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We reassess the evidence for (or against) a key implication of the basic real business cycle
model: that aggregate hours worked increase in response to a positive technology shock.
Two novel aspects are the scope (14 OECD countries) and the inclusion of data on both
labor supply margins to analyze the key margin of adjustment in aggregate hours. The
short-run response of aggregate hours to a positive technology shock is remarkably
similar across countries, with an impact fall in 13 out of 14 countries. In contrast, its
decomposition into intensive and extensive labor supply margins reveals substantial
heterogeneity in labor market dynamics across OECD countries. For instance, movements
in the intensive margin are the dominant channel of adjustment in aggregate hours in 6 out
of 14 countries of our sample, including France and Japan.
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1. INTRODUCTION

Fueled by the seminal contributions of Kydland and Prescott (1982) and Long
and Plosser (1983), much attention has been devoted to estimating the impact
of technology shocks on aggregate hours worked. A focal point of the empirical
literature has been to test the key predictions of the basic real business cycle
(RBC) model, namely that aggregate hours worked per capita rise after a
permanent technology shock and that the correlation of the technology-induced
components of aggregate hours and labor productivity is positive. Although the
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empirical evidence is not clear-cut, there is today a firm presumption that—at
least for the USA—these predictions are rejected by the data.1

For countries other than the USA, the empirical evidence stands on a more
insecure footing. Data availability is a key difficulty: Until recently, consistent
quarterly data on hours worked per employee (the intensive margin of labor sup-
ply) have not been available for many countries other than the USA. For lack
of an alternative, the international empirical evidence on the role of technology
for labor supply relies on employment (the extensive margin of labor supply)
as a proxy for aggregate hours, including for instance the evidence on G7 and
Eurozone countries provided by Galí (1999, 2004) or Dupaigne and Fève (2009).
Addressing this lack of data, Ohanian and Raffo (2012) have published a homo-
geneous quarterly data set for 14 Organisation for Economic Co-operation and
Development (OECD) countries on aggregate hours worked and its two com-
ponents, hours per employee and employment. Their data show that in many
countries (and in contrast to the USA), much of the cyclical variations in aggre-
gate hours take place in average hours per employee. This finding suggests that
employment is potentially a poor proxy for aggregate hours and puts much of the
existing international evidences on the role of technology shocks for aggregate
hours into question.

In this paper, we use the homogeneous data by Ohanian and Raffo (2012) (and
a subsequent update provided by the authors) and analyze how the response of
aggregate hours to permanent technology shocks compares across industrialized
countries. We estimate a separate structural vector autoregressive (VAR) model
for each country. Importantly, we address the potential issues concerning data pre-
treatment and identification in a unified, comprehensive, and transparent manner.
To shed further light on the dynamics of aggregate hours, we disentangle the
aggregate hours response to technology shocks into adjustments along the inten-
sive and extensive margins of labor supply. This novel exercise is particularly
interesting in our cross-country set-up, as the countries we study feature a wide
range of labor market institutions (LMIs) and legislation, which translates into
different incentives to adjust labor along both margins.

In our baseline specification, aggregate hours enter in levels and are quadrat-
ically detrended to remove low- to medium-frequency movements. Labor pro-
ductivity enters the system in first differences. Besides aggregate hours and labor
productivity, the VAR further includes information on consumption-to-output and
investment-to-output ratios, interest rates, and inflation. For the decomposition of
the aggregate hours response into intensive and extensive margins of labor sup-
ply, we append information on employment to the system and use generalized
least squares to estimate the VAR with linear constraints, following Lütkepohl
(2005). Technology shocks are identified as the shocks which explain the max-
imum fraction of forecast error variance (maxFEV) of labor productivity at the
10-year horizon, a statistical approach associated with Uhlig (2003, 2004).

Overall, our results confirm across a broad set of countries the findings of Galí
(1999). On impact, we find a fall in aggregate hours worked in response to a
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positive technology shock in 13 out of 14 countries of our sample (Japan is the sin-
gle exception). The technology-driven components of aggregate hours and labor
productivity are negatively correlated in 11 countries. There is more variation in
our findings when we decompose our results into intensive and extensive mar-
gins of labor supply. Employment is the dominant channel of adjustment in 8
out of 14 countries, including the Anglo-Saxon economies. The opposite holds
for Austria, Finland, France, Japan, Korea, and Norway: In these economies,
most of the aggregate hours responses to technology shocks are through move-
ments in average hours per employee. More generally, our decomposition shows
that the intensive margin is important for the short-run adjustment of aggregate
hours. As the response of employment is typically slow and builds up over time,
employment is overall an inadequate proxy for the short-run response of aggregate
hours. This finding also adds to recent evidence provided by Abbritti, Weber, et al.
(2018) and Hantzsche, Savsek, and Weber (2018), who attribute an important role
to LMIs for shaping business cycle fluctuations.

We also investigate the robustness of our main findings. In a first step, we dis-
entangle neutral (N) and investment-specific (I) technological change. Following
Fisher (2006), the simplifying assumption that technology shocks affect the pro-
duction of all goods homogeneously may be problematic if N- and I-shocks have
permanent effects on labor productivity, but different effects on aggregate hours.
In addition, we also investigate if the relative importance of the two labor supply
margins for the aggregate hours response varies depending on the type of tech-
nology shock.2 Rather than simply taking ratios of consumption and investment
deflators (as done for instance by Watanabe (2012) or Beaudry, Moura, and Portier
(2015)), we construct for a subsample of five countries measures for the relative
price of investment (RPI) of sufficiently high quality similar to the existing ones
for the USA. The time series are based on specific national accounts statistics
defined by the ratios of chain-weighted deflators for investment and consumption.
With respect to the decomposition into neutral and investment-specific techni-
cal change, we find that the inclusion of investment-specific technical change
has little effect on the qualitative features uncovered under the one-technology
assumption. We also consider alternative detrending methods for aggregate hours.
We show that accounting for low- to medium-frequency movements in hours is
crucial to avoid substantial estimation bias when hours enter the VAR in levels or
first differences, reemphasizing the same point by Fernald (2007), Canova, Lopez-
Salido, and Michelacci (2010), or Chaudourne, Fève, and Guay (2014) across a
broader set of countries.

The remainder is organized as follows. Section 2 describes the data and the
empirical methodology applied. Section 3 reports our evidence on the role and
importance of permanent technology shocks for the 14 OECD countries of our
sample. We disentangle neutral and investment-specific technical change for
a subsample of five countries in Section 4. Further robustness exercises are
considered in Section 5. Section 6 concludes.
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2. DATA AND METHODOLOGY

This section outlines our empirical framework. We first introduce the reduced-
form VAR. Then, Section 2.2 introduces the data and motivates the data pre-
treatment. Section 2.3 outlines how the aggregate hours results are decomposed
into movements in the intensive and extensive labor supply margins. Section 2.4
describes identification.

2.1. VAR Specification

For each country, we estimate the following VAR of order 4 on quarterly data:

Yt = B0 + B1Yt−1 + B2Yt−2 + B3Yt−3 + B4Yt−4 + ut, with ut ∼ iid(0, �), (1)

where Yt = [Y1t, ..., Ynt]′ is a vector of n series observed at time t, B0 is an n × 1
vector of intercepts, the remaining B’s are n × n coefficient matrices, and ut is
an n × 1 vector of zero-mean innovations with covariance matrix E[utu′

t] = �.
Our vector Yt consists of seven series: labor productivity (lpt), aggregate hours
expressed in per capita terms (Ht), the consumption-to-output ratio (cyt), the
investment-to-output ratio (iyt), 3-month interest rates (it), inflation (πt), and
employment per capita (nt). The first two series—labor productivity and aggre-
gate hours—correspond to the minimum-system necessary to identify the effect
of technology shocks on aggregate hours. Four variables are added to this system
to mitigate against omitted variable bias. In particular, we include information
on nominal interest rates and inflation to help control for the monetary policy
setting, which in sticky price models matters for the transmission of technology
shocks (see for instance Galí, López-Salido, and Vallés (2003)). We also include
real consumption- and investment-to-output ratios. In general equilibrium models,
these ratios are typically jointly determined with labor productivity and hours.3

Finally, information on employment is added in the last position of the VAR to
allow identifying the key margin of adjustment in aggregate hours. Importantly,
this last variable is only included to decompose the aggregate hours response into
its two margins and is treated in a special way. Section 2.3 provides further details.

2.2. Data

The baseline data set covers quarterly series for 14 OECD countries. The sam-
ple covered is country-dependent, typically ranging from 1970Q1 to 2016Q4
(188 observations). There are five exceptions: Ireland (sample starts 1973Q1),
Italy (1971Q1), Korea (1976Q4), Sweden (1980Q1), and the UK (1972Q1).4

Data on aggregate hours and its two components—average hours per employee
and employment—are obtained from Ohanian and Raffo (2012) and a subse-
quent update provided by the authors. Their measures combine information from
various sources, including national statistical offices, establishment surveys, and
household surveys. To ensure consistency, the series are adjusted for differences
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across countries such as paid vacation or sick days. Basic descriptive statistics for
these series are summarized in Appendix Section A.2. Data on population aged
16–64, consumption, investment, and output are drawn from the OECD Quarterly
National Accounts. Consumption-to-output and investment-to-output ratios cor-
respond to the shares of real private consumption and real gross fixed capital
formation (GFCF) of real GDP. We construct a measure of labor productivity
based on information on aggregate hours, real output, and population aged 16–64,
namely (in logs):

lpt ≡ yt − (Popt + Ht) = yt − (Popt + ht + nt) .

We use the OECD Main Economic Indicators’ measure of 3-month nominal rates.
For Germany, Ireland, and Korea, this series only starts in the early 1990s and
3-month money market rates are used to expand the sample. Finally, we obtain
inflation as πt = � log(Pt), where Pt corresponds to quarterly seasonally adjusted
GDP deflators (Pt) obtained from national statistical offices.5

Data pretreatment is a key issue in any structural VAR analysis. We are partic-
ularly concerned with low- to medium-frequency movements in aggregate hours.
Figure 1 displays the development in the raw series of aggregate hours (solid
black lines) together with the estimated quadratic trend (solid red line) for all
countries in the sample. As also documented by Ohanian, Raffo, and Rogerson
(2008), there are large differences in trend changes across OECD countries. For
instance, Austria, France, Germany, and Japan show substantial declines in hours,
while for Canada the trend is clearly upward sloping. For Korea and the USA, the
trend line shows an inverse U-shaped pattern. The cross-country differences in the
trend of hours worked are at least partly due to institutional, policy, and regulatory
factors. For instance, Francis and Ramey (2006, 2009) show that low-frequency
movements in aggregate hours arise from demographic changes, sectoral shifts,
or trends in labor markets such as increasing female participation rates. Ohanian,
Raffo, and Rogerson (2008) identify taxes as an important driver of changes in
hours worked both over time and across countries.

There is an open debate on whether trends in aggregate hours should be
removed prior to estimating the SVAR. On the one hand, over-detrending or over-
differencing may distort the sign of the impact response of aggregate hours to
technology shocks (e.g., Christiano, Eichenbaum, and Vigfusson (2004)). On the
other hand, if low-frequency movements in the data are not removed, they can
pollute high-frequency results (such as IRFs), as pointed out by Blanchard and
Quah (1989), Fernald (2007), Canova, Lopez-Salido, and Michelacci (2010), or
Chaudourne, Fève, and Guay (2014).6 In our baseline specification, we follow
Fernald (2007) and Canova, Lopez-Salido, and Michelacci (2010) and quadrat-
ically detrend aggregate hours to allow for intercept heterogeneity. Given the
importance of this choice, we discuss various robustness exercises in Section 5.
For instance, the IRFs displayed in Figure 2 also depict results for aggregate hours
in levels or first differences.
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Note: The figure depicts low-frequency movements in aggregate hours worked. Solid black lines
depict the raw series. Solid red lines correspond to the estimated quadratic trend. The series are
indexed at each series’ minimum.

FIGURE 1. Trends in aggregate hours.
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Note: The figure depicts the aggregate hours response to positive permanent technology shocks. Solid
black lines with shaded bands depict results for the 6+1-variate baseline specification. Dashed red
lines correspond to aggregate hours in levels; dotted green lines to aggregate hours in first-differences.
Confidence bands are obtained with 1000 bootstrap replications and cover 68% and 90%. Bias-
correction of the IRFs and computation of the confidence bands have been implemented as in Kilian
(1998).

FIGURE 2. Response of aggregate hours.
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2.3. Decomposition

To decompose the aggregate hours response into movements in the intensive and
extensive margins of labor supply, we append information on employment n̂t to
the system.7 The same data pretreatment as for aggregate hours is applied. Since
we do not want this addition to affect the estimation results, we impose the linear
restriction that information on n̂t is not allowed to have any contemporaneous or
lagged impact on all other variables of the system. With n̂t ordered last in the VAR,
this restriction amounts to imposing zeros in positions Bj(1 : n − 1, n) ∀ Bj, j > 0.
The VAR model subject to linear constraints is estimated with estimated gener-
alized least squares (EGLS) following Lütkepohl (2005). Further details can be
found in Appendix Section A.1.1.

To sum up, our baseline specification is defined by Yt =
[�lpt, Ĥt, cyt, iyt, it, πt, n̂t]′, where � ≡ 1 − L is the first-difference operator
and a hat denotes quadratically detrended variables. All variables except it are
measured in logs.

2.4. Identification

We are interested in a linear mapping between the innovations ut and structural
shocks εt, that is,

ut = Aεt, with Et[εtε
′
t] = I. (2)

From equations (1) and (2) follows:

� =E[utu
′
t] = AE[εtε

′
t]A

′ = AA′. (3)

To identify the coefficients in A, theoretical restrictions must be imposed to reduce
the number of unknown structural parameters to be less than or equal to the
number of estimated parameters of �. For our purposes, we will only identify
the technology shock—either under a one-technology assumption (Section 3) or
later distinguishing between embodied and disembodied technological change
(Section 4). No additional assumptions are made to separately identify the
remainder—the “non-technology shocks.” In our baseline case, identification is
achieved via the maxFEV approach, pioneered by Uhlig (2003, 2004).8 The idea
of the maxFEV approach is to search for innovations that explain the maximum
amount of forecast error variance (FEV) of a specified variable either at a tar-
get horizon or over a specified forecast horizon. In our baseline case, we identify
technology shocks as the shocks which explain the maxFEV of labor productiv-
ity at 40 quarters. Appendix Section A.1.2 provides further information on the
methodology.

3. EVIDENCE

This section presents our cross-country evidence on the labor market response
to permanent technology shocks. First, Section 3.1 discusses our results for
aggregate hours. Then, Section 3.2 focuses on the decomposition of results into
adjustments along intensive and extensive margins of labor supply.
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3.1. Aggregate Hours

Figure 2 depicts the median dynamic response of aggregate hours to a one-
standard-deviation positive technology shock together with 5th, 16th, 84th, and
95th percentiles. Solid black lines with shaded bands correspond to our base-
line specification. For comparison purposes, the figure also depicts results of
two variants: other things being equal, dashed red lines and dotted green lines
have aggregate hours and employment in levels and first differences, respectively
(without removing a quadratic trend).

For our baseline specification, the median impact response of aggregate hours
is negative in 13 out of 14 countries, and significantly so (at the 68% level) for
10 countries (see also first row of Table 1). The single exception is Japan, where
the impact response is slightly positive, but insignificant. In most countries, the
negative response is short-lived. In many instances, aggregate hours revert back to
zero within 10 quarters, sometimes after turning positive after the initial fall (e.g.,
Germany or the USA). As we discuss in more detail in Section 5, the negative
impact responses hold for a number of alternative specifications considered.

We generalize the point raised by Fernald (2007), Canova, Lopez-Salido, and
Michelacci (2010), and Whelan (2009) that for the USA, estimation results are
sensitive to low-frequency movements in the data. Our findings confirm their evi-
dence across a broad set of countries. When we compare our baseline results to the
variants with aggregate hours in levels (red dashed lines) and in first differences
(green dotted lines), two main observations stand out. First, the sign of the impact
response appears sensitive to how we enter aggregate hours. For aggregate hours
in levels, the impact response turns positive or less negative in seven countries
and becomes more negative in five countries. For the first-difference specifica-
tion, nine countries exhibit a stronger impact fall of aggregate hours. This is
an indication of potential over-differencing or mis-specification. Second, in most
instances, the shapes of the impact responses are unaffected. Only Australia and
France show substantially different patterns. The provided evidence underpins the
importance of properly accounting for low-frequency movements in the data prior
to estimation.

Table 2 summarizes median estimates for the fraction of FEV explained by per-
manent technology shocks. The table shows estimates at horizons 0 (the impact),
4, 8, 16, and 32 quarters. Overall, the table shows substantial heterogeneity in the
role of technology shocks in accounting for fluctuations in aggregate hours across
countries. On impact, results range from a low of 2% (Germany) to a high of 37%
(Canada). On average, the fraction of FEV of aggregate hours explained by tech-
nology shocks remains roughly constant over time, decreasing from an average of
16% to 14% after 8 years. The fraction of FEV explained by technology shocks
is higher for labor productivity than for aggregate hours. On impact, results range
from a low of 34% (Sweden) to a high of 74% (UK). At the 2–8 years horizon,
the average fraction of FEV of labor productivity explained by technology shocks
is roughly 50%. The lowest numbers are found for Japan, Korea, Norway, and
Sweden, where it is around 30%.
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TABLE 1. Decomposition of impact response.

Country AU AT CA FI FR DE IE IT JP KR NO SE UK USA

Ht −0.19 −0.14 −0.37 −0.92 −0.03 −0.02 −0.63 −0.34 0.00 −0.83 −0.88 −0.18 −0.05 −0.19
* ** ** ** ** ** ** ** * **

nt −0.11 −0.03 −0.16 −0.16 0.08 0.02 −0.50 −0.11 0.02 0.02 −0.10 −0.01 0.00 −0.06
* ** ** ++ ** ** * * *

ht −0.07 −0.12 −0.21 −0.76 −0.11 −0.04 −0.12 −0.22 −0.02 −0.85 −0.78 −0.17 −0.06 −0.13
** ** ** ** * ** ** ** * * **

Note: The table reports the impact response of aggregate hours and its components to a positive permanent technology shock. We use **/++ to indicate significance at 95% level and */+ to
indicate significance at 68% level (based on 1000 bootstrap replications).
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TABLE 2. FEV decomposition.

Country AU AT CA FI FR DE IE IT JP KR NO SE UK USA

Labor productivity lpt

0 65 62 72 64 65 46 61 66 43 48 63 34 74 72
4 57 49 59 50 59 43 48 52 32 37 45 28 62 53
8 57 48 58 49 57 42 47 50 32 37 43 27 60 52
16 56 47 58 48 57 42 46 49 32 37 43 27 60 51
32 56 47 58 48 58 42 46 49 32 37 43 27 59 51

Aggregate hours Ht

0 8 9 37 32 5 2 18 27 3 19 34 11 4 11
4 5 8 24 17 5 9 10 11 11 12 25 8 5 6
8 7 8 22 14 7 19 9 9 12 12 22 9 7 9
16 11 8 20 13 10 21 10 9 12 13 21 11 10 16
32 11 8 20 14 12 22 13 12 15 14 20 12 10 16

Employment nt

0 7 2 16 8 8 1 17 11 2 3 3 1 1 3
4 5 2 12 5 20 9 8 5 5 6 3 4 4 4
8 5 3 11 5 28 19 7 5 7 9 5 5 6 8
16 9 4 13 7 30 23 8 7 9 11 9 7 8 13
32 10 4 16 10 27 24 11 10 12 14 12 10 9 15

Average hours per employee ht

0 4 10 27 28 13 2 3 23 2 23 31 11 4 11
4 4 13 24 23 19 4 6 19 10 17 24 11 6 7
8 7 11 20 22 24 6 6 17 10 18 23 11 8 9
16 8 11 15 21 28 8 8 18 11 21 23 11 9 15
32 8 10 14 21 30 9 11 19 13 23 24 13 9 16

Note: The table reports the median estimates of the percentage contribution of permanent technology shocks to the
fraction of forecast error variance (FEV) for selected quarters.

Summarized, we find similar impact responses of aggregate hours to positive,
permanent technology shocks across countries, with an impact fall in 13 out of
14 countries of our sample. In most instances, we find a negative comovement
between the technology-induced components of aggregate hours and labor pro-
ductivity. At the same time, there is substantial cross-country heterogeneity in the
quantitative importance of technology shocks for fluctuations in aggregate hours
and labor productivity.

3.2. Intensive and Extensive Margins of Labor Supply

We now turn to the decomposition of our aggregate hours results into adjustments
in intensive and extensive margins of labor supply. As a motivating observation,
Table 3 reports (in the first three rows) the percentage of the variability in the
cyclical component of aggregate hours that is accounted for by movement in
employment nt, hours per employee ht, or their covariance. The sample period
covered is as before (summarized in Appendix Table A1). The decomposition
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TABLE 3. Variability in aggregate hours due to fluctuations in the two margins.

Country Median AU AT CA FI FR DE IE IT JP KR NO SE UK USA

Unconditional
nt 53 72 19 58 61 39 66 68 54 31 29 43 90 51 48
ht 33 25 64 12 40 57 33 22 23 58 44 62 33 17 14

Cov(ht, nt) 10 3 17 29 0 4 2 10 23 11 27 −5 −23 33 38

Conditional on technology shocks
nt 41 58 2 50 17 185 73 54 38 18 13 6 59 44 38
ht 36 17 81 11 55 212 13 11 27 53 84 72 45 17 17

Cov(ht, nt) 27 26 16 39 28 −297 13 36 36 29 3 21 −4 39 46

Note: Numbers are based on the variance decomposition (in logs): Var(Ht) = Var(ht) + Var(nt) + 2Cov(ht , nt).
Cyclical components are extracted based on the HP-filter with λ = 1600.

follows an exercise by Hansen (1985) for the USA. In line with Hansen’s results,
the table shows that for the USA, most of the variances of aggregate hours can
be attributed to adjustments in employment per capita. Only 14% can be directly
attributed to adjustments in hours per employee. The numbers are similar for the
other Anglo-Saxon countries. Interestingly, the pattern is not the same for Austria,
France, Japan, Korea, and Norway, where fluctuations in hours per employee
account for a higher fraction of the overall variance in aggregate hours than fluc-
tuations in employment. Against this background, a natural question to ask is to
what extent the two margins of labor supply can account for the aggregate hours
response to technology shocks described in the last section.

A few exceptions aside, we find that on impact of the technology shock, most of
the adjustments in aggregate hours take place along the intensive margin. Further,
the importance of the extensive margin picks up over time. In the Anglo-Saxon
economies, Germany, and Sweden, the extensive margin plays overall the dom-
inant role in explaining the aggregate hours adjustment to technology shocks.
The opposite holds for Austria, Finland, France, Japan, Korea, and Norway: In
these economies, most of the aggregate hours responses to technology shocks are
through movements in average hours per employee.

The first finding is summarized in Table 1, which reports the decomposition
of median impact responses. The table shows that the intensive margin response
is higher (in absolute terms) than the extensive margin response in all countries
except Australia and Ireland. Stated differently, we find that in the very short-
run, the fall in aggregate hours depicted in Figure 2 (present for all countries
except Japan) is mainly driven by a decrease in hours per employee. Similarly,
Figure 3 shows the IRFs of our decomposition of aggregate hours reported in
Figure 2. The figure shows the response of employment (solid black lines) and
hours per employee (dashed red lines) to positive permanent technology shocks
for the baseline specification. While the response of employment to technology
shocks tends to build up slowly over time, the response of hours per employee
reverts back to zero rather quickly.
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Note: The figure depicts the response of employment and hours per employee to positive permanent
technology shocks. Solid black lines with shaded bands depict results for employment. Dashed red
lines correspond to hours per employee. Confidence bands are obtained with 1000 bootstrap replica-
tions and cover 68% and 90%. Bias-correction of the IRFs and computation of the confidence bands
have been implemented as in Kilian (1998).

FIGURE 3. Response of employment and hours per employee.
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As to the finding of an increase in the importance of extensive margin
adjustments over time, rows 4–6 in Table 3 repeat the variance decomposition
of aggregate hours for the technology-driven components. Except for Austria,
France, Japan, Korea, and Norway, we find that variation in employment accounts
for the bulk of the adjustments in aggregate hours. Movements in hours per
employee appear least important in Australia, the UK, and the USA.

Another interesting finding is that the technology-driven cyclical components
of intensive and extensive margin adjustments are negatively correlated in France
and Sweden, and positive in all the remaining countries. France is the only country
with a significantly positive response of employment to technology shocks. Yet,
hours per employee fall significantly on impact. As shown in Figure 3, the IRFs
are almost mirror images of each other, highlighting the negative correlation of
the two margins.

The last rows in Table 2 report the FEV of the two margins. The table shows
that for all countries except Ireland and Italy, the fraction of FEV of employment
accounted for by technology shocks is increasing over time. On average, the frac-
tion of FEV of employment increases from 6% to 13% after 8 years. For hours
per employee, the average FEV remains at roughly 15%.

Our results highlight interesting differences between countries generally asso-
ciated with high and low labor market rigidities, respectively. A few exceptions
aside, countries in which the intensive margin is important in explaining aggregate
hours fluctuations (as highlighted in Table 3) coincide with countries with high
firing frictions, as summarized for instance by the OECD ranking of protection
against dismissal (printed in Appendix Table A4). Consider the decomposition of
the aggregate hours response in terms of the two labor supply margins, depicted in
Figure 3, for instance France/Germany (high firing restrictions) and Canada/the
USA (low firing restrictions). For the former two, the employment response is
positive on impact and builds up over time, reaching its peak 5–10 quarter after
the shock. By contrast, for the latter, employment significantly declines on impact
and requires more time to build up. Our results provide evidence consistent with
a higher flexibility of adjusting employment in Canada and the USA compared to
Germany or France. However, we also want to emphasize that the evidence we
present in this regard is not perfect. For instance, Italy ranks similar to France
and Germany on the OECD employment protection rankings but has important
employment fluctuations.

Overall, our decomposition results show that the information from the inten-
sive margin are especially important when focusing on the short-run response
of aggregate hours. The fact that most short-run adjustment in aggregate hours
takes place along the intensive margin highlights that working with employment
as a proxy for aggregate hours can be misleading. Over longer horizons, however,
employment becomes a better proxy. A second observation is that the observed
delay in the reaction in the extensive margin to a positive technology shock
appears consistent with the idea that (un)employment evolves as a stock, while
hours evolve as a flow. The results are consistent with the idea of frictional labor
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markets as introduced by Mortensen and Pissarides (1994) and used by Merz
(1995) or Andolfatto (1996) (among others) for studying economic fluctuations.
In a nutshell, the idea of this approach is that workers take time to find a job and
that it is costly for firms to find suitable workers, both generating a delay in the
reaction of the extensive margin to technology shocks.

4. INVESTMENT-SPECIFIC TECHNOLOGICAL CHANGE

Up to this point, we have focused on technology shocks that affect the produc-
tion of all goods homogeneously. However, Greenwood, Hercowitz, and Krusell
(1997, 2000) and Fisher (2006) among others have shown that neutral shocks
are not the only source of technological change. Accordingly, technical change
specific to investment is a major source of economic growth and important for
explaining business cycle fluctuations.9 In contrast to disembodied technological
change, technical progress specific to investment has no impact on the productiv-
ity of old capital goods. Rather, it makes new capital goods more productive or
less expensive, thereby raising the real return to investment. Against this back-
ground, we review and expand our results from Section 3 by considering two
distinct sources of technological change, namely disembodied (N) and embodied
(I) technology. We focus on a subsample of five countries for which we are able
to collect and construct data of sufficient quality.

4.1. Changes to the Previous Set-Up: Data and Identification

We start with the amendments to our previous set-up which allow us to disen-
tangle N- and I-shocks. Following the empirical literature on investment-specific
technological change, we identify I-shocks from data on the RPI. An economet-
ric justification for this practice is provided by Schmitt-Grohé and Uribe (2011),
who show that the technology transforming consumption into investment goods
is approximately linear.10

We follow Fisher (2006) and construct data series on the RPI from national
accounts statistics as the ratios of chain-weighted deflators for investment and
consumption. We define consumption as the sum of consumption in services and
in non-durables. Depending on availability, we use either household or private
consumption. Investment is the more challenging part to compute: We define it
as the sum of consumption in durables, non-residential fixed investment (namely,
investment in structures, machinery and equipment, and software) and residential
investment (investment in structures and equipment). The exact categories differ
across countries depending on availability.11 We use chain-weighting to aggregate
the subcategories into our measures of consumption and investment, as explained
in more detail in Appendix Section A.2.3. The construction is based on quarterly
data obtained from Statistics Canada, EUROSTAT, the Cabinet Office Japan, and
the US Bureau of Economic Analysis, respectively (obtained via Datastream).
As data prior to 1981 is not available apart from the USA, we choose a sample
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common to all countries spanning over the 1982Q3–2016Q4 period.12 Appendix
Section A.2.3 reports selected business cycle moments of the series and depicts
the data in (log)-levels and growth rates.

To estimate the VAR including our RPI series, we need to express all series
in a common unit. As in Fisher (2006), we use consumption as the common
numeraire. To adjust labor productivity, we first express the series in nominal
units by multiplying it by its deflator. We then deflate nominal labor productivity
by the consumption deflator. Aggregate hours, interest rates, consumption- and
investment-to-output ratios, inflation, and the RPI do not need to be adjusted. In
particular, the RPI is, by construction, expressed in consumption units, since the
price of investment is deflated by the consumption deflator. We use the same base-
line specification as before, but now include the RPI in the first position. We now
have Yt = [�RPIt, �lpt, Ĥt, cyt, iyt, it, πt, n̂t]′. Data pretreatment is as explained in
Section 2. In particular, aggregate hours are quadratically detrended and enter in
levels. Labor productivity and now also the RPI enter in first differences.

Regarding identification, we follow Fisher (2006) and use the two identifying
assumptions that (1) I-shocks are the sole source of permanent changes in the
RPI and (2) only N- and I-shocks affect labor productivity in the long run. Fisher
(2006) shows how these restrictions follow directly from a neoclassical growth
model with investment-specific technology. The two identifying assumptions
readily translate into the maxFEV set-up. Now, identification follows a two-step
procedure: First, the I-shock is identified as the shock that explains the maxFEV
of the RPI at a 10-year horizon (following the steps outlined in 2.1). Conditional
on having identified the I-shock, the N-shock is identified as the orthogonal shock
explaining the maxFEV of labor productivity at the 10-year horizon.

4.2. Results

Table 4 reports the median impact response of aggregate hours to one-standard-
deviation positive N-shocks (left column) and I-shocks (right column) together
with its decomposition along the intensive and extensive margin of labor supply.
Focusing first on N-shocks, the results for Canada, the UK, and the USA are simi-
lar to those obtained under the one-technology assumption. However, in the cases
of France and Japan, the median impact response of aggregate hours to positive N-
shocks turns significantly positive and negative, respectively. As for the response
to I-shocks, except for Japan the median impact response of aggregate hours is
positive and significantly so for France and the USA.13 The evidence reported
for Japan is in line with the results presented in Watanabe (2012). Regarding the
decomposition into adjustment along the labor supply margins, several observa-
tions emerge. First, it still holds that the bulk of adjustment in aggregate hours
on impact takes place along the intensive labor supply margin, irrespective of the
type of technology shock. Second, for France the response of hours per employee
to a N-shock reverses its sign and is thus responsible for the increase in aggregate
hours. Third, in the case of Japan all labor market variables significantly fall in
response to both N-shocks and I-shocks.

https://doi.org/10.1017/S1365100519000658 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100519000658


1036 JACQUELINE THOMET AND PHILIPP WEGMUELLER

TABLE 4. Decomposition of impact response with I-shocks.

N-shock I-shock

Country CA FR JP UK USA CA FR JP UK USA

Ht −0.33 0.06 −0.45 −0.02 −0.22 0.14 0.05 −0.37 0.06 0.17
** + ** ** + ** ++

nt −0.16 0.02 −0.07 0.01 −0.08 0.06 0.01 −0.13 0.03 0.06
** + * ** + ** +

ht −0.17 0.04 −0.38 −0.03 −0.14 0.08 0.05 −0.24 0.03 0.11
** + ** ** + ** +

Note: The table reports the impact response of aggregate hours and its components to a positive permanent neutral
(N) and investment-specific (I) technology shocks. We use **/++ to indicate significance at 95% level and */+ to
indicate significance at 68% level (based on 1000 bootstrap replications).

Table 5 summarizes the fraction of FEV for labor productivity, aggregate
hours, and its decomposition explained by N- and I-shocks, respectively. While
N-shocks are far more important in explaining the FEV of labor productivity than
I-shocks (at any horizon and for any country), they are roughly equally important
for aggregate hours. One exception is Japan, where the importance of I-shocks
gains importance over time in explaining the FEV of aggregate hours. When it
comes to employment and hours worked per employee, we observe for Canada
that N-shocks have become more important in explaining the FEV of employ-
ment, while in France the opposite is the case. In Japan it is mostly the I-shock
which explains the FEV of intensive and extensive labor supply margins.

Finally, Table 6 decomposes the variability in the conditional components of
aggregate hours in terms of hours per employee, employment, or their covariance.
The results confirm the findings of the one-technology specification. Overall,
variation in employment accounts for the bulk of the adjustments in aggregate
hours conditional on both N-shocks and I-shocks. Further, the relative roles of
intensive and extensive margins are largely similar across the two shocks (except
France). For France, the relative role of the two labor supply margins switches
depending on the source of the shock: While hours per employee accounts for
a higher fraction of cyclical fluctuations in aggregate hours conditional on N-
shocks, employment is more important conditional on I-shocks. However, what
is most striking from these results are the large cross-country differences in the
overall role of intensive and extensive labor supply margins, as discussed in
Section 3.2.

5. FURTHER ROBUSTNESS CHECKS

The IRFs presented in Figure 2 show that our estimation results are somewhat
sensitive to low-frequency movements in the data: While overall, the nonposi-
tive impact response of aggregate hours largely holds across specifications, and
the shapes of the IRFs remain similar, there are nonetheless interesting differ-
ences in results. In particular, impact responses under the level specification are
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TABLE 5. FEV decomposition with I-shocks.

N-shock I-shock

Country CA FR JP UK USA CA FR JP UK USA

Labor productivity lpt

0 34 21 57 29 48 3 16 3 3 3
4 26 19 39 24 33 10 17 10 8 9
8 25 19 37 23 31 10 17 11 8 10

16 25 19 36 24 30 11 17 11 9 11
32 25 19 36 24 30 11 17 11 9 11

Aggregate hours Ht

0 22 5 27 2 28 10 8 14 3 9
4 17 7 11 7 11 11 6 41 7 17
8 21 8 9 14 8 11 8 49 6 13

16 22 10 8 18 9 15 10 52 8 14
32 21 10 8 17 19 17 15 50 9 14

Employment nt

0 16 2 4 1 16 5 2 12 2 4
4 16 7 7 7 7 10 4 39 7 11
8 21 10 5 16 6 9 5 50 7 9

16 23 14 4 22 7 12 10 60 8 12
32 22 13 4 18 17 14 26 61 9 14

Average hours per employee ht

0 9 3 25 2 21 6 9 7 2 8
4 9 4 14 5 13 8 9 23 4 19
8 10 5 14 7 10 9 9 22 5 22

16 10 10 12 8 11 12 12 28 7 21
32 11 12 11 12 18 14 23 36 9 20

Note: The table reports the median estimates of the percentage contribution of permanent neutral (N) and investment-
specific (I) technology shocks to the fraction of forecast error variance (FEV) for selected quarters.

TABLE 6. Variability in aggregate hours due to fluctuations in the two margins
with I-shocks.

Country Median CA FR JP UK USA

Conditional on N-shocks
nt 43 50 29 17 64 43
ht 17 17 32 99 9 13

Cov(ht, nt) 34 34 37 −15 28 41

Conditional on I-shocks
nt 45 50 45 38 54 38
ht 16 13 21 67 12 16

Cov(ht, nt) 33 37 33 −5 33 44

Note: Numbers are based on the variance decomposition (in logs): Var(Ht) = Var(ht) + Var(nt) + 2Cov(ht , nt).
Cyclical components are extracted based on the HP-filter with λ = 1600.
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somewhat higher than under quadratic detrending (due to a more positive response
in employment), and somewhat lower for the first-difference specification (due to
a more negative response in hours per employee). For the level specification, the
impact response of aggregate hours turns positive in four instances: France, Japan,
Korea, and Norway. These four countries correspond to the only ones for which
we also identify a strong co-movement between labor productivity growth and
aggregate hours: in each of these countries, the series display a similar high-low
pattern over the sample studied, much like discussed by Fernald (2007) for the
US. Hence, the instabilities in the sign of the median responses do not raise “red
flags”: Data is pre-treated prior to estimation specifically because we know—
e.g. from Fernald (2007) or Canova, Lopez-Salido, and Michelacci (2010)—that
estimation results are sensitive to low-frequency comovements in the data. Since
estimated responses switch sign if this comovement is reduced (either by adjust-
ing labor productivity, or aggregate hours, or both), our results reemphasize the
importance of controlling for low-frequency patterns. While our results stress the
importance of removing long cycles, the choice of using quadratic detrending by
contrast to for instance cubic or higher order polynomials is somewhat arbitrary.
Our results are qualitatively robust to these alternative detrending methods.14

We test the robustness of our results along many other dimensions. First,
instead of identifying technology shocks by maxFEV, we also estimate our
baseline VAR using standard long-run (LR) restrictions in the spirit of Galí
(1999). While impact responses remain negative in most instances, they often turn
insignificant. As shown by Francis, Owyang, Roush, and DiCecio (2014), models
identified by LR restrictions may contain only limited information about short-
run movements in hours, which is why the maxFEV approach is preferred in this
exercise. A further robustness test concerns our decomposition methodology for
aggregate hours, as the linear restriction on n̂t not to have any contemporaneous
or lagged impact on all other variables of the system may be considered overly
restrictive. Without this restriction, we can estimate the VAR by simple OLS
rather than by EGLS. Although this alternative specification is not in line with
the related literature, it allows getting a better understanding of the decomposition
into the two labor supply margins. Removing the restriction leaves results in terms
of aggregate hours largely unaffacted. The response is nonpositive in all countries
and significantly negative in 8. Looking at the intensive and extensive margins of
labor supply, however, all responses for the intensive margin become insignificant
and employment dynamics dominate the results. The aggregate hours response is
biased towards employment due to two reasons. First, the high persistence of
employment convolutes the aggregate hours response. Second, employment is by
definition already included in aggregate hours, and consequently also in labor
productivity, thus over-specifying the system.

Further robustness issues concern omitted variable bias and sub-sample stabil-
ity. Our baseline specification features four variables meant to represent the broad
picture of the macroeconomic environment and monetary policy setting in partic-
ular. Our results appear qualitatively robust to systems of lower order, yet, there
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are indications of omitted variable bias. In particular, following an exercise by
Canova, Lopez-Salido, and Michelacci (2010), we find that in a bivariate VAR
with labor productivity and aggregate hours, the estimated technology shocks are
correlated with the four variables added in our baseline specification. In particu-
lar, for each country, at least one of the four variables is significantly correlated
with the extracted technology shocks between four leads and four lags. As to
sub-sample stability, we check the robustness of our results by excluding data
prior to 1982Q3. The early 1980s are associated, in many industrialized countries,
with important changes in the conduct of monetary policy and the macroeco-
nomic environment more broadly. While these changes potentially matter for the
propagation of shocks and hence identified technology shocks, results for the two
samples appear overall similar.

Finally, we also consider robustness to changes in assumptions regarding the
estimation of the VAR. According to standard lag-selection criteria, the optimal
number of lags is either one or two (except Sweden, for which it is three). We
consider systems of higher order as the more generous lag lengths of 8 or 12
may offer a better approximation of the model’s infinite order representation. We
only see a sign reversal for Sweden (for a lag order of 12) and Germany (for lag
orders of 1, 2 or 12). Regarding the horizon of identification, we consider 20, 60
and 80 quarters over which the forecast error variance is maximized. The only
country that depicts a sign reversal in the impact response is Australia. Overall,
these results reveal some instabilities in Australia, Germany, and Sweden. For the
majority of countries, however, the negative impact response of aggregate hours
to positive technology shocks is robust to the VAR’s lag order or the horizon over
which shocks are identified.

6. CONCLUDING REMARKS

Is the reaction of aggregate hours to technology shocks similar across OECD
countries? Based on the quarterly data for 14 OECD countries over the 1970Q1–
2016Q4 period, we find that it is: Many qualitative features documented for the
US hold across the 14 OECD countries of our sample. We observe a negative
impact response of aggregate hours to positive permanent technology shocks in
13 out of 14 countries. While the dynamics in aggregate hours appear similar
across countries, our decomposition analysis shows that the intensive and exten-
sive labor supply margins respond differently to technology shocks. The reported
evidence implies using employment data as a proxy for aggregate hours as for
instance in Galí (1999, 2004) or Dupaigne and Fève (2009) can be misleading.
In the Anglo-Saxon economies, variation in employment explains the bulk of the
aggregate hours response to technology shocks. However, the opposite holds for
Austria, France, Japan, Korea, and Norway.

Our results further emphasize the importance of labor market rigidities in
accounting for labor market dynamics. Countries in which relatively much of
the adjustments in total hours take place along the intensive margin of labor
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supply are typically associated with high firing costs. Moreover, high flexibil-
ity in employment adjustment appears to be related to countries where the bulk
of adjustment in aggregate hours is along the extensive margin. Whether this evi-
dence can be replicated by theoretical business cycle models with frictional labor
markets is left for future research.

NOTES

1. Prominent contributions to this debate include Galí (1999), Christiano, Eichenbaum, and
Vigfusson (2004), Francis and Ramey (2005), Basu, Fernald, and Kimball (2006), Fisher (2006), and
Fernald (2007).

2. This extension follows a long line of work including Greenwood, Hercowitz, and Huffman
(1988), Gordon (1990), Greenwood, Hercowitz, and Krusell (2000), Fisher (1999, 2006), Smets and
Wouters (2007), or Justiniano, Primiceri, and Tambalotti (2011).

3. For the US data, Christiano, Eichenbaum, and Vigfusson (2003) show that the omission of
consumption- and investment-to-output ratios can cause specification error sufficiently large to quali-
tatively affect the inference about the effect of technology shocks. See also Erceg, Guerrieri, and Gust
(2005) among others.

4. We also explore subsample robustness. For example, we consider the 1982Q3–2016Q4 sub-
sample, because the early 1980s are associated, in many industrialized countries, with important
changes in the conduct of monetary policy and the macroeconomic environment more broadly (see,
e.g., Bernanke and Blinder (1992), Sims (1992), Taylor (1993), or Ireland (2000)).

5. In a robustness exercise, we deflate the data with the Consumer Price Index (CPI) instead of the
GDP deflator. The qualitative nature of our results is unaffected by this change.

6. This clearly matters: It is a widely discussed feature of the US data that for many specifica-
tions, the estimated response of aggregate hours to permanent technology shocks changes its sign
depending on how aggregate hours enter the VAR (see, e.g., Christiano, Eichenbaum, and Vigfusson
(2003)). Fernald (2007) and Canova, Lopez-Salido, and Michelacci (2010) explain the sign-reversal
by level shifts in the data. In the USA, high aggregate hours growth in the 1990s coincides with high
labor productivity growth. If the level shifts are not accounted for, the positive comovement is partly
identified as permanent technology shocks. Testing for stationarity does not resolve the matter. As
aggregate hours are very persistent, the assumption of stationarity is usually rejected by unit root tests
in small samples (see Appendix Table A3). Yet, from a theoretical viewpoint, one can easily argue
that aggregate hours per capita are by definition level-stationary, as one cannot work more than 24 h a
day.

7. Results are by definition identical when appending average hours per employee instead.
8. We choose the maxFEV over long-run (LR) restrictions (e.g., applied in Galí (1999)) since

it does not suffer from small sample bias in computing impulse responses (e.g., Faust and Leeper
(1997)). In particular, Francis, Owyang, Roush, and DiCecio (2014) show with Monte Carlo experi-
ments that the maxFEV identification outperforms identification via LR restrictions as it reduces the
bias in short-run IRFs and raises estimation precision.

9. Also consider the work of Fisher (1999), Gordon (1990), Greenwood, Hercowitz, and Huffman
(1988), Greenwood, Hercowitz, and Krusell (2000), and Galí and Rabanal (2005) for further details
on the role of investment-specific technological change for the business cycle.

10. A linear transformation technology is sufficient to ensure that the RPI is exogenous and only
depends on investment-specific technology shocks. With nonlinear technology, the RPI would instead
depend on the amount of resources devoted to investment.

11. For France, Japan, and the UK, we collect data for GFCF by type (namely dwellings, other
buildings and structures, transport equipment, and other machinery and equipment). For the UK, price
increases in residential investment in dwellings are over 400% between 1980 and 2010, and we choose
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to exclude it. For Canada, we collect the relevant GFCF data for businesses and government. For the
USA, we use data on private residential and nonresidential investment and government investment.

12. Our obtained measures of the RPI likely underestimate the rate of investment-specific techno-
logical change due to lack of quality adjustment (see, e.g., Gordon (1990), Schmitt-Grohé and Uribe
(2011) or Cummins and Violante (2002)). For the USA, this issue is likely small, as the share of
quality-adjusted equipment goods in the national accounts series we use becomes relatively large after
1982. However, there is no reason to assume the situation to be similar in other countries. To our
knowledge, information on quality adjustment procedures is not available at an international level,
and there are no clear quality adjustment rules across national statistical offices. This drawback in our
RPI series is the main reason we report results for the one-technology assumption separately, since
the underlying data for Section 3 is likely of much better quality.

13. By contrast to the dynamics to N-shocks, the response of aggregate hours to I-shocks is more
sensitive to alternative specifications. For instance, we calculate an alternative measure of the RPI
in a simple and relatively crude way. For each country, we obtain nominal and real series for private
consumption and GFCF and compute the respective consumption and investment deflators by dividing
nominal series by real ones. The RPI is then defined as the ratio of these two deflators (see for instance
Watanabe (2012) or Beaudry, Moura, and Portier (2015)). Under such a specification, the median
impact response of aggregate hours to I-shocks turns negative for the USA.

14. The evidence is summarized in Appendix Figure B1 and Tables B1 and B2.
15. To give an example, to compute the chain-weighted growth rates in 2000 prices, we compute

two distinct growth rates with either 1999 or 2000 as base year and take their geometric average.
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APPENDIX A: APPENDIX: DATA AND
METHODOLOGY

APPENDIX A.1: Empirical Methodology

APPENDIX A.1.1: Estimated generalized least squares. For the decomposition of
the aggregate hours response into intensive and extensive margins of labor supply, we
append information on employment in the last position of our VAR and use generalized
least squares to estimate an SVAR with linear constraints, following Lütkepohl (2005). To
introduce the methodology, it is convenient to rewrite the system in (1) in compact form

X = BZ + U, (A1)

where X := [Y1, . . . , YT ], Z := [
Z0, . . . , ZT−1

]
for Zt := [

1, Yt, . . . , Yt−4+1

]′
,

B := [B0, . . . , B4], and U := [u1, . . . , uT ]. We can then impose any linear restriction
of interest on B by writing the least-squares (LS) estimator as β := vec(B) = Rγ + r.
With p denoting the lag-order of the system (in our standard case p = 4), R is a known
((n2p + n) × M) matrix of rank M, γ is a M × 1 vector of unrestricted unknown param-
eters, and r is a vector of normalizing constants with dimension ((n2p + n) × 1). In our
specific case, r is a vector of zeros and R is specified such that the desired constraints on
Bj hold, with M amounting to (n2p − (n − 1)p). With R known, the VAR model can be
expressed as

Y := vec(X) = (
Z′ ⊗ In

)
β + u = (

Z′ ⊗ In

)
(Rγ + r) + u, (A2)

where u := vec(U). Defining z := Y − (Z′ ⊗ In) r, expression (A2) simplifies to

z = (
Z′ ⊗ In

)
Rγ + u. (A3)
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Lütkepohl (2005) shows that a generalized LS (GLS) estimator can be calculated as

γ̂ = [
R′(ZZ′ ⊗ �−1

u )R
]−1

R′(Z ⊗ �−1
u )z. (A4)

The matrix �u is typically unknown and has to be estimated from the data. We use the
consistent and unbiased estimator from the unrestricted VAR, �̂u = 1

T−np−1 ÛÛ′, to obtain

the EGLS estimator, ˆ̂γ , which has the same asymptotic properties as the GLS estimator γ̂ :

ˆ̂γ = [
R′(ZZ′ ⊗ �̄−1

u )R
]−1

R′(Z ⊗ �̄−1
u )z. (A5)

Finally, the estimator for β is given by ˆ̂
β = R ˆ̂γ + r.

APPENDIX A.1.2: Identification: Maximum fraction of FEV approach. The fol-
lowing explanations are drawn from Caldara, Fuentes-Albero, Gilchrist, and Zakrajšek
(2016), Uhlig (2003), and Francis, Owyang, Roush, and DiCecio (2014). To provide some
structure on the methodology, it is helpful to rewrite equation (1) into the moving-average
representation or its equivalent representation in terms of the lag polynomial 	(L),

Yt =
∞∑

s=0

	sAεt−s ≡ 	(L)Aεt, (A6)

where 	(L) ≡ I + 	1L + 	2L2 + ... . The version of the maxFEV approach we consider is
to identify a shock by searching for innovations that explain the maximum amount of FEV
of a specified variable at some target horizon k. We are hence interested in the k-step ahead
forecast error of equation (A6), which is given by:

Yt+k −Et[Yt+k] =
k−1∑
s=0

	sAεt+k−s. (A7)

With labor productivity being ordered first in the SVAR, the k-step ahead forecast error
due to the technology shock is given by

y1,t+k −Et[y1,t+k] = e1 [
k−1∑
s=0

	sAεt+k−s], (A8)

where e1 has dimension 1 × n and takes the form e1 = [
1 0 ... 0

]
. Following Caldara,

Fuentes-Albero, Gilchrist, and Zakrajšek (2016), what is needed to find the maximum frac-
tion of FEV is an orthogonal matrix Q such that A = ÃQ, where Ã denotes the Cholesky
decomposition of �. Then, finding the innovation that accounts for the maximum fraction
of FEV of the first variable in Yt amounts to finding the first column of Q (denoted by q1)
by solving:

max
q1

e1 [
k−1∑
s=0

	sÃq1q′
1Ã′	′

s] e′
1 = q′

1Sq1 (A9)

subject to q′
1q1 = 1.

The solution to equation (A9) corresponds to finding q1—the eigenvector of S of the largest
eigenvalue λ.
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TABLE A1. Sample length.

Without RPI With RPI

Country(i) Sample Obs. Sample Obs.

AU 1970Q1–2016Q4 188
AT 1970Q1–2016Q4 188
CA 1970Q1–2016Q4 188 1982Q3–2016Q4 138
FI 1970Q1–2016Q4 188
FR 1970Q1–2016Q4 188 1982Q3–2016Q4 138
DE 1970Q1–2016Q4 188
IE 1973Q1–2016Q4 176
IT 1971Q1–2016Q4 184
JP 1970Q1–2016Q4 188 1982Q3–2016Q4 138
KR 1976Q4–2016Q4 161
NO 1970Q1–2016Q4 188
SE 1980Q1–2016Q4 148
UK 1972Q1–2016Q4 180 1982Q3–2016Q4 138
USA 1970Q1–2016Q4 188 1982Q3–2016Q4 138

Note: (i) ISO country codes. Table indicates the sample period covered by Ohanian and Raffo (2012) for specification
without I-shocks and sample covered with I-shocks.

APPENDIX A.2: Data

APPENDIX A.2.1: Aggregate hours and its components. Table A2 summarizes
the basic descriptive statistics for aggregate hours per capita and its components for the
1970Q1–2016Q4 period. In the table, data on aggregate hours per capita Ht and per worker
ht are expressed in weekly units; employment is expressed as a percentage of the popu-
lation aged 16–64. The table shows substantial cross-country heterogeneity in the labor
supply indicators. Consider for instance France and Korea, which display the lowest and
highest weekly median hours per capita. With 20.6 and 31.2 h respectively, the difference
in the median amounts to more than 10 h per week. Because the employment rate is lower
in Korea, the difference is even larger in per worker terms: the median work week in Korea
is almost 20 h larger than in France.
Table A3 reports results of Phillips-Perron unit root tests for aggregate hours per capita.
When we test the null hypothesis of a unit root in aggregate hours against the alternative
of a time-trend, we reject the null for 13 out of 14 countries. Hours per capita appear to be
stationary only in France (and in the UK if one follows the ρ-statistic). When we test the
null hypothesis of a unit root in aggregate hours against the alternative of no time-trend,
we find a unit root in all series except France.

APPENDIX A.2.2: Employment protection indicators. Table A4 depicts the OECD
Employment Protection Legislation rankings. A higher value of the indicator corresponds
to higher restrictions on firing.

APPENDIX A.2.3: The relative price of investment. Computation: In the following
we explain the chain-weighting methodology applied to compute the consumption deflator.
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TABLE A2. Data summary statistics for aggregate hours worked and its compo-
nents (1970Q1–2016Q4).

Weekly hours worked Weekly hours worked Employment
per capita per worker per capita (in %)

Country(i) Med Min Max StD Med Min Max StD Med Min Max StD

AU 26.1 24.0 28.0 0.7 38.7 34.6 40.5 1.6 67.7 62.1 73.9 2.9
AT 21.2 19.4 24.4 1.5 35.8 31.3 40.6 2.3 60.4 57.7 62.3 1.3
CA 24.2 22.1 25.5 0.8 35.2 32.7 41.9 2.5 68.2 57.5 76.1 5.5
FI 25.5 20.5 30.9 2.6 35.8 32.0 41.5 2.7 70.0 58.5 75.5 3.6
FR 20.6 19.9 30.1 3.2 31.9 29.2 41.4 4.0 67.9 63.2 72.8 2.3
DE 21.8 19.6 30.4 3.1 31.8 26.5 42.9 4.9 70.2 64.9 81.5 4.1
IE 24.6 20.0 29.9 3.0 42.3 33.1 47.4 4.5 60.4 50.4 71.2 5.7
IT 22.4 19.6 28.6 1.7 36.5 33.6 42.7 2.2 60.6 57.9 67.2 1.9
JP 30.1 27.4 33.7 1.4 40.1 33.9 42.8 2.8 77.2 72.7 88.3 3.2
KR 31.2 25.6 34.3 1.8 50.7 37.4 55.2 4.3 61.6 52.7 72.3 5.1
NO 22.6 20.7 27.0 1.6 29.7 27.2 39.9 3.9 74.8 67.1 79.9 4.2
SE 20.9 17.7 23.1 1.5 34.0 33.2 35.0 0.5 61.9 50.0 68.7 5.8
UK 23.8 22.5 25.4 0.7 31.6 29.5 33.0 0.9 75.9 70.5 82.3 3.0
USA 24.0 22.2 26.3 1.0 33.7 31.8 36.4 1.2 71.9 65.4 76.8 2.2

Note: (i) ISO country codes.

TABLE A3. Phillips-Perron-test for unit root.

Hours without time trend(ii) Hours with time trend(iii)

Country(i) ρ-Test(iv) tφ̂-Test(v) ρ-Test(iv) tφ̂-Test(v)

AU −5.43 −1.71 −13.04 * −2.52
AT −2.30 −1.61 −9.61 −2.24
CA −4.62 −1.78 −6.30 −1.84
FI −5.28 −1.85 −5.57 −1.74
FR −7.57 ** −3.51 ** −13.59 *** −3.49 **
DE −5.23 −2.13 −3.77 −1.24
IE −2.72 −1.16 −2.83 −1.18
IT −0.69 −0.25 −1.62 −0.58
JP −3.40 −1.54 −5.08 −1.14
KR −6.09 −1.65 −19.35 −3.26
NO −18.29 −3.33 −31.09 −4.42
SE −5.81 −1.66 −5.82 −1.66
UK −5.23 ** −1.64 −5.40 −1.68
USA −2.71 −1.36 −3.27 −1.72

Note: (i) ISO country codes; (ii) Neither theory nor visual inspection of the series provides clear guidance of whether
the econometrician should include a time trend in the unit root test; (iii) As hours per capita are bounded above and
below, the inclusion of a time trend is purely dependent on the considered time window; (iv) Statistic is T(ρ̂ − 1) with
T being the sample length and ρ̂ the OLS estimate of yt = ρyt−1 + ut ; (v) OLS t-test statistic for null hypothesis that
ρ = 1. ***, **, and * imply that we fail to reject the null of a unit root at 1%, 5%, and 10% significance, respectively.
p-values are computed based on 1’000 bootstrap replications.
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TABLE A4. Selected OECD indicators on Employment Protection Legislation for
2013.

Protection of permanent Regulation on temporary
workers against individual forms of employment

and collective dismissals

Country(i) Value(ii) Rank(iii) Value(ii) Rank(iii)

AU 1.94 29 1.04 30
AT 2.44 12 2.17 16
CA 1.51 32 0.21 34
FI 2.17 23 1.88 20
FR 2.82 5 3.75 3
DE 2.84 4 1.75 22
IE 2.07 27 1.21 27
IT 2.89 3 2.71 8
JP 2.09 25 1.25 26
KR 2.17 22 2.54 9
NO 2.31 19 3.42 4
SE 2.52 10 1.17 29
UK 1.59 31 0.54 32
USA 1.17 33 0.33 33

Note: (i) ISO country codes. (ii) The scale of these values goes from 0 (least restrictions) to 6 (most restrictions).
Among all 34 countries, the average value of the two measures reported is 2.27 and 2.07, respectively. (iii) Rank
among all 34 member countries.

An investment deflator is computed in an analog way. The ratio between the investment and
consumption deflators then gives a measure of the real price of investment.

Computing the chain-weighted growth in the consumption deflator involves making two
calculations of growth for each period. The only difference is the base period used for the
quantities: we compute the growth in the prices once by using the quantities of the period
itself and once by using the quantities of the preceding period.15 With Q denoting quantities
and P the deflator, we compute:

gr1 = �iPt,iQt,i

�iPt−1,iQt,i
= �iCcurr,t,i

�i
Ccurr,t−1,i
Ccon,t−1,i

Ccon,t,i

, (A10)

gr2 = �iPt,iQt−1,i

�iPt−1,iQt−1,i
=

�i
Ccurr,t,i
Ccon,t,i

Ccon,t−1,i

�iCcurr,t−1,i
, (A11)

where the indices i denote the different components of consumption used. The right-hand
equations show the computations in terms of indices measured in constant prices (Ccon,
giving Q) and current prices (Ccurr, corresponding to PQ). The chain-weighted growth in
the consumption deflator is then computed as the geometric average of the two growth
rates, namely:

�PCW = (gr1 × gr2)0.5 − 1. (A12)

Ideally, we would want chain-weighted indices instead of constant price series. However,
such series are in most cases only available after the 1990s. The choice of a fixed year
means that one is using a price structure that becomes more and more remote from the
current structure the further we move away from the base year. To alleviate somewhat
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TABLE A5. Business cycle moment for the RPI (1982Q3–2016Q4).

CA FR JP UK USA
ρ(RPI, GDP) 0.39 0.47 0.52 0.52 0.19
σRPI 1.25 1.02 1.30 4.06 0.68
σRPI/σGDP 0.67 0.90 0.93 2.47 0.58

Note: Cyclical components are obtained based on the HP-filter with λ = 1600. Output is measured in terms of
consumption units. All correlations ρ(·) are significant at the 5% level.

Note: The relative price of investment (RPI) is measured in log-levels

FIGURE A1. Relative price and quantity of investment.

from this problematic, we take several series for different base years and link them via
growth rates into one index.
Business cycle moments: Table A5 reports selected business cycle moments for our RPI
series. According to the table, the unconditional correlation between the RPI and GDP
(measured in consumption units, as explained below) is positive in all countries. The cor-
relation is lowest in the USA and highest in Japan. Apart from the UK, we find that the
volatility in the RPI is lower than in GDP.
Visual inspection: Figure A1 shows a clear negative trend in the RPI for all five countries.
While the decline in the RPI is near monotone in Canada, France, Japan, and the USA,
there is substantial variation in the UK series. The figure further shows that the large price
declines coincide with large increases in the quantity of investment. Investment and its
relative price are clearly negatively correlated.
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APPENDIX B: APPENDIX: ADDITIONAL
RESULTS AND ROBUSTNESS

Figure B1 compares impact responses of the labor market variables across countries for
our baseline specification with quadratic detrending to both the level and first-difference
specification. For comparison purposes, here we take an agnostic stance on the relative
relevance of the different specifications. The blue error bars correspond to the results pre-
sented in Table 1, while the green and red error bars disentangle the impact responses of
aggregate hours depicted in Figure 2 along the two margins of labor supply.
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TABLE B1. Robustness of the one-technology specification.

Country AU AT CA FI FR DE IE IT JP KR NO SE UK USA

Baseline −0.19 −0.14 −0.37 −0.92 −0.03 −0.02 −0.63 −0.34 0.00 −0.84 −0.88 −0.18 −0.05 −0.19
* ** ** ** ** ** ** ** * **

>1982Q3 −0.14 −0.16 −0.32 −0.84 0.05 −0.12 −0.45 −0.09 −0.41 −0.60 −0.49 −0.16 −0.05 −0.14
* ** ** ** + * ** * * * *

max. Sample −0.19 −0.16 −0.35 −0.92 −0.01 0.02 −0.56 −0.30 −0.02 −0.84 −1.03 −0.18 −0.03 −0.19
* ** ** ** * ** ** ** * **

20 quarters −0.31 −0.16 −0.37 −0.97 −0.05 −0.06 −0.59 −0.38 −0.09 −1.04 −1.04 −0.23 −0.07 −0.26
** ** ** ** * ** ** ** ** ** **

60 quarters −0.12 −0.13 −0.38 −0.82 −0.03 0.00 −0.24 −0.30 0.03 −0.65 −0.77 −0.17 −0.05 −0.17
* ** ** ** * ** * *

80 quarters −0.09 −0.11 −0.38 −0.76 −0.03 0.01 −0.22 −0.27 0.03 −0.49 −0.72 −0.17 −0.07 −0.15
* ** ** ** * ** * *

1 lag −0.23 −0.23 −0.51 −1.30 0.03 −0.01 −0.74 −0.38 0.15 −0.88 −0.73 −0.44 −0.15 −0.27
** ** ** ** ** ** ** ** ** * **

2 lags −0.26 −0.12 −0.43 −1.30 −0.02 0.00 −0.78 −0.38 0.14 −0.79 −0.88 −0.39 −0.12 −0.23
** * ** ** ** ** ** ** ** * **

Bivariate −0.21 −0.10 −0.37 −1.39 −0.06 −0.08 −0.65 −0.32 −0.07 −0.64 −0.97 −0.39 −0.17 −0.08
* * ** ** * ** ** * ** ** **

Galí (1999) −0.47 −0.12 −0.37 −0.98 −0.13 −0.30 −0.58 −0.35 −0.36 −1.06 −0.95 −0.42 −0.35 −0.47
** ** ** ** ** ** ** ** ** ** ** ** ** **

LRI −0.19 0.05 −0.38 −0.65 −0.06 0.04 −0.93 −0.16 0.02 0.25 −1.02 −0.13 −0.15 −0.03
** * ** ** *

OLS −0.20 −0.13 −0.21 −0.15 0.00 −0.05 −0.57 −0.20 −0.16 0.16 −0.14 −0.12 0.07 −0.13
* * ** ** * * * *

linear detrending −0.20 −0.16 −0.38 −0.94 −0.03 −0.07 −0.48 −0.32 0.01 0.06 −0.78 −0.24 −0.12 −0.14
* ** ** ** * ** ** ** * *

cubic detrending −0.26 −0.16 −0.40 −0.90 −0.04 −0.02 −0.59 −0.33 0.03 −0.84 −0.89 −0.12 −0.07 −0.22
** ** ** ** ** ** ** ** ** **

Note: The table reports the impact response of aggregate hours to a positive permanent technology shock. We use **/++ to indicate significance at 95% level and */+ to indicate significance
at 68% level (based on 1000 bootstrap replications). The specification Galí (1999) corresponds to a bivariate VAR with hours in first-differences and identification with LR restrictions. If not
stated otherwise, the specifications are as in our baseline VAR with the single difference outlined in the first column of each row.
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TABLE B2. Robustness of the two-technology specification.

N-shock I-shock

Country CA FR JP UK USA CA FR JP UK USA

Baseline −0.33 0.06 −0.45 −0.02 −0.22 0.14 0.05 −0.37 0.06 0.17
** + ** ** + ** ++

20 quarters −0.28 0.06 −0.45 −0.04 −0.25 0.08 0.06 −0.37 0.00 0.10
** + ** ** + ** +

60 quarters −0.33 0.06 −0.43 −0.04 −0.21 0.16 0.05 −0.37 0.06 0.21
** + ** ** + ** +

80 quarters −0.33 0.06 −0.41 −0.05 −0.17 0.17 0.05 −0.37 0.05 0.25
** + ** ** + ** +

1 lag −0.37 0.08 −0.29 −0.05 −0.31 0.20 0.06 −0.40 0.14 0.16
** + ** ** + ** + +

2 lags −0.34 0.04 −0.39 0.02 −0.30 0.14 0.05 −0.36 0.18 0.20
** ** ** + + ** ++ ++

Trivariate −0.23 0.01 −0.49 0.03 −0.16 0.19 0.06 −0.26 0.01 0.16
** ** * + + * +

Fisher (2006) −0.05 −0.1 −0.50 −0.26 −0.36 −0.05 0.05 −0.25 −0.27 −0.19
* ** ** ** + * ** **

LRI −0.31 0.07 −0.04 −0.06 −0.13 0.22 0.04 −0.39 0.03 0.14
** + * ** +

OLS −0.27 0.07 −0.38 0.03 −0.24 0.08 0.04 −0.32 0.03 0.16
** + ** ** + ** +

linear detrending −0.23 0.06 −0.37 −0.01 −0.17 0.15 0.04 −0.52 0.05 0.25
** + ** * + + ** +

cubic detrending −0.32 0.06 −0.45 −0.04 −0.16 0.18 0.05 −0.08 0.12 0.15
** + ** ** + + ++ +

Note: The table reports the impact response of aggregate hours to positive permanent neutral (N) and investment-specific (I) technology shocks. We use **/++ to indicate significance at 95%
level and */+ to indicate significance at 68% level (based on 1000 bootstrap replications). The specification Fisher (2006) corresponds to a trivariate VAR with hours in first-differences and
identification with LR restrictions. If not stated otherwise, the specifications are as in our baseline VAR with the single difference outlined in the first column of each row.
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Note: The figure depicts boxplots for labor market impact responses across countries with different
data pretreatment. Median, minimum, and maximum are shown as well as whiskers corresponding to
approximately +/ − 2.7σ . Outliers are displayed using +.

FIGURE B1. Impact responses with different data pretreatment.

Note: Solid black lines and shaded area correspond to the baseline specification under the
two-technology assumption. Dotted red lines correspond to the baseline specification under the
one-technology assumption.

FIGURE B2. Response of aggregate hours to I- and N-shocks.
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