
TLP 8 (5 & 6): 691–716, 2008. C© 2008 Cambridge University Press

doi:10.1017/S1471068408003578 First published online 17 October 2008 Printed in the United Kingdom

691

Extended ASP Tableaux and rule redundancy
in normal logic programs1

MATTI JÄRVISALO and EMILIA OIKARINEN

Helsinki University of Technology (TKK), Department of Information and Computer Science,

P.O. Box 5400, FI-02015 TKK, Finland

(e-mail: matti.jarvisalo@tkk.fi, emilia.oikarinen@tkk.fi)

submitted 20 February 2008; revised 12 September 2008; accepted 18 September 2008

Abstract

We introduce an extended tableau calculus for answer set programming (ASP). The proof

system is based on the ASP tableaux defined in the work by Gebser and Schaub (Tableau

calculi for answer set programming. In Proceedings of the 22nd International Conference on

Logic Programming (ICLP 2006), S. Etalle and M. Truszczynski, Eds. Lecture Notes in

Computer Science, vol. 4079. Springer, 11–25) with an added extension rule. We investigate

the power of Extended ASP Tableaux both theoretically and empirically. We study the

relationship of Extended ASP Tableaux with the Extended Resolution proof system defined

by Tseitin for sets of clauses, and separate Extended ASP Tableaux from ASP Tableaux by

giving a polynomial-length proof for a family of normal logic programs {Πn} for which ASP

Tableaux has exponential-length minimal proofs with respect to n. Additionally, Extended

ASP Tableaux imply interesting insight into the effect of program simplification on the lengths

of proofs in ASP. Closely related to Extended ASP Tableaux, we empirically investigate the

effect of redundant rules on the efficiency of ASP solving.

KEYWORDS: Answer set programming, tableau method, extension rule, proof complexity,

problem structure

1 Introduction

Answer set programming (ASP) (Marek and Truszczyński, 1999; Niemelä, 1999;

Gelfond and Leone, 2002; Lifschitz, 2002; Baral, 2003) is a declarative problem

solving paradigm which has proven successful for a variety of knowledge repre-

sentation and reasoning tasks (see, e.g., Nogueira et al. 2001; Soininen et al. 2001;

Erdem et al. 2006; Brooks et al. 2007). The success has been brought forth by

efficient solver implementations such as smodels (Simons et al. 2002), dlv (Leone

et al. 2006), noMore++ (Anger et al. 2005), cmodels (Giunchiglia et al. 2006),

assat (Lin and Zhao 2004), and clasp (Gebser et al. 2007). However, there has

1 This is an extended version of a paper (Järvisalo and Oikarinen 2007) presented at the 23rd
International Conference on Logic Programming (ICLP 2007) in Porto, Portugal.

https://doi.org/10.1017/S1471068408003578 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003578

692 M. Järvisalo and E. Oikarinen

been an evident lack of theoretical studies into the reasons for the efficiency of ASP

solvers.

Solver implementations and their inference techniques can be seen as deterministic

implementations of the underlying rule-based proof systems. A solver implements a

particular proof system in the sense that the propagation mechanisms applied by

the solver apply the deterministic deduction rules in the proof system, whereas the

nondeterministic branching/splitting rule of the proof system is made deterministic

through branching heuristics present in typical solvers. From the opposite point

of view, a solver can be analyzed by investigating the power of an abstraction of

the solver as the proof system the solver implements. Due to this strong interplay

between theory and practice, the study of the relative efficiency of these proof

systems reveals new important viewpoints and explanations for the successes and

failures of particular solver techniques.

A way of examining the best-case performance of solver algorithms is provided

by (propositional) proof complexity theory (Cook and Reckhow 1979; Beame and

Pitassi 1998), which concentrates on studying the relative power of the proof

systems underlying solver algorithms in terms of the shortest existing proofs in

the systems. A large (superpolynomial) difference in the minimal length of proofs

available in different proof systems for a family of Boolean expressions reveals that

solver implementations of these systems are inherently different in strength. While

such proof complexity theoretic studies are frequent in the closely related field of

propositional satisfiability (SAT), where typical solvers have been shown to be based

on refinements of the well-known Resolution proof system (Beame et al. 2004),

this has not been the case for ASP. Especially, the inference techniques applied in

current state-of-the-art ASP solvers have been characterized by a family of tableau-

style ASP proof systems for normal logic programs only very recently (Gebser and

Schaub 2006b), with some related proof complexity theoretic investigations (Anger

et al. 2006) and generalizations (Gebser and Schaub 2007). The close relation of ASP

and SAT and the respective theoretical underpinning of practical solver techniques

has also received little attention up until recently (Giunchiglia and Maratea 2005;

Gebser and Schaub 2006a), although the fields could gain much by further studies

on these connections.

This work continues in part bridging the gap between ASP and SAT. Influenced

by Tseitin’s Extended Resolution proof system (Tseitin 1969) for clausal formulas,

we introduce Extended ASP Tableaux, an extended tableau calculus based on the

proof system in (Gebser and Schaub 2006b). The motivations for Extended ASP

Tableaux are many-fold. Theoretically, Extended Resolution has proven to be among

the most powerful known proof systems, equivalent to, for example, extended Frege

systems; no exponential lower bounds for the lengths of proofs are known for

Extended Resolution. We study the power of Extended ASP Tableaux, showing a

tight correspondence with Extended Resolution.

The contributions of this work are not only of theoretical nature. Extended ASP

Tableaux is in fact based on adding structure into programs by introducing additional

redundant rules. On the practical level, the structure of problem instances has an

important role in both ASP and SAT solving. Typically, it is widely believed that

https://doi.org/10.1017/S1471068408003578 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003578

Extended ASP Tableaux and rule redundancy in normal logic programs 693

redundancy can and should be removed for practical efficiency. However, the power

of Extended ASP Tableaux reveals that this is not generally the case, and such

redundancy-removing simplification mechanisms can drastically hinder efficiency. In

addition, we contribute by studying the effect of redundancy on the efficiency of a

variety of ASP solvers. The results show that the role of redundancy in programs is

not as simple as typically believed, and controlled addition of redundancy may in

fact prove to be relevant in further strengthening the robustness of current solver

techniques.

The rest of this article is organized as follows. After preliminaries on ASP and

SAT (Section 2), the relationship of Resolution and ASP Tableaux proof systems and

concepts related to the complexity of proofs are discussed (Section 3). By introducing

the Extended ASP Tableaux proof system (Section 4), proof complexity and

simplification are then studied with respect to Extended ASP Tableaux (Section 5).

Experimental results related to Extended ASP Tableaux and redundant rules in

normal logic programs are presented in Section 6.

2 Preliminaries

As preliminaries we review basic concepts related to ASP in the context of normal

logic programs, SAT, and translations between ASP and SAT.

2.1 Normal logic programs and stable models

We consider normal logic programs (NLPs) in the propositional case. Here, we will

review some standard concepts related to NLPs and stable models.

A normal logic program Π consists of a finite set of rules of the form

r : h← a1, . . . , an,∼b1, . . . ,∼bm, (1)

where each ai and bj is a propositional atom and h is either a propositional atom, or

the symbol ⊥ that stands for falsity. A rule r consists of a head, head(r) = h, and a

body, body(r) = {a1, . . . , an,∼b1, . . . ,∼bm}. The symbol “∼” denotes default negation.

A default literal is an atom a, or its default negation ∼a.
The set of atoms occurring in a program Π is atom(Π), and

dlit(Π) = {a,∼a | a ∈ atom(Π)}

is the set of default literals in Π. We use the shorthands L+ = {a | a ∈ L} and

L− = {a | ∼a ∈ L} for a set L of default literals, and ∼A = {∼a | a ∈ A} for a set A

of atoms. This allows the shorthand

head(r)← body(r)+ ∪ ∼body(r)−

for (1). A rule r is a fact if body(r) = ∅. Furthermore, we use the shorthands

head(Π) = {head(r) | r ∈ Π} and

body(Π) = {body(r) | r ∈ Π}.

https://doi.org/10.1017/S1471068408003578 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003578

694 M. Järvisalo and E. Oikarinen

In ASP, we are interested in stable models (Gelfond and Lifschitz 1988) (or answer

sets) of a program Π. An interpretation M ⊆ atom(Π) defines which atoms of Π

are true (a ∈M) and which are false (a
∈M). An interpretation M ⊆ atom(Π) is a

(classical) model of Π if and only if body(r)+ ⊆ M and body(r)− ∩M = ∅ imply

head(r) ∈ M for each rule r ∈ Π. A model M of a program Π is a stable model

of Π if and only if there is no model M ′ ⊂M of ΠM, where

ΠM = {head(r)← body(r)+ | r ∈ Π and body(r)− ∩M = ∅}

is called the Gelfond–Lifschitz reduct of Π with respect to M. We say that a

program Π is satisfiable if it has a stable model, and unsatisfiable otherwise.

The positive dependency graph of Π, denoted by Dep+(Π), is a directed graph with

atom(Π) and

{〈b, a〉 | ∃r ∈ Π such that b = head(r) and a ∈ body(r)+}

as the sets of vertices and edges, respectively. A nonempty set L ⊆ atom(Π) is a

loop in Dep+(Π) if for any a, b ∈ L there is a path of nonzero length from a to b in

Dep+(Π) such that all vertices in the path are in L. We denote by loop(Π) the set of

all loops in Dep+(Π). An NLP is tight if and only if loop(Π) = ∅. Furthermore, the

external bodies of a set A of atoms in Π is

eb(A) = {body(r) | r ∈ Π, head(r) ∈ A, body(r)+ ∩ A = ∅}.

A set U ⊆ atom(Π) is unfounded if eb(U) = ∅. We denote the greatest unfounded

set, that is, the union of all unfounded sets, of Π by gus(Π).

A splitting set (Lifschitz and Turner 1994) for an NLP Π is any set U ⊆ atom(Π)

such that for every r ∈ Π, if head(r) ∈ U, then body(r)+ ∪ body(r)− ⊆ U. The

bottom of Π relative to U is

bottom(Π, U) = {r ∈ Π | atom({r}) ⊆ U},

and the top of Π relative to U is

top(Π, U) = Π \ bottom(Π, U).

The top can be partially evaluated with respect to an interpretation X ⊆ U. The

result is a program eval(top(Π, U), X) that contains the rule

head(r)← (body(r)+ \U),∼(body(r)− \U),

for each r ∈ top(Π, U) such that body(r)+∩U ⊆ X and (body(r)−∩U)∩X = ∅. Given

a splitting set U for an NLP Π, a solution to Π with respect to U is a pair 〈X,Y 〉
such that X ⊆ U, Y ⊆ atom(Π)\U, X is a stable model of bottom(Π, U), and Y

is a stable model of eval(top(Π, U), X). In this work we will apply the splitting set

theorem (Lifschitz and Turner 1994) that relates solutions with stable models.

Theorem 2.1 (Lifschitz and Turner 1994)

Given a normal logic program Π and a splitting set U for Π, an interpretation

M ⊆ atom(Π) is a stable model of Π if and only if 〈M ∩U,M \U〉 is a solution to

Π with respect to U.

https://doi.org/10.1017/S1471068408003578 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003578

Extended ASP Tableaux and rule redundancy in normal logic programs 695

2.2 Propositional satisfiability

Let X be a set of Boolean variables. Associated with every variable x ∈ X there

are two literals, the positive literal, denoted by x, and the negative literal, denoted

by x̄. A clause is a disjunction of distinct literals. We adopt the standard convention

of viewing a clause as a finite set of literals and a CNF formula as a finite set of

clauses. The set of variables appearing in a clause C (a set C of clauses, respectively)

is denoted by var(C) [var(C), respectively].

A truth assignment τ associates a truth value τ(x) ∈ {false, true} with each variable

x ∈ X. A truth assignment satisfies a set of clauses if and only if it satisfies every

clause in it. A clause is satisfied if and only if it contains at least one satisfied

literal, where a literal x (x̄, respectively) is satisfied if τ(x) = true [τ(x) = false,

respectively]. A set of clauses is satisfiable if there is a truth assignment that satisfies

it, and unsatisfiable otherwise.

2.3 SAT as ASP

There is a natural linear-size translation from sets of clauses to NLPs so that the

stable models of the encoding represent the satisfying truth assignments of the

original set of clauses faithfully, that is, there is a bijective correspondence between

the satisfying truth assignments and stable models of the translation (Niemelä 1999).

Given a set C of clauses, this translation nlp(C) introduces a new atom c for each

clause C ∈ C and atoms ax and âx for each variable x ∈ var(C). The resulting NLP

is then

nlp(C) = {ax ← ∼âx. âx ← ∼ax | x ∈ var(C)} ∪ (2)

{⊥ ← ∼c | C ∈ C} ∪ (3)

{c← ax | x ∈ C, C ∈ C, x ∈ var(C)} ∪ (4)

{c← ∼ax | x̄ ∈ C, C ∈ C, x ∈ var(C)}. (5)

The rules in (2) encode that each variable must be assigned an unambiguous

truth value, the rules in (3) encode that each clause in C must be satisfied, while

(4) and (5) encode that each clause is satisfied if at least one of its literals is

satisfied.

Example 2.2

The set C = {{x, y}, {x, ȳ}, {x̄, y}, {x̄, ȳ}} of clauses is represented by the NLP

nlp(C) = { ax ← ∼âx. âx ← ∼ax. ay ← ∼ây. ây ← ∼ay.
⊥ ← ∼c1. ⊥ ← ∼c2. ⊥ ← ∼c3. ⊥ ← ∼c4.
c1 ← ax. c1 ← ay. c2 ← ax. c2 ← ∼ay.
c3 ← ∼ax. c3 ← ay. c4 ← ∼ax. c4 ← ∼ay }.

https://doi.org/10.1017/S1471068408003578 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003578

696 M. Järvisalo and E. Oikarinen

2.4 ASP as SAT

Contrarily to the case of translating SAT into ASP, there is no modular2 and faithful

translation from NLPs to propositional logic (Niemelä 1999). Moreover, any faithful

translation is potentially of exponential size when additional variables are not

allowed (Lifschitz and Razborov 2006)3. However, for any tight program Π it holds

that the answer sets of Π can be characterized faithfully by the satisfying truth

assignments of a linear-size propositional formula called Clark’s completion (Clark

1978; Fages 1994) of Π, defined using a Boolean variable xa for each a ∈ atom(Π) as

C(Π) =
∧

h∈atom(Π)∪{⊥}

(
xh ↔

∨

r∈rule(h)

(∧

b∈body(r)+

xb ∧
∧

b∈body(r)−

x̄b

))
, (6)

where rule(h) = {r ∈ Π | head(r) = h}. Notice that there are the special cases (i) if h

is ⊥ then the equivalence becomes the negation of the right-hand side, (ii) if h is a

fact, then the equivalence reduces to the clause {xh}, and (iii) if an atom h does not

appear in the head of any rule then the equivalence reduces to the clause {x̄h}.
In this work, we will consider the clausal representation of propositional formulas.

A linear-size clausal translation of C(Π) is achieved by introducing additionally a

new Boolean variable xB for each B ∈ body(Π). Using the new variables for the

bodies, we arrive at the clausal completion

comp(Π) =
⋃

B∈body(Π)

{
xB ≡

∧

a∈B+

xa ∧
∧

b∈B−
x̄b

}
∪

⋃

B∈body(rule(⊥))

{{x̄B}} (7)

∪
⋃

h∈head(Π)\{⊥}

{
xh ≡

∨

B∈body(rule(h))

xB

}
(8)

∪
⋃

a∈atom(Π)\head(Π)

{{x̄a}}, (9)

where the shorthands x ≡
∧
xi∈X xi and x ≡

∨
xi∈X xi stand for the sets of clauses

{x, x̄1, . . . , x̄n} ∪
⋃
xi∈X{x̄, xi} and

⋃
xi∈X{x, x̄i} ∪ {x̄, x1, . . . , xn}, respectively.

Example 2.3

For the normal logic program Π = {a ← b,∼a. b ← c. c ← ∼b}, the clausal

completion is

comp(Π) = {{x{b,∼a}, xa, x̄b}, {x̄{b,∼a}, x̄a}, {x̄{b,∼a}, xb},
{x{c}, x̄c}, {x̄{c}, xc}, {x{∼b}, xb}, {x̄{∼b}, x̄b}, {xa, x̄{b,∼a}},
{x̄a, x{b,∼a}}, {xb, x̄{c}}, {x̄b, x{c}}, {xc, x̄{∼b}}}, {x̄c, x{∼b}}.

2 Intuitively, for a modular translation, adding a set of facts to a program leads to a local change not
involving the translation of the rest of the program (Niemelä 1999).

3 However, polynomial-size propositional encodings using extra variables are known (see Ben-Eliyahu
and Dechter 1994; Lin and Zhao 2003; Janhunen 2006). Also, ASP as propositional SAT approaches
for solving NLPs have been developed, for example, assat (Lin and Zhao 2004) (based on incrementally
adding—possibly exponentially many—loop formulas) and asp–sat (Giunchiglia et al. 2006) (based on
generating a supported model, (Brass and Dix 1995), of the program and testing its minimality—thus
avoiding exponential space consumption).

https://doi.org/10.1017/S1471068408003578 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003578

Extended ASP Tableaux and rule redundancy in normal logic programs 697

3 Proof systems for ASP and SAT

In this section, we review concepts related to proof complexity (Cook and Reckhow

1979; Beame and Pitassi 1998) in the context of this work and discuss the relationship

of Resolution and ASP Tableaux (Gebser and Schaub 2006b).

3.1 Propositional proof systems and complexity

Formally, a (propositional) proof system is a polynomial-time computable predicate S

such that a propositional expression E is unsatisfiable if and only if there is a proof P

for which S(E, P) holds. A proof system is thus a polynomial-time procedure for

checking the correctness of proofs in a certain format. While proof checking is

efficient, finding short proofs may be difficult, or, generally, impossible since short

proofs may not exist for a too weak proof system. As a measure of hardness

of proving unsatisfiability of an expression E in a proof system S , the (proof)

complexity of E in S is the length of the shortest proof for E in S . For a family {En}
of unsatisfiable expressions over increasing number of variables, the (asymptotic)

complexity of {En} is measured with respect to the sizes of En.

For two proof systems S and S ′, we say that S ′ polynomially simulates S if for all

families {En} it holds that CS ′(En) � p(CS (En)) for all En, where p is a polynomial,

and CS and CS ′ are the complexities in S and S ′, respectively. If S simulates S ′ and

vice versa, then S and S ′ are polynomially equivalent. If there is a family {En} for

which S ′ does not polynomially simulate S , we say that {En} separates S from S ′.

If S simulates S ′, and there is a family {En} separating S from S ′, then S is more

powerful than S ′.

3.2 Resolution

The well-known resolution proof system (RES) for sets of clauses is based on the

resolution rule. Let C and D be clauses, and x a Boolean variable. The resolution

rule states that we can directly derive C ∪ D from {x} ∪ C and {x̄} ∪ D by resolving

on x.

An RES derivation of a clause C from a set C of clauses is a sequence of clauses

π = (C1, C2, . . . , Cn), where Cn = C and each Ci, where 1 � i < n, is either (i) a clause

in C (an initial clause) or (ii) derived with the resolution rule from two clauses

Cj, Ck , where j, k < i (a derived clause). The length of π is n, the number of clauses

occurring in it. Any derivation of the empty clause ∅ from C is an RES proof for

(the unsatisfiability of) C.

Any RES proof π = (C1, C2, . . . , Cn = ∅) can be represented as a directed acyclic

graph, in which the leaves are initial clauses and other nodes are derived clauses.

There are edges from Ci and Cj to Ck if and only if Ck has been directly derived

from Ci and Cj using the resolution rule. Many Resolution refinements, in which the

structure of the graph representation is restricted, have been proposed and studied.

Of particular interest here is Tree-like Resolution (T-RES), in which it is required that

proofs are represented by trees. This implies that a derived clause, if subsequently

used multiple times in the proof, must be derived anew each time from initial clauses.

https://doi.org/10.1017/S1471068408003578 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003578

698 M. Järvisalo and E. Oikarinen

T-RES is a proper RES refinement, that is, RES is more powerful than T-RES

(Ben-Sasson et al. 2004). On the other hand, it is well known that the DPLL

method (Davis and Putnam, 1960; Davis et al., 1962), the basis of most state-of-

the-art SAT solvers, is polynomially equivalent to T-RES. However, conflict-learning

DPLL is more powerful than T-RES, and polynomially equivalent to RES under a

slight generalization (Beame et al. 2004).

3.3 ASP Tableaux

Although, ASP solvers for NLPs have been available for many years, the deduction

rules applied in such solvers have only recently been formally defined as a proof

system, which we will here refer to as ASP Tableaux or ASP-T (Gebser and Schaub

2006b).

An ASP tableau for an NLP Π is a binary tree of the following structure. The

root of the tableau consists of the rules Π and the entry F⊥ for capturing that ⊥
is always false. The nonroot nodes of the tableau are single entries of the form Ta

or Fa, where a ∈ atom(Π) ∪ body(Π). As typical for tableau methods, entries are

generated by extending a branch (a path from the root to a leaf node) by applying

one of the rules in Figure 1; if the prerequisites of a rule hold in a branch, the

branch can be extended with the entries specified by the rule. For convenience, we

use shorthands tl and f l for default literals:

tl =

{
Ta, if l = a is positive,

Fa, if l = ∼a is negative; and

f l =

{
Ta, if l = ∼a is negative,

Fa, if l = a is positive.

A branch is closed under the deduction rules (b)–(i) if the branch cannot be

extended using the rules. A branch is contradictory if there are the entries Ta and Fa

for some a. A branch is complete if it is contradictory, or if there is the entry Ta or

Fa for each a ∈ atom(Π) ∪ body(Π) and the branch is closed under the deduction

rules (b)–(i). A tableau is contradictory if all its branches are contradictory, and

non-contradictory otherwise. A tableau is complete if all its branches are complete.

A contradictory tableau from Π is an ASP-T proof for (the unsatisfiability of) Π.

The length of an ASP-T proof is the number of entries in it.

Example 3.1

An ASP-T proof for the NLP Π = {a← b,∼a. b← c. c← ∼b} is shown in Figure 2,

with the rule applied for deducing each entry given in parentheses. For example, the

entry Fa has been deduced from a ← b,∼a in Π and the entry T{b,∼a} in the left

branch by applying the rule (g) Backward True Body. On the other hand, T{b,∼a}
has been deduced from a ← b,∼a in Π and the entry Ta in the left branch by

applying the rule (i§), that is, rule (i) by the fact that the condition § “Backward

True Atom” is fulfilled (in Π, the only body with atom a in the head is {b,∼a}).

https://doi.org/10.1017/S1471068408003578 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003578

Extended ASP Tableaux and rule redundancy in normal logic programs 699

Fig. 1. Rules in ASP Tableaux.

The tableau in Figure 2 has two closed branches:

(Π ∪ {F⊥},Ta,T{b,∼a},Fa) and

(Π ∪ {F⊥},Fa,F{b,∼a},Fb,T{∼b},Tc,T{c},Tb).
These branches share the common prefix (Π ∪ {F⊥}).

Any branch B describes a partial assignment A on atom(Π)∪body(Π) in a natural

way, that is, if there is an entry Ta (Fa, respectively) in B for a ∈ atom(Π)∪body(Π),

then (a, true) ∈ A ((a, false) ∈ A, respectively). ASP-T is a sound and complete

proof system for NLPs, that is, there is a complete noncontradictory ASP tableau

from Π if and only if Π is satisfiable (Gebser and Schaub 2006b). Thus, the

https://doi.org/10.1017/S1471068408003578 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003578

700 M. Järvisalo and E. Oikarinen

Fig. 2. An ASP-T proof for Π = {a← b,∼a. b← c. c← ∼b}.

assignment A described by a complete noncontradictory branch gives a stable

model M = {a ∈ atom(Π) | (a, true) ∈ A} of Π.

As argued in (Gebser and Schaub 2006b), current ASP solver implementations

are tightly related to ASP-T, with the intuition that the cut rule is made deter-

ministic with decision heuristics, while the deduction rules describe the propagation

mechanism in ASP solvers. For instance, the noMore++ system (Anger et al. 2005)

is a deterministic implementation of the rules (a)–(g), (h§), (h†), and (i§), while

smodels (Simons et al. 2002) applies the same rules with the cut rule restricted

to atom(Π).

Interestingly, ASP-T and T-RES are polynomially equivalent under the translations

comp and nlp. Although the similarity of unit propagation in DPLL and propagation

in ASP solvers is discussed in (Giunchiglia and Maratea 2005) and (Gebser and

Schaub 2006a), here we want to stress the direct connection between ASP-T and

T-RES. In detail, T-RES and ASP-T are equivalent in the sense that (i) given an

arbitrary NLP Π, the length of minimal T-RES proofs for comp(Π) is polynomially

bounded in the the length of minimal ASP-T proofs for Π, and (ii) given an arbitrary

set C of clauses, the length of minimal ASP-T proofs for nlp(C) is polynomially

bounded in the length of minimal T-RES proofs for C.

Theorem 3.2

T-RES and ASP-T are polynomially equivalent proof systems in the sense that

(i) considering tight NLPs, T-RES under the translation comp polynomially

simulates ASP-T, and

(ii) considering sets of clauses, ASP-T under the translation nlp polynomially

simulates T-RES.

Here, we give detailed proofs for the two parts of Theorem 3.2 followed by

illustrating examples.

In the proof of the first part of Theorem 3.2, we use a concept of a (binary) cut

tree corresponding to an ASP-T proof. Given an ASP-T proof T for an NLP Π,

the corresponding cut tree is obtained as follows. Starting from the root of T , we

replace each non-leaf entry generated by a deduction rule in T by an application of

https://doi.org/10.1017/S1471068408003578 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003578

Extended ASP Tableaux and rule redundancy in normal logic programs 701

Fig. 3. (Left) Cut tree based on the ASP-T proof in Figure 2. (Right) Resulting T-RES proof.

.

the cut rule on the corresponding entry. For example, the cut tree T ′ corresponding

to the ASP-T proof T in Figure 2 is given in Figure 3 (left).

Proof of Theorem 3.2(i)

Let T be an ASP-T proof for a tight NLP Π. Without loss of generality, we will

assume that branches in T have not been extended further after they have become

contradictory. We now show that we can construct a T-RES proof π for comp(Π)

using the cut tree T ′ corresponding to T . Furthermore, we show that for such a

proof π it holds that, given any prefix p of an arbitrary branch B in T ′ there is

a clause C ∈ π contradictory to the partial assignment in p, that is, there is the

entry Fa (Ta) for a ∈ atom(Π)∪body(Π) in p for each corresponding positive literal

xa (negative literal x̄a) in C .

Consider first the partial assignment in an arbitrary (full) branch B in T ′. Assume

that there is no clause in comp(Π) contradictory to the partial assignment in B, that

is, we can obtain a truth assignment τ based on the entries in B such that every clause

in comp(Π) is satisfied in τ. But this leads to contradiction since comp(Π) is satisfied

if and only if Π is satisfied. Thus, there is a clause C ∈ comp(Π) contradictory to

the partial assignment in B, and we take the clause C into our resolution proof π.

Assume that we have constructed π such that for any prefix p of length n for any

branch B in T ′, there is a clause C ∈ π contradictory to the partial assignment in p.

Consider an arbitrary prefix p of length n − 1. Now, in T ′ we have the prefixes p′

and p′′ of length n which have been obtained through extending p by applying the

cut rule on some a ∈ atom(Π) ∪ body(Π). In other words, p′ is p with Ta appended

in the end (p′′ is p with Fa appended in the end). Since p′ (p′′, respectively) is

of length n, there is a clause C (D, respectively) in π contradictory to the partial

assignment in p′ (p′′, respectively). Now there are two possibilities. If C = {x̄a} ∪ C ′
and D = {xa} ∪ D′, we can resolve on xa adding C ′ ∪ D′ to π. Thus, we have a

clause C ′ ∪D′ ∈ π contradictory to the partial assignment in the prefix p. Otherwise

https://doi.org/10.1017/S1471068408003578 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003578

702 M. Järvisalo and E. Oikarinen

we have that x̄a
∈ C or xa
∈ D, and hence either C ∈ π or D ∈ π is contradictory

to the partial assignment in the prefix p.

When reaching the root of T ′, we must have derived ∅ since it is the only clause

contradictory with the empty assignment. Furthermore, the T-RES derivation π is

of polynomial length with respect to T ′ (and T). �

The following example illustrates the RES proof construction used in the proof of

Theorem 3.2(i).

Example 3.3

Consider again the tight NLP Π = {a ← b,∼a. b ← c. c ← ∼b} from Example 2.3

and the ASP-T proof T for Π in Figure 2. We now construct a T-RES proof for

the completion comp(Π) (see Example 2.3 for details) using the strategy from the

proof of Theorem 3.2(i). First, T is transformed into a cut tree T ′ given in Figure 3

(left). Consider now the two leftmost branches in T ′. The partial assignment in

the branch with entries Ta and F{b,∼a} is contradictory to clause {x̄a, x{b,∼a}}
in comp(Π), and the partial assignment in the branch with entries Ta and T{b,∼a}
is contradictory to clause {x̄{b,∼a}, x̄a} in comp(Π). Thus, we resolve on x{b,∼a} and

obtain the clause {x̄a}, which is contradictory to the single entry Ta in the prefix of

the two leftmost branches in T ′. Similarly, we can construct a resolution tree for

clause {xa} corresponding to the right side of T ′. We finish the proof by resolving

on xa. The complete T-RES proof corresponding to the cut tree T ′ is shown in

Figure 3 (right).

Proof of Theorem 3.2(ii)

Let π = (C1, . . . , Cn = ∅) be a T-RES refutation of a set C of clauses. Recall that

each derived clause Ci in π is obtained by resolving on x from Cj = C ∪ {x} and

Ck = D ∪ {x̄} for some j, k < i.

An ASP-T proof T for nlp(C) is obtained from π as follows. We start from Cn,

which is obtained from clauses Cj = {x} and Ck = {x̄} by resolving on x ∈ var(C),

and apply in T the cut rule on ax corresponding to x. Then we recursively continue

the same way with Cj (Ck , respectively) in the generated branch with Fax (Tax,

respectively). Since π is tree-like, each clause in the prefix (C1, . . . , Cmax{j,k}) of π is

either used in the derivation of Cj or Ck , but not in both. By construction when

reaching C1 the branches of T correspond one-to-one to the paths in π (seen as a

tree) from Cn to the leaf clauses of π. For a particular leaf clause C , we have for

each literal l ∈ C (l = x or l = x̄) contradicting entries for ax in the corresponding

branch of T , that is, Fax if l = x and Tax if l = x̄. Now we can directly deduce for

each Fax the entry F{ax} and for each Tax the entry F{∼ax}. These entries together

will allow us to directly deduce Fc (all the bodies of rules with atom c as the head

are false). Since we have ⊥ ← ∼c ∈ nlp(C), we can deduce Tc, and the branch

becomes contradictory. �

The following example illustrates the strategy used in the proof of Theorem 3.2(ii).

Example 3.4

Recall the set C = {{x, y}, {x, ȳ}, {x̄, y}, {x̄, ȳ}} of clauses and the corresponding

normal logic program nlp(C) presented in Example 2.2. The set C of clauses has

https://doi.org/10.1017/S1471068408003578 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003578

Extended ASP Tableaux and rule redundancy in normal logic programs 703

Fig. 4. An ASP-T proof for nlp(C) resulting from a T-RES proof

π = ({x, y}, {x, ȳ}, {x̄, y}, {x̄, ȳ}, {y}, {ȳ}, ∅) for C in Example 3.4.

a T-RES refutation π = ({x, y}, {x, ȳ}, {x̄, y}, {x̄, ȳ}, {y}, {ȳ}, ∅). Now we construct an

ASP-T proof T for nlp(C) from π as done in the proof of Theorem 3.2(ii). The

resulting ASP-T proof T is presented in Figure 4. In the tableau we have omitted

entries of the form T{l} and F{l} for bodies consisting of a single default literal.

The empty clause is obtained resolving on y from {y} and {ȳ}, and thus we start

with applying the cut rule on ay . The clause {ȳ} is obtained resolving on x from

{x, ȳ} and {x̄, ȳ}. We continue in the branch with Tay by applying the cut rule

on ax. Consider now the branch with Tay and Tax in the tableau. The branch

corresponds to the clause {x̄, ȳ} in C. Thus we arrive on a contradiction by deducing

Fc4 from c4 ← ∼ax and c4 ← ∼ay , and Tc4 from ⊥ ← ∼c4. Other branches become

contradictory similarly.

4 Extended ASP Tableaux

We will now introduce an extension rule4 to ASP-T, which results in Extended ASP

Tableaux (E-ASP-T), an extended tableau proof system for ASP. The idea is that

one can define names for conjunctions of default literals.

Definition 4.1

Given an NLP Π and two literals l1, l2 ∈ dlit(Π), the (elementary) extension rule in

E-ASP-T adds the rule p← l1, l2 to Π, where p
∈ atom(Π) ∪ {⊥}.

It is essential that p is a new atom for preserving satisfiability. After an application

of the extension rule one considers the program Π′ = Π ∪ {p ← l1, l2} instead of

the original program Π. Notice that atom(Π′) = atom(Π) ∪ {p}. Thus when the

extension rule is applied several times, the atoms introduced in previous applications

of the rule can be used in defining further new atoms (see Example 4.2).

When convenient, we will apply a generalization of the elementary extension rule.

By allowing one to introduce multiple bodies for p, the general extension rule adds

a set of rules
⋃

i

{p← li,1, . . . , li,ki | p
∈ atom(Π) ∪ {⊥} and li,k ∈ dlit(Π) for all 1 � k � ki}

4 Notice that the extension rule introduced here differs from the one proposed in (Hai et al. 2003) in the
context of theorem proving.

https://doi.org/10.1017/S1471068408003578 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003578

704 M. Järvisalo and E. Oikarinen

into Π. Notice that equivalent constructs can be introduced with the elementary

extension rule. For example, bodies with more than two literals can be decomposed

with balanced parentheses using additional new atoms.

Example 4.2

Consider an NLP Π such that atom(Π) = {a, b}. We apply the general extension

rule and add a definition for the disjunction of atoms a and b, resulting in a program

Π ∪ {c ← a. c ← b}. An equivalent construct can be introduced by applying the

elementary extension rule twice: add first a rule d ← ∼a,∼b, and then add a rule

c← ∼d,∼d.

An E-ASP-T proof for (the unsatisfiability of) a program Π is an ASP-T proof

T for Π ∪ E, where E is a set of extending (program) rules generated with the

extension rule in E-ASP-T. The length of an E-ASP-T proof is the length of T plus

the number of program rules in E.

A key point is that applications of the extension rule do not affect the existence

of stable models.

Theorem 4.3

Extended ASP Tableaux is a sound and complete proof system for NLPs.

Proof

Let T be an E-ASP-T proof for NLP Π with the set E of extending rules, that is,

an ASP-T proof for Π ∪ E. Since ASP-T is sound and complete, there is a complete

noncontradictory branch in T if and only if Π ∪ E is satisfiable. The set atom(Π)

is a splitting set for Π ∪ E, since head(r)
∈ atom(Π) ∪ {⊥} for every extending rule

r ∈ E. Furthermore, bottom(Π ∪ E, atom(Π)) = Π and top(Π ∪ E, atom(Π)) = E.

By Theorem 2.1, Π ∪ E is satisfiable if and only if there is a solution to Π ∪ E with

respect to atom(Π), that is, there is a stable model M ⊆ atom(Π) for Π and a stable

model N for eval(E,M). Since the rules in E are generated using the extension rule

(recall also ⊥
∈ head(E)), there is a unique stable model for eval(E,M) for each

M ⊆ atom(Π). Thus, there is a solution to Π∪E with respect to atom(Π) if and only

if Π is satisfiable, and moreover, Π ∪ E is satisfiable if and only if Π is satisfiable,

and E-ASP-T is sound and complete. �

4.1 The extension rule and well-founded deduction

An interesting question regarding the possible gains of applying the extension rule

in E-ASP-T with the ASP tableau rules is whether the additional extension rule

allows one to simulate well-founded deduction [rules (h†), (h‡), (i†), and (i‡)] with

the other deduction rules [(b)–(g), (h§), (i§)]5. We now show that this is not the case;

the extension rule does not allow us to simulate reasoning related to unfounded sets

and loops. This is implied by Theorem 4.4, which states that, by removing rules (h†),
(h‡), (i†), and (i‡) from E-ASP-T, the resulting tableau method becomes incomplete

for NLPs.

5 Notice that the proof system consisting of tableau rules (a)–(g), (h§), and (i§) amounts to computing
supported models (Gebser and Schaub 2006b).

https://doi.org/10.1017/S1471068408003578 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003578

Extended ASP Tableaux and rule redundancy in normal logic programs 705

Theorem 4.4

Using only tableau rules (a)–(g), (h§) and (i§), and the extension rule do not result

in a complete proof system for NLPs.

Proof

Consider the NLP Π = {⊥ ← ∼a. a← b. b← a}. Although Π is unsatisfiable, in the

proof system having only the tableau rules (a)–(g), (h§), and (i§), we can construct a

complete and noncontradictory tableau with a single branch

T = (Π ∪ {F⊥},F{∼a} (e),Ta (c),T{b} (i§),Tb (g),T{a} (i§))

for Π.

Consider an arbitrary set E of extending rules generated using the extension rule

in E-ASP-T. Recall that head(E) ∩ (atom(Π) ∪ {⊥}) = ∅. We can form a complete

noncontradictory tableau T ′ for Π ∪ E as follows.

First, define H0 = atom(Π) ∪ {⊥} and

Hi = {h ∈ head(E) |
⋃

r∈rule(h)

(body(r)+ ∪ body(r)−) ⊆
⋃

j<i

Hj}.

Thus the sets Hi are used to define a level numbering for the atoms defined in the

extension E. Furthermore, we define

Ei = {r ∈ Π ∪ E | head(r) ∈
⋃

j�i

Hj}

for all i � 0. Notice that E0 = Π, and Π ∪ E =
⋃
i�0 Ei. We now show using

induction that for each i � 0, the only branch B in T can be extended into a

complete noncontradictory branch for Ei using tableau rules (b)–(g), (h§), and (i§).
The base case (i = 0) holds by definition. Assume that the claim holds for i− 1,

that is, B can be extended into a complete noncontradictory branch B′ for Ei−1.

Consider now arbitrary r ∈ Ei. By definition body(r)+ ∪ body(r)− ⊆ atom(Ei−1) for

each r ∈ Ei. Since B′ is complete, it contains entries for each a ∈ atom(Ei−1), and

we can deduce an entry for body(r) using ASP tableau rule (b) or (f) (depending on

the entries in B′). If the entry T(body(r)) has been deduced, we can deduce Th for

h = head(r) using (d). Otherwise, we have deduced the entries F(body(r′)) for every

r′ ∈ Ei such that h = head(r′), and we can deduce Fh using (h§). Thus we have

deduced entries for all a ∈ atom(Ei) ∪ body(Ei) and the branch is noncontradictory.

Furthermore it is easy to check that the branch is closed under the tableau rules

(b)–(g), (h§), and (i§).
Thus, we obtain a complete and noncontradictory tableau for Π ∪ E. Since we

cannot generate a contradictory tableau for Π with tableau rules (a)–(g), (h§), and

(i§), we cannot generate one for Π ∪ E either. This is in contradiction with the fact

that Π is unsatisfiable. �

5 Proof complexity

In this section we study proof complexity theoretic issues related to E-ASP-T from

several viewpoints: we will

https://doi.org/10.1017/S1471068408003578 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003578

706 M. Järvisalo and E. Oikarinen

• consider the relationship between E-ASP-T and the Extended Resolution proof

system (Tseitin 1969),

• give an explicit separation of E-ASP-T from ASP-T, and

• relate the extension rule to the effect of program simplification on proof lengths

in ASP-T.

5.1 Relationship with Extended Resolution

The system E-ASP-T is motivated by Extended Resolution (E-RES), a proof system

originally introduced in (Tseitin 1969). The system E-RES consists of the resolution

rule and an extension rule that allows one to expand a set of clauses by iteratively

introducing equivalences of the form x ≡ l1 ∧ l2, where x is a new variable, and l1
and l2 are literals in the current set of clauses. In other words, given a set C of

clauses, one application of the extension rule adds the clauses {x, l̄1, l̄2}, {x̄, l1}, and

{x̄, l2} to C. The system E-RES is known to be more powerful than RES; in fact,

E-RES is polynomially equivalent to, for example, extended Frege systems, and no

superpolynomial proof complexity lower bounds are known for E-RES. We will now

relate E-ASP-T with E-RES, and show that they are polynomially equivalent under

the translations comp and nlp.

Theorem 5.1

E-RES and E-ASP-T are polynomially equivalent proof systems in the sense that

(i) considering tight NLPs, E-RES under the translation comp polynomially

simulates E-ASP-T, and

(ii) considering sets of clauses, E-ASP-T under the translation nlp polynomially

simulates E-RES.

Proof

(i) Let T be an E-ASP-T proof for a tight NLP Π, that is, T is an ASP-T proof

for Π ∪ E, where E is the set of extending rules generated in the proof. We use the

shorthand xl for the variable corresponding to default literal l in comp(Π∪E), that

is, xl = xa (xl = x̄a, respectively) if l = a (l = ∼a, respectively) for a ∈ atom(Π ∪E).

By Theorem 3.2 there is a polynomial RES proof for comp(Π ∪ E). Now consider

comp(Π). We apply the extension rule in E-RES in the same order in which

the extension rule in E-ASP-T is applied when generating the set E of extending

rules. In other words, we apply the extension rule in E-RES as follows for each

rule r = h ← l1, l2 in E. If body(r) = {l1, l2} ∈ body(Π), then there are the

clauses x{l1 ,l2} ≡ xl1 ∧ xl2 in comp(Π). If this is the case, we generate the clauses

xh ≡ x{l1 ,l2} with the extension rule in E-RES. Otherwise, that is, if body(r) does not

have a corresponding propositional variable in comp(Π), we generate the clauses

xh ≡ x{l1 ,l2} and x{l1 ,l2} ≡ xl1 ∧xl2 . Denote the resulting set of extending clauses by E ′.

Now we notice that comp(Π)∪E ′ = comp(Π ∪E), and therefore the RES proof for

comp(Π ∪ E) is an E-RES proof for comp(Π) in which the extension rule in E-RES

is applied to generate the clauses in E ′.

(ii) Let π = (C1, . . . , Cn = ∅) be an E-RES proof for a set C of clauses. Let E be

the set of clauses in π generated with the extension rule. We introduce shorthands

https://doi.org/10.1017/S1471068408003578 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003578

Extended ASP Tableaux and rule redundancy in normal logic programs 707

for atoms corresponding to literals, that is, al = ax (al = ∼ax) if l = x (l = x̄) for

x ∈ var(C∪E). Now, an E-ASP-T proof for nlp(C) is generated as follows. First, we

add the following rules to nlp(C) with the extension rule in E-ASP-T:

ax ← al1 , al2 for each extension x ≡ l1 ∧ l2; (10)

c← al for each literal l ∈ C for a clause C ∈ π such that C
∈ C; and (11)

p1 ← c1 and pi ← ci, pi−1 for each Ci ∈ π and 2 � i < n. (12)

Then, from i = 1 to n−1 apply the cut rule on pi in the branch with Tpj for all j < i.

We now show that for each i the branch with Fpi and Tpj for all j < i becomes

contradictory without further application of the cut rule. First, deduce Fci from Fpi
using the rule (12) for i. One of the following holds for Ci ∈ π: either (a) Ci ∈ C, (b)

Ci is a derived clause, or (c) Ci ∈ E.

(a) If Ci ∈ C we can deduce Tci from ⊥ ← ∼ci ∈ nlp(C), and the branch becomes

contradictory.

(b) If Ci is a derived clause, that is, Ci is obtained from Cj and Ck for j, k < i

resolving on x, then Ci = (Ck∪Cj)\{x, x̄}. For all the literals l ∈ Ci we deduce fal
from the rules (11) in the extension. From Tpj and Tpk we deduce Tcj and Tck
using the rule (12) in the extension for j and k, respectively. Furthermore,

because we have entries fal for each l in (Ck ∪ Cj) \ {x, x̄}, we deduce Tax and

Fax and the branch becomes contradictory. Recall that there is a rule c← al for

each clause C ∈ π and literal l ∈ C either in nlp(C) or in the extension [rules in

(11)].

(c) If Ci ∈ E, then Ci is of the form {x, l̄1, l̄2}, {x̄, l1}, or {x̄, l2} for x ≡ l1 ∧ l2.
For instance, if Ci = {x̄, l1}, then from ci ← ∼ax and ci ← al1 we deduce Tax
and fal1 . The branch becomes contradictory as T{al1 , al2} and tal1 are deduced

from rule (10) in the extension. The branch becomes contradictory similarly,

if Ci is of the form {x, l̄1, l̄2} or {x̄, l2}.

Finally, consider the branch with Tpi for all i = 1, . . . , n − 1. The empty clause Cn
in π is obtained by resolving Cj = {x} and Ck = {x̄} in π for some j, k < n. Thus,

we can deduce Tcj and Tck from the rules in (12) for j and k, respectively, and

furthermore, Tax and Fax from cj ← ax and ck ← ∼ax, resulting in a contradiction

in the branch. The obtained contradictory ASP tableau is of linear length with

respect to π. �

5.2 Pigeonhole principle separates Extended ASP Tableaux from ASP Tableaux

To exemplify the strength of E-ASP-T, we now consider a family of NLPs {Πn}
which separates E-ASP-T from ASP-T, that is, we give an explicit polynomial-length

proof for Πn for which the minimum-length ASP-T proofs are exponential with

respect to n. We will consider this family also in the experiments reported in this

article.

https://doi.org/10.1017/S1471068408003578 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003578

708 M. Järvisalo and E. Oikarinen

The program family {PHPn+1
n } in question is the following typical encoding of the

pigeonhole principle as a normal logic program:

PHPn+1
n = {⊥ ← ∼pi,1, . . . ,∼pi,n | 1 � i � n+ 1} ∪ (13)

{⊥ ← pi,k, pj,k | 1 � i < j � n+ 1, 1 � k � n} ∪ (14)

{pi,j ← ∼p′i,j . p′i,j ← ∼pi,j | 1 � i � n+ 1, 1 � j � n}. (15)

In this program, pi,j has the interpretation that pigeon i sits in hole j. The rules

in (13) require that each pigeon must sit in some hole, and the rules in (14) require

that no two pigeons can sit in the same hole. The rules in (15) enforce that for

each pigeon and each hole, the pigeon either sits in the hole or does not sit in

the hole. Each PHPn+1
n is unsatisfiable since there is no bijective mapping from an

(n+ 1)-element set to an n-element set.

Theorem 5.2

The complexity of {PHPn+1
n } with respect to n is

(i) polynomial in E-ASP-T, and

(ii) exponential in ASP-T.

Proof

(i) In (Cook 1976) an extending set of clauses is added to a clausal encoding CPHP of

the pigeonhole principle6 so that RES has polynomial-length proofs for the resulting

set of clauses. By Theorem 5.1(ii) there is a polynomial-length E-ASP-T proof for

nlp(CPHP) = {pi,j ← ∼p′i,j . p′i,j ← ∼pi,j | 1 � i � n+ 1, 1 � j � n} ∪
{⊥ ← ∼ci | 1 � i � n+ 1} ∪
{⊥ ← ∼cijk | 1 � i < j � n+ 1, 1 � k � n} ∪
{ci ← pi,j | 1 � j � n, 1 � i � n+ 1} ∪
{cijk ← ∼pi,k. cijk ← ∼pj,k | 1 � i < j � n+ 1, 1 � k � n}.

For simplicity, we keep the names of the atoms pi,j unchanged in the translation.

In more detail, let π = (C1, C2, . . . , Cm = ∅) be the polynomial-length E-RES proof7

for the clausal representation CPHP. Let

EXTl = {eli,j ← el+1
i,j . e

l
i,j ← el+1

i,l , e
l+1
l+1,j | 1 � i � l and 1 � j � l − 1}

for 1 < l � n, where each en+1
i,j is pi,j . The extension EXTl corresponds the set of

extending clauses in (Cook 1976) similarly to the set of rules in (10) in part (ii) of

the proof of Theorem 5.1. Furthermore, E(π) consists of the sets of rules in (11) and

6 The particular encoding, for which there are no polynomial-length RES proofs (Haken 1985), is
CPHP =

⋃
1�i�n+1{{

∨n
j=1 pi,j}} ∪

⋃
1�i<j�n+1,1�k�n{{¬pi,k ∨ ¬pj,k}}.

7 The polynomial-length E-RES proof for CPHP is not described in detail in (Cook 1976). Details on the
structure of the RES proof can be found in Järvisalo and Junttila (in press). The intuitive idea is that
the extension allows for reducing PHPn+1

n to PHPnn−1 with a polynomial number of resolution steps.

https://doi.org/10.1017/S1471068408003578 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003578

Extended ASP Tableaux and rule redundancy in normal logic programs 709

(12) defined in the proof of Theorem 5.1(ii). By applying the strategy from the proof

of Theorem 5.1(ii), we obtain a polynomial-length ASP-T proof for

nlp(CPHP) ∪
⋃

1<l�n

EXTl ∪ E(π).

Now, we use the same strategy to construct a polynomial ASP-T proof for the

program

EPHPn+1
n = PHPn+1

n ∪
⋃

1<l�n

EXTl ∪ E′(π),

where E′(π) consists of rules c ← al for each literal l ∈ C for each clause C ∈ π
(that is, rules as in (11) but without the restriction C
∈ CPHP) together with the rules

in (12). The only difference comes in step (a) in the proof of Theorem 5.1(ii), that

is, when we have deduced Fc corresponding to C ∈ CPHP. Since we do not have the

rule ⊥ ← ∼c in EPHPn+1
n , we cannot deduce Tc to obtain a contradiction. Instead,

we can deduce a contradiction without using the ASP-T cut rule through a program

rule in PHPn+1
n that corresponds to the clause C . For instance, if C = {¬pi,k,¬pj,k},

we have the rules c ← ∼pi,k and c ← ∼pj,k in E′(π) and the rule ⊥ ← pi,k, pj,k
in PHPn+1

n . From Fc, we deduce Tpi,k and Tpj,k . From F⊥ and ⊥ ← pi,k, pj,k , we

deduce F{pi,k, pj,k}, and furthermore, from Tpi,k and F{pi,k, pj,k}, we deduce Fpj,k .

This results in a polynomial-length E-ASP-T proof for PHPn+1
n .

(ii) Assume now that there is a polynomial ASP-T proof for PHPn+1
n . By

Theorem 3.2, there is a polynomial T-RES proof for comp(PHPn+1
n). Notice that the

completion comp(PHPn+1
n) consists of the clausal encoding CPHP of the pigeonhole

principle and additional clauses (tautologies) for rules of the form pi,j ← ∼p′i,j ,
p′i,j ← ∼pi,j . It is easy to see that these additional tautologies do not affect the length

of the minimal T-RES proofs for comp(PHPn+1
n). Thus there is a polynomial-length

T-RES proof for the clausal pigeonhole encoding. However, this contradicts the fact

that the complexity of the clausal pigeonhole principle is exponential with respect

to n for (Tree-like) Resolution (Haken 1985). �

We can also easily obtain a non-tight program family to witness the separation

demonstrated in Theorem 5.2. Consider the family

{PHPn+1
n ∪ {pi,j ← pi,j | 1 � i � n+ 1, 1 � j � n}},

which is non-tight with the additional self-loops {pi,j ← pi,j}, but preserves (un)satis-

fiability of PHPn+1
n for all n. Since the self-loops do not contribute to the proofs for

PHPn+1
n , the minimum-length ASP-T proofs are still exponential for these programs,

while the polynomial-length E-ASP-T proof presented in the proof of Theorem 5.2

is still valid.

The generality of the arguments used in the proof of Theorem 5.2 is not limited to

the specific family PHPn+1
n of NLPs. For understanding the general idea behind the

explicit construction of EPHPn+1
n , it is informative to notice the following. Instead

of considering PHPn+1
n , one can apply the argument in the proof of Theorem 5.2

using any tight NLP Π which represents a set of clauses C for which (i) there is

no polynomial-length RES proof, but for which (ii) there is a polynomial-length

https://doi.org/10.1017/S1471068408003578 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003578

710 M. Järvisalo and E. Oikarinen

E-RES proof. By property (ii) we know from Theorem 5.1(ii) that there is a

polynomial-length E-ASP-T proof for Π.

5.3 Program simplification and complexity

We will now give an interesting corollary of Theorem 5.2, addressing the effect of

program simplification on the length of proofs in ASP-T.

Tightly related to the development of efficient solver implementations for ASP

programs arising from practical applications is the development of techniques

for simplifying programs. Practically relevant programs are often generated au-

tomatically, and in the process a large number of redundant constraints are

produced. Therefore, efficient program simplification through local transformation

rules is important. While various satisfiability-preserving local transformation rules

for simplifying logic programs have been introduced (see, e.g., Eiter et al. (2004)),

the effect of applying such transformations on the lengths of proofs has not received

attention.

Taking the first step into this direction, we now show that even simple transfor-

mation rules may have a drastic negative effect on proof complexity. Consider the

local transformation rule

red(Π) = Π \ {r ∈ Π | head(r)
∈
⋃

B∈body(Π)

(B+ ∪ B−) and head(r)
= ⊥}.

A polynomial-time simplification algorithm red∗(Π) is obtained by closing pro-

gram Π under red. Notice that we have red∗(EPHPn+1
n) = PHPn+1

n . Thus, by

Theorem 5.2, red∗ transforms a program family having polynomial complexity in

ASP Tableaux into one with exponential complexity with respect to n.

The rules removed by red∗ are redundant with respect to satisfiability of the

program in the sense that red∗ preserves visible equivalence (Janhunen 2006). The

visible equivalence relation takes the interfaces of programs into account: atom(Π)

is partitioned into v(Π) and h(Π) determining the visible and the hidden atoms in

Π, respectively. Programs Π1 and Π2 are visibly equivalent, denoted by Π1 ≡v Π2,

if and only if v(Π1) = v(Π2) and there is a bijective correspondence between the

stable models of Π1 and Π2 mapping each a ∈ v(Π1) onto itself. Now if one defines

v(Π) = atom(red∗(Π)) = v(red∗(Π)), that is, assuming that the atoms removed

by red∗ are hidden in Π, one can see that red∗(Π) ≡v Π. Hence, even though

there is a bijective correspondence between the stable models of EPHPn+1
n and

red∗(EPHPn+1
n) = PHPn+1

n , red∗ causes a superpolynomial blow-up in the length

of proofs in ASP-T and the related solvers, if applied before actually proving

EPHPn+1
n .

6 Experiments

We experimentally evaluate how well current state-of-the-art ASP solvers can make

use of the additional structure introduced to programs using the extension rule. For

https://doi.org/10.1017/S1471068408003578 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003578

Extended ASP Tableaux and rule redundancy in normal logic programs 711

Table 1. Results on PHPn+1
n , CPHPn+1

n , and EPHPn+1
n with timeout (−) of 2 hours

Time (s) Decisions

Solver n PHPn+1
n CPHPn+1

n EPHPn+1
n PHPn+1

n CPHPn+1
n EPHPn+1

n

smodels 10 34.02 119.69 8.65 164,382 144,416 0

smodels 11 486.44 1, 833.48 21.70 1,899,598 1,584,488 0

smodels 12 – – 49.28 – – 0

clasp 10 6.81 7.29 10.05 337,818 216,894 38,863

clasp 11 58.48 45.00 82.07 1,840,605 882,393 203,466

clasp 12 579.28 509.43 941.23 12,338,982 6,434,939 1,467,623

cmodels 10 1.60 1.69 7.87 8,755 8,579 12,706

cmodels 11 8.20 8.51 43.96 24,318 23,758 42,782

cmodels 12 46.33 54.26 122.72 88,419 94,917 88,499

the experiments, we ran the solvers8 smodels (Simons et al. 2002) (version 2.33, a

widely used lookahead solver), clasp (Gebser et al. 2007) (version 1.1.0, with many

techniques—including conflict learning—adopted from DPLL-based SAT solvers),

and cmodels (Giunchiglia et al. 2006) (version 3.77, a SAT-based ASP solver running

the conflict-learning SAT solver zChaff (Moskewicz et al. 2001) version 2007.3.12 as

the back-end). The experiments were run on standard PCs with 2-GHz AMD 3200+

processors under Linux. Running times were measured using /usr/bin/time.

First, we investigate whether ASP solvers are able to benefit from the extension

in EPHPn+1
n . We compare the number of decisions and running times of each

of the solvers on PHPn+1
n , CPHPn+1

n = PHPn+1
n ∪

⋃
1<l�n EXTl , and EPHPn+1

n . By

Theorem 5.2 the solvers should in theory be able to exhibit polynomially scaling

numbers of decisions for EPHPn+1
n . In fact with conflict-learning this might also be

possible for CPHPn+1
n due to the tight correspondence with conflict-learning SAT

solvers and RES (Beame et al. 2004). The results for n = 10, . . . , 12 are shown in

Table 1. While the number of decisions for the conflict-learning solvers clasp and

cmodels is somewhat reduced by the extensions, the solvers do not seem to be

able to reproduce the polynomial-length proofs, and we do not observe a dramatic

change in the running times. With a timeout of 2 hours, smodels gives no answer

for n = 12 on PHPn+1
n or CPHPn+1

n . However, for EPHPn+1
n smodels returns without

any branching, which is due to the fact that smodels’ complete lookahead notices

that by branching on the critical extension atoms [as in part (ii) of the proof of

Theorem 5.2] the false branch becomes contradictory immediately. With this in

mind, an interesting further study out of the scope of this work would be the

possibilities of integrating conflict-learning techniques with (partial) lookahead.

In the second experiment, we study the effect of having a modest number of

redundant rules on the behavior of ASP solvers. For this we apply the procedure

8 We note that the detailed results reported here differ somewhat from those reported in the conference
version of this work (Järvisalo and Oikarinen 2007). This is due to the fact that, for the current article,
we used more recent versions of the solvers.

https://doi.org/10.1017/S1471068408003578 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003578

712 M. Järvisalo and E. Oikarinen

Fig. 5. Effects of adding randomly generated redundant rules to PHPn+1
n .

https://doi.org/10.1017/S1471068408003578 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003578

Extended ASP Tableaux and rule redundancy in normal logic programs 713

AddRandomRedundancy(Π, n, p) shown in Algorithm 1. Given a program Π, the

procedure iteratively adds rules of the form ri ← l1, l2 to Π, where l1 and l2 are

random default literals currently in the program and ri is a new atom. The number

of introduced rules is p% of the integer n.

Algorithm 1 AddRandomRedundancy(Π, n, p)

1. For i = 1 to � p
100
n�:

1a. Randomly select l1, l2 ∈ dlit(Π) such that l1
= l2.

1b. Π := Π ∪ {ri ← l1, l2}, where ri
∈ atom(Π) ∪ {⊥}.
2. Return Π

In Figure 5, the median, minimum, and maximum number of decisions and

running times for the solvers on AddRandomRedundancy(PHPn+1
n , n, p) are shown

for p = 50, 100, . . . , 450 over 15 trials for each value of p. The mean number of

decisions (left) and running times (right) on the original PHPn+1
n are presented by

the horizontal lines. Notice that the number of added atoms and rules is linear

to n, which is negligible to the number of atoms (in the order of n2) and rules (n3)

in PHPn+1
n . For similar running times, the number of holes n is 10 for clasp and

smodels and 11 for cmodels. The results are very interesting: each of the solvers

seems to react individually to the added redundancy. For cmodels (b), only a few

added redundant rules are enough to worsen its behavior. For smodels (c), the

number of decisions decreases linearly with the number of rules added. However,

the running times grow fast at the same time, most likely due to smodels’ lookahead.

We also ran the experiment for smodels without using lookahead (d). This had a

visible effect on the number of decisions compared to smodels on PHPn+1
n .

The most interesting effect is seen for clasp (a); clasp benefits from the added

rules with respect to the number of decisions, while the running times stay similar

on the average, contrarily to the other solvers. In addition to this robustness against

redundancy, we believe that this shows promise for further exploiting redundancy

added in a controlled way during search; the added rules give new possibilities to

branch on definitions which were not available in the original program. However,

for benefiting from redundancy with running times in mind, optimized lightweight

propagation mechanisms are essential.

As a final remark, an interesting observation is that the effect of the transformation

presented in (Anger et al. 2006), which enables smodels to branch on the bodies of

rules, having an exponential effect on the proof complexity of a particular program

family, can be equivalently obtained by applying the ASP extension rule. This may

in part explain the effect of adding redundancy on the number of decision made by

smodels.

7 Conclusions

We introduce Extended ASP Tableaux, an extended tableau calculus for NLPs

under the stable model semantics. We study the strength of the calculus, showing a

tight correspondence with Extended Resolution, which is among the most powerful

known propositional proof systems. This sheds further light on the relation of ASP

https://doi.org/10.1017/S1471068408003578 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003578

714 M. Järvisalo and E. Oikarinen

and propositional SAT solving and their underlying proof systems, which we believe

to be for the benefit of both of the communities.

Our experiments show the intricate nature of the interplay between redundant

problem structure and the hardness of solving ASP instances. We conjecture that

more systematic use of the extension rule is possible and may even yield performance

gains by considering in more detail the structural properties of programs in particular

problem domains. One could also consider implementing branching on any possible

formula inside a solver. However, this would require novel heuristics, since choosing

the formula to branch on exponentially from the many alternatives is nontrivial

and is not applied in current solvers. We find this an interesting future direction

of research. Another important research direction set forth by this study is a more

in-depth investigation into the effect of program simplification on the hardness of

solving ASP instances.

8 Acknowledgements

The authors thank Ilkka Niemelä for comments on a manuscript of this arti-

cle. Financial support from Helsinki Graduate School in Computer Science and

Engineering, Academy of Finland (grants #211025 and #122399), Emil Aaltonen

Foundation, Nokia Foundation, Finnish Foundation for Technology Promotion

TES, Jenny and Antti Wihuri Foundation (MJ), and Finnish Cultural Foundation

(EO) are gratefully acknowledged.

References

Anger, C., Gebser, M., Janhunen, T. and Schaub, T. 2006. What’s a head without a body?

In Proceedings of the 17th European Conference on Artificial Intelligence (ECAI 2006),

G. Brewka, S. Coradeschi, A. Perini and P. Traverso, Eds. IOS Press, Amsterdam, the

Netherlands, 769–770.

Anger, C., Gebser, M., Linke, T., Neumann, A. and Schaub, T. 2005. The nomore++

approach to answer set solving. In Proceedings of the 12th International Conference on

Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2005), G. Sutcliffe

and A. Voronkov, Eds. Lecture Notes in Computer Science, vol. 3835. Springer, Heidelberg,

Germany, 95–109.

Baral, C. 2003. Knowledge Representation, Reasoning and Declarative Problem Solving.

Cambridge University Press, Cambridge, UK.

Beame, P., Kautz, H. and Sabharwal, A. 2004. Towards understanding and harnessing the

potential of clause learning. Journal of Artificial Intelligence Research 22 , 319–351.

Beame, P. and Pitassi, T. 1998. Propositional proof complexity: Past, present, and future.

Bulletin of the EATCS 65 , 66–89.

Ben-Eliyahu, R. and Dechter, R. 1994. Propositional semantics for disjunctive logic

programs. Annals of Mathematics and Artificial Intelligence 12 (1–2), 53–87.

Ben-Sasson, E., Impagliazzo, R. and Wigderson, A. 2004. Near optimal separation of

tree-like and general resolution. Combinatorica 24 (4), 585–603.

Brass, S. and Dix, J. 1995. Characterizations of the stable semantics by partial evaluation. In

Proceedings of the 3rd International Conference on Logic Programming and Nonmonotonic

Reasoning (LPNMR 1995), V. W. Marek and A. Nerode, Eds. Lecture Notes in Computer

Science, vol. 928. Springer, Heidelberg, Germany, 85–98.

Brooks, D. R., Erdem, E., Erdogan, S. T., Minett, J. W. and Ringe, D. 2007. Inferring

phylogenetic trees using answer set programming. Journal of Automated Reasoning 39 (4),

471–511.

https://doi.org/10.1017/S1471068408003578 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003578

Extended ASP Tableaux and rule redundancy in normal logic programs 715

Clark, K. L. 1978. Negation as failure. In Logic and Data Bases, H. Gallaire and J. Minker,

Eds. Plenum Press, New York, USA, 293–322.

Cook, S. A. 1976. A short proof of the pigeon hole principle using extended resolution.

SIGACT News 8 (4), 28–32.

Cook, S. A. and Reckhow, R. A. 1979. The relative efficiency of propositional proof systems.

Journal of Symbolic Logic 44 (1), 36–50.

Davis, M., Logemann, G. and Loveland, D. 1962. A machine program for theorem proving.

Communications of the ACM 5 (7), 394–397.

Davis, M. and Putnam, H. 1960. A computing procedure for quantification theory. Journal

of the ACM 7 (3), 201–215.

Eiter, T., Fink, M., Tompits, H. and Woltran, S. 2004. Simplifying logic programs under

uniform and strong equivalence. In Proceedings of the 7th International Conference on Logic

Programming and Nonmonotonic Reasoning (LPNMR 2004), V. Lifschitz and I. Niemelä,

Eds. Lecture Notes in Computer Science, vol. 2923. Springer, Heidelberg, Germany, 87–99.

Erdem, E., Lifschitz, V. and Ringe, D. 2006. Temporal phylogenetic networks and logic

programming. Theory and Practice of Logic Programming 6 (5), 539–558.

Fages, F. 1994. Consistency of Clark’s completion and existence of stable models. Journal of

Methods of Logic in Computer Science 1 , 51–60.

Gebser, M., Kaufmann, B., Neumann, A. and Schaub, T. 2007. Conflict-driven answer set

solving. In Proceedings of the 20th International Joint Conference on Articifial Intelligence

(IJCAI 2007), M. M. Veloso, Ed., AAAI Press, California, USA, 286–392.

Gebser, M. and Schaub, T. 2006a. Characterizing ASP inferences by unit propagation. In

ICLP Workshop on Search and Logic: Answer Set Programming and SAT, E. Giunchiglia,

V. Marek, D. Mitchell and E. Ternovska, Eds., AAAI Press, California, USA, 41–56.

Gebser, M. and Schaub, T. 2006b. Tableau calculi for answer set programming. In

Proceedings of the 22nd International Conference on Logic Programming (ICLP 2006),

S. Etalle and M. Truszczynski, Eds. Lecture Notes in Computer Science, vol. 4079. Springer,

Heidelberg, Germany, 11–25.

Gebser, M. and Schaub, T. 2007. Generic tableaux for answer set programming. In

Proceedings of the 23rd International Conference on Logic Programming (ICLP 2007),

V. Dahl and I. Niemelä, Eds. Lecture Notes in Computer Science, vol. 4670. Springer,

Heidelberg, Germany, 119–133.

Gelfond, M. and Leone, N. 2002. Logic programming and knowledge representation – The

A-Prolog perspective. Artificial Intelligence 138 (1–2), 3–38.

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic programming.

In Proceedings of the 5th International Conference and Symposium on Logic Programming

(ICLP/SLP 1988), R. A. Kowalski and K. A. Bowen, Eds. MIT Press, Cambridge,

Massachusetts, USA, 1070–1080.

Giunchiglia, E., Lierler, Y. and Maratea, M. 2006. Answer set programming based on

propositional satisfiability. Journal of Automated Reasoning 36 (4), 345–377.

Giunchiglia, E. and Maratea, M. 2005. On the relation between answer set and

SAT procedures (or, between CMODELS and SMODELS). In Proceedings of the 21st

International Conference on Logic Programming (ICLP 2005), M. Gabbrielli and G. Gupta,

Eds. Lecture Notes in Computer Science, vol. 3668. Springer, Heidelberg, Germany, 37–51.

Hai, L., Jigui, S. and Yimin, Z. 2003. Theorem proving based on the extension rule. Journal

of Automated Reasononing 31 (1), 11–21.

Haken, A. 1985. The intractability of resolution. Theoretical Computer Science 39 (2–3), 297–

308.

Janhunen, T. 2006. Some (in)translatability results for normal logic programs and

propositional theories. Journal of Applied Non-Classical Logics 16 (1–2), 35–86.

https://doi.org/10.1017/S1471068408003578 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003578

716 M. Järvisalo and E. Oikarinen

Järvisalo, M. and Junttila, T. in press. Limitations of restricted branching in clause learning.

Constraints .

Järvisalo, M. and Oikarinen, E. 2007. Extended ASP tableaux and rule redundancy

in normal logic programs. In Proceedings of the 23rd International Conference on Logic

Programming (ICLP 2007), V. Dahl and I. Niemelä, Eds. Lecture Notes in Computer

Science, vol. 4670. Springer, Heidelberg, Germany, 134–148.

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S. and Scarcello, F.

2006. The DLV system for knowledge representation and reasoning. ACM Transactions on

Computational Logic 7 (3), 499–562.

Lifschitz, V. 2002. Answer set programming and plan generation. Artificial

Intelligence 138 (1–2), 39–54.

Lifschitz, V. and Razborov, A. 2006. Why are there so many loop formulas? ACM

Transactions on Computational Logic 7 (2), 261–268.

Lifschitz, V. and Turner, H. 1994. Splitting a logic program. In Proceedings of the

11th International Conference on Logic Programming, P. V. Hentenryck, Ed. MIT Press,

Cambridge, Massachusetts, USA, 23–37.

Lin, F. and Zhao, J. 2003. On tight logic programs and yet another translation from

normal logic programs to propositional logic. In Proceedings of the 18th International Joint

Conference on Artificial Intelligence (IJCAI 2003), G. Gottlob and T. Walsh, Eds. Morgan

Kaufmann, San Francisco, California, USA, 853–858.

Lin, F. and Zhao, Y. 2004. ASSAT: Computing answer sets of a logic program by SAT

solvers. Artificial Intelligence 157 (1–2), 115–137.

Marek, V. W. and Truszczyński, M. 1999. Stable models and an alternative logic

programming paradigm. In The Logic Programming Paradigm: A 25-Year Perspective, K. R.

Apt, V. W. Marek, M. Truszczyński, and D. S. Warren, Eds. Springer, Heidelberg, Germany,

375–398.

Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L. and Malik, S. 2001. Chaff:

Engineering an efficient SAT solver. In Proceedings of the 38th Design Automation

Conference (DAC 2001). IEEE, USA, 530–535.

Niemelä, I. 1999. Logic programs with stable model semantics as a constraint programming

paradigm. Annals of Mathematics and Artificial Intelligence 25 (3–4), 241–273.

Nogueira, M., Balduccini, M., Gelfond, M., Watson, R. and Barry, M. 2001. An

A-Prolog decision support system for the space shuttle. In Proceedings of the 3rd

International Symposium on Practical Aspects of Declarative Languages (PADL 2001), I. V.

Ramakrishnan, Ed. Lecture Notes in Computer Science, vol. 1990. Springer, Heidelberg,

Germany, 169–183.

Simons, P., Niemelä, I. and Soininen, T. 2002. Extending and implementing the stable model

semantics. Artificial Intelligence 138 (1–2), 181–234.

Soininen, T., Niemelä, I., Tiihonen, J. and Sulonen, R. 2001. Representing configuration

knowledge with weight constraint rules. In Proceedings of the 1st International Workshop

on Answer Set Programming: Towards Efficient and Scalable Knowledge (ASP 2001),

A. Provetti and T. C. Son, Eds.

Tseitin, G. S. 1969. On the complexity of derivation in propositional calculus. In Studies

in Constructive Mathematics and Mathematical Logic, Part II, A. Slisenko, Ed. Seminars in

Mathematics, V.A. Steklov Mathematical Institute, Leningrad, vol. 8. Consultants Bureau,

115–125. English translation appears in Automation of Reasoning 2: Classical Papers on

Computational Logic 1967–1970 J. Siekmann and G. Wrightson, Eds. Springer (1983),

466–483.

https://doi.org/10.1017/S1471068408003578 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003578

