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We present an experimental study of gravity currents in a cylindrical geometry, in the
presence of vegetation. Forty tests were performed with a brine advancing in a fresh water
ambient fluid, in lock release, and with a constant and time-varying flow rate. The tank is
a circular sector of angle 30◦ with radius equal to 180 cm. Two different densities of the
vegetation were simulated by vertical plastic rods with diameter D = 1.6 cm. We marked
the height of the current as a function of radius and time and the position of the front as a
function of time. The results indicate a self-similar structure, with lateral profiles that after
an initial adjustment collapse to a single curve in scaled variables. The propagation of the
front is well described by a power law function of time. The existence of self-similarity
on an experimental basis corroborates a simple theoretical model with the following
assumptions: (i) the dominant balance is between buoyancy and drag, parameterized by
a power law of the current velocity ∼ |u|λ−1u; (ii) the current advances in shallow-water
conditions; and (iii) ambient-fluid dynamics is negligible. In order to evaluate the value
of λ (the only tuning parameter of the theoretical model), we performed two additional
series of measurements. We found that λ increased from 1 to 2 while the Reynolds number
increased from 100 to approximately 6 × 103, and the drag coefficient and the transition
from λ = 1 to λ = 2 are quantitatively affected by D, but the structure of the model is not.
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1. Introduction

Gravity currents (GCs) develop whenever there is a density difference between the current
fluid, with density ρc, and the ambient fluid, with density ρa. These currents propagate
at the bottom of the ambient fluid when ρc > ρa (hyperpycnal), or at the top of the
ambient fluid in the opposite case (hypopycnal). If the ambient fluid is stratified, currents
propagate at the level of equal density (mesopycnal). The current and ambient fluid are
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not necessarily different, as a difference in density may be related to a difference in
temperature or to suspended particles inside the heavier fluid. Many examples of GCs
occur in natural environments, such as dust and sand from a turbulent wind, avalanches of
small snowflakes that grow flowing along the hazardous slopes of mountains or cold air
near the floor of a room coming in from an opened window. More examples can be found
in the extensive monographs by Simpson (1999) and Huppert (2006).

GCs are often classified on the basis of the terms that dominate the momentum
balance, distinguishing inertial–buoyancy and viscous–buoyancy regimes. In the presence
of obstacles or vegetation, the balance can also be turbulent drag–buoyancy. There are
several possible sources of turbulent drag; it can be associated with entrainment with
the ambient fluid and with the structure of the flow field (see, e.g., Lane-Serff 1993),
or with the presence of obstacles that are spatially extended. The presence of turbulent
drag suggests an analogy between GC flow and flow in the Forchheimer regime in porous
media (Hatcher, Hogg & Woods 2000), with a velocity profile that appears uniform in the
vertical and with dissipation controlled by the obstacles, with negligible bottom effects. If
the GC can spread over a sufficient space, a transition is expected with the current initially
in the inertial–buoyancy regime, then in the viscous–buoyancy regime depending on the
Reynolds number (with the exception of critical GCs, see Maxworthy 1983; Chiapponi
et al. 2018). In the presence of turbulent drag, a further transition is expected, with inertia
initially dominant, then overtaken by turbulent drag and finally replaced by viscous drag.

The behaviour of the stream is conditioned by the release mechanism at the source: a
lock release (LR) consists of a finite volume of current released instantaneously into the
environment, whereas a constant-flow or a time-varying flow current is a flow continuously
fed from a source at a constant or time-varying flow rate; in the latter case waxing or
waning flows rate can be modelled. Many simplifications can be adopted in the models,
whether the ratio ρa/ρc ≈ 1 or not (Boussinesq and non-Boussinesq currents), or the
dynamics of the ambient fluid can be neglected in the propagation characteristics of the
current (single layer model). For more details, see the recent comprehensive book by
Ungarish (2020).

The great interest in this broad natural phenomenon, and the enormous variety of
configurations in the environment and industry, has stimulated a rich line of theoretical and
experimental research, with advanced numerical techniques and sophisticated measuring
instruments. The simplest configuration, with a horizontal bottom, is perhaps the one
most intensively investigated, starting with Benjamin’s pioneering publication (Benjamin
1968) with numerous extensions to a general cross-section (Ungarish 2018), and with
stratification of the ambient fluid (Longo et al. 2016).

More complex models refer to particle-driven currents (Sparks et al. 1993; Hogg,
Ungarish & Huppert 2000; Zemach et al. 2017; Lippert & Woods 2020). Sher & Woods
(2017) described the relative importance of entrainment at the interface and particle
sedimentation in controlling the run-out distance of short-lived GCs, and the influence
of an up-slope boundary has been considered by Ottolenghi et al. (2016), Martin et al.
(2020) and De Falco et al. (2021). Recent studies (Longo et al. 2018; Sciortino, Adduce &
Lombardi 2018; Chiapponi et al. 2019) have focused on the effects of a free top, such as a
superficial depression bounded to the advancing nose; these effects are usually neglected.

In the vast majority of cases, models refer to currents advancing in a confined section
with hydraulically smooth walls, or on a smooth bottom. However, almost always ambient
GCs interact with obstacles of various kinds, as happens for flows through forests, urban
and aquatic canopies, as documented in many reviews (Finnigan 2000; Belcher, Harman
& Finnigan 2012; Nepf 2012). Vegetation-like obstacles are often modelled as flexible or
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rigid vertical cylinders with diameter D and height h, with h being smaller or larger than
the ambient-fluid height H, and vegetation is said to be submerged when h < H. A relevant
parameter is the density of the vegetation, κ = nAc/A, defined as the ratio of the plane area
occupied by the cylinders, nAc, to the total area of the lower base of the channel, A, where
n is the total number of cylinders and Ac = πD2/4 is the cross-sectional area of a single
cylinder.

LR GCs in the presence of artificial vegetation (thin flexible plastic tubes) have been
studied, e.g. by Naftchali et al. (2016), who carried out experiments with κ in the range
[0.006, 0.014] and found that, for increasing κ , the current velocity decreases up to
28.5 %, while the density of the current ρc decreases up to 82 % as a consequence of
mixing. When κ is small, any small change in ρc does not cause a significant change in
the forward velocity of the current. Cenedese, Nokes & Hyatt (2018) (experiments with
vertical rigid cylinders) found that, when the current height is smaller than the vegetation
height, the current front has a triangular shape, but when the current is higher than the
vegetation, two different regimes develop for the small (sparse arrays) and large (dense
arrays) κ respectively: (i) in the sparse array configuration (κ = 0.09), the denser fluid
current propagates between the cylinders with high entrainment enhanced by the vortices
generated in the wake of the cylindrical obstacles; (ii) in the dense array configuration
(κ = 0.35), the denser fluid current is almost entirely above the vegetation, where the drag
force is lower, and undergoes convective instability, mixing vertically with the environment
and diluting near the nose.

In more complex situations, vegetation and the presence of shallow water promote
density stratification of thermal origin and the onset of a GC. Zhang & Nepf (2008) studied
the effects of different heat exchanges between the open water and the canopy (they used a
random array of rigid, emergent cylinders to represent the canopy region), a configuration
with the water within the submerged vegetation absorbing less solar heat than the adjacent
deep water. They found that the velocity of the current is reduced by the drag of the canopy
in the vegetative region, while in the open region the velocity of the current remains
constant and depends only on the initial conditions. Numerical simulations indicate that,
in both partially and fully vegetated regions, currents are inertial for CDξT lc < 10, where
CD is the drag coefficient, ξT = nD/A is the array density (fraction of the frontal area of
cylinders per unit volume, where A is the bed area and ξT has dimension of L−1), and lc is
the total length of the current, provided that CDξTH/n < 13.39. When CDξTH/n > 13.39,
currents are entrained due to the high vegetation density and short inertia flow time period
(Tsakiri, Prinos & Koftis 2016).

Testik & Ungarish (2016) conducted a theoretical analysis on both LR and
continuous-flow GCs in a rectangular channel in the presence of artificial vegetation
(cylindrical rods), comparing the results with previous experimental studies by Hatcher
et al. (2000), Tanino, Nepf & Kulis (2005) and Testik & Yilmaz (2015). Testik & Ungarish
(2016) solved a more general model, in which the drag force is proportional to |u|λ, with
u being the horizontal velocity and λ a constant positive value. They found four classes of
similarity solutions: class I describes GCs with a triangular shape and constant velocity at
the nose, which is developed with a continuous-release source; class II GCs have a fixed
height at the source and a nonlinear profile, but with no experimental evidence yet; class III
corresponds to constant-volume GCs with a linearly increasing velocity toward the nose;
all other continuous-release GCs belong to class IV.

The present experimental activity refers to GCs in a cylindrical axisymmetric geometry
in the presence of artificial vegetation, to achieve more insights into the physical process.
This configuration is representative of many environmental scenarios (see Chowdhury
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& Testik (2014) for a long list), for example in the presence of localized inputs in the
absence of flow channelization, or during disposal operations of dredged materials for
beaches and wetland restoration (pipelines for conveying mixtures of water and sediment
have a terminal that represents a localized source, coinciding with the origin of a radially
symmetrical discharge, and trigger turbidity currents; pile and sheet pile driving in a lake
or marine environments generates radially symmetrical turbidity currents, which pose an
environmental risk and disturbance to aquatic species). These GCs in a radial geometry
appear of particular interest, compared with the case of GCs confined in a rectangular
(non-divergent) geometry.

We conducted 40 experiments with two different densities of the array of the artificial
vegetation: 12 in the LR configuration, 13 in constant inflow rate, 9 in waxing and 6 in
waning inflow rate. To the best of our knowledge, the experiments are original and new,
and no similar experiments are available in the literature.

Although the vegetation of our experiments is artificial, with pragmatic choices
of the dimensions of the rods dictated by experimental needs and by commercial
availability of the items requested for the set-up, the adopted pattern reflects realistic
aquatic vegetation. In fact, defining the frontal area per unit volume a = D/s2, where
s is the spacing between rods, our experimental configuration corresponds to a =
0.066–0.138 cm−1, which is equivalent to marsh grasses with a = 0.01–0.07 cm−1,
Seagrasses with a = 0.01–0.07 cm−1 and mangroves with a up to 0.2 cm−1 (Nepf
2012).

The available theoretical models point out that GC propagation analysis is inconclusive
when the value of λ is not known (Testik & Ungarish 2016), hence we measured the drag
exponent, with the same pattern of rods adopted for GC experiments (same density) and
for different values of the Reynolds number. We also expect the λ exponent of drag to be
a function not only of Reynolds number and density of the obstacles, but also of other
geometric characteristics of the obstacles, such as, for example, the frontal area per unit
volume (see, e.g., Ozan, Constantinescu & Hogg 2015) or the diameter of the rods or of
an equivalent size for other obstacles. If the flow of the GCs were in a classical porous
medium, we would expect a dependence on ‘permeability’; in the present case we expect
a dependence on the spacing between obstacles or on the diameter of the rods, and two
further drag measurements were performed with a different diameter of the rods in order
to elucidate this aspect. However, we bear in mind that the goal of the present analysis is
not the identification of such a dependence, but more pragmatically the estimation of the
exponent λ to be used for the interpretation of the experiments. The physical limits are
λ = 1 for viscous drag at low Reynolds number, and λ = 2 in the fully turbulent regime at
high Reynolds number.

The paper is organized as follows. Section 2 briefly introduces the theoretical model, § 3
describes the experimental layout and procedures and § 4 provides details and discussion
on the experiments. The conclusions are drawn in § 5. The results of drag measurements
with different rods diameters are analysed in Appendix A, where scaling of drag is
discussed with respect to the density and the diameter of the rods.

2. Theoretical model for vegetation domain

2.1. Formulation
Here, we present the essentials of the theoretical model used in our investigation. This
model served a guideline for the design and set-up of the experiments, and it is also
used for comparisons with, and interpretation of, the data and effects recorded in our
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Figure 1. Sketch of the theoretical model: (a) three-dimensional schematic; (b) axial-radial plane section.

experiments. We note that the model has been presented before (Hatcher et al. 2000; Testik
& Ungarish 2016). The novelty here is the application of new influx conditions and the
comparison with experiments aiming to an estimate of the power-law λ and to measure the
front position and the profile of the currents.

We use a cylindrical coordinate system, and assume axial symmetry (i.e. zero or
negligibly small dependency on the angular coordinate). We consider rod-like vegetation
which fills a horizontal domain of height H. In our system of reference, the coordinate
r is horizontal, while z is vertically upward. The GC propagates in the r direction,
see figure 1(a). The densities of the current and ambient fluids are ρc and ρa, with
ρa < ρc, and z = 0 and z = H are rigid boundaries, see figure 1(b). For practical reasons,
z = H in the experiments is a free surface, see next discussions on the sensitivity of
the results to this approximation. The height (thickness) of the current is h(r, t), and the
height-averaged speed of the current is u(r, t), while that of the ambient is ua(r, t). The
radius of propagation is rN(t).

The equations of motion are derived along the lines of the thin-layer simplification
detailed in Ungarish (2020). We use dimensional variables unless stated otherwise.

2.2. Equations of motion and boundary conditions
We start with the observation that the thickness of the ambient-fluid layer is H − h and by
continuity

ua = −uh/(H − h) (2.1)

for constant H. The vegetation introduces a drag force. As suggested by previous
investigations and confirmed by our experiments, the effective drag per unit volume of
fluid is proportional to the density of the fluid and to the speed at some power λ ≥ 1. To
facilitate the analysis, we assume that (i) the coefficient of proportionality is a constant,
c̃; (ii) in a given GC system, both the current and the ambient have the same c̃ and λ
(as will be evident in the following steps, the accuracy of this assumption is not relevant
since we will adopt a single-layer model where only the dynamics of the dense current is
considered). We assume (and confirmed by order of magnitude estimates of the laboratory
data) that, in the tests considered here, the viscous and turbulent stresses in the current and
ambient domains are negligible as compared with the other forces. We consider flow fields
in which the drag dominates the acceleration (inertia) term. Therefore, in the subsequent
analysis the Du/Dt terms are neglected, except for the analysis of transition, see (2.7).
The pressure is approximated by the hydrostatic balance, and hence the x-momentum
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balances for the ambient and current reduce to

0 = −∂p
∂x

− ρac̃ua|ua|λ−1, 0 = −∂p
∂x

− (ρc − ρa)g
∂h
∂r

− ρcc̃u|u|λ−1, (2.2a,b)

where p is the reduced pressure in the ambient and g the gravity acceleration. Here,
λ is assumed to be constant. Elimination of the pressure and use of (2.1) yield one
combined-momentum equation for u. Consequently, the motion can be expressed as the
system of continuity and momentum balances

σ
∂h
∂t

+ ∂hu
∂r

= −uh
r

; (2.3)

−g ′ ∂h
∂r

− c̃|u|λ−1u

[
1 + ρa

ρc

(
h

H − h

)λ]
= 0, (2.4)

where the reduced gravity is g′ = g(1 − ρa/ρc), and σ is the porosity of the vegetation
medium in which the fluids move, always positive and smaller than 1, assumed here
constant. We also define the density of the vegetation as κ = 1 − σ .

Further simplifications of the equations are possible and useful. First, we introduce the
coordinate stretching of the time to t/σ ; this eliminates σ from the subsequent analysis.
Second, we note that the Boussinesq system with ρc ≈ ρa admits the simplification of
the drag term in the momentum equation (2.4) by setting ρa/ρc = 1 in front of the
term h/(H − h) which expresses the drag coupling between the current and the upper
ambient fluid. Next, for a deep current h/H � 1, the coupling term can be neglected. This
simplification, also called the one-layer model, is facilitated by the fact that the value of
λ is larger than 1 and typically 2. In the range of parameters considered in the present
investigation, the model based on Boussinesq and one-layer simplifications is expected to
provide a fair approximation to the main behaviour (propagation and shape) of the current.
The one-layer theory is an approximation that is expected to work well when the height
of the current to ambient at r/rN ≈ 0.5 is less than 0.5 (which implies that a significant
part of the current is even thinner), and when the rate of increase of the height due to
influx is much smaller than the speed of propagation. (We keep in mind that h decreases
with r and that the propagation of the current is governed by the ring of fluid close to rN).
Consequently, we shall use the momentum equation

0 = −g′ ∂h
∂r

− c̃|u|λ−1u, (2.5)

which expresses the balance between the buoyancy driving force and the vegetation-drag
hindering effects on the layer of the dense fluid. We note that the curvature terms
are not present in this balance; however, the curvature effect is strongly manifested on
the right-hand side continuity (2.3) and hence the present geometry needs a separate
investigation from the two-dimensional Cartesian counterpart.

We emphasize that the coefficient c̃ in the drag term is different from the classical
dimensionless ‘drag coefficient’ defined by the ratio of non-viscous opposing force on
a body to dynamic pressure. The present drag coefficient is defined by the ratio of the
opposing force between vegetation and fluid, per unit volume of fluid, divided by ρ|u|λ
(the density and speed pertain to either the domain of the current or ambient), and c̃ is
dimensional with [c̃] = L1−λTλ−2.
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In general, the volume of the current is known. This can be expressed as

∫ rN(t)

0
r h(r, t) dr = qtα ≡ V(t), (2.6)

where q and α ≥ 0 are given constants. Note that V(t) is the volume per radian, and
contains both fluid and vegetation.

At the nose r = rN(t), we impose the condition h = 0 while uN is finite. The justification
is as follows. The motion takes place because the buoyancy driving g′(−∂h/∂r) in
the radial direction balances the opposing drag ∼ −|u|λ−1u. This means that, at any
radial position of the moving current, a negative slope ∂h/∂r is present, and hence h is
expected to decrease to 0 at the nose. The subsidiary assumption is that a nose of zero
thickness (i.e. a contact line) is compatible with the equations of motion, and this will be
confirmed later. (We note in passing that a moving contact-line condition is an abstraction
of a complex r-thin corner region in which strong gradients are present, and hence in
practice the decrease to h = 0 is less sharp than in the theory. There is evidence from the
viscous-current counterpart, see Ungarish (2020), that this singularity has little effect on
the speed of propagation, because the larger h creates a larger buoyancy drive from the
dense material behind. We conjecture that the same behaviour occurs in the present case.)
In this context we also note that it is possible to eliminate u from (2.3) and (2.5) to obtain
one equation for h(r, t), which bears similarity with the formulation for power-law fluid
GCs, see for example Sayag & Worster (2013).

For the boundary conditions at the axis r = 0, we must distinguish between the
following cases: (i) fixed volume (or LR) admits the simple u = 0 at r = 0; (ii) for GCs
created by influx, it is in general difficult to prescribe the precise boundary condition at
the source. What we usually know is the total volume flux. Near the axis, the influx speed
may be large and the thin-layer assumptions may be invalid. From the point of view of
the present set of equations, this domain is a singularity. For progress, we apply the usual
assumption that there is some adjustment domain in which the flux is matched with the
values of h imposed by the outer region. The relative volume of fluid in this singular
region is expected to be small with respect to the volume of the dense fluid, (the radial
geometry embeds a bottom area growth proportional to the square of the radius and we are
considering the region near the axis) and, hence, of little relevance to the major flow field
(see Di Federico, Archetti & Longo 2012). The generally accepted mathematical solution
for the axisymmetric current created by influx imposes the conditions at the nose, but
leaves open the behaviour near the axis. We shall keep this in mind during the comparisons
with realistic data.

In the present simplified model, we cannot apply realistic initial conditions of u and h at
t = 0. The physical meaning is that the initial inertial adjustment is missed, and we assume
that this adjustment is a short episode, whose details are insignificant to the subsequent
motion.

2.3. Regimes of GCs
An estimate of the transition from the buoyancy–inertial to buoyancy–drag (turbulent drag)
regime can be obtained by imposing that the flow inertia, drag and buoyancy terms are of
the same order of magnitude

∂u
∂t

∼ g′ ∂h
∂r

∼ c̃|u|λ−1u, (2.7)
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while the mass conservation in integral form brings hr2 ∼ V . By assuming that r ∼ utc
and V = qtα , and defining tc as the time of transition, we get

u
tc

∼ g′ h
utc

∼ c̃uλ, hu2t2c ∼ qtαc , (2.8a,b)

which leads to the scaling

tc ∼ (g′qc̃4/(λ−1))(1−λ)/[α(λ−1)−2λ+6], (2.9)

equal to

tc ∼ c̃−1; (c̃4g′q)−1/(α+2) for λ = 1, 2. (2.10)

The critical time increases with λ and decreases with α. Later on a viscous–buoyancy
balance dominates, at a time obtained by imposing that the viscous drag, turbulent drag
and buoyancy terms are of the same order of magnitude

ν
∂2u
∂y2 ∼ g′ ∂h

∂r
∼ c̃|u|λ−1u, (2.11)

or
12νu

h2 ∼ g′ h
utv1

∼ c̃uλ, hu2t2v1 ∼ qtαv1, (2.12a,b)

which leads to the scaling

tv1 ∼
(

g′q
c̃

)1/(3−α) (
c̃h2

12ν

)(3+λ)/[(λ−1)(3−α)]

. (2.13)

Considering the viscous drag due to the obstacles, instead of the viscous drag due to the
bottom, results in

κνu
s2 ∼ g ′ h

utv2
∼ c̃uλ, hu2t2v2 ∼ qtαv2, (2.14a,b)

where s is a scale of the spacing of the obstacles and κ is the density of the obstacles. The
corresponding time of transition is

tv2 ∼
(

g′q
c̃

)1/(3−α) (
c̃s2

κν

)(3+λ)/[(λ−1)(3−α)]

. (2.15)

Note that, for λ = 1, the two times tv1 and tv2 are undefined since viscous resistance
and drag scale with u and are indistinguishable. In conclusion, the obtained self-similar
solution is intermediate asymptotic in the interval tc < t < tv where tv = min(tv1, tv2).
The condition tv2 < tv1 corresponding to viscous drag due to vegetation dominating with
respect to the viscous drag due to the bottom, for α < 3 requires that s < h

√
κ/12, which

for κ = 0.10 and h = 1 cm indicates s ≈ 1 mm, a condition generally not satisfied. A
waxing inflow rate with α > 3 is unrealistic and, moreover, we expect it to occur for a short
time interval, not sufficient to allow viscosity to dominate the balance with buoyancy. For
this reason, we limit our analysis to a viscous–buoyancy balance regime due to the floor
of the tank and not to the vegetation. The previous results for λ = 2 correspond to values
given in Hatcher et al. (2000).
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Equation (2.13) can be also expressed as a function of the parameters of the flow process
as

tv1 ∼
(

g′q
c̃

)(3λ+1)/[7λ−3−α(3λ+1)] (
c̃3

12νg′2

)(λ+3)/[7λ−3−α(3λ+1)]

, (2.16)

where h, retained in (2.13) only for comparing tv1 and tv2, has been eliminated. Equating
(2.9) and (2.16) yields a time scale t∗ and volume coefficient scale q∗

t∗ =
[

1
(12νg′2)(λ−1)c̃4

]1/(λ+3)

, (2.17)

q∗ =
[

(12νg′2)α(λ−1)−2λ+6

g′c̃4(3−α)

]1/(λ+3)

, (2.18)

that allow us to express the two times in dimensionless form

t̃c ∼ q̃(1−λ)/[α(λ−1)−2λ+6], (2.19)

and

t̃v1 ∼ q̃(3λ+1)/[7λ−3−α(3λ+1)], (2.20)

where t̃ = t/t∗ and q̃ = q/q∗. The exponent in (2.19) is always negative for 1 < λ < 2 and
α > 0, and t̃c monotonically decreases with q̃. The exponent in (2.20) is positive if α <

αc ≡ (7λ− 3)/(3λ+ 1) and it is negative otherwise. Figure 2(a) shows the theoretical
dimensionless times vs the volume coefficient, as a function of α and for α < αc. The
hatched area refers to α = 0 and λ = 2 and is the domain of existence of an intermediate
asymptotic similarity solution, which is possible only for q̃ > 1: the initial stage of the
GC is dominated by inertia, which progressively becomes less important leaving space to
turbulent drag of the vegetation. The turbulent drag–buoyancy balance is finally substituted
by a viscous–buoyancy balance. The domain of existence of the turbulent drag–buoyancy
balance widens with α and also for reduced λ, and for α → αc viscosity never dominates
over turbulent drag.

Figure 2(b) shows the same data of figure 2(a) for α > αc, with the hatched area
referring to α = 2 and λ = 2. The intermediate asymptotic similarity solution is allowed
only for q̃ < 1, the domain of existence becomes smaller for increasing α > αc.

This analysis is approximate because it refers to homogeneous and invariant assumptions
for h, u and for λ, c̃, which in real GCs are variable in space and time. In particular,
near the front the current is always in the viscous–buoyancy balance regime. However, it
provides useful insights to the discussion of the deviations of the theoretical model from
experiments and to framing of the validity limits of a self-similar solution.

2.4. Solution
When c̃ and λ are constant and the volume is of the form V = qtα (including the
fixed-volume LR case α = 0) analytical solutions of similarity type can be obtained, as
follows.

Let y = r/rN(t). The equations of motion can be expressed in terms of the variables
h( y, t) and u( y, t). The domain of solution is y ∈ [0, 1] and the nose of the current is at
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Figure 2. Evolution of the balance regime for a radial GC in the presence of vegetation as a function of
the time exponent of the volume of denser fluid. (a) Diagrams for α < αc ≡ (7λ− 3)/(3λ+ 1) and (b) for
α > αc. The continuous curves refer to λ = 2, while the dashed curves refer to λ = 1.5. The hatched areas
represent the domain where the intermediate asymptotic solution exists with turbulent drag–buoyancy balance;
the intermediate asymptotic solution regime occurs after the initial phase, dominated by inertia, ending before
the phase when viscosity is dominant.

y = 1. We seek a similarity solution of the form

rN = Ktγ , h = tδH( y), u = ṙNU( y), (2.21a–c)

where the upper dot denotes time derivative and K, γ, δ are constants. The task is to obtain
the values of K, γ, δ and the profiles H̃( y),U( y) subject to the boundary conditions.
The boundary conditions at the nose (y = 1) are U(1) = 1,H(1) = 0. The global volume
balance (per radian) is

V =
∫ rN

0
hr dr = K2t2γ tδ

∫ 1

0
H( y)y dy = qtα; (2.22)

and yields

2γ + δ = α; K2J = q, (2.23a,b)

where J = ∫ 1
0 H( y)y dy.
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Substitution of the similarity form (2.21a–c) into the momentum equation (2.5) yields,
after some algebra

δ = −λ+ γ (λ+ 1); (2.24)

|U( y)|λ−1U( y) = −H̃′( y), (2.25)

where

H̃( y) = H( y)
C

; C = c̃
g′ γ

λK1+λ. (2.26a,b)

Combining (2.23a,b) with (2.24) we find

γ = α + λ
3 + λ . (2.27)

The continuity equation reads

δ

γ
H̃( y) + (U − y)H̃′( y) + H̃( y)U ′( y) = −U

y
H̃( y). (2.28)

For given λ and α we obtain γ and δ by (2.27) and (2.24), then solve (2.25) and (2.28).
Note that U( y) and H̃( y) are dimensionless. An analytical solution of (2.25) and (2.28)
can be obtained for δ/γ = −2

U = y; H̃( y) = 1
1 + λ(1 − y1+λ). (2.29a,b)

This is valid when

γ = λ

3 + λ ; δ = −2γ ; α = 0. (2.30a–c)

The validity of this result can be verified by direct substitution into the equations of
motion, and it is evident that the boundary conditions U(0) = 0, H̃(1) = 0 are satisfied.
This describes the propagation of a GC of fixed volume.

For influx values of α > 0 the similarity profiles can be calculated by numerical
integration. Typical results are shown in figure 3. We recall that the solution is irrelevant
for small y, because a realistic source must have a finite radius. On the other hand, the
solution is well behaved about the nose. Using an expansion in powers of 1 − y, we find
that for small values of 1 − y the solution of (2.25) and (2.28) can be approximated by

H̃ = (1 − y) + λ δ

4γ
(1 − y)2 + · · · , U = 1 + δ

2γ
(1 − y) + · · · . (2.31a,b)

Consequently, for given α and λ we calculate the profiles U( y), H̃( y) by numerical
integration from y = 1 − Δ to smaller values of y. Here, Δ is some small interval which
allows the application of the approximation (2.31a,b) as the initial condition for the
integration, thus avoiding the problem of the zero coefficient of U ′(1) in (2.28).

For α = 3 we find γ = δ = 1 independent of λ; the aspect ratio of the current does not
change with t. Typical solutions with influx conditions relevant to the present investigation
are illustrated in figure 3.

933 A46-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
59

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1059


D. Petrolo, M. Ungarish, L. Chiapponi and S. Longo

y
0

1

2

3

4

5

0.2 0.4 0.6 0.8 1.00.2 0.4 0.6 0.8 1.0
y

0

1

2

3

U

(b)(a)

0.5
1.0
1.5
3.0

α

H̃

Figure 3. Theoretical profiles (a) H̃ and (b) U as functions of y for α = 0.5–3, λ = 1 (dotted lines) and
λ = 2 (solid lines).
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Figure 4. Value of the integral J̃ as a function of α for λ = 1.5, 2.

The front position in dimensional variables is

rN =
(

qg′

c̃ γ λJ̃

)1/(3+λ)
tγ , (2.32)

where J̃ = ∫ 1
0 H̃( y)y dy, which for α = 0 becomes

rN =
(

qg′

c̃

)1/(3+λ) [
2(3 + λ)λ+1

λλ

]1/(3+λ)
tλ/(3+λ). (2.33)

Figure 4 shows the numerical value of J̃ for different α and λ.

3. The experimental layout and procedures

3.1. Set-up for the GCs
We ran a series of experiments at the Hydraulic Laboratory of the University of Parma.
Our tank was a poly-methyl-methacrylate circular sector, with a radius of R = 180 cm
and an angle β = 30◦ as sketched in figure 5(a). The vegetation was modelled by (i) 200
vertical plastic rods, with a density κ = 0.050, as sketched in figure 5(a), and (ii) 320 rods,
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Figure 5. Experimental set-up with κ = 0.050. (a) Top view; (b) lateral view of a LR experiment; and
(c) lateral view of a continuous flux experiment. Units are in centimetres. Images are not corrected for
distortion.

with a density κ = 0.081. The rods, with diameter D = 1.6 cm, were positioned according
to an equilateral triangular mesh grid, with the edge of the triangles equal to 5.6 cm for
κ = 0.050 and 5.0 cm for κ = 0.081.

For the LR experiments, a stainless steel planar gate 0.2 cm thick was positioned at
r0 = 55 cm and manually lifted just before the start of the experiment, see figure 5(b).
The opening of the gate took approximately 0.2 s, a negligible time when compared with
the duration of the experiments, t = 40–60 s. A criterion for establishing the maximum
gate opening time was formulated by Lauber & Hager (1998) for dam breaks on a dry
horizontal bottom with a vertical lift gate: if the opening occurs in a time greater than
tmin = √

2h0/g′, the initial flow field is distorted by the presence of the flat gate surface,
increasing the discrepancy between theory and experiments. Applying this criterion, the
critical condition for this experimental activity corresponds to tmin = 0.8 s, more than the
opening time of 0.2 s for the present experiments.

For the experiments with a continuous source of flux, a home-made diffuser was inserted
at r0 = 25 cm, see figure 5(c). The diffuser was connected to a pump controlled in
feedback by a LabView software. Different experiments were conducted with a constant,
waxing or waning volume inflow rate.
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The lateral view of the experiments was recorded by a full HD video-camera
(1920 pixels × 1080 pixels, iPhone 7, Apple Inc.), working at 30 frames per second (fps).
A 5 cm square grid stuck on the inner side of the front lateral wall was used to convert
pixels into laboratory coordinates, with the aid of a proprietary Matlab code. The
algorithm preliminary requires (i) the acquisition of the pixels of the knots of the grid; (ii)
the computation of a conversion polynomial function for the two horizontal and vertical
directions, mapping pixels into laboratory coordinates. The order of the polynomial is
automatically chosen to minimize the root-mean-square deviation between the grid knots
in laboratory coordinates and the reconstructed values starting from the pixels in the
image. The conversion polynomials allow us to compensate for defects in the optics and for
the position of the camera (Longo et al. 2015, 2016), and are used to transform the pixels
corresponding to the instantaneous profile of the current into laboratory coordinates.

The top view was recorded by a 4 k video camera (3840 pixels × 2160 pixels, iPhone 11,
Apple Inc.), working at 30 fps. The time evolution of the position of the nose of the current
was measured by means of three radial grids glued at the base of the tank. High-frequency
neon lamps provided stable and homogeneous illumination at the back wall of the tank.
Softened tap water, with density ρa = 1000 kg m−3, was always used as ambient fluid,
although sometimes ρa = 1001–1002 kg m−3 because of salty traces left from previous
experiments. The dense current was made of tap water, sodium chloride (NaCl) and red
aniline dye, well mixed before the use.

For practical reasons, the fixed top condition is replaced by the free-surface condition,
with no lid on the top of the tank. There is theoretical and experimental evidence that for
Boussinesq systems (as considered in this paper) the difference between fixed and open
top has negligible influence on the flow of the current, see Ungarish (2020).

In order to have an estimate of the mixing between the current and the ambient, some
samples of the dense fluid were collected during some of the experiments listed in table 1,
at the bottom of the current and a few millimetres below the interface, at r = 90, 170,
175 cm. The samples were manually collected with a syringe connected to a 2 mm brass
pipe, and then analysed with a refractometer.

Appendix A describes further experiments for measuring the drag coefficient of a set of
rods, in the same configuration adopted for the GC experiments.

3.2. The uncertainty in variables and parameters
We considered the instrument accuracy and the sequence of operations during tests to
estimate the uncertainty of the variables and parameters. Hydrometers with an accuracy
of 10−3 g cm−3 were used to measure density, hence the corresponding uncertainty for
the reduced gravity g′ = (1 − ρa/ρc)g is g′/g′ ≤ 0.2 %. The level of the dense fluid in
the lock and the level of the ambient fluid were measured by a ruler with an accuracy of
0.2 cm. The relative uncertainty is h0/h0 ≤ 2 %. The volumetric flow rate of the pump
was controlled within 1 % of accuracy.

The Reynolds number of the current has an uncertainty Re/Re ≤ 4 %, also based on
the assumption of an uncertainty of 1 % in estimating the kinematic viscosity of salty
water. The resolution in grabbing the lateral profiles of the dense current is approximately
0.1 cm pixel−1, while the overall uncertainty due to parallax errors is approximately
0.3 cm.

The velocity of water during drag coefficient measurements has an uncertainty V/V =
2 % at high inflow rates and V/V = 4 % at low inflow rates. Reynolds number of the
vegetation has an uncertainty Rerod/Rerod ≤ 6 % and the arrangement for measuring the
drag force gives results with an uncertainty less than 10 %.
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ρa ρc g′ H h0 q′ γth γth U T
Exp. (kg m−3) (kg m−3) (cm s−2) (cm) (cm) (cm3 s−α) α κ (λ = 1) (λ = 2) γexp (cm s−1) (s) Remark

1 1000 1030 29.4 20.0 20.0 15 100 0 0 0.50 0.50 0.55 ± 0.01 24.3 0.82 LR (f)
2 1000 1017 16.7 20.0 20.0 15 100 0 — 0.50 0.50 0.55 18.3 1.10 (f)
3 1001 1018 16.7 20.0 10.0 7550 0 — 0.50 0.50 0.50 18.3 1.10 (p)
4 1000 1017 16.7 20.0 15.0 11 300 0 — 0.50 0.50 0.50 18.3 1.10 (p)
5 1000 1032 31.4 20.0 20.0 15 100 0 0.050 0.25 0.40 0.46 25.1 0.80 LR (f)
6 1000 1017 16.7 19.4 9.7 7300 0 — 0.25 0.40 0.41 18.0 1.08 (p)
7 1002 1017 14.7 19.4 15.0 11 300 0 — 0.25 0.40 0.39 16.9 1.15 (p)
8 1000 1017 16.7 19.3 19.3 14 550 0 — 0.25 0.40 0.48 17.9 1.08 (f)
9 1002 1030 27.4 19.9 10.1 7600 0 — 0.25 0.40 0.43 23.4 0.85 (p)
10 1002 1030 27.4 19.2 15.0 11 300 0 — 0.25 0.40 0.45 22.9 0.84 (p)
11 1000 1021 20.6 19.0 — 200 1 — 0.50 0.60 0.57 19.8 0.96 CF
12 1000 1021 20.6 19.4 — 100 1 — 0.50 0.60 0.61 20.0 0.97 —
13 1000 1035 34.3 19.0 — 100 1 — 0.50 0.60 0.58 25.5 0.74 —
14 1000 1057 55.9 19.0 — 100 1 — 0.50 0.60 0.63 32.6 0.58 —
15 1001 1055 52.9 19.0 — 200 1 — 0.50 0.60 0.60 31.7 0.60 —
16 1000 1055 53.9 19.0 — 50 1 — 0.50 0.60 0.48 32.0 0.59 —
17 1000 1055 53.9 19.0 — 150 1 — 0.50 0.60 0.54 32.0 0.59 —
18 1000 1037 36.3 19.0 — 200 1 — 0.50 0.60 0.54 26.3 0.72 —
19 1000 1035 34.3 19.0 — 50 1 — 0.50 0.60 0.67 ± 0.02 25.5 0.74 —
20 1000 1038 37.3 19.0 — 0.264 2.50 — 0.88 0.90 0.87 ± 0.03 26.6 0.71 WX
21 1000 1020 19.6 20.0 — 0.264 2.50 — 0.88 0.90 0.85 ± 0.01 19.8 1.01 —
22 1000 1020 19.6 19.0 — 0.037 3.00 — 1.00 1.00 0.99 19.3 0.98 —
23 1000 1036 35.3 19.0 — 0.037 3.00 — 1.00 1.00 0.91 25.9 0.73 —
24 1000 1023 22.6 19.0 — 16.17 1.67 — 0.67 0.73 0.74 20.7 0.92 —
25 1000 1043 42.2 19.0 — 15.48 1.68 — 0.67 0.74 0.74 28.3 0.67 —
26 1000 1021 20.6 19.0 — 580 0.76 — 0.44 0.55 0.59 19.8 0.96 WN
27 1000 1020 19.6 19.0 — 2153 0.45 — 0.36 0.49 0.60 19.3 0.98 —
28 1001 1038 36.2 19.0 — 2074 0.46 — 0.37 0.49 0.63 26.2 0.72 —
29 1001 1037 35.3 19.0 — 547 0.78 — 0.45 0.56 0.64 25.9 0.73 —

Table 1. For caption see next page.
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ρa ρc g′ H h0 q′ γth γth U T
Exp. (kg m−3) (kg m−3) (cm s−2) (cm) (cm) (cm3 s−α) α κ (λ = 1) (λ = 2) γexp (cm s−1) (s) Remark

30 1000 1102 100.0 19.0 — 300 1 0.081 0.50 0.60 0.57 43.6 0.44 CF
31 1000 1186 182.4 19.0 — 300 1 — 0.50 0.60 0.57 58.9 0.32 —
32 1000 1020 19.6 19.0 — 170 1 — 0.50 0.60 0.55 19.3 0.98 —
33 1000 1100 98.1 19.0 — 400 1 — 0.50 0.60 0.58 43.2 0.44 —
34 1000 1100 98.1 19.0 — 11.92 1.72 — 0.68 0.74 0.69 43.2 0.44 WX
35 1000 1100 98.1 20.0 — 3.48 2.70 — 0.92 0.94 0.99 ± 0.04 44.3 0.45 —
36 1000 1100 98.1 19.0 — 0.24 2.50 — 0.88 0.90 0.81 ± 0.04 43.2 0.44 —
37 1000 1100 98.1 19.0 — 597 0.77 — 0.44 0.55 0.55 ± 0.01 43.2 0.44 WN
38 1000 1100 98.1 19.0 — 2436 0.39 — 0.35 0.48 0.53 43.2 0.44 —
38 1000 1100 98.1 19.5 19.5 14 700 0 — 0.25 0.40 0.43 43.7 0.45 LR (f)
40 1000 1020 19.6 19.5 19.5 14 700 0 — 0.25 0.40 0.41 19.6 1.00 (f)

Table 1. Parameters of the experiments with rods of diameter D = 1.6 cm: ρa,c is the density of the ambient/current fluid, g′ is the reduced gravity, H is the initial height
of the ambient fluid, h0 is the height of the current in the LR experiments, q′ ≡ q(1 − κ) is the inflow rate coefficient referring to the 30◦ sector tank, κ is the density of
vegetation, α and γ are constants; γth is the theoretical value evaluated for λ = 1, 2, while γexp is the experimental value; U = √

g′H is the velocity scale, T = H/U is the
time scale. The abbreviations in the ‘Remark’ column stand for LR, LR full depth/partial depth (f/p), constant inflow rate (CF), waxing (WX) and waning (WN) inflow rate,
respectively. Note that, in the comparison between experiments and theory, the fact that the volume in (2.26) includes both fluid and vegetation has been taken into account.
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The inflow produces an increase of the level of the ambient fluid. The underlying idea
of the thin-layer model is that the vertical velocity is much smaller than the horizontal
velocity, w � u. If we consider a constant inflow rate q, the rate of increase of level can
be expressed as w = 2q/(βR2), β = 30◦, which for the largest value q = 400 cm3 s−1

of our experiments (exp. 33 in table 1) results in w = 0.04 cm s−1, compared with a
typical radial speed of u = 10 cm s−1, hence the condition w � u is satisfied. Over 25 s of
experiment, the variation of the ambient fluid level equals H = 1 cm, representing 5.2 %
of the initial ambient fluid H = 19 cm. This value is reached at the end of the experiment,
and on average, H/H = 2.6 % which is in the range of the other experimental errors. In
most of the other experiments H/H is much smaller because q is smaller and even null
for LR experiments.

4. The experiments

Table 1 lists the parameters of the experiments. Experiments 1–4 were in a LR
configuration and with no vegetation κ = 0, in order to check the overall quality of the
set-up in a simple configuration, without the effects of the rods. Experiments 5–29 were
with a vegetation density of κ = 0.050, experiments 5–10 were LR while experiments
11–29 involved a continuous source of flux, constant or time varying. Finally, experiments
30–40 were with a vegetation density of κ = 0.081 and a constant source of flux.

Figure 6 shows some snapshots of the lateral view of the tank taken at t = 0, 4, 8 and
16 s after the lift of the gate, during exp. 8 in LR, in order to give an overview of the shape
of the current propagating radially from the centre. The dense current is red, while the
ambient fluid is transparent. The vertical rods tend to overshadow the view, especially on
the right-hand side of the images, where the radial distance r is great and the number of
rods filling the tank increases. The red colour of the dense current is also not homogeneous,
as it gets darker from left to right as the gap of the tank increases from the centre towards
the outer radius. In figure 6(a), at t = 0, the fluid is still at rest inside the lock, but as the
gate is lifted, the current starts spreading and its thickness reduces in time. At a short time
after the lift of the gate, a significant entrainment of the ambient fluid occurs as the current
propagates, as we can see from figure 6(b), where the lock is still entirely filled by red fluid,
but the nose of the current is advancing further. As time goes by, diffusion also occurs
at the interface, and the dye appears stratified in concentration in the vertical direction,
especially close to the left hand-side of the snapshots, at r = 0, see figure 6(c,d). The red
spot on the right-hand side in figure 6(d) is a reflection of the current on the transverse
vertical wall.

We observe that the condition h/H � 1 is not strictly satisfied. It is indeed possible to
develop more sophisticated models with two layers, but the mathematical complication
(even in Cartesian cases, and much more so in a cylindrical geometry) usually prevents an
intuitive solution. There is consensus in the research community that the one-layer model
is a valid approximation tool for h/H < 0.5, although precise estimates of the magnitude
of the error are not available (this is discussed in Ungarish 2020).

Figure 7 shows some snapshots of the lateral view of the tank taken at t = 6, 36, 50 and
60 s from the time when the pump was switched on, during exp. 22. In this experiment,
the volume inflow rate increases with Q ∝ t2, and as Q increases, the height of the current
close to the source increases, with more evident billows.

Figure 8 represents snapshots of exp. 22 from the top. We can observe that the front of
the current is fairly radially symmetric.
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Figure 6. (a–d) Snapshots of the lateral side of the tank taken at t = 0, 4, 8 and 16 s for exp. 8, LR (α = 0).
The dashed vertical line indicates the section of the gate. Units are in centimetres. The images are not corrected
for distortion.

(a)

(b)

(c)

(d )

Figure 7. (a–d) Snapshots of the lateral side of the tank taken at t = 6, 36, 50 and 60 s for exp. 22 (α = 3),
waxing inflow rate with Q ∝ t2. Images are not corrected for distortion.

In order to gain further insights into the dynamics of these GCs, lateral profiles have
been extracted at different times and for different kinds of inflow. Figure 9 shows some
dimensional lateral profiles of the current taken at various instants, for an LR experiment
(exp. 5) in figure 9(a), an increasing influx experiment (exp. 21) in figure 9(b), a decreasing
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(a) (b) (c) (d)

Figure 8. (a–d) Snapshots of the top view of the tank taken at the same times as figure 7, t = 6, 36, 50 and
60 s during exp. 22 (α = 3), waxing inflow rate with Q ∝ t2. Images are not corrected for distortion.
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Figure 9. Dimensional lateral profiles extracted from images at various instants for (a) an LR experiment (exp.
5, α = 0); (b) waxing influx experiment (exp. 21, α = 2.5); (c) waning influx experiment (exp. 28, α = 0.46);
(d) constant influx experiment (exp. 33, α = 1).

influx experiment (exp. 28) in figure 9(c) and a constant influx experiment (exp. 33) in
figure 9(d). In figure 9(a), the grey dotted vertical line at r = 55 cm marks the position
of the gate at t = 0, while the grey dotted square at r = 25 cm in the other three panels
is a schematic for the diffuser, so no data are available for r < 25 cm as the current only
propagates downstream.

Profile trends are consistent with expectations in all four reported cases. In the proximity
of the fluid injection section (which in the experiments is necessarily advanced with
respect to the origin of the cylindrical sector) the greatest deviations from the profiles,
consistent with the shallow-water scheme of the analytical reference model, are observed.
In the case of LR (figure 9a), the initial acceleration is sufficiently significant to make
the inertial contribution dominant with respect to the drag of the vegetation. However, the
decay of the inertial stage is fast due to the effect of vegetation and also because of the
interaction with the ambient fluid, which in the region of the lock has a significant velocity
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and opposite to that of the current: it results in a very high shear with the formation of
billows and entrainment of ambient fluid, and a consequent mixing.

As the front advances toward the periphery of the circular sector, the fluctuations at the
interface between the dense current and the ambient fluid are damped, as the current front
widens and the average velocity is reduced. The thickness of the current is reduced, and
the dynamics appears more adherent to that of the interpretative model. An important
difference, due to the presence of vegetation, is the scale of the turbulence, which is
necessarily controlled also by the downstream wake of the cylinders. The mixing processes
appear amplified, and consequently the interface between dense current and ambient fluid
is less defined than in the case of the absence of vegetation.

For GCs with increasing flow rate over time (figure 9b), near the inlet section the
turbulence level increases over time, creating an accumulation of denser fluid that
originates a progressively increasing pressure gradient. The region with very different
characteristics of the flow field and of the current, compared with the theoretical model,
becomes progressively larger, even if the current, moving away from this region, appears
to follow the theoretical model hypotheses. On the contrary, in the case of current with
waning flow rate (figure 9c), the flow characteristics appear sufficiently smooth, with a
progressive reduction, in time, of the thickness near the inlet section.

Last, currents generated by a constant inflow rate (figure 9d) reach a substantial
equilibrium after a short time, with a current profile that, while fluctuating, remains
essentially unchanged over time and with a modest reduction in the average interface slope.

By sampling in the vertical the dense current with a syringe, with the methodology
described in § 3, we checked that the currents undergo a strong reduction in density while
propagating, and are also stratified in the vertical direction. For example, in exp. 33, while
ρc = 1100 kg m−3 in the container from where the pump takes fluid, the density decreases
to ρc = 1048 ± 4 kg m−3 at the bottom and ρc = 1033 ± 3 kg m−3 just below the density
interface. This is a result of a great entrainment of the light ambient fluid into the GC.
The amount of entrainment was also evaluated by comparing the volume injected in the
tank with the volume of the current estimated form the lateral profiles in time. We found
that the volume estimated with the last technique was double the injected volume, almost
uniformly during the current propagation. This dilution of the current by a factor of 2 was
also found by Hatcher et al. (2000), who stated that the mixing occurs for a few seconds
after releasing the gate. They also suggest that the total buoyancy of the flow, given by the
product of g′q is conserved during the flow, so if a reduction of g′ occurs due to dilution, an
increase in the value of q compensates and the behaviour of the nose position is unaffected.
We will verify this later on.

We now compare some experimental lateral profiles with the theoretical predictions
in figure 10, where the theoretical height of current h is scaled with respect to a
reference height href , here set as href = h( y = 0.2), and is shown as a function of the
non-dimensional radial coordinate y = r/rN . The choice of a reference section that differs,
as would be natural, from the axis of the cylinder sector (i.e. with the origin of the chosen
radial coordinate system), derives from the approximations of the physical model, which
requires adequate space for the lock, or for the diffuser. From a mathematical point of view,
the origin also generates a singularity. The results are little affected by the exact position
of the reference section.

Figure 10(a) refers to an LR experiment (α = 0, exp. 8 in table 1), while figure 10(b–d)
refers to constant inflow rate experiments (CF α = 1, exp. 17), waxing inflow rate WX
with α = 3, exp. 22, and waning inflow rate α = 0.45, exp. 27 in table 1 respectively).
The vertical error bars are smaller than the size of the symbol and are not shown. The
experimental and theoretical results show a variegated behaviour, especially at late times
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Figure 10. Lateral profiles of the current at different times for (a) a LR experiment, α = 0, exp. 8, (b) a
constant inflow experiment, α = 1, exp. 17, (c) a waxing inflow experiment, α = 3, exp. 22 and (d) a waning
inflow experiment, α = 0.45, exp. 27. The solid black lines refer to the theoretical similarity solution, when
λ = 2 scaled with href .

when the self-similar solution is reached. In figure 10(c), at y = 0.2–0.3, the experimental
data showing the engulfment of ambient fluid in the dense current at high Q, depart from
the theoretical behaviour. This is consistent, as the SW model does not include mixing and
entrainment. In addition, the nose of the current (y = 1) has a shape different from the
shape predicted by the theory. This is more evident when α = 3, see figure 10(c), than for
experiments with smaller α, see figure 10(a,b). This can be attributed to viscosity, which
becomes more relevant at low flow rates, with a corresponding lower front speed. The
experimental front Reynolds number is systematically quite small. In figure 10(d), which
refers to a waning inflow experiment, the experimental data differ significantly from the
theoretical prediction, especially for y > 0.5. The first reason may stand in some technical
issues related to the injection of fluid in the tank at early stage. The pump used in the
present study works well between 20 and 500 ml s−1, so a strong linear increase in the
inflow rate was imposed by the LabView software for the first few seconds, in order to
let the pump reach the full scale value. Then, the pump followed the fixed waning inflow
rate law. This early strong injection may have led to a significant accumulation of fluid at
the nose of the current. The thickness of the nose is then much larger than zero. Another
reason for the difference between experimental data and theoretical predictions may stand
in the radial extent of the tank, which could be insufficient for the self-similarity to be
reached in the waning inflow rate conditions.

Figure 11 shows the time series of the non-dimensional position of the nose of current.
The experiments are separated into three plots, and the experiments in each plot are
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Figure 11. Non-dimensional position of the nose of the current as a function of the non-dimensional time
(a) for LR experiments with κ = 0 (LR exps 1–4), κ = 0.050 (LR exps 5–10), constant influx experiments with
κ = 0.050–0.081 (CF exps 11–19 and CF exps 31–34); (b) for increasing influx (WX exps 20–25, κ = 0.050);
and (c) for decreasing influx (WN exps 27–30, κ = 0.050). The slope of the black solid lines represents the
theoretical power γ computed for λ = 2. The slope for exps 1–4 refers to the theoretical analysis in Ungarish
(2009).
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separated into two–three groups for an easy visualization of the results. The data are
subjected to a vertical shift, which has no influence on the slope of the fitting lines. The
solid lines represent the theoretical slope γ = (α + λ)/(3 + λ), evaluated for λ = 2.

Figure 11(a) refers to the LR experiments without vegetation (exps 1–4, κ = 0) and with
vegetation (exps 5–10) and CF experiments with κ = 0.050 (exps 11–19) and κ = 0.081
(exps 31–34). Experiments without vegetation were run to check the overall quality of
the experimental apparatus in a simple configuration. For all tests, the asymptotic trend
appears significantly consistent with the theoretical slope, with varying times (lengths) of
adaptation but with a remarkably large portion of the path characterized by linear trend
(in log–log scale). This confirms that the front propagation is not affected by mixing and
dilution of the current during propagation, as also suggested by Hatcher et al. (2000). No
appreciable difference is perceived as areal density of vegetation varies. The agreement
is also for the four initial experiments without vegetation, where the exponent equals the
theoretical value 0.5 as predicted in Ungarish (2009).

Figure 11(b) refers to increasing (waxing) inflow experiments (exps 20–25), where the
different inclinations are related to various exponents of the inflow rate function. Again,
the theory reproduces the experiments with adequate accuracy, although for exps 20–21
the asymptotic velocity is closer to the value that pertains to λ = 1 than to λ = 2.

Figure 11(c) refers to decreasing (waning) inflow experiments (exps 27–30). In all
four experiments, the front theoretical velocity is systematically below the experimental
velocity. The experimental slope is around 0.6, 10 %–26 % greater than the theoretical
values of 0.55–0.49 predicted when α = 0.76–0.45 respectively. This modest agreement
between theory and experiments was most visible in the side profiles. It is evident that the
buoyancy of the GC appears to be influenced, starting from the profile near the front, by
the secondary effects of mixing, resulting in an increase in apparent thickness and also in
a different front velocity. A second possible reason, already mentioned before, is that the
experimental apparatus is not long enough for the current to reach the self-similarity. We
should note here that the self-similar solution requires an adjustment time and remains for
a limited time, in the spirit of Barenblatt’s self-intermediate asymptotic: in a first phase the
system adjusts and gradually forgets the initial conditions; in a second phase it conforms
to the self-similar solution; in a third phase it departs again from the self-similar condition
because of perturbations that amplify, or because the assumptions of the model fail. In
order for the solution obtained in turbulent drag–buoyancy balance to be applicable, it is
also necessary that tv1 < t < tc, as detailed in § 2.

The theoretical behaviour of the radial velocity u along the radial coordinate r/rN and
computed for λ = 2 is used to estimate the Reynolds number Re = uh/ν (h is the measured
depth of the current, ν is the kinematic viscosity almost constant and equal to the fresh
water value) shown in the left column in figure 12 for a LR experiment (LR exp. 5) in
panel (a), waxing influx experiment (WX exp. 21) in panel (b), waning influx (WN exp.
28) in panel (c) and constant influx (CF exp. 33) in panel (d). Panels (e–h) in the right
column refer to the same experiments and show the Reynolds number of the vegetation
Rerod = ud/ν, where u is the theoretical velocity of the current.

In all these plots, the value of λ = 2 has been assumed, but although the current is in
a turbulent regime for much of its development, except near the front, the resistance of
the vegetation is in general less than the expected one for λ = 2, since Rerod is less than
3000. For LR experiments, the initial phase is characterized by fully developed turbulence
of both the current scaled with its depth and scaled with the rods diameter. This behaviour
reoccurs in a large portion of the current near the front, even in the later stages, while
the turbulence decays and the resistance of the rods scales with λ < 2 in the residual
portion of the current, starting from the lock section. This justifies the good agreement of
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Figure 12. Profiles of the Re = uh/ν (a–d) and Rerod = ud/ν (e–h) against the radial coordinate r/rN for
(a–e) LR experiment (exp. 5, α = 0); (b–f ) waxing influx (exp. 21, α = 2.5); (c–g) waning influx (exp. 28,
α = 0.46); and (d–h) constant influx (exp. 33, α = 1). Here, Re is computed with u from theory with λ = 2
and h from experiments, Rerod is computed with u from theory with λ = 2.

the theoretical model, which refers to a constant value of λ. In all other cases, although
the value of the velocity remains fairly uniform with r/rN , the level of turbulence of the
current appears to be variable, and furthermore, on the basis of Rerod, we expect a value
of λ < 2.

We observe that the front position is better reproduced by the model than the height
profile of the currents. In fact, the front position scales with qg′, see (2.32), and the total
buoyancy is preserved.

5. Conclusion

We experimentally studied the propagation of axially symmetric GCs in the presence of
drag due to vegetation. A complementary part of the experimental work was concerned
with the measurement of drag, which allowed us to estimate the λ exponent of the speed
power law that expresses the drag on the propagation of the GC.

The exponent λ of the drag ∝ Vλ increases with Rerod and tends to 2 for Rerod ≈> 3000.
The transition is a function of κ , although the results of tests performed with only
two values of this density cannot be sharp. Two additional sets of drag measurements
with smaller diameter rods, with the same density, indicate that drag varies with D,
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with c̃ ∝ (κ/D)2 and c̃ ∝ (κ/D) for λ = 1, 2 for small κ; however, this variability only
quantitatively affects the results, leaving unchanged the structure of the model, with the
same asymptotic value for λ. Scaling drag measurements with the speed in the constricted
section, instead of the apparent velocity, improves the collapse of drag coefficients to a
unique universal value.

In order to analyse the variety of conditions under which the most dense fluid is injected,
we conducted experiments with GCs produced by LR (constant volume), and also with
GCs sustained by an influx that is either constant, increasing or decreasing in time. The
analysis of the lateral profile of the current and the position of the front in time provide
useful information for the classification of the pattern of the flow field. For all four cases,
the current tends to become self-similar, with an asymptotic front speed that is reproduced
quite well by a simple shallow-water one-layer model. In detail, the accuracy of the
predictions is better for the LR tests, and is not so good for GCs sustained by waning flow
rate. The reason is not the deficiency of the theoretical model, but rather the difficulty in
specifying precisely the conditions at the influx position.

In order to obtain an estimate of the level of turbulence triggered by the floor of the
tank and by the rods (this last one gives an estimate of the value of λ), we calculated the
Reynolds number of the current, with a geometric scale equal to the measured local depth,
and the Reynolds number of the vegetation, with a geometric scale equal to the diameter of
the rods. The current velocity was taken from the theoretical model. The result is that for
LR the current is almost always turbulent and Rerod > 3000, i.e. λ = 2; for the other tests
the regime is viscous for more or less extended portions of the current and Rerod < 3000,
without homogeneity. Such indications explain the experimental behaviour of currents,
point to the causes of deviations from models and shed light on the more detailed aspects
that deserve attention in more sophisticated models.

The theoretical analysis that predicts a self-similar flow and propagation with t at
constant power, has been applied to currents that do not strictly or always meet the
assumptions of the model, and hence the question of agreement and reliability is relevant.
The experimental results indicate that some elements of self-similarity are still satisfied
even if there are significant quantitative deviations in other aspects: the velocity of the
current, for example, after an initial adaptation, becomes self-similar, but the experimental
exponent in rN ∼ tγ is slightly different from the theoretical one; the differences can be
attributed to the elements of the process that have not been deliberately included, first
mixing and entrainment. Other variables, such as current depth, take on different values
from the experiments (this is the case with waning flow rate currents), but the experiments
still indicate a self-similar profile. We think that this is an encouraging insight of our
experimental study. The theoretical model makes some bold simplifications, but it turns
out that the associated effects make only a small contribution to the overall behaviour of
the current. It is as if the self-similar solution is extremely stable even in the presence
of strong disturbances, albeit with slightly different scaled variables than the theoretical
model. This behaviour was already known and described with reference to the initial and
boundary conditions, which are soon ‘forgotten’ by the current, reaching a self-similar
regime sooner or later. (We note in passing that the attainment of self-similarity may be
reached for some non-circular lock geometries, see Zgheib, Bonometti & Balachandar
(2015), although without reaching axisymmetric shape and hence without forgetting the
initial asymmetry).

As an extension of the analysis, the parameterization of mixing and entrainment
processes and their involvement in the model is suggested. It is likely that the analytical
structure leading to self-similarity of the first kind will be lost due to the introduction of
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new scales in the process. Something similar has already been addressed, for example
in Hogg et al. (2000) and in Di Federico et al. (2017), and solved with perturbation
techniques. Possibly, a self-similarity of the second kind arises, where a power-law
dependence of the variables is retained but with the exponents represented by eigenvalues
of the differential problem.
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Appendix A. Drag measurements for different rods diameter and scaling rules

An additional set-up was built in order to measure the drag coefficient of a set of
rods, attached to a wooden panel, with density κ = 0.050–0.081 and with two different
diameters of the rods, arranged in order to keep constant the density while reducing the
distance between two neighbouring rods. The drag analysis was extended beyond what
was strictly necessary for the experimental study of the GCs in our experiments, in order
to quantify the joint effect of density and diameter of the rods. The wooden panel with the
rods was positioned inside a rectangular channel, as illustrated in figure 13. The channel
was filled with water up to h = 19.9 cm, so that the rods were almost entirely immersed
in the fluid. A tension load cell was put at the top of the panel in order to measure the
drag force F of the set of rods, when crossed by different values of volume inflow rates
Q, hence by water flowing at different horizontal velocity V . The tension load cell was
previously calibrated with a dynamometer with an accuracy of 0.01 N in the same set-up
configuration but in air. A spring slightly pulled the panel at the downstream side of the
channel in order to apply a pre-tension to the load cell and let the measurements fall within
the instrumental range of the dynamometer, eliminating the dead band.

Table 2 lists the main parameters of the two patterns with two different diameters of the
rods for the drag force measurements, which for the diameter D = 1.6 cm correspond
to the patterns adopted for the GC experiments documented in the main body of this
manuscript.

Figure 14(a,b) shows the drag force measurements as function of V (top axis) and of
Rerod (bottom axis) for the set of rods with density κ = 0.050 and 0.081, respectively, and
diameter 1.6 cm. The module of the drag force for a generic body can be expressed as

F = 1
2 CDρAV2 = KD|V|λ, (A1)

where CD is the average drag coefficient, ρ is the fluid density and A is the frontal area
of the body, V is the apparent velocity (defined as the discharge in the rod layer over the
gross cross-sectional area) and Rerod = VD/ν, where D is the diameter of the rod and ν is
the kinematic viscosity of water, assumed equal to 10−6 m2 s−1.
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(b)

(a)

(c)

h = 19.9 cm Q

945 cm

5–6.5 cm s = 3.4–4.9 cm s = 1.8–2.4 cm2.6–3.2 cm

φ 1.6 cm φ 0.8 cm

Figure 13. Experimental set-up for the drag measurement. (a) Side view of the channel with the panel
supporting the rods and the load cell; (b) plan view of the 1.6 cm diameter rods; and (c) view of the 0.8 cm
diameter rods.

Pattern Rod Rod No. of rods Rod Frontal area
no. diameter spacing per unit area density per unit volume

D (cm) s (cm) N (m−2) κ a (cm−1)

1 1.6 4.9 237 0.050 0.066
2 1.6 3.4 392 0.081 0.138
3 0.8 2.4 982 0.050 0.138
4 0.8 1.8 1464 0.081 0.247

Table 2. Arrangements of varying rod concentration and diameter D = 1.6–0.8 cm. Here, a is the frontal
area per unit volume.

In our experiments, A = nAr, where n = 36–55 is the number of 1.6 cm diameter rods
(n = 126–210 for the 0.8 cm diameter rods) attached to the panel for κ = 0.050–0.081
respectively, and Ar is the frontal area of a single rod covered by water, equal to Ar = D ls
with ls the submerged length of the rod.

Figure 14(c) shows the drag coefficient as a function of Rerod, with vertical error bars
computed by propagating in quadrature the uncertainties of the involved variables

CD

CD
=

√(
F
F

)2

+
(

ρ

ρ

)2

+
(

D
D

)2

+
(

ls
ls

)2

+ 4
(

V
V

)2

, (A2)

where ls is the submerged height of the rods. The main contribution to uncertainty is due to
velocity estimation and to force measurement. In fully turbulent flows, the drag coefficient
is constant. On the other hand, in transitional and viscous regime the drag coefficient
depends on the fluid velocity and on κ .

We can identify two different regimes where the drag force ∼V for Rerod < 3000 and
∼V2 for Rerod > 3000. This is a classical result valid for internal and external flows, with
the drag coefficient proportional to the inverse of the Reynolds number in the viscous
regime, and independent of the Reynolds number in the asymptotic turbulent regime,
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0.081

101
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100

102 103 104
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(a) (b)

(c) (d)

CD CD

CD∞ = 1.70

CD∞ = 1.40

2.8

κ = 0.081

κ = 0.050

2.4

2.0

1.6

1.2

1.0 1.5 2.0 2.5 3.0

λ

Figure 14. Drag measurements for 1.6 cm diameter rods. (a) Drag force F for κ = 0.050, and (b) for κ = 0.081
(the grey squares are a test of reproducibility of drag measurement after two months from the test visualized
with blue triangles) and λ refers to the right axis; (c) the drag coefficient CD as a function of the Reynolds
number Rerod , with different vertical axes for an easy visualization; (d) the drag coefficient as a function of λ.
The dashed curves are the 95 % confidence limits, error bars indicate one standard deviation.

at high Reynolds number (asymptotic independence of turbulence from viscosity). For
the experiments with κ = 0.050 the regression analysis of the experimental data for
D = 1.6 cm gives

F ≈ 5.1 × 10−2Re0.99
rod N for Rerod < 3000,

F ≈ 9.2 × 10−3Re1.94
rod N for Rerod > 3000,

}
(A3)

respectively. The results are similar for κ = 0.081.
If we calculate the logarithm of (A1) and then differentiate, we obtain

d ln F
d ln V

= dF/dV
F/V

= λ. (A4)
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Radial gravity currents in a vegetated channel

Figure 14(a,b) shows the values of λ (filled circles) referred to the right vertical axis.
The regression functions are

λ = 2 − 1.2 × 104Re−1.5
rod for κ = 0.050,

λ = 2 − 4.3 × 102Re−1
rod for κ = 0.081.

}
(A5)

Figure 14(c) shows the drag coefficient CD derived from (A1), as a function of Rerod
for κ = 0.050–0.081, respectively. For both values of κ , we can observe a progressive
transition towards the asymptotic drag coefficient. The interpolating curves are

CD = 1.40 + 2.3 × 105Re−1.9
rod for κ = 0.050,

CD = 1.70 + 5.1 × 105Re−2
rod for κ = 0.081.

}
(A6)

The drag increases with κ and assumes the asymptotic values CD∞ = 1.40 ± 0.10 and
CD∞ = 1.70 ± 0.10, for κ = 0.050–0.081, respectively. Regarding the dependence of the
drag coefficient on Reynolds number and, more generally, on the characteristics of the
flow field and of the vegetation (Vargas-Luna et al. 2016) indicate that the drag of the
vegetation is a function of other variables as well. In this respect, the structure of (A6)
is an approximation. Figure 14(d) shows CD vs λ, with the drag coefficient decreasing
linearly with the value of λ.

A similar analysis was conducted for rods with D = 0.8 cm. The interpolating curves
are

CD = 1.20 + 2.8 × 102Re−1
rod for κ = 0.050,

CD = 1.40 + 6.2 × 105Re−2.5
rod for κ = 0.081,

}
(A7)

with asymptotic values CD∞ = 1.20 ± 0.10 and CD∞ = 1.40 ± 0.10 for κ = 0.05–0.081,
respectively. These values are very similar to those calculated for rods of diameter
1.6 cm. Figure 15 shows λ and CD as a function of Rerod for κ = 0.050–0.081 and for
D = 1.6–0.8 cm.

From the definition results the drag contribution term is

c̃|V|λ = F
ρblls

, (A8)

where b is the channel width, l is the streamwise length of the support of the rods and
ls is the height of the rods, almost equal to the water depth. Figure 16(a,b) shows the
experimental values and the interpolating curves of the coefficient c̃ and of λ.

The interpolating functions for c̃ are sigmoids with expression for D = 1.6–0.8 cm

c̃ = 0.053
0.018 7 + exp(−0.003 7Rerod)

m1−λ sλ−2 for κ = 0.050,

c̃ = 0.108
0.028 1 + exp(−0.004 1Rerod)

m1−λ sλ−2 for κ = 0.081,

⎫⎪⎪⎬
⎪⎪⎭ (A9)

and

c̃ = 0.134
0.026 5 + exp(−0.005 3Rerod)

m1−λ sλ−2 for κ = 0.050,

c̃ = 0.082
0.008 4 + exp(−0.009 1Rerod)

m1−λ sλ−2 for κ = 0.081.

⎫⎪⎪⎬
⎪⎪⎭ (A10)
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(a) (b)

(c) (d)
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1.6 cm

0.8 cm

0.8 cm
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1

102 103 104 102 103 104
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100

λ

3

2

1

102 103 104 102 103 104

101

100

λ

κ = 0.050 κ = 0.050

κ = 0.081κ = 0.081

CD∞ = 1.40

CD∞ = 1.70

CD∞ = 1.20

CD∞ = 1.40

CD

CD

Rerod Rerod

Figure 15. Comparison of drag measurements for 1.6 and 0.8 cm diameter rods. (a) Exponent λ and (b) drag
coefficient for κ = 0.050 as a function of Rerod; (c,d) same variables for κ = 0.081. Curves are the interpolating
functions, error bars refer to one standard deviation.

The asymptotic values corresponding to λ = 1, 2 for D = 1.6–0.8 cm are equal to

c̃ = 0.18 s−1; c̃ = 3.06 m−1 for λ = 1, 2, κ = 0.050,

c̃ = 0.31 s−1; c̃ = 5.19 m−1 for λ = 1, 2, κ = 0.081,

}
(A11)

and
c̃ = 0.23 s−1; c̃ = 5.34 m−1 for λ = 1, 2, κ = 0.050,

c̃ = 0.26 s−1; c̃ = 8.84 m−1 for λ = 1, 2, κ = 0.081.

}
(A12)

Figure 16 shows the experimental values and the interpolating curves of the coefficient
c̃ and of λ.

Flow within the rods and porous structures is opposed by a viscous resisting force ∝ V
and form drag ∝ V|V|, as derived from the Forchheimer equation (Whitaker 1996); the
former is a function of the permeability K, which is controlled by the internal geometry of
the medium, the latter is a function of a dimensional drag coefficient χ controlled again by
the internal geometry of the medium. In the present model, a single monotonic expression
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κ = 0.081
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Rerod  λ

Figure 16. Drag measurements for 1.6 and 0.8 cm diameter rods. (a,b) Coefficient c̃ (filled symbols) and λ
(open symbols) as a function of Rerod for κ = 0.050–0.081, and (c,d) coefficient c̃ as a function of λ for
κ = 0.050–0.081, with c̃ ∝ λ≈4. Curves are the interpolating functions; error bars and confidence bands refer
to one standard deviation.

is adopted, with a resisting force ∝ V|V|λ−1 and λ ∈ [1, 2]. There are several models to
relate K and χ to the properties of the medium, and a scaling for drag can be obtained
following the model proposed by Macdonald et al. (1979), who, on the basis of data from
numerous experiments with a variety of materials, including cylinders, proposed a variant
of the Ergun equations (Ergun 1952), with the permeability expressed as

K = D2
eq(1 − κ)3

a0κ2 → c̃|λ=1 = ν(1 − κ)

K
≡ a0νκ2

D2
eq(1 − κ)2 , (A13)

and the dimensional coefficient χ expressed as

χ ≡ c̃|λ=2 = b0κ

Deq(1 − κ)
; (A14)

a0 and b0 are empirical constants and Deq is an equivalent mean sphere diameter (Deq =
6Wp/Ap being Wp and Ap the volume and the surface area of the particles) equal to 1.5D
for a cylinder.
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λ = 1 λ = 2

Pattern D κ c̃ rc̃ c̃ rc̃

no. (cm) (s−1) Exp. Theory (m−1) Exp. Theory

1 1.6 0.050 0.18 1 1 3.06 1 1
2 1.6 0.081 0.31 1.72 4.19 5.19 1.70 1.67
3 0.8 0.050 0.23 1.28 7.41 5.34 1.75 2.00
4 0.8 0.081 0.26 1.44 10.25 8.84 2.89 3.35

Table 3. Experimental values of c̃ for the four drag measurements tests in the limiting cases of λ = 1, 2.
There is a comparison between the experimental ratio rc̃ − exp. and theoretical scaling rc̃−theory indicated by
(A15a,b), by assuming pattern no. 1 as reference and rν = 1.

The scaling rules for c̃|λ=1 and for c̃|λ=2 for small κ are (Longo 2022)

rc̃(λ=1) = rνr2
κ

r2
Dr2

(1−κ)

, rc̃(λ=2) = rκ

rDr(1−κ)

, (A15a,b)

where rν , rc̃, rκ , r(1−κ) and rD are the ratios between the values of ν, c̃, κ , (1 − κ) (the
porosity) and D of two different patterns.

Table 3 lists the experimental results of c̃ for the four drag measurements tests with two
different diameters and density of the rods. The values of the ratio rc̃ are also listed as
computed with the experimental data and with (A15a,b), with pattern number 1 assumed
as reference. The agreement between theory and experiments is quite strong (differences
within 15 %) for the case λ = 2, also considering that the agreement found by Macdonald
et al. (1979) with (A13)–(A14) was within ±50 % for all the experimental data considered,
if a0 = 180 and b0 = 1.8. The agreement for laminar flow is less evident, although the
increment of c̃ with κ is correctly reproduced. The latter discrepancy was expected, since
the number of data and the accuracy of measurements in the viscous regime is lower than
in the turbulent regime.

The relevant result for the present drag measurements is that the asymptotic value of λ
is unaffected by the rods diameter, although the transitions from the viscous drag regime
to the turbulent drag regime and drag values are affected. For small κ it results that c̃ ∝
(κ/D)2 and c̃ ∝ (κ/D) for λ = 1, 2 respectively.

A more in-depth analysis aims to identify the appropriate variables to be adopted to
express drag, towards a single expression valid for possible combinations of porosity and
obstacle arrangement. Stone & Shen (2002) have suggested expressing the drag in terms of
the average velocity at a constricted section, Vc, in the rods, defined by Whitaker (1996) the
‘intrinsic average’ velocity as opposite to the ‘superficial average’ velocity. The velocity
Vc can be computed from the superficial velocity (defined as the discharge in the rod layer
over the gross cross-sectional area) with the following equation (see Stone & Shen 2002):

Vc = V

1 − D
√

N
≡ V

1 − √
4κ/π

, (A16)

where N is the number of rods per unit area. Figure 17 shows the same variables already
presented in figure 15 but referred to Vc. The asymptotic values of the drag coefficients are
more uniform than the data referred to the apparent velocity V , and have the same value
for different densities, although still show a variability with the rods diameter.
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Figure 17. Comparison of drag measurements for 1.6 and 0.8 cm diameter rods. (a) Exponent λc and
(b) drag coefficient CD,c = 2F/(ρAV2

c ) for κ = 0.050 as a function of Rerod,c = VcD/ν; (c,d) same variables
for κ = 0.081. Curves are the interpolating functions, error bars refer to one standard deviation. Subscript ‘c’
refers the variables to data elaboration with Vc instead of V .

Appendix B. Scaling rules of the system

Our goal is to develop dynamic similarity criteria that allow to relate two realizations
of the physical process we are analysing, but with different values of the variables or
parameters involved: a first realization can be an experiment in the laboratory (model), a
second realization can be the corresponding real GC in the field (prototype). We will make
use of direct analysis, with similarity criteria developed on the basis of the two equations
(2.5)–(2.6) that govern the process (see Longo 2022).

Assuming a common vertical and radial geometric scale rl (undistorted model), results
in

rg′ = rc̃rλu, (B1a)

r3
l = rqrα

t , (B1b)
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λ = 1 λ = 2

ru rg′ r2
D

r2
(1−κ)

rνr2
κ

r1/2
g′ r1/2

D

r1/2
(1−κ)

r1/2
κ

rq r(3−α)
l rα

u

rRe rg′ rl

(
rDr(1−κ)

rνrκ

)2 r1/2
g′ rl

r1/2
ν

(
rDr(1−κ)

rνrκ

)1/2

rRerod rg′ rD

(
rDr(1−κ)

rνrκ

)2 r1/2
g′ rD

r1/2
ν

(
rDr(1−κ)

rνrκ

)1/2

Table 4. Similarity ratios computed for the two cases λ = 1 and λ = 2, undistorted model.

where r(... ) is the ratio between the value of the variable in the model and in the prototype

r(... ) = (. . . )m

(. . . )p
. (B2)

The subscripts ‘m’ and ‘p’ stand for model and prototype, respectively.
Using the scaling rules (A15a,b), (B1a) reduces to

ru = rg′r2
D

r2
(1−κ)

rνr2
κ

, λ = 1,

r2
u = rg′rD

r(1−κ)

rκ

, λ = 2,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(B3)

In (B3b) a classical Froude similarity is achieved, where the geometric scale is related to
the stem diameter.

Equation (B1b) becomes

rq = r3−α
l rα

u . (B4)

We have two equations in eight variables, represented by the scale ratios

ru, rq, rl, rg′, rD, r(1−κ), rκ , rν, (B5a–h)

with 6 degrees of freedom: for instance fixing rl, rg′, rD, r(1−κ), rκ , rν we can estimate
ru, rq and the scale ratios for all the derived variables. We can select the scale ratios
almost arbitrarily, as long as the two realizations of the physical process both satisfy the
basic assumptions (shallow-water equation, Boussinesq hypothesis, etc.) and Re and Rerod
take values in the range of validity of those assumptions. Table 4 lists the similarity rules
computed for λ = 1, 2, undistorted model.

Since the GCs we are studying can be very large in plan, it can be advantageous to
make geometrically distorted models with a vertical scale larger than the horizontal scale.
For geometrically distorted models, defining rlh and rlv = nrlh the horizontal and vertical
length scale ratios, respectively, and n the distortion coefficient (in general n > 1), (B3)
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λ = 1 λ = 2

ruh nrg′ r2
D

r2
(1−κ)

rνr2
κ

n1/2r1/2
g′ r1/2

D

r1/2
(1−κ)

r1/2
κ

ruv nruh

rq n1−αr3
lh rα

ν

rRe n2rg′ rlh

(
rDr(1−κ)

rνrκ

)2

n3/2
r1/2

g′

r1/2
ν

rlh

(
rDr(1−κ)

rνrκ

)1/2

rRerod nrg′ rD

(
rDr(1−κ)

rνrκ

)2

n1/2
r1/2

g′

r1/2
ν

rD

(
rDr(1−κ)

rνrκ

)1/2

Table 5. Similarity ratios computed for the two cases λ = 1 and λ = 2, distorted model.

become

ruh = nrg′r2
D

r2
(1−κ)

rνr2
κ

, λ = 1,

r2
uh

= nrg′rD
r(1−κ)

rκ

, λ = 2,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(B6)

with ruh now representing the horizontal velocity scale ratio; (B4) becomes

rq = nr3−α
lh rα

uh
(B7)

and the vertical velocity scale ratio is ruv = nruh .
Table 5 lists the similarity ratios computed for λ = 1, 2; there are seven degrees of

freedom in selecting the scale ratios.
If we add the further constraint that the two processes have an equal Reynolds number

of the current and an equal Reynolds number of the rods, that is rRe = rRerod = 1, results
in rD = nrlh and ruh = rν/(nrlh) and yields

rg′ = r2
νr2

κ

n4r3
lhr2

(1−κ)

, λ = 1,

rg′ = r2
νrκ

n4r3
lhr(1−κ)

, λ = 2.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(B8)

Table 6 lists the similarity ratios computed for λ = 1, 2 by imposing the same values of
Re in the two processes and the same Rerod in the two processes; there are five degrees
of freedom in selecting the scale ratios. In practical case, these similarity rules are too
restrictive and essentially not necessary as long as, for instance, we have Re and Rerod in
the two processes to guarantee the same λ in the two processes.

We note that large variations of rκ are accompanied by small variations of r(1−κ) hence
this last scale ratio can be assumed constant.

If we wish to extrapolate, e.g. exp. 11 in our tank (model) to a prototype scale (real
field), assuming rlh = 1/20, n = 5, rκ = r(1−κ) = 1, rν ≈ 1, rD = 4 and rg′ = 1/2 and
λ = 2, results in ruh = 3.16, ruv = 15.8, rRe = 0.79, rRerod = 12.6. We refer to the rules
listed in table 5. The current is almost three times slower in the prototype than in the
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λ = 1 λ = 2

rD nrlh

ruh

rν

nrlh

ruv

rν

rlh

rg′
r2
νr2

κ

n4r3
lh r2

(1−κ)

r2
νrκ

n4r3
lh r(1−κ)

rq n1−αr3
lh rα

ν

rRe 1
rRerod 1

Table 6. Similarity ratios computed by imposing rRe = 1 and rRerod = 1 for the two cases λ = 1 and λ = 2,
distorted model.

model, with Re larger in the prototype than in the model but with the Rerod almost one
tenth in the model than in the prototype. This last effect must be carefully checked in order
to guarantee a sufficiently high value of Rerod also in the prototype. The inflow rate in
the prototype is almost 25 times the inflow rate in the model. In dimensional variables,
exp. 11 can be extrapolated to a real field GC of density ρcp ≈ 1043 kg m−3 advancing
in water, released in the presence of vegetation with diameter Dp = 0.4 cm and with
an inflow rate (referred to the full circle) q′

p ≈ 61 l s−1. The experimental initial front
speed was uNm = 2.7 cm s−1 in the model, resulting in uNp ≈ 0.85 cm s−1 in the real
field.

In practical situations, it may be necessary to reproduce a natural GC in the laboratory,
to investigate certain aspects that may have escaped observation in the field, or to
reconstruct measurements never made in the field, or to verify the consequences of
accidents with environmental damages and possible pollution consequences. In these cases
it is convenient to adopt the following rules.

(i) Reduce the horizontal geometric scale, with rlh � 1 in order to contain the model in
the space available in the laboratory.

(ii) Choose a vertical scale greater than the horizontal one, n > 1, in order to generate,
in the laboratory, currents with a thickness that can be measured with adequate
accuracy: n < 10 is also suggested to avoid an excessive distortion of the flow field.

(iii) In order to reproduce the vegetation, select cylinders with an adequate diameter for
the practical operations of laying, with rD > 1.

(iv) Maintain a ratio rg′ = O(1) or slightly different, to facilitate the preparation of the
fluid of the stream, using water as the ambient fluid.

(v) Check that the required flow rate, with the chosen scale ratios, can be achieved with
the pumps or the hydraulic circuit available in the laboratory.

(vi) The selection of rκ , r(1−κ) can be adapted to the needs, although it is advisable to
have rκ = O(1), r(1−κ) = O(1).

(vii) Check that Re and Rerod are comparable in model and prototype. It may be
convenient to increase the viscosity of the current fluid used in the experiments (e.g.
by adding glycerol), with rν > 1, to modulate the Reynolds number values.
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