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Abstract

In this paper we present a genotype representation method for improving the performance of genetic-algorithm-based op-
timal design and synthesis of microelectromechanical systems. The genetic algorithm uses a hierarchical component-based
genotype representation, which incorporates specific engineering knowledge into the design optimization process. Each
microelectromechanical system component is represented by a gene with its own parameters defining its geometry and
the way it can be modified from one generation to the next. The object-oriented genotype structures efficiently describe
the hierarchical nature typical of engineering designs. They also encode knowledge-based constraints that prevent the ge-
netic algorithm from wasting time exploring inappropriate regions of the search space. The efficiency of the hierarchical
component-based genotype representation is demonstrated with surface-micromachined resonator designs.

Keywords: Component-Based Genotype Representation; Microelectromechanical System Design; Multiobjective
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1. INTRODUCTION

Microelectromechanical systems (MEMS) is a rapidly ex-
panding field that exploits batch-fabrication technologies of
the traditional integrated circuit industry to produce highly
miniaturized electromechanical systems. However, MEMS
computer-aided design (CAD) tools, especially optimal de-
sign synthesis tools, lag far behind integrated circuit CAD
tools. Back of the envelope calculations are still the prevailing
MEMS design method that the designer utilizes to create a de-
sign configuration and to select and adjust geometric param-
eters, based on the simulation results, to meet the design spec-
ifications with little, if any, optimization.

Previous studies on optimization-based MEMS design
synthesis can be divided into two categories. The first cate-
gory is parameterized optimization based on predefined con-
figurations and local optimization of design variables over a
fixed topology. For example, Mukherjee and colleagues
(Fedder & Mukherjee, 1996; Mukherjee & Fedder, 1997,
Mukherjee et al., 1998) presented structured design methods
for MEMS design synthesis with a focus on optimization of a
predefined design configuration to best meet performance re-

Reprint requests to: Ying Zhang, School of Electrical and Computer En-
gineering, Georgia Institute of Technology, 210 Technology Circle, Savan-
nah, GA 31407, USA. E-mail: yzhang @gatech.edu

https://doi.org/10.1017/50890060410000168 Published online by Cambridge University Press

41

quirements, and Deb et al. (2001) demonstrated MEMS reso-
nator synthesis for defect reduction based on a method using
gradient-based constrained optimization coupled with a grid-
ded multistart algorithm.

The other category of optimization-based MEMS design
synthesis involves adapting global stochastic search methods
into the design process. Many of these stochastic methods al-
low for improved emergent structures. For example, Kirkos
etal. (1999) used a genetic algorithm (GA) to generate the op-
timal design of a tuning fork gyroscope, and Ma and Antons-
son (2000a, 2000b, 2003) developed an automated MEMS
synthesis tool based on GAs for producing optimal mask-lay-
outs and associated fabrication process sequences given a de-
sired device shape and several fabrication process choices.
Both studies focused on the optimization of a single objective
function. Zhou et al. (2001, 2002) were the first to demon-
strate MEMS component synthesis using a multiobjective
GA (MOGA) on a simple MEMS device, a “meandering res-
onator” for three objectives. Kamalian et al. (2004) extended
Zhou’s work to more challenging MEMS synthesis prob-
lems, and they explored the role of geometric constraints
and human interaction in MEMS resonator synthesis.

Other researchers have developed genetic programming
languages to support MEMS design synthesis. For example,
Fan et al. (2003) used genetic programming and bond graphs
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for system-level MEMS synthesis. They concentrated on
evolving designs that are physically realizable and have the
potential to be manufactured. Fan et al. (2008) later added a
level of physical layout synthesis for optimizing geometric
sizing parameters for cell components of the designs synthe-
sized using a genetic programming and bond graph approach.
In the physical layout synthesis level, they formulated the
problem as a single-objective problem and used both GAs
and deterministic algorithms for parametric optimization.
Lohn and colleagues (2007; Hornby et al., 2008) also demon-
strated using a genetic programming language to evolve
MEMS resonators. Defining a proper function set is one of
the most significant steps in using a genetic programming ap-
proach, and previous researchers have defined task-specific
functionality. The challenge is to define a robust function
set and representation for a general MEMS design tool.

Our long-term research goal is to develop a general auto-
mated MEMS synthesis tool that can provide a designer both
optimal topologies and design parameters with designer-speci-
fied objectives and constraints. MOGAs (Tamaki et al., 1996;
Narayanan & Azarm, 1999) require an appropriate genotype
representational encoding scheme for MEMS synthesis. This
representational scheme must consider design constraints as
well as process constraints on the genetic operations. For exam-
ple, the crossover operation exchanges sets of parameters that
may result in invalid designs if process constraints are not con-
sidered. Kirkos et al. (1999) used a one-dimensional string of
integers to encode the suspension beam dimensions of a tuning
fork gyroscope. Single-point crossover was used in the GA
process. Ma and Antonsson (2000a, 20005, 2003) encoded a
mask polygon into two real strings, with one string containing
edge directional angles and the other containing edge lengths.
The size of each string was set equal to the number of polygon
sides. A crossover scheme called BLX-a (Eshelman & Schaf-
fer, 1991) was used with extra care to guarantee the offspring
represent a simple polygon. For synthesizing more complex
MEMS designs, the work of Zhou and Kamalian (Zhou
et al., 2001, 2002; Kamalian et al., 2004) used a fixed data
structure of strings and numbers to represent the genotype,
and 1-point crossover was used in the GA process. Although
their research demonstrated a proof of concept for applying
multiple objective GAs in MEMS synthesis, they did not pro-
vide the flexibility and efficiency needed for a general auto-
mated CAD tool for MEMS.

This paper presents an extensible, hierarchical, component-
based genotype representation that is used in the MOGA pro-
cess for MEMS design synthesis. We have developed an object-
oriented component library as a source of practical and effi-
cient genotypes for MEMS design. These components implicitly
encapsulate domain-specific engineering experience and thus
help focus MOGA into the more promising areas of the solution
space. As the literature and our experience in this domain grow,
new designs and components will be added to the library, prom-
ising even more effective prototyping in the future.

The new genotype representation provides reusability of
genes, supports flexible genetic operations, and enables auto-
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matic design topology exploration and optimization at the
same time. Previous work did not provide an extensible repre-
sentation that facilitated combining these functions together.
For example, the genotype representation in Kirkos et al.
(1999) only allowed parameter optimization for a given design
topology. Ma and Antonsson (2000a, 20005, 2003) focused on
mask layout of a given design and their encoding scheme only
applied to mask polygons. Fan et al. (2003, 2008) used a ge-
netic programming tree as the genotype representation; how-
ever, the operators only permitted design topology change,
not design optimization. The encoding scheme presented in
Lohn, Kraus, and Hornby (2007; Hornby et al., 2008) could
only apply to MEMS resonators with a fixed center mass
and less than four legs. The authors did not extend it to a gen-
eral encoding scheme for MEMS synthesis.

To demonstrate the efficiency of the new MOGA process
based on the new genotype representation, we apply it to
the microresonator design used by Kamalian et al. (2004),
as this is the most developed evolutionary MEMS framework
available for microresonators. The results show that incorporat-
ing engineering domain knowledge, via a component-based
genotype representation, can dramatically improve the effec-
tiveness of a MOGA design synthesis process and make it
more easily extensible.

The remainder of this paper first presents our MOGA pro-
cess for MEMS design synthesis based on the hierarchical
component-based genotype representation. The microresona-
tor case study is then used to demonstrate the advantages of
the new MOGA process. We conclude the paper with a dis-
cussion and future research.

2. MOGAs FOR MEMS DESIGN

GAs are probabilistic heuristic search procedures that simulate
the process of natural selection (Goldberg, 1989). They were
introduced by John Holland (1975) to explain the adaptive pro-
cesses of evolving natural systems and for creating new artifi-
cial systems in a similar way. Goldberg (1989) demonstrated
how to use GAs in search, optimization, and machine learning.
GAs have the potential to avoid being trapped in local subop-
tima and can handle optimization problems with continuous,
discrete, or combinatorial variables. They are also efficient in
handling multiobjective optimization problems.

A GA maintains a population of potential solutions to the
targeted problem for each nth generation. Each potential solu-
tion is represented by a chromosome and is evaluated to give a
measure of “fitness.” A new generation (n + 1) is formed by
applying genetic operators (selection, mutation, and cross-
over) to the nth generation based on fitness rankings. More
fit individuals have a higher probability of being selected
and passed to the next generation. Some individuals are trans-
formed by means of mutation or crossover to form new in-
dividuals. Mutation operations create new individuals by
making random changes; crossover operations create new
individuals by combining parts from multiple individuals.
If allowed to run long enough, these stochastic selective


https://doi.org/10.1017/S0890060410000168

Hierarchical representation for evolving MEMS

GA operations have the potential to converge to globally op-
timal solutions in the search space.

The MOGA process for MEMS design synthesis is shown
in Figure 1. The MOGA uses the Pareto-based fitness assign-
ment approach originally proposed by Goldberg (1989). Be-
fore starting the MOGA process, the designer needs to spec-
ify the design objectives, constraints, and stopping criteria by
filling in the provided forms. Drawing from the MEMS de-
sign component library, an initial valid design or a set of de-
signs is loaded into the MOGA process. The initial design(s)
can be provided by the designer (Zhang et al., 2005) or rec-
ommended by a MEMS case-based reasoning tool (Cobb
etal., 2006). MOGA then makes many strongly mutated cop-
ies of the initial design(s) to produce the first generation for
the GA process. The genetic operations that will be discussed
later are applied to the current generation to generate the de-
signs in the next generation. The new generation goes through
the same process again until the stopping criteria are met.

Because GAs are stochastic global search methods, they are
quite likely to generate close to optimal solutions at some
intermediate point, but later lose them again in the evolution-
ary process. To avoid this, one solution is to force MOGA to
pass all of the best designs to the next generation. However,
this might lower the degree of diversity of the GA population,
and the diversity ensures that the GA population stays repre-
sentative of the search space and avoids being trapped in local
optima. Therefore, we added an archiving procedure after
each generation of the MOGA process. The best designs,

> Draw initial Initial
design population
|
Design .MEM.S Next d&f:iigﬂ
component simulation generation
library
A v Overall Pareto
Pareto ranking
ranking,
fitness Archive best
assignment
|
Genetic
operations:
selection,
crossover and

mutation

Fig. 1. The multiobjective genetic algorithm process for microelectromecha-
nical system design synthesis. [A color version of this figure can be viewed
online at journals.cambridge.org/aie]
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based on a Pareto ranking of all designs seen so far, are copied
into this archive. The best designs found during the whole
evolutionary run can then be presented to the designer at
the end of the design synthesis process.

2.1. Genotype representation

To be successful for engineering design problems, GAs re-
quire a parametric encoding of the evolving phenotypes
that is efficient, yet flexible enough to describe new and crea-
tive solutions. The main challenge is to find a way to properly
encode the design parameter set so that changes in the asso-
ciated genotype are operationally meaningful and flexible
enough to have a chance of finding good designs.

The genotype representation originally developed in GAs
used a fixed length bit string. For complex engineering design
problems, however, such as MEMS synthesis, a more sophisti-
cated representation is needed. Peysakhov and Regli (2003) com-
bined two data structures to represent the genotype of Lego
structures for the evolution of assemblies: an array containing
all nodes in the structure and the adjacency hash table containing
all edges with corresponding string keys. Lee and Saitou (2007)
used a vector of fixed length to represent the connecting points
in a given product geometry for assembly synthesis. Each com-
ponent in the genotype is a vector of three components specify-
ing the decomposition type of a connection and joint types.

We built on the work of Zhou et al. (2002), using structured
real value strings of variable length to represent the genotype
for a MEMS design. In the following we describe a flexible,
hierarchical component-based genotype representation that
serves the computationally tractable MOGA framework for
a general automated CAD tool for MEMS.

The hierarchical component-based genotype representation
presented here is based on an object-oriented MEMS compo-
nent library, which was implemented with a data structure co-

Table 1. Example MEMS components in the component library

Example MEMS Component

Primitives Anchor
Beam
Curve beam
Mass plate

Higher order primitives Comb drive

Differential comb drive
Electrostatic gap
Serpentine spring
Crab-leg suspension
Frame mass

Folded suspension
I-shaped resonator mass
Polyline spring
Resonator
Accelerometer

Filter

Cluster block

Highest order design components

Note: MEMS, microelectromechanical systems.
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Fig. 2. Examples of fast prototyping of microelectromechanical system designs from the component library: (a) a surface-micromachined
resonator and (b) a microaccelerometer. [A color version of this figure can be viewed online at journals.cambridge.org/aie]

developed with Graf (2004). This object-oriented data structure
enabled us to implement a MEMS component library that was
separated from the GA process but served as design component
sources for the process. We further added practical design con-
straints and connectivity-related instructions to the data struc-
ture to evolve practical MEMS designs. The component library
consists of simple primitives, cluster blocks, and whole opera-
tional resonator designs. For surface-micromachined MEMS,
typical primitives are anchors, beams, and mass plates. Higher
order parameterized primitives include serpentine suspensions,
electrostatic gap, comb drives, or differential comb drives.
Cluster blocks may combine many primitives into polyline
springs, I-shaped resonator masses, or various folded flexure
frames. At the highest level in the component library complete
resonator examples can be found. Commonly used MEMS
components are listed in Table 1. These components are assem-
bled in a global two-dimensional layout coordinate system for
fast prototyping of surface-micromachined MEMS designs,
demonstrated using a resonator (Fig. 2a) and an accelerometer
(Fig. 2b). Each component typically carries an “angle” pa-

ComponentName (type,
mutation_flag, xover_flag,
symmetry_flag,
nl, n2, ...

L’! w’ @, ...)

rameter that specifies its orientation in the layout plane,
whereas its translational position is derived from the specified
connectivity between components via a coincidence constraint
of the connection points involved and the relative distance from
the point randomly selected as the origin.

The MEMS designer can input the following types of con-
straints: dimension constraints, mutation and crossover con-
straints, and symmetry constraints. The design dimension
constraints can also be added to impose relevant fabrication
design rules into the synthesis process. Mutation constraints
determine if a design component is allowed to mutate during
the evolutionary process. Crossover constraints limit which
components are permitted to be exchanged during the GA
process. By default, the components that have similar func-
tionality and connectivity are allowed to be swapped by the
crossover operation, but the designer can change the default
setting if needed. Symmetry constraints can reduce the design
search space, and only symmetric designs are evolved during
the MEMS synthesis process (Kamalian et al., 2004). Addi-
tional constraints will be added into the process with increased

- Gene Type

= Instruction Flags for Genetic Operations
- Instruction Flags for Symmetry Constraint
- Connectivity

= Geometrical Parameters

Fig. 3. The entity interface of building blocks in the microelectromechanical system component library.
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Fig. 4. Gene type examples for a microelectromechanical system building block: (a) a primitive gene type example and (b) a clustered
building block gene type example. Bold numbers are used to represent cluster genes. [A color version of this figure can be viewed

online at journals.cambridge.org/aie]

domain-specific knowledge and lessons learned from fabrica-
tion and testing (Kamalian & Agogino, 2005).

A typical entity interface in the component library is shown
in Figure 3. To serve as MEMS component sources for the
MOGA synthesis process, each design component is assigned
an exclusive type number and is represented by a gene of its
own. This gene carries all salient information about this com-
ponent: its geometric layout parameters, as well as constraints
on how it can be modified and what genetic operations can be
applied to it. The actual data fields can be real numbers, inte-
gers, strings, or binary flags.

Figure 4 shows examples of primitive and cluster compo-
nents and their representative genes. Figure 4a is a primitive
MEMS design component, a beam. We define this gene to
be of type 0, and its geometrical parameters are length, width,
and its positional angle in the global coordinate frame.
Figure 4b is a cluster building block, an I-shaped center
mass. It is assigned gene type 10 (bold numbers are used to
represent cluster genes), which includes four “beams” (gene
type = 7) and one rectangular mass plate (gene type = 4).
The beams used in this cluster have fewer parameters than
the beam shown in Figure 4a. They have no individual angle
variables, because they are all aligned with one another. The
geometrical parameters for this cluster are shown on the
figure, except for its overall orientation angle. Internal and ex-
ternal nodes are the points of the components through which

the building blocks are connected and registered to one an-
other. They implicitly define the placement in the layout
coordinate system. A cluster gene has subtree structures to
represent the internal hierarchy. Even though the gene in the
subtree have their own geometrical parameters, many of
them are coupled to parameters in the parent gene to permit
an overall parameterized design description. The node-based
hierarchical representation also makes the MEMS design
components compatible with our simulation engine SUGAR
(Clark et al., 2002).

Other than determining location and connectivity of the
components in the SUGAR netlist, external nodes provide
the opportunities to associate connectivity-related instructions
to certain nodes for implementing knowledge-based con-
straints. Taking the symmetry constraint as an example, only
one polyline spring (Fig. 5) needs to be evolved during the de-
sign synthesis process to evolve a symmetric resonator design
as shown in Figure 6. This spring is copied and moved to the
other three locations. To create the symmetric design effec-
tively, special instructions are associated with the four external
nodes (Fig. 5) of the I-shaped center mass component, which
are connected to the suspended springs. A “merged node”
means the corresponding node of the copied version of the
polyline spring will be merged into a “merging node.” The Mir-
ror_x (or Mirror_y) operation means the copied spring will be
mirrored along the x axis (or along the y axis) before being con-

f— nodes | Merge property | Mirror operation
i) nl Merged node No
n2 Merging node Mirror_x
n3 Merging node ﬁ:gg;—i
n4 Merging node Mirror_y

Fig. 5. Instructions associated with selected nodes for symmetry constraints. [A color version of this figure can be viewed online at

journals.cambridge.org/aie]
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Fig. 6. A genotype representation for a resonator example: (a) a resonator design and gene types corresponding to components in the
design, (b) a gene connectivity diagram of the first layer, (c) subtree structures of cluster genes, and (d) a hierarchical genotype represen-
tation. [A color version of this figure can be viewed online at journals.cambridge.org/aie]

nected to the corresponding node of the I-shaped center mass.
By assigning appropriate merge properties and mirror opera-
tions to selected nodes, different symmetry constraints can be
applied during the design synthesis process.

The genotype of a MEMS design is a tree structure with
multiple layers where each layer represents a different hierar-
chy of the design. Figure 6 shows a complete resonator de-
sign that was evolved from our application test case described
later in this paper. Its genotype is a tree structure with two
layers. The circled genes in the first layer are cluster genes
with subtree structures pointed by the dashed arrow. Each
gene has its own design parameters. As a symmetric design,
this structure has 26 different parameters, overall, including
the 5 parameters listed in Figure 4 for the I-shaped center
mass, 5 parameters for the comb drive (number of fingers,

https://doi.org/10.1017/50890060410000168 Published online by Cambridge University Press

length and width of each finger, overlap of two fingers,
and width of the spine), number of beams in each leg (three
for this design), 3 parameters of each beam (length, width,
and angle), and parameters of two different anchors (length,

Serpentine: type=2

Geometrical parameters:
e L1, W1, L2, W2
W angle, number of
loops

L1

Fig. 7. A serpentine component for microelectromechanical system design.

[A color version of this figure can be viewed online at journals.cambridge.
org/aie]
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width, and angle). It is not practical to show all of the design
parameters associated with each gene in the genotype repre-
sentation, so we just show the connectivity diagram and
the hierarchical expansion diagrams for the cluster blocks.
This genotype display scheme will be used throughout this
paper.

When higher level systems are synthesized, such as MEMS
bandpass filters composed of multiple resonators, clusters
like this resonator will be drawn from the component library.

Well-designed and individually optimized components are a
way to capture engineering expertise and make it readily
available for future designs. Similar concepts have been dem-
onstrated in analog circuit optimization (McConaghy et al.,
2007). Although they did not present the genotype represen-
tation explicitly, their design topology is formed from a hier-
archically organized set of building blocks with respective
implementation choices. Analog circuits, however, require
fewer standard building blocks compared with MEMS de-
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Fig. 9. The crossover operation between design clusters. [A color version of this figure can be viewed online at journals.cambridge.org/aie]
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Fig. 10. The crossover operation between primitive genes. [A color version of this figure can be viewed online at journals.cambridge.org/

aie]

signs. In addition, unlike a mechanically coupled MEMS de-
vice, a slight change of physical layout may not affect the per-
formance of a circuit.

Another way to make MOGA more efficient is by reducing
the dimension of the search space through knowledge-based
limitations on the available degrees of freedom. We encode
higher level cluster blocks with just those parameters that
are absolutely vital to maintaining enough design flexibility,
and turn the cluster blocks into high-order primitives. An ex-
ample is the serpentine design shown in Figure 7. Even
though it is composed of 13 individual beams, which when
specified individually would require a total of 39 parameters,
this component uses only 6 parameters in its geometric de-
scription. Use of this high-order primitive building block re-
sults in a much more compact layout and a much more effi-
cient search process.

2.2. Evaluation of phenotype

The phenotypes are evaluated using SUGAR (Clark et al.,
2002), an open-source MEMS simulation tool based on mod-
ified nodal analysis. Each component in the component li-
brary is associated with its net list compatible with SUGAR.
A net list file is created based on the genotype and sent to

https://doi.org/10.1017/50890060410000168 Published online by Cambridge University Press

SUGAR to evaluate the design performances. Based on the
design performances of all the phenotypes in the same gen-
eration, Pareto ranking (Goldberg, 1989; Srinivas & Deb,
1995) is applied to the current generation and a fitness value
is assigned to each individual design.

Two types of design validity checks are performed for any
newly generated design during the MOGA process: a design
disjointedness check and a self-intersection check. A traver-
sal through the layout tree makes sure that all nodes can be
reached. For the intersection test, each component is given
one or multiple rectangular bounding boxes. The separating
axis theorem (Eberly, 2000) is then applied to each pair of
bounding boxes. If the new design is disjointed or self-inter-
sected, it is an invalid design and is discarded before being
sent to SUGAR, the MEMS simulation engine for perfor-
mance evaluation. This dramatically reduces the computa-
tional power that MOGA might waste exploring irrelevant re-
gions of the search space.

2.3. Genetic operations

With our component-based genotype representation, each
component has instructions about the permitted genetic op-
erations during the evolutionary process. Before starting the
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synthesis process the designer can input engineering domain
knowledge by specifying what mutation operations are al-
lowed for a design component and between which compo-
nents a crossover can be applied. These are the specific opera-
tions that our process uses.
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Fig. 12. A genotype representation of a resonator design based on Zhou’s
encoding scheme (Zhou et al., 2002). [A color version of this figure can be
viewed online at journals.cambridge.org/aie]
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2.3.1. Selection

The “Roulette Wheel” selection scheme (Goldberg, 1989)
is used in the MEMS design synthesis process, which follows
the principle of fitness-proportionate selection for reproduc-
tion. The design with higher fitness value has a higher prob-
ability of being selected to be passed to future generations. A
small portion of the best designs are passed to the next gen-
eration as elitism. Other selected designs are recombined
through crossover operation and mutated to generate designs
for the next generation.

2.3.2. Crossover

In the crossover operation pieces of genetic information are
exchanged between two selected phenotypes. As exchanging
arbitrary sets of parameters may not make functional sense,
we use multipoint cut and splice crossover instead of 1-point
cut and splice crossover. Any design component in a geno-
type can be swapped with a compatible design component
in another genotype. Moreover, we restrict the allowed cross-
overs even further. The designer determines which genes are
compatible genes based on their functionality and connectiv-
ity. As an example, if the resonator designs shown in Figure 8
are selected for crossover, the operation should occur be-
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Fig. 13. The 1-point cut and splice crossover operation used in Zhou et al.
(2002). [A color version of this figure can be viewed online at journals.
cambridge.org/aie]

tween the cluster genes in the first layers of the genotypes as in
Figure 9, between the primitive genes in the second layers of
the genotypes as in Figure 10, or between the cluster gene
in the first layer and the primitive gene in the second layer
of the genotypes as in Figure 11, where the number of struc-
ture layers of a new generated design increases as the result of
the crossover operation. The circled genes in the genotype
are cluster genes with subtree structures pointed by the dashed
arrows. Each gene has its own parameters. Because it is not
practical to show them all in the genotype representation,
we just show the connectivity diagram and the hierarchical ex-
pansion diagrams for the cluster blocks. The polyline springs
have multiple beams connected in series; the connecting lines
are not shown. In the corresponding phenotype domain, the
circled components in the top two designs are swapped to gen-
erated two new designs at the bottom of each figure.

It might appear that it is tedious to formulate this kind of
tree-structured genotype representation with crossover con-
straints. However, with the integration of MOGA and the hi-
erarchical design component library, in which each compo-
nent is treated as a gene and embedded with instructions for
the crossover and mutation operations, the genotype is natu-
rally formulated during the evolutionary process. The compli-
cated crossover operations are done automatically, following
predefined high-level crossover instructions. The designer
only needs to designate the appropriate design components
and provide design specifications and constraints in a modu-
lar building block fashion.
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As a comparison, consider the genotype representation of a
resonator design using Zhou’s original encoding scheme
(Zhou et al., 2002) as shown in Figure 12. As the dimensions
of center mass, comb drives and anchors are fixed, only four
legs are encoded. Each leg is described by an m x 3 matrix,
where m is the number of beam segments for that leg. The
three columns correspond to the beam segment length, width,
and rotation angle. One-point cut and splice crossover was
used based on this encoding scheme. If leg_1 of the first par-
ent and leg_2 of the second parent are selected for crossover,
the crossover operation is shown in Figure 13. A specific data
structure would need to be developed for different type of de-
signs, and the 1-point cut and splice crossover may create in-
valid designs for complex MEMS devices.

2.3.3. Mutation

The mutation operation makes a random modification on a
selected individual design. The result may be a change in to-
pology of a randomly selected cluster gene or a modification
of the geometrical parameters of a primitive gene. Note that
the mutation operation is still subject to all of the dimensional
and process constraints. Consider the symmetry constraint as
an example. When the mutation operation is applied to a de-
sign with the full symmetry constraint, such as the design in
Figure 6, only the design components in the leg connected to
node nl (Fig. 5) are allowed to be mutated if the center mass
is fixed. This mutated leg is copied and pasted to other three
locations (connected to nodes n2, n3, and n4) to form a sym-
metric resonator design.

3. EXPERIMENTS AND RESULTS

Zhou et al. (2001, 2002) were the first to demonstrate MEMS
synthesis using MOGA, and Kamalian et al. (2004) extended
Zhou’s work to more challenging MEMS synthesis problems,
so some researchers have benchmarked their research against
Zhou and Kamalian’s work (e.g., Lohn et al., 2007). To evaluate
the efficiency of the new MOGA process for MEMS design syn-
thesis, we decided to apply it to the microresonator test case de-
scribed in Kamalian et al. (2004). There were two design objec-
tives: minimize error from the target resonant frequency of
10,000 Hz, and minimize the device area, which is defined as
the area of the bounding box of the device without considering
the anchor pads. In addition, the resonant motion must occur in
the y direction; thus, the design must have higher stiffness in the x
direction than the y direction. Four design cases were tested. Case
1 has asymmetric polyline legs with unconstrained beam angles;
case 2 enforces a bilateral mirror symmetric layout around the
y axis; case 3 employs fourfold symmetry; and case 4 also
uses fourfold symmetry, but with suspensions restricted to be
rectilinear and axis aligned. The constraints on the parameter
values are the same as in the comparison approach (Kamalian
et al., 2004).

Each MOGA process was run with a population of 400 for
50 generations. The best designs (Fig. 14) found in five
MOGA runs for each case were compared with the best re-
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Fig. 14. The best resonator designs and their performance evolved from the multiobjective genetic algorithm process. [A color version of

this figure can be viewed online at journals.cambridge.org/aie]

sults in Kamalian et al. (2004; Table 2). The “best” design
was defined as the one with minimum design area, which
also satisfied the following design constraints: resonant fre-
quency within 5% of goal frequency (10,000 Hz), and the
stiffness ratio requirement (K,/K, > 1).

The results in Table 2 show that the new MOGA process
for MEMS design synthesis results in better designs for all
cases compared to the results of Kamalian et al. (2004)
with 50 generations. The improvement of the best design
area was statistically significant using the paired Student ¢
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test (Moore & McCabe, 1999; p = 0.005; only cases 2, 3,
and 4 were evaluated, because there were no comparison re-
sults for case 1), even though each case only ran the
MOGA process 5 times, thus using 5 times less computa-
tional effort compared to the 25 MOGA runs used in Kama-
lian et al. (2004). As most of the computational time is spent
on the evaluations performed by the simulator, reducing the
number of generations has a significant impact on the total
computational time. Compared to the best results of Kamalian
et al. (2004) with 500 generations and 10 MOGA runs, which
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Table 2. Comparison of the design area between the best
designs synthesized from new and former MOGA processes

Area (mz)
Cases New MOGA?* Kamalian et al.® Kamalian et al.
Case 1 1.633E-7 NS 2.073E-7
Case 2 1.625E-7 1.711E-7 1.713E-7
Case 3 1.463E-7 1.550E-7 1.485E-7
Case 4 1.599E-7 1.703E-7 1.455E-7

Note: MOGA, multiobjective genetic algorithm; NS, no synthesized
design satisfied the design frequency target objective.

“New MOGA process with 50 generations and 5 runs.

bKamalian et al. (2004a) process with 50 generations and 25 runs.

¢Kamalian et al. (2004a) process with 500 generations and 10 runs.

-

[=]

Y - vertical [m]
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means 20 times more computational cost than our test case,
our new MOGA process results in better designs in most
cases except case 4. However, case 4 after 5 runs with 100
generations yields results that exceed those in Kamalian
et al. (2004) with a design area of 1.367E-7 m?. The best phe-
notype design is shown in Figure 15b.

There are several reasons why our new MOGA process for
MEMS design synthesis has better performance than the one
used in Kamalian et al. (2004). First, the new MOGA process
is integrated with a MEMS design component library and has
a component-based genotype representation that enables
more efficient GA operations, such as multipoint cut and
splice crossover instead of 1-point crossover restricted by
the genotype representation of fixed-structured real-value

-3
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*¥ - horizontal [m]
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Fig. 15. The (a) initial design and (b) best synthesized design of case 4 from 5 runs with 100 generations. Layout area = 1.367E-7 m?, resonant
frequency = 10,497 Hz, and stiffness ratio (K,/K,) = 2.7. [A color version of this figure can be viewed online at journals.cambridge.org/aie]
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strings used in Kamalian et al. (2004). Second, the designer
has some control over the starting point of the MOGA process
and can input their engineering knowledge via the starting de-
sign components and object-level constraints.

The typical convergence of the evolutionary process (Figs.
16 and 17) for the case study shows that the design synthesis
process converges very quickly at the early generations, and
slows down at the later generations. It does not show signif-
icant improvement after 25 generations. Good starting points
could take full advantage of fast convergence at the early gen-
erations of the MOGA process. Third, the archiving process
in the new MOGA process guarantees that the best design so-
Iutions reached in the intermediate generations during the sto-
chastic search process are passed to the evaluation in the last
generation. All of the best designs came from this previous
generation cache: generations 37, 46, 38, and 23 for cases 1,
2, 3, and 4, respectively. Fourth, the new MOGA process is
more computationally efficient. It avoids unnecessary design
evaluation by using a more effective method for detecting in-
valid designs than the one used in Kamalian et al. (2004).

In comparing the structure of the initial design (Fig. 15a) to
the best designs of all cases in Figure 14 and Figure 15b, there
is a trend for the emergent designs to be characterized by legs
that better utilize the layout space by turning inward. We also
observed that the maximum beam length of the best design
(Fig. 15b) constraint was usually at the upper boundary of
100 wm. As an experiment, case 4 was run with this con-
straint relaxed, but still within manufacturing requirements,
and a design of the structure shown in Figure 6 evolved with
f= 10,219 Hz, area = 1.587E-07 m?, stiffness ratio = 21,
and maximum beam length = 232.5 wm. This trend suggests
that serpentine springs might be a useful object structure to
add to the component library. To further explore the advan-
tages of incorporating engineering knowhow and human ob-
servations into the component-based genotype representation,
we added a new design component: a simplified version of the
serpentine spring shown in Figure 7 with the upper limit on
the long beam constraint relaxed to 300 pwm. It has only
two parameters: length L1 and the number of loops. The num-
ber of loops can vary from 1 to 5. The length of the short
beams (L2) is fixed at 12 wm, which provides enough space
for the maximum displacement of the resonator in that direc-
tion. The widths of the long and short beams are fixed at 2 and
6 wm, respectively; 2 wm is a reasonable lower limit set by the
available fabrication process. This new test case, number 5,
evolved into a synthesized design with performance as shown
in Figure 18, which is based on just one MOGA run over 50
generations with a population of 400. It has the smallest
design area of all the design cases. Further gradient-based
optimization of the numerical parameters on this structure
did not achieve further improvements on the area objective.

4. CONCLUSIONS

A hierarchical tree-structured component-based genotype has
been developed to build an extensible open-source design
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Fig. 16. The convergence of the evolutionary process. [A color version of
this figure can be viewed online at journals.cambridge.org/aie]

component library for an automated MEMS design synthesis
program using MOGAs. This library includes different levels
of design building blocks, ranging from simple geometrical
primitives to complete resonator assemblies. Each building
block in the component library is characterized by its own
gene, and the full genotype has multiple genes connected to-
gether based on their functionality. This component library
provides a highly effective and valuable gene pool and implic-
itly encodes much domain-specific engineering knowledge.
This helps MOGA to converge to good design solutions
much more efficiently.

MOGA can generate multiple design solutions on the Par-
eto frontier. Comparing the configuration of the best designs,
the designer can observe design patterns and find good design
constraints favoring a certain application. The accumulated
knowledge can be incorporated into the design component li-
brary and design constraints for better performance and for
future use. This was demonstrated by case 5 of the resonator
test case. The simple serpentine spring, which was created
based on the engineering observation on the emergent behav-
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ior of the resonator synthesis, generated the best designs for
resonator design examples. The final solution of design ex-
ample also existed as structures in the search space of other
test cases; but it either did not make the Pareto set because
it was not optimal under the original constraints or was not
likely to be found in a reasonable amount of time because
of the large search space involved.

The MOGA process for the microresonator test case
quickly convergences before 25 generations and does not

-

Y - vertical [m]
o
m

= .

o
n

af

show significant improvement after that. In addition, the syn-
thesis results of the test cases using different design compo-
nents demonstrate that incorporating engineering knowledge
can focus the stochastic global search on promising search re-
gions and find better design solutions within a practical com-
putational time. With more and more design components en-
capsulated with engineering knowledge feedback into the
design component library, Cobb and Agogino (in press)
have developed an indexed design case library that provides
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Fig. 18. The best synthesized design of case 5. Design Area = 1.171E-7 m?, resonant frequency = 10,498 Hz, stiffness ratio (K /Ky) =2,
and maximum beam length = 138 wm. [A color version of this figure can be viewed online at journals.cambridge.org/aie]
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good initial designs for the MOGA process and suggest rea-
sonable parameter ranges based on the given design specifi-
cations. In addition, more fabrication related design con-
straints and objectives will be incorporated into the design
synthesis process to develop a practical MEMS synthesis
tool (Kamalian & Agogino, 2005).
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