x = 0 and 2 cm), showing that the orientation of the maximal
deformation rotates about 180◦ during the passage around the obstacle. Note also that
this component is not strictly reversed between upstream and downstream (compare
of the axes x = −2.4 and y = 2.4 cm).

3.2.4. Velocity gradients

We now turn to the velocity gradients. We first show the map of the deformation
rate in figure 15. It confirms that the two-dimensional effective compressibility of the
flow (see § 2.3.1) remains weak, because the absolute value of maximal elongation and
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Figure 15. Deformation rate field around a circular obstacle. The thick (thin) line
represents the maximal elongation (compression) rate, see figure 5(a).
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Figure 16. Logarithm of the dissipation function, defined as (2.3) and expressed in s−1,
as a function of x on the y =0 axis (a), and as a function of y on the x = 0 axis (b).

the maximal compression are very close at any point. Furthermore, the amplitude
of the deformation rate decreases quickly with the distance from the obstacle, and
seems to become negligible upstream and downstream at a distance comparable with
the obstacle diameter. To investigate whether this amplitude really vanishes at a
finite distance from the obstacle, as expected for a Bingham plastic in the same flow
conditions (Mitsoulis 2004), we consider the (scalar) dissipation function defined in
(2.3), and plot its logarithm along the two symmetry axes x =0 and y = 0 (figure 16).
This plot reveals that the dissipation function decreases with the distance from the
obstacle, but does not vanish. It is possible that it vanishes farther from the obstacle,
but we have not investigated this possibility. Furthermore, the decrease is more
complex than a power-law or exponential decrease, and is faster downstream than
upstream.
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Figure 17. Vorticity field around a circular obstacle, expressed in s−1. The light (dark) grey
levels represent positive (negative) vorticity.

The map of the vorticity presented in figure 17. exhibits significant variations,
antisymmetric with respect to the y =0 axis: in the y > 0 half-channel, it is negative
at the side of the obstacle, and positive downstream. The fore–aft asymmetry is
once again obvious. Unlike potential flows, the vorticity is a significant component
of the velocity field: its maximum, 0.4 s−1, is of the same order of magnitude as the
deformation rate (1 s−1 from figure 16).

3.2.5. T1 quantification

We first investigate the validity of our measurements of T1s. As explained in § 2.2.2,
the calculation of appearing and disappearing edges is decoupled; therefore, we have
to check whether the number of these two kinds of events is the same, as it should
be if we record the T1s correctly. Furthermore, we emphasize that our method may
be sensitive to artifacts. We have calculated the following quantity:∑

every box i |f+ − f−|i∑
every box i(f+ + f−)i

= 7.0 %, (3.1)

which quantifies the relative uncertainty of our method, which is acceptable despite
the various sources of errors.

We now represent the map of T1s in figure 18, which illustrates the advantages of
the tensorial representation: not only does it contain the number of T1s (proportional
to the size of the ellipses, as discussed in § 2.2.2), but also their direction. The major
axes of the two kinds of ellipses are mainly orthogonal, which illustrates the fact that
plastic events release high stresses from one direction to the perpendicular direction
(Picard et al. 2004). Quantitatively, denoting as x+ (x+) the unit vector of the major
axis of the ellipse representing Tadim

+ (Tadim
− ), we calculate for each box the scalar

product x+ · x−, and show the histogram of this quantity in figure 19. It is strongly
peaked around 0, confirming that x+ and x− are orthogonal. We also calculate
the average and standard deviation of the scalar product x+ · x−, weighted by the
number of T1s for each box: 〈x+ · x−〉 =7.6 × 10−5 and δ(x+ · x−) = 1.4 × 10−2 
 1,
which proves the orthogonality of appearing and disappearing edges.

Figure 18 shows that T1s are concentrated close to the obstacle, but again with
a significant asymmetry: upstream, the T1s are more distributed and spread widely
over the sides of the obstacle, whereas downstream they are more localized in the
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Figure 18. Elliptical representation of T1s: the thin (thick) ellipses represent the tensor Tadim
+

(Tadim
− ), defined in § 2.2.2. The preferred direction of the T1s is obvious in the tensorial

representation. Note the few remaining artifacts (bottom right).
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Figure 19. Distribution histogram of x+ · x− (see text for definition).

wake. Note also that the direction of T1s is correlated with those to the ones of the
statistical elastic strain (figure 13) and of the deformation rate (figure 15); such a
correlation is probably important in understanding better the rheology of foams.

To focus on the spatial distribution of the frequency of T1s, we now plot ‖Tadim
+ −

Tadim
− ‖/

√
2. When x+ · x− = 0, which is a good approximation, this quantity equals

(f+ + f−)/2; we thus identify it with the frequency of T1s per link (which is also
the inverse of the average lifetime of a given link). This quantity has the advantage
of reducing strongly the remaining artifacts; it is mapped on figure 20. This map
shows that the T1 frequency presents three maxima: one centred in the wake, and
two symmetrically off-centred downstream, at an angular position |θ | � 3π/4 (see
figure 8 for the definition of θ). The complex angular dependence of the T1 frequency
is illustrated on figure 21. It shows that the off-centred downstream maximum arises
for an angle θ = 145◦, and that the frequency of T1s is almost equal for this maximum
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Figure 20. Spatial distribution of the frequency of T1s, expressed in s−1. The lighter the grey
lever, the higher the frequency of T1s. Note the attenuation of the artifacts in comparison with
figure 18, as well as the marked fore–aft asymmetry. The dotted circle indicates the position
chosen for the evaluation of figure 21.
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Figure 21. Angular dependence (in degrees) of the frequency of T1s per unit link, evaluated
1.5 cm from the boundary of the obstacle. The flow being symmetric with respect to the axis
y =0, the data have been averaged for the angles between −180◦ and 0. The estimated error
bar is drawn at the bottom right of the plot: according to the evaluation of the experimental
uncertainty (3.1), we estimate it as at most ±7 % of the maximum T1 frequency, which ensures
that the secondary maximum at 40◦ and the secondary minimum at 55◦ are significant extrema.

and for the one located in the wake, with a value of 0.2 s−1. Figure 21 shows also a
secondary maximum for θ = 55◦.

3.3. Influence of various control parameters

In this section, we systematically study the fields describing the flow of foams around
obstacles in the same spirit as in Dollet et al. (2005c): starting from the reference
experiment extensively studied in the previous section, we vary only one control
parameter at a time, successively the flow rate (§ 3.3.1), the bubble area (§ 3.3.2), the
foam thickness (§ 3.3.3) and the bulk viscosity (§ 3.3.4). To simplify the discussion, we
only study the evolution of three scalar quantities: the velocity component vx , the
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Figure 22. Plots of (a) the dimensionless velocity vx/v0, (b) the pressure, and (c) the
component Uxx − Uyy , as a function of x along the axis y = 0, for flow rates of 24 (+),

54 (×), 176 (∗), 293 (�) and 515 mlmin−1 (�).

pressure P and Uxx − Uyy , along the axis of symmetry y = 0. We end this section by
discussing the influence of the size and roughness of the obstacle (§ 3.3.5).

3.3.1. Flow rate

For a given bubble area (16.0 mm2), foam thickness (3.5 mm) and bulk viscosity
(1.06 mm2 s−1), we study five different flow rates: 24, 54, 176, 293 and 515 ml min−1

(corresponding velocities v0: 0.11, 0.26, 0.84, 1.40 and 2.45 cm s−1). To compare the
velocities more easily, we consider the dimensionless velocity vx/v0 which is plotted,
as well as the pressure and the component Uxx −Uyy , along the axis y = 0, in figure 22.
Remarkably, all data points collapse on the same master curve for the velocity, the
pressure and the bubble deformation, which proves that the qualitative features found
in § 3.2 do not change in the range of flow rate studied.

3.3.2. Bubble area

To study the influence of bubble area, the flow rate cannot be strictly imposed,
since it is slaved to target values of the other control parameters. However, as shown
in § 3.3.1, it has no significant influence on the results. We study for each bubble area:
12.1, 16.0, 20.0, 25.7, 31.7 and 39.3 mm2, a flow rate as close as possible to the reference
case, respectively 160, 176, 166, 133, 150 and 169 ml min−1. The results are reported
in figure 23. They show that neither the velocity field nor the bubble deformation
depends qualitatively on the bubble area. Only the pressure behaviour in the wake
changes: for big enough bubbles, the pressure release at the trailing side observed in
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Figure 23. Plots of (a) the dimensionless velocity vx/v0, (b) the pressure, and (c) the
component Uxx − Uyy , as a function of x along the axis y = 0, for bubble areas of 12.1

(+), 16.0 (×), 20.0 (∗), 25.7 (�), 31.7 (�) and 39.3 mm2 (�).

figure 12 occurs farther downstream, and can be preceded by a compression zone
close to the obstacle.

3.3.3. Foam thickness

Various theoretical (Princen 1983; Khan & Armstrong 1986) and experimental
(Princen 1985; Mason, Bibette & Weitz 1995, 1996; Saint-Jalmes & Durian 1999)
studies have shown that the fluid fraction plays a crucial role in the foam rheology,
but its influence on the behaviour of the foam at the local scale has been less
studied (Durian 1997). In our case, the foam thickness is a way to change the
fluid fraction of the foam: an increasing foam thickness corresponds to a drier
foam. We study six different foam thicknesses: 2.0, 2.5, 3.0, 3.5, 4.0 and 4.5 mm,
at fixed bubble area 16.0 mm2. The corresponding fluid fractions are estimated
as (Raufaste et al. 2007): 6.2 %, 5.9 %, 4.3 %, 4.3 %, 4.1 % and 3.6 %. Since the
cross-section of the foam varies proportionally to its thickness, we choose a mean
velocity v0 (see § 3.2.1) closest as possible to the reference case, respectively 0.67,
0.88, 0.89, 0.84, 0.74 and 0.56 cm s−1 for the six thicknesses. Velocity, pressure and
bubble deformation are plotted in figure 24. We observe the following variations
for the lowest foam thicknesses (or highest fluid fractions): the asymmetry in
the velocity is weaker, a compression zone appears in the wake close to the
obstacle (as for the biggest bubbles studied in § 3.3.2), and the amplitude of
the bubble deformation decreases. Note that there are no significant variations for
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Figure 24. Plots of (a) the dimensionless velocity vx/v0, (b) the pressure, and (c) the
component Uxx − Uyy , as a function of x along the axis y = 0, for foam thicknesses of
2.0 (+), 2.5 (×), 3.0 (∗), 3.5 (�), 4.0 (�) and 4.5 cm (�). Since the bubbles are separated, the
pressure cannot be calculated for the foam thickness of 2.0 mm.

the three highest thicknesses, probably because the corresponding fluid fractions are
very similar.

3.3.4. Bulk viscosity

We now investigate the influence of bulk viscosity. Of the various cases studied
in Dollet et al. (2005c), we only consider the two extremes ones: a soap solution
without added glycerol (viscosity: 1.06 mm2 s−1), and one with 50 % added glycerol
by mass (viscosity: 9.3 mm2 s−1). The bubble area is 20.0 mm2. The flow rates are 166
and 154 ml min−1 for the low and high viscosity cases. The results are presented on
figure 25. They show that the bulk viscosity has no significant effect, except in the
wake close to the obstacle.

To summarize this study of the influence of the following control parameters: flow
rate, bubble area, foam thickness and bulk viscosity, we have shown that the main
trends shown in the reference case (§ 3.2) are robust, especially the fore–aft asymmetry.

3.3.5. Obstacle size and boundary

The last control parameter that we have studied is the obstacle itself. We have shown
in previous studies that tuning the obstacle geometry allows a variety of behaviours:
streamlining for a symmetric airfoil profile (Dollet et al. 2005c) and anti-inertial lift
for a cambered one (Dollet et al. 2005a), and a combination of drag, lift and torque
for an elliptical obstacle (Dollet et al. 2006). Here, we focus on simpler, circular
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Figure 25. Plots of (a) the dimensionless velocity vx/v0, (b) the pressure, and (c) the
component Uxx − Uyy , as a function of x along the axis y = 0, for bulk viscosities of 1.06

(×), and 9.3 mm2 s−1 (+).

shapes, and compare the reference obstacle, a circle of diameter 30 mm, to a bigger
circle, of diameter 48 mm, and a cogwheel of diameter 43.5 mm with cogs of length
4 mm. The other control parameters are the same as in the reference experiments:
foam thickness of 3.5 mm, bulk viscosity of 1.06 mm2 s−1 and bubble area of 16.0 mm2.
This area is suitable for bubbles to be trapped in the cogs of the cogwheel, defining
an effective circular obstacle constituted by the cogwheel and the trapped bubbles,
of diameter 47.5 mm, comparable to the big circle. In this section, we thus study
the influence of the size and the boundary of the obstacle. As these obstacles share
the circular symmetry, we choose to study them in polar coordinates, plotting the
components vr and −vθ of the velocity, the pressure, and the deviatoric component
of the statistical elastic strain tensor Urr −Uθθ , as functions of θ along a circle located
1.5 cm from the obstacle boundary (figure 26).

The data for the big circle and the cogwheel are very similar, showing that the
boundary conditions have little influence on the behaviour of the foam. The compar-
ison between the two circles shows that whereas the radial component of the velo-
city is almost equal, the amplitude of the azimuthal component is bigger for the bigger
circle. This is a consequence of the constriction between the obstacles and the channel
walls: more precisely, at the angle θ =90◦, we have −vθ/v0 = vy/v0 = 1.83 for the
circle of diameter 48 mm, and −vθ/v0 = 1.41 for the circle of diameter 30 mm, which
is comparable to the aspect ratio h/(h − D), with h = 10 cm the channel width and D

the obstacle diameter, which equals 1.92 and 1.43 for these two circles. Also, whereas
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Figure 26. Plots of (a) the pressure, (a, c) the components vr/v0 and −vθ/v0 of the
dimensionless velocity, and (d) the component Urr − Uθθ of the statistical elastic strain,
for circles of diameter 30 mm (solid line) and 48 mm (long-dashed line), and the cogwheel
(dotted line) as a function of the angle θ , between 0 and 180◦. The flow being symmetric with
respect to the axis y = 0, the data have been averaged for the angles between −180◦ and 0.

the amplitude of variation of the pressure is weaker for the small circle, the statistical
elastic strain component Urr − Uθθ does not change much for the three obstacles. It
is negative and almost constant for angles between 100◦ and 180◦ (figure 26), which
corresponds to an extended region where the yield strain is reached; the component
Urr − Uθθ has a markedly different behaviour for angles between 0 and 100◦, where it
follows a monotonic, almost linear evolution, which is the signature of an elastic-like
transition to another yielded region, located in the wake of the obstacle. This is
confirmed by the polar dependence of the frequency of T1s (figure 21), which shows a
high frequency in the yielded regions for angles close to 0 and between 100◦ and 180◦,
and lower frequency in between. A simple sketch of this behaviour, with a yielded
region on the whole leading side of the obstacle and an elastic transition at the
trailing side to another yielded region in the wake, helps in understanding the fluid
fraction dependence of the drag on circles (Raufaste et al. 2007) as well as the angular
dependence of the drag, lift and torque experienced by an ellipse (Dollet et al. 2006).

4. Discussion
4.1. Liquid foam: localization or continuity?

Our analysis of § 3.1, showing that the fluctuations are like a white noise, suggests
that the foam behaves as a continuous medium. We did not measure large-scale
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correlations of plastic rearrangements. This is to be compared to flows involving pure
shear, such as experiments in Couette geometry (Debrégeas et al. 2001; Lauridsen
et al. 2002; Pratt & Dennin 2003), in which a disordered and wet foam in a Hele-Shaw
cell exhibits a strong discontinuity in the form of a localized shear band (Debrégeas
et al. 2001), resulting from large-scale avalanches of T1 (Kabla & Debrégeas 2003),
whereas a disordered and wet bubble raft shows no such bands (Lauridsen, Chanan &
Dennin 2004). This suggests that velocity discontinuities in two-dimensional flowing
foams are due to the friction between the bubbles and the confining boundaries. This
is supported by a recent study which has shown that at given flow rate in a simple
shear geometry, liquid pool foams exhibit localization, unlike bubble rafts (Wang et al.
2006), and by recent models for simple shear (Janiaud et al. 2006) and cylindrical
Couette geometries (Clancy et al. 2006)

However, our liquid pool foam does not exhibit localization, and the velocity varies
smoothly everywhere (figure 9). We did not observe avalanches of T1s, except for very
wet and ordered foams, where dislocations between rows of bubbles can occur over
distances of several centimetres. In the experiments presented here, this only occurs
for the smallest foam thickness. Furthermore, both the duration of a T1 (i.e. the
lifetime of the transient, unstable four-fold vertex) and the relaxation time τT 1 after a
T1 (i.e. the time required for the foam to recover local equilibrium) are very short in
our set-up. With our camera at 25 frames per second, we capture only a few four-fold
vertices, hence the duration of a T1 is lower than 0.04 s on average; moreover, the
relaxation after a T1 is too fast to be precisely estimated, and we can take τT 1 < 0.1
s. This time is much shorter than the shortest time associated with velocity gradients,
which equals τ∇v = 1 s (figure 16). Hence, the macroscopic continuity of the flow does
not come from a microscopic continuity, which would occur if τT 1 <τ∇v , where the
foam ‘melts’ and the discontinuous character of T1s is suppressed (Gopal & Durian
1999). Two possible explanations for the qualitative difference between the flow in
simple shear geometry (localization) and around an obstacle (continuity) are the more
complex flow geometry induced by the presence of the obstacle, and the wall slip of
the bubbles over the obstacle, whereas they are trapped at the boundaries in shear
experiments. The latter point is supported by the fact that the velocity field around
a smooth circle and a cogwheel are similar (figure 26). We indeed observe that the
bubbles close to the cogwheel slip over the bubbles trapped in the cogs, which is
reminiscent of shear banding.

4.2. Discussion of the reference experiment

4.2.1. Velocity

A salient and robust feature of the flow of foam around an obstacle is the fore–aft
asymmetry of the velocity field. This asymmetry, and the velocity overshoot in the wake
of the obstacle (figure 10), called a negative wake in the context of the sedimentation
of particles, is well documented for viscoelastic and shear-thinning fluids, both in
experiments (Hassager 1979; Arigo & McKinley 1998) and in simulations (Dou
& Phan-Thien 2003; Kim et al. 2005). On the other hand, such an asymmetry is
not captured by the classical models of yield-stress fluids usually invoked to simply
model liquid foams, as shown by simulations of flows of Bingham plastics (Roquet
& Saramito 2003; Mitsoulis 2004) or Herschel–Bulkley fluids (Beaulne & Mitsoulis
1997).

In the literature, little data about the velocity field of yield-stress fluids around an
obstacle or a sedimenting particle exists, and only very recently have Gueslin et al.
(2006) have reported a fore–aft asymmetry for a sphere sedimenting in a yield-stress
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fluid (a Laponite suspension) and shown the presence of a negative wake provided
the particle is heavy enough.

The exact explanation for the fore–aft asymmetry and the negative wake is not fully
understood, but the proposed scenarios always involve extensional stresses, balanced
either by shear stresses (Harlen 2002) or by normal stress differences (Bush 1994). To
discard other possible reasons for the fore–aft asymmetry, specific to our set-up, note
that the velocity boundary condition at the obstacle is different in our case (slip) and
in the study of Gueslin et al. (2006) (no slip), hence it is probably not relevant for the
asymmetry. The compressibility is the flow is probably not involved either, since it
has been checked in other experiments and simulations that incompressible flows of
foam around an obstacle present a negative wake (C. Raufaste and S. J. Cox, private
communication). It would be interesting to check whether fore–aft asymmetry is also
observed in other studies of foam flows, either in three-dimensional (de Bruyn 2004;
Cantat & Pitois 2005) or in two-dimensional flows around a large bubble (Cantat
et al. 2004; Cantat, Poloni & Delannay 2006), but these studies do not report detailed
features of the velocity field.

4.2.2. Pressure

We showed that the pressure is maximal at the upstream side of the obstacle, and
minimal at the downstream side (§ 3.2.2), and that it does not depend significantly on
the flow rate (§ 3.3.1). This suggests that the pressure is mainly of elastic origin, which
is also corroborated by the anti-inertial lift observed for an airfoil (Dollet et al. 2005a).
More precisely, fitting the data for the pressure along the axis y = 0 (figure 22) by a
power-law yields the following dependence: P (x) = (9.5 ± 0.7)x−1.13±0.05 (P expressed
in Pa and x in cm). The exponent is not very different from the −1 exponent for the
stress distribution in an elastic medium under a point-like force (Landau & Lifshitz
1981).

4.2.3. Coupling between statistical elastic strain, velocity gradients and T1s

The asymmetric distribution of the T1s (figure 20) is a major result of this study,
since the plastic flow of the foam results from the superposition of many T1s. Since
T1s are more likely to occur for deformed bubbles, it is interesting to compare their
distribution with the map of statistical elastic strain (figure 13). Such a comparison
reveals that the regions of frequent T1s do correspond to high deformation, but the
correlation is not simple: for instance, upstream from the obstacle, the deformation
is maximal at x = 0 (figure 14), whereas the T1s are more likely to occur on the sides
of the obstacle, not at x =0 (figure 21). This is because in this region, the velocity
gradients acts to increase the pre-existent deformation (figure 15). There is thus a
strong coupling between the statistical elastic strain, the velocity gradients and the T1
distribution, which we will analyse and model in future studies.

4.3. Comparison with force measurements and discussion of the quasi-static regime

We now qualitatively compare our results to the force measurements realized in the
same conditions in Dollet et al. (2005c). To summarize, that study showed that the
drag exerted by a flowing foam on a circular obstacle scales as

F = F0 + const × η0.77±0.05v0, (4.1)

with η the bulk viscosity, and F0 a decreasing function of the bubble area. The
independence of the pressure and the bubble deformation of the flow rate (figure 22)
is in qualitative agreement with the linear increase of the force exerted by the flowing
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foam on the obstacle (Dollet et al. 2005c), if we assume that the velocity-dependent
contribution to the force is mainly due to the viscous friction in the liquid films
between the obstacle and the surrounding bubbles. On the other hand, the exponent
for the bulk viscosity in (4.1) is close to 1, but the small difference is significant.
This means that increasing the velocity or the bulk viscosity probably does not have
strictly the same effect, as would be expected if the force scaled only with a capillary
number Ca = ηv0/γ . But figures 22 and 25 do not enable this small difference between
a variation of velocity v0 and a variation of bulk viscosity to be precisely captured.
Concerning the foam thickness, figure 24 shows that the fore–aft differences in pressure
and bubble deformation increase with the foam thickness, hence decrease with the
fluid fraction. This is compatible with the decrease of the drag with the fluid fraction
reported in Raufaste et al. (2007). The role of the bubble area is more complex:
we showed in § 3.3.2 that this parameter does not influence the bubble deformation
much, but that the fore–aft difference in pressure decreases with increasing bubble
area. The bubble deformation and pressure being the two contributions to the yield
drag F0 in (4.1), this qualitatively agrees with the fact that F0 decreases with the
bubble area. Moreover, the decrease of the amplitude of the pressure variations with
increasing bubble area is not rescaled by simple laws involving only bubble area,
probably because of the complex three-dimensional shape of the bubble. The last
control parameter studied, the obstacle itself, shows that the boundary conditions at
the obstacle play no significant role. The size of the obstacle has two influences: the
bigger the circle, the higher the velocity at its sides, due to the imposed constriction,
and the higher the amplitude of variation of the pressure. This is compatible with the
measured values of the drag coefficient (ratio of drag and obstacle radius) reported
in Dollet et al. (2005c) for these three obstacles: equal for the cogwheel and the big
circle, and slightly lower for the small circle.

We can now also confirm that the system remains in a quasi-static regime even at
the highest velocity and bulk viscosity. The relaxation time τT 1, introduced in § 4.1, is
the time needed for the foam to recover local equilibrium after a T1. Therefore, the
proportion of time away from equilibrium is fT 1τT 1, where fT 1 is the frequency of T1
per link introduced in § 2.2.3 (or, equivalently, f −1

T 1 is the average lifetime of a given
link). This proportion remains very small in our range of parameters: fT 1 does not
exceed 0.25 s−1 in the reference experiment (figure 20), and its maximal value for the
highest flow rate is 0.7 s−1. Conversely, the relaxation time is very short: τT 1 < 0.1 s
as shown in § 4.1; furthermore, it has no apparent dependence on the bulk viscosity,
which is compatible with the observations of Durand & Stone (2006). Hence, the
proportion of time away from equilibrium, fT 1τT 1, remains lower than 7 %. The
transition to a non-quasi-static regime would thus require a much higher velocity, or
a larger relaxation time. This is in principle possible with a surfactant with higher
surface elasticity and/or viscosity (Durand & Stone 2006), or by adjusting the fluid
fraction: for dry foam such as in Hele-Shaw cells, the velocity gradients and hence
the friction within the films are large, which slows down the relaxation after a T1.
Conversely, for wet foams such as bubble rafts, a T1 mobilizes a large amount of
water, which also delays the relaxation. Therefore, the ’liquid pool’ system, where
intermediate fluid fractions are achieved, probably minimizes the relaxation time and
promotes quasistatic regimes.

Finally, it is worth noting that the robust quasistatic regime in our experiments
does not contradict the fact that the dynamical drag, F − F0 in (4.1), is comparable
to the yield drag F0 and even exceeds it at our higher velocities (Dollet et al. 2005c).
The dynamical drag arises from the friction induced by the motion of bubbles along
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the obstacle. The surfactant used in this study has a low interfacial viscoelasticity:
the surface elasticity is 8 ± 1 mN m−1, and the surface viscosity is 1 ± 1 kg s−1 (Dollet),
hence we can assume that the interfaces are fluid and that the friction is therefore
dominated by bulk dissipation in the Plateau borders (Denkov et al. 2005). Conversely,
the relaxation after a T1 is mainly driven by interfacial viscoelasticity (Durand & Stone
2006). The dynamical drag and the transition from quasistatic to out-of-equilibrium
regimes are thus associated with independent sources of dissipation and decoupled,
as shown also by Marmottant & Graner (2007), who indeed predict a regime where
foam flows can still be quasistatic even though viscous stresses dominate elastic
ones.

5. Conclusions
We have performed a systematic local study of the flow of foam around a circular

obstacle, quantifying the elasticity by the statistical elastic strain tensor and the
pressure field, the plasticity by a tensorial descriptor of bubble rearrangements, and
the flow by the velocity field and its gradients. We demonstrate in § 3.1 that such a
continuous approach is justified and suitable in this case. The study of a reference
experiment (§ 3.2) shows a marked fore–aft asymmetry: the velocity exhibits an
overshoot in the wake, and the bubble rearrangements spread more at the leading
side than in the wake of the obstacle. This reveals the complex behaviour of the foam,
dictated by the coupling between elasticity (bubble deformations), plasticity (bubble
rearrangements) and flow (velocity gradients).

We showed in § 3.3.1 that the rescaled velocity v/v0, the pressure and the bubble
deformation do not depend significantly on the flow rate, in the range studied. Hence,
the yield and the dynamic contributions in foam rheology seem to be decoupled, which
justifies recent approaches to model foam flows (and more generally, complex fluid
flows) as Bingham plastics with an added elastic term independent of the shear rate
(Takeshi & Sekimoto 2005). In this context, the approach of Janiaud et al. (2006) is
promising, since it contains the essential ingredients of the two-dimensional rheology
of foams: elasticity up to a yield stress, plasticity at high imposed strain, internal
viscosity accounting for the motion within the films between bubbles, and external
friction (or viscous drag) between the flowing foam and the confining boundaries.
However, such scalar viscoelastoplastic approaches are not sufficient in our context,
where the complex flow around an obstacle requires a tensorial description. It would
be interesting to perform the same experiments at higher flow rate, to determine when
this decoupling between elastic and the dynamic contribution breaks down, and to
investigate whether phenomena such as elastic turbulence (Groisman & Steinberg
2000) could then occur in the wake of the obstacle.

The detailed results shown in § 3, combined with the associated force measurements
reported in Dollet et al. (2005a), severely constrain the rheological models adapted
to describe liquid foams. The foam flowing around an obstacle intrinsically exhibits
yield stress and dissipation (yield drag on the obstacle (de Bruyn 2004; Dollet et al.
2005c)), and elastic stress (fore–aft asymmetry); all these effects can only be captured
by an viscoelastoplatic and tensorial model.

We thank Simon Cox who kindly calculated figure 4(a) and gave us the permission
to publish it.
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Clancy, R. J., Janiaud, É., Weaire, D. & Hutzler, S. 2006 The response of two-dimensional
foams to continuous applied shear in a Couette rheometer. Eur. Phys. J. E 21, 123–132.
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