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Abstract The S-fundamental group scheme is the group scheme corresponding to the Tannaka category
of numerically flat vector bundles. We use determinant line bundles to prove that the S-fundamental
group of a product of two complete varieties is a product of their S-fundamental groups as conjectured
by Mehta and the author. We also compute the abelian part of the S-fundamental group scheme and the
S-fundamental group scheme of an abelian variety or a variety with trivial étale fundamental group.
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Introduction

Let X be a complete, reduced and connected scheme defined over an algebraically closed
field k. A vector bundle E on X is called numerically flat if both E and its dual E∗ are
nef vector bundles.

The category Cnf(X) of numerically flat vector bundles is a k-linear abelian rigid tensor
category. Fixing a closed point x ∈ X endows Cnf(X) with a fibre functor E → E(x)
which makes Cnf(X) into a neutral Tannaka category. Hence there is an equivalence
between Cnf(X) and the category of representations of some affine group scheme πS

1 (X, x)
that we call an S-fundamental group scheme of X with base point x. The S-fundamental
group scheme appeared in the curve case in [1] and then in general in [12] and [13].

The strategy of constructing a similar fundamental group scheme using another Tan-
naka category of essentially finite vector bundles goes back to Nori’s influential paper [19].
In this paper Nori defined a smaller group scheme, called Nori’s fundamental group
scheme, which is a pro-finite completion of the S-fundamental group scheme. Therefore,
the S-fundamental group scheme plays with respect to Nori’s fundamental group scheme
a similar role as the fundamental group scheme for stratified sheaves with respect to the
étale fundamental group scheme.

In [12] we exploited another interpretation of the S-fundamental group scheme in
case of smooth projective varieties. Namely, numerically flat vector bundles are precisely
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strongly semistable torsion free sheaves with vanishing Chern classes. Using it one can
apply vanishing theorems to establish, e.g. Lefschetz type theorems for the S-fundamental
group scheme (see [12, Theorems 10.2, 10.4 and 11.3]).

This paper further exploits an observation that all the known properties of Nori’s
fundamental group scheme should still be valid for the more general S-fundamental group
scheme. This allows in particular to obtain interesting properties of numerically flat
bundles.

As a main result of this paper we prove that the S-fundamental group of a product
of two complete varieties is a product of their S-fundamental groups. This result was
conjectured both in [12] and [13, Remark 5.12]. It implies in particular the corresponding
result for Nori’s fundamental group that was conjectured by Nori in [19] and proven by
Mehta and Subramanian in [15]. Our proof of Nori’s conjecture is completely different
from that in [15]. On the other hand, our proof also gives the corresponding result for the
étale fundamental group scheme that was used in the proof of Mehta and Subramanian.

As a corollary to our theorem we prove that the reduced scheme underlying the torsion
component of the identity of the Picard scheme of a product of projective varieties is a
product of the corresponding torsion components of its factors (see Corollary 4.7). The
author does not know any other proof of this fact.

The proof of the main theorem follows easily from the fact that the push forward of
a numerically flat sheaf on the product X × Y to X is also numerically flat (and in
particular locally free). To prove this result we proceed by induction. In the curve case
we employ some determinants of line bundles.

In the remaining part of the paper we compute the abelian part of the S-fundamental
group scheme (cf. [3, Lemma 20 and Theorem 21] for a similar result for the fundamental
group scheme for stratified sheaves). This allows us to compute the S-fundamental group
scheme for abelian varieties (this can also be done using an earlier result of Mehta and
Nori in [14] for which we again have a completely different proof).

The last part of the paper is based on [4] and [5] and it contains computation of the
S-fundamental group for varieties with trivial étale fundamental group.

1. Preliminaries

In this section we gather a few auxiliary results.

1.1. Numerical equivalence

Let X be a complete, reduced and connected d-dimensional scheme defined over an
algebraically closed field k. We say that a rank r locally free sheaf E on X is numerically
trivial if for every coherent sheaf F on X we have χ(X, F ⊗ E) = rχ(X, F ).

Now assume that X is smooth. Then we define the numerical Grothendieck group
K(X)num as the Grothendieck group (ring) K(X) of coherent sheaves modulo numerical
equivalence, i.e. modulo the radical of the quadratic form given by the Euler characteristic

(a, b) �→ χ(a · b) =
∫

X

ch(a) ch(b) td(X).
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We say that a coherent sheaf has numerically trivial Chern classes if there exists an
integer r such that the class [E] − r[OX ] is zero in K(X)num. By the Riemann–Roch
theorem this is equivalent to the vanishing of numerical Chern classes.

1.2. Nefness

Let us recall that a locally free sheaf E on a complete k-scheme X is called nef if and
only if OP(E)(1) is nef on the projectivization P(E) of E. A locally free sheaf E is nef if
and only if for any morphism f : C → X from a smooth projective curve C each quotient
of f∗E has a non-negative degree.

We say that E is numerically flat if both E and E∗ are nef. A locally free sheaf E is
numerically flat if and only if for any morphism f : C → X from a smooth projective
curve C the pullback f∗E is semistable of degree zero.

If X is projective then any numerically flat sheaf is numerically trivial and a line bundle
is numerically flat if and only if it is numerically trivial.

1.3. Picard schemes

Let X be an (integral) variety defined over an algebraically closed field k. Let Pic X

denote the Picard group scheme of X. By Pic0 X we denote its connected component of
the identity and by Picτ X we denote the torsion component of the identity. Note that
all these group schemes can be non-reduced.

If X is projective then Picτ X is of finite type and the torsion group Picτ X/ Pic0 X

is finite. The scheme Picτ X represents the functor of numerically trivial line bundles. If
X is smooth and projective then Picτ X is the fine moduli space of torsion free rank 1
sheaves with numerically trivial Chern classes (e.g. because by Theorem 2.2 every torsion
free rank 1 sheaf with numerically trivial Chern classes is in fact a line bundle).

1.4. Cohomology and base change

Let f : X → Y be a proper morphism of noetherian schemes and let E be a Y -flat
coherent OX -module. Then we say that cohomology and base change commute for E in
degree i if for every base change diagram

X ×Y Y ′

g

��

v �� X

f

��
Y ′ u �� Y

the natural map u∗Rif∗E → Rig∗(v∗E) is an isomorphism.
If for every point y ∈ Y the natural map Rif∗E⊗k(y) → Hi(Xy, Ey) is an isomorphism

then cohomology and base change commute for E in degree i. Indeed, our assumption
implies that u∗Rif∗E → Rig∗(v∗E) is an isomorphism at every point of Y ′.
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1.5. Boundedness of numerically flat sheaves

The following theorem is a corollary of the general boundedness result [11, Theo-
rem 4.4].

Theorem 1.1. The set of numerically flat sheaves on a d-dimensional normal projective
variety X is bounded.

Proof. Let E be a rank r numerically flat sheaf on X. Let us fix a very ample line
bundle OX(1) on X. Then we can write the Hilbert polynomial of E as

P (E)(m) = χ(X, E(m)) =
d∑

i=0

χ(E|⋂
j�i Hj

)
(

m + i − 1
i

)
,

where H1, . . . , Hd ∈ |OX(1)| are general hyperplane sections. First let us note that

χ(E|⋂
j�i Hj

) = rχ(O⋂
j�i Hj

) for i = d, d − 1, d − 2.

In cases i = d or d − 1 the assertion is clear since E|⋂
j�i Hj

is a numerically flat vector
bundle on a set of points or on a smooth curve, so the assertion follows from the usual
Riemann–Roch theorem.

In the case when i = d − 2 it is sufficient to show that a rank r numerically flat sheaf
F on a normal projective surface Y satisfies equality χ(Y, F ) = rχ(Y,OY ). To prove
this let us take a resolution of singularities f : Ỹ → Y . Then χ(Ỹ , f∗F ) = rχ(Ỹ ,OỸ ),
because f∗F is a vector bundle with trivial Chern classes (as follows, for example, from
Theorem 2.2). But using the Leray spectral sequence Hj(Ỹ , Rif∗F ) ⇒ Hi+j(Y, F ) and
the projection formula we see that

χ(Ỹ , f∗F ) = χ(Y, F ) + χ(Y, F ⊗ R1f∗OỸ ).

Similarly, we have

χ(Ỹ ,OỸ ) = χ(Y,OY ) + χ(Y, R1f∗OỸ ).

Since R1f∗OỸ is supported on a finite number of points and F is locally free of rank r

we see that χ(Y, F ⊗ R1f∗OỸ ) = rχ(Y, R1f∗OỸ ), which proves the required equality.
Now let us write

P (E)(m) =
d∑

i=0

ai

(
m + d − i

d − i

)
.

Then our assertion implies that a0(E), a1(E) and a2(E) depend only on X. But the set
of reflexive semistable sheaves with fixed a0(E), a1(E) and a2(E) on a normal projective
variety is bounded by [11, Theorem 4.4]. �

In case of smooth varieties the above theorem is an immediate corollary of Theorem 2.2
and [11, Theorem 4.4].

https://doi.org/10.1017/S1474748012000011 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748012000011


On the S-fundamental group scheme. II 839

2. Fundamental groups in positive characteristic

Let X be a complete connected reduced scheme defined over an algebraically closed
field k.

2.1. S-fundamental group scheme

Let Cnf(X) denote the full subcategory of the category of coherent sheaves on X, which
as objects contains all numerically flat (in particular locally free) sheaves. Let us fix a
k-point x ∈ X. Then we can define the fibre functor Tx : Cnf(X) → k-mod by sending E

to its fibre E(x). One can show that (Cnf(X),⊗, Tx,OX) is a neutral Tannaka category
(see [12, § 6]). Therefore, by [2, Theorem 2.11] the following definition makes sense.

Definition 2.1. The affine k-group scheme Tannaka dual to this neutral Tannaka cate-
gory is denoted by πS

1 (X, x) and it is called the S-fundamental group scheme of X with
base point x.

This group scheme was first defined in the curve case by Biswas, Parameswaran and
Subramanian in [1, § 5], and then independently in [12] and [13].

The following characterization of numerically flat bundles as semistable sheaves with
vanishing Chern classes appears in [12, Theorem 4.1 and Proposition 5.1].

Theorem 2.2. Let X be a smooth projective k-variety of dimension d. Let H be an
ample divisor on X and let E be a coherent sheaf on X. Then the following conditions
are equivalent.

(1) E is a strongly H-semistable torsion free sheaf and its Hilbert polynomial is the
same as that of the trivial sheaf of the same rank.

(2) E is a strongly H-semistable torsion free sheaf and it has numerically trivial Chern
classes.

(3) E is a strongly H-semistable reflexive sheaf with ch1(E) · Hd−1 = 0 and ch2(E) ·
Hd−2 = 0.

(4) E is locally free, nef and c1(E)Hd−1 = 0.

(5) E is numerically flat.

2.2. Nori’s and étale fundamental group schemes

Let us consider the category CN (X) of bundles which are trivializable over a principal
bundle under a finite group scheme. For a k-point x ∈ X we can define the fibre functor
Tx : CN (X) → k-mod by sending E to its fibre E(x). This makes CN (X) a neutral
Tannaka category which is equivalent to the category of representations of an affine
group scheme πN

1 (X, x) called Nori’s fundamental group scheme.
If instead of CN (X) we consider the category C ét(X) of bundles which are trivializable

over a principal bundle under a finite étale group scheme then we get an étale fundamental
group πét

1 (X, x).
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Note that both these group schemes can be recovered from πS
1 (X, x) as inverse limits

of some directed systems (see, for example, [12, § 6]). In particular, any theorem proved
for the S-fundamental group scheme implies the corresponding theorems for étale and
Nori’s fundamental group schemes.

2.3. The unipotent part of the S-fundamental group scheme

The largest unipotent quotient of the S-fundamental group scheme of X is called the
unipotent part of πS(X, x) and denoted by πU (X, x). By the standard Tannakian consid-
erations we know that the category of finite-dimensional k-representations of πU (X, x)
is equivalent (as a neutral Tannakian category) to the category NCnf(X) defined as the
full subcategory of Cnf(X) whose objects have a filtration with all quotients isomorphic
to OX .

Nori proves that in positive characteristic πU (X, x) is a pro-finite group scheme (see
[19, Chapter IV, Proposition 3]) and hence πU (X, x) is the unipotent part of πN (X, x).
This is no longer true in the characteristic zero case. However, in arbitrary characteristic
we know that Hom(πU (X, x), Ga) = H1(X, OX). In particular, in characteristic zero the
abelian part of πU (X, x) is equal to the group of the dual vector space H1(X, OX)∗

(see [19, Chapter IV, Proposition 2]).
In positive characteristic, the abelian part of πU (X, x) is the inverse limit of Cartier

duals of finite local group subschemes of PicX (cf. [19, Chapter IV, Proposition 6]).

3. Numerically flat sheaves on products of curves

In this section we keep the following notation. Let X and Y be complete k-varieties. Then
p, q are the projections of X×Y onto X and Y , respectively. Let E be a coherent sheaf on
X ×Y . For a point y ∈ Y we set Ey = p∗(E ⊗ OX×{y}). Similarly, Ex = q∗(E ⊗ O{x}×Y )
for a point x ∈ X.

Let us consider the following proposition in the special case when X and Y are curves.

Proposition 3.1. Let X and Y be smooth projective curves. Let F be a locally free sheaf
on X × Y , such that Fx1 is semistable for some x1 ∈ X. Assume that F is numerically
trivial. Then for any closed points y1, y2 ∈ Y the corresponding locally free sheaves Fy1

and Fy2 are isomorphic. Moreover, the bundles Fx are semistable and S-equivalent for
all closed points x ∈ X.

Proof. Let us fix a point x1 ∈ X. By Faltings’s theorem [6, Theorem I.2] (see also [21,
Remark 3.2 (b)]) there exists a rank r′ vector bundle E on Y such that H∗(Y, Fx1⊗E) = 0.
Note that this condition implies that E is semistable (see [21, Theorem 6.2]). This bundle
defines a global section ΘE of a line bundle L = det p!(F ⊗ q∗E)−1. Set-theoretically, the
zero set of this section is equal to {x ∈ X : H∗(Y, Fx ⊗ E) �= 0}.

But by the Grothendieck–Riemann–Roch theorem (see, for example, [8, Appendix A,
Theorem 5.3]) for every u ∈ K(Y ) we have

ch(p!(F · q∗u)) = p∗(ch(F ) · q∗(ch(u) · td(X))) = rp∗(q∗(ch(u) · td(X)))
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and the only non-zero part in the last term is in degree zero. Therefore, L has degree
zero. Since L has the section ΘE non-vanishing at x1 it follows that L is trivial and
H∗(Y, Fx ⊗ E) = 0 for all x ∈ X. By [21, Theorem 6.2] this implies that Fx is semistable
for every x ∈ X. To prove that Fx are S-equivalent one can use determinant line bundles
on the moduli space of semistable vector bundles on X. Since we do not use this fact in
the following we omit the proof. An alternative proof can be found in [21, Lemma 4.2].

The rest of the proof is similar to part of proof of [6, Theorem I.4] (see also Step 5
in the proof of [9, Theorem 4.2]). Let us fix a point y1 ∈ Y and take any non-trivial
extension

0 → E → E′ → Oy1 → 0.

The Quot-scheme Q of rank 0 and degree 1 quotients of E′ is isomorphic to P(E′). Let
us set Eπ = ker π for a point [π : E′ → Oy] ∈ Q. The set U of points [π] ∈ Q such that
H∗(Y, Fx1 ⊗ Eπ) = 0 is non-empty and open. The same arguments as before show that
H∗(Y, Fx ⊗ Eπ) = 0 for all x ∈ X and [π] ∈ U . Applying p∗ to the sequence

0 → F ⊗ q∗Eπ → F ⊗ q∗E′ idF ⊗π−−−−→ F ⊗ q∗Oy → 0

for [π : E′ → Oy] ∈ U we see that p∗(F ⊗ q∗E′) � Fy. Therefore, Fy1 � Fy for points y

in some non-empty open subset of Y . Since similar arguments apply to any other point
y2 ∈ Y we see that Fy1 and Fy2 are isomorphic for all points y1, y2 ∈ Y . �

The following corollary is analogous to [7, Proposition 2.4] in the case of stratified
sheaves.

Corollary 3.2. Let X be a normal complete variety and let Y be a complete variety.
Let E be a numerically flat sheaf on X × Y . Then for any closed points y1, y2 ∈ Y the
corresponding locally free sheaves Ey1 and Ey2 are isomorphic. In particular, the sheaf
q∗E is locally free.

Proof. Using Chow’s lemma it is easy to see that there exists an irreducible curve on
Y containing both y1 and y2. Taking its normalization we can replace Y by a smooth
projective curve and prove the assertion in this special case. So in the following we assume
that Y is a smooth projective curve.

Now we prove the assertion assuming that X is projective. The proof is by induction
on the dimension d of X. For d = 1 the assertion follows from Proposition 3.1. For d � 2
let us fix a divisor D on X and consider the following exact sequence

Hom(Ey1 , Ey2)
α−→ Hom(Ey1 |D, Ey2 |D) → H1(Hom(Ey1 , Ey2) ⊗ OX(−D)).

Taking a sufficiently ample divisor D, we can assume that D is smooth and

H1(Hom(Ey1 , Ey2) ⊗ OX(−D)) = 0

(here we use d � 2; see [8, Chapter III, Corollary 7.8]). But then the map α is surjective
and the isomorphism Ey1 |D � Ey2 |D (coming from the inductive assumption) can be
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lifted to a homomorphism ϕ : Ey1 → Ey2 . Since ϕ is injective at the points of D and Ey1

is torsion-free, it follows that ϕ is an injection. But then it must be an isomorphism.
To prove the assertion in case when X is non-projective we can use Chow’s lemma.

Namely, there exists a normal projective variety X̃ and a birational morphism f : X̃ → X.
Let us set g = f × idY : X̃ ×Y → X ×Y . By the previous part of the proof we know that
f∗(Ey1) = (g∗E)y1 � (g∗E)y2 = f∗(Ey2). But by Zariski’s main theorem we know that
f∗OX̃ = OX . Hence by the projection formula we have Ey1 � f∗f

∗(Ey1) � f∗f
∗(Ey2) �

Ey2 .
The last part of the corollary follows from Grauert’s theorem (see [8, Chapter III,

Corollary 12.9]). �

4. S-fundamental group scheme of a product

The following result was conjectured both by the author in [12, § 8] and by Mehta
in [13, Remark 5.12].

Theorem 4.1. Let X and Y be complete k-varieties. Let us fix k-points x0 ∈ X and
y0 ∈ Y . Then the natural homomorphism

πS
1 (X ×k Y, (x0, y0)) → πS

1 (X, x0) ×k πS
1 (Y, y0)

is an isomorphism.

Proof. In characteristic zero the assertion follows from the corresponding fact for topo-
logical fundamental groups of complex varieties and the Lefschetz principle. More pre-
cisely, in the case of complex varieties the assertion follows from the corresponding iso-
morphism of topological fundamental groups by passing to a pro-unitary completion.
In general, the fact follows from the Lefschetz principle if one notes that Theorem 4.1
follows from Lemma 4.2 and if we use the Lefschetz principle for this special assertion
(note that to apply Lefschetz principle we need to reformulate Theorem 4.1 as it involves
group schemes which are not of finite type over the field).

So in the following we can assume that the characteristic of k is positive (but we need
it only to prove the next lemma which is the main ingredient in proof of Theorem 4.1).

Lemma 4.2. Let us assume that X and Y are normal and projective. Let E be a
numerically flat sheaf on X × Y . Then p∗E is numerically flat.

Proof. By Corollary 3.2 p∗E is locally free. Let us fix a point x0 ∈ X. Then the sheaf
Gn = p∗((Fn

X × idY )∗E) = (Fn
X)∗(p∗E) is locally free of rank a = h0(Y, Ex0).

Now let us consider the set A of all numerically flat sheaves on X × Y . This set is
bounded by Theorem 1.1, so there exist a scheme S of finite type over k and an S-flat
sheaf E on X ×Y ×S such that the set of restrictions {Es}s∈S contains all the sheaves in
the set A. Let us consider a subscheme S′ ⊂ S defined by S′ = {s ∈ S : h0(Y, (Es)x0) � a}.
By semicontinuity of cohomology, S′ is a closed subscheme of S. Let us consider an open
subset U ⊂ S′ that corresponds to points s ∈ S′ where h0(Y, (Es)x0) = a. We consider U
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with the reduced scheme structure. By abuse of notation, the restriction of E to U will
be again denoted by E .

We claim that the set {p∗(Es)}s∈U is a bounded set of sheaves. To prove this let us
consider the following diagram

Y

j(x,s)

��jx ��

px

��

X × Y
j̃s ��

p

��

X × Y × U

p̃

��
Spec k

i(x,s)

��
ix �� X

ĩs �� X × U

in which the vertical maps are canonical projections and the horizontal maps are embed-
dings corresponding to fixed points x ∈ X and s ∈ U . Let us recall that p∗(j̃∗

sE) is
locally free by Corollary 3.2 and the definition of U . Moreover, p̃∗E is locally free as
h0(Y, (Es)x) = h0(Y, (Es)x0) = a for every x ∈ X by Corollary 3.2. Therefore, the above
diagram induces the commutative diagram

i∗xp∗(j̃∗
sE) �� (px)∗j

∗
x(j̃∗

sE)

i∗(x,s)(p̃∗E) ��

��

(px)∗j
∗
(x,s)E

�

��

in which the horizontal maps are isomorphisms by Grauert’s theorem (see [8, Chapter III,
Corollary 12.9]). Hence the remaining vertical map is also an isomorphism. This shows
that (p̃∗E)s � p∗(Es), which gives the required claim.

By our assumptions there exists a sequence (sn)n∈N of points of U such that
p∗(Esn) � Gn. Therefore, the set {Gn}n∈N is bounded.

Now let us take any morphism f : C → X from a smooth projective curve C. Since
(Fn

C)∗(f∗p∗E) � f∗(Gn) and the set {f∗(Gn)}n∈N is bounded, we see that f∗p∗E is
semistable of degree 0. More precisely, semistability follows from the fact that sequences
of slopes of maximal destabilizing subsheaves and minimal destabilizing quotients of
Frobenius pullbacks of f∗p∗E are bounded. Similarly, the sheaf f∗p∗E has degree 0 since
its Frobenius pullbacks have bounded degree. Therefore, p∗E is numerically flat. �

Now we can go back to the proof of Theorem 4.1.
The first part of proof is the same as the analogous part of proof of [19, Chapter IV,

Lemma 8]. Namely, the homomorphism

πS
1 (X ×k Y, (x0, y0)) → πS

1 (X, x0) ×k πS
1 (Y, y0)

is induced by projections p : X × Y → X and q : X × Y → Y . Let i : X → X × Y be the
embedding onto X ×{y0} and let j : Y → X ×Y be the embedding onto {x0}×Y . Since
pi = idX and qi is constant, the composition

πS
1 (X, x0) → πS

1 (X ×k Y, (x0, y0)) → πS
1 (X, x0) ×k πS

1 (Y, y0)
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i s an embedding onto the first component. Similarly qj = idY is the embedding onto the
second component, so the homomorphism

πS
1 (X ×k Y, (x0, y0)) → πS

1 (X, x0) ×k πS
1 (Y, y0)

can be split and in particular it is faithfully flat.
Hence we only need to prove that it is a closed immersion.
Let us first assume that X and Y are normal and projective. Note that the sheaf

F = Hom(q∗Ex0 , E) is numerically flat. By our assumptions and Lemma 4.2 the sheaf
p∗F is numerically flat. The induced map

p∗p∗F ⊗ q∗Ex0 → E

is surjective as its restriction to {x0} × Y corresponds to the surjective map

Hom(Ex0 , Ex0) ⊗ Ex0 → Ex0 .

Now [2, Proposition 2.21 (b)] implies that the natural homomorphism

πS
1 (X ×k Y, (x0, y0)) → πS

1 (X, x0) ×k πS
1 (Y, y0)

is a closed immersion and therefore it is an isomorphism.
Now we need the following lemma.

Lemma 4.3. Let X and Y be complete k-varieties such that the natural map

πS
1 (X ×k Y, (x0, y0)) → πS

1 (X, x0) ×k πS
1 (Y, y0)

is an isomorphism. Let E be a numerically flat sheaf on X × Y . Then for every integer i

the sheaf Rip∗E is numerically flat and cohomology and base change commute for E in
all degrees.

Proof. Since πS
1 (X ×k Y, (x0, y0)) � πS

1 (X, x0) ×k πS
1 (Y, y0), E is a subsheaf of a sheaf

p∗E0 ⊗ q∗F0 for some numerically flat sheaves E0 and F0. This is an easy fact from
representation theory as every G1×G2-module is a submodule of the tensor product of G1

and G2-modules. Alternatively, [2, Proposition 2.21 (b)] implies that every numerically
flat sheaf on X × Y is a quotient of a sheaf of the form p∗E0 ⊗ q∗F0, which implies the
required statement by taking the duals.

The quotient (p∗E0 ⊗ q∗F0)/E is also numerically flat, so it is a subsheaf of a sheaf of
the form p∗E1 ⊗ q∗F1 for some numerically flat sheaves E1 and F1. Inductively we can
therefore construct the following acyclic complex of sheaves on X × Y :

0 → E → p∗E0 ⊗ q∗F0 → p∗E1 ⊗ q∗F1 → · · · → p∗Ei ⊗ q∗Fi → · · · (∗)

Let us set Ci = p∗Ei ⊗ q∗Fi. Note that Rip∗Cj � E
⊕hi(Y,Fj)
j is numerically flat and

consider the following spectral sequence

Eij
1 = Rip∗Cj =⇒ Ri+jp∗C• � Ri+jp∗E.
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Since the category of numerically flat sheaves on X is abelian, kernels and cokernels of
objects from this category are also numerically flat. This implies that the limit Ri+jp∗E

of the above spectral sequence is also numerically flat.
Now note that the complex (∗) restricted to {x}×Y remains acyclic, as all the sheaves

in this complex are locally free. Therefore, we have a commutative diagram of spectral
sequences

Rip∗Cj ⊗ k(x)

��

=⇒ Ri+jp∗E ⊗ k(x)

��
Hi(Y, Cj

x) =⇒ Hi+j(Y, Ex)

Since Ci = p∗Ei⊗q∗Fi, the left vertical map in this diagram is an isomorphism. Therefore,
the right vertical map is also an isomorphism. But this implies that cohomology and base
change commute for E in all degrees (see § 1.4). �

Now let us return to the proof of Theorem 4.1. Let us first assume that X is normal
and projective. By Chow’s lemma there exists a projective variety Ỹ and a birational
morphism f : Ỹ → Y . Passing to the normalization, we can assume that Ỹ is normal.
Consider the base change diagram

X × Ỹ
g ��

q̃

��

X × Y

q

��
Ỹ

f �� Y

Let us take two closed points y1, y2 ∈ Y . Let us choose closed points ỹ1, ỹ2 ∈ Ỹ mapping
onto y1, y2, respectively. Then h0((g∗E)ỹ1) = h0((g∗E)ỹ2) and hence h0(Ey1) = h0(Ey2).
By Grauert’s theorem (and § 1.4) this implies that q∗E is locally free and cohomology and
base change commute for E in all degrees. In particular, we have and f∗(q∗E) � q̃∗(g∗E).
But q̃∗(g∗E) is numerically flat, so q∗E is also numerically flat.

In this case the same proof as in the previous case shows that πS
1 (X ×k Y, (x0, y0)) →

πS
1 (X, x0) ×k πS

1 (Y, y0) is an isomorphism.
Now we can again apply Chow’s lemma to prove that if X and Y are complete and E

is numerically flat on X × Y then p∗E is numerically flat. As in the previous case this
implies that πS

1 (X ×k Y, (x0, y0)) → πS
1 (X, x0) ×k πS

1 (Y, y0) is a closed immersion. �

Remark 4.4. Most of the proof of Theorem 4.1 works in an arbitrary characteristic.
But the proof of Lemma 4.2 uses positive characteristic. The characteristic zero version
of Theorem 4.1 would follow from the positive characteristic case if one knew that the
reduction of a semistable complex bundle for some characteristic is strongly semistable
(this is a weak version of Miyaoka’s problem; see [17, Problem 5.4]). This problem seems
to be open even for numerically flat bundles on a product of two curves of genera greater
than or equal to 2.
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Applying [12, Lemma 6.3] as a corollary to Theorem 4.1 we obtain the following result
of Mehta and Subramanian (conjectured earlier by Nori in [19]).

Corollary 4.5 (see [15, Theorem 2.3]). Let X and Y be complete k-varieties. Let
us fix k-points x0 ∈ X and y0 ∈ Y . Then the natural homomorphism

πN
1 (X ×k Y, (x0, y0)) → πN

1 (X, x0) ×k πN
1 (Y, y0)

is an isomorphism.

Note that Theorem 4.1 and Lemma 4.3 imply the following corollary.

Corollary 4.6. Let X and Y be complete k-varieties and let E be a numerically flat sheaf
on X × Y . Then for every integer i the sheaf Rip∗E is numerically flat and cohomology
and base change commute for E in all degrees.

Corollary 4.7. Let X and Y be projective k-varieties. Then

(Picτ (X × Y ))red � (Picτ X)red × (Picτ Y )red

and

(Pic0(X × Y ))red � (Pic0 X)red × (Pic0 Y )red.

Proof. The category of representations of the S-fundamental group scheme πS
1 (X, x)

is equivalent to the category Cnf(X) of numerically flat sheaves. Since a line bundle
is numerically flat if and only if it is numerically trivial, the group (Picτ (X))red is the
group of characters of π1(X, x) (here we use projectivity of X). Now the first isomorphism
follows directly from Theorem 4.1.

The second isomorphism follows immediately from the first one (if X and Y are smooth
projective varieties one can also give another proof using comparison of dimensions of
Pic0(X × Y ) and Pic0 X × Pic0 Y ). �

5. The abelian part of the S-fundamental group scheme

We say that a numerically flat sheaf is irreducible if it does not contain any proper numer-
ically flat subsheaves (or, equivalently, if it corresponds to an irreducible representation
of πS

1 (X, x)). In case of projective varieties a numerically flat sheaf is irreducible if and
only if it is slope stable (with respect to some fixed polarization; or, equivalently, with
respect to all polarizations).

If E is an irreducible numerically flat sheaf then it is simple. This follows from the fact
that any endomorphism of such E is either 0 or an isomorphism (otherwise the image
would give a proper numerically flat subsheaf).

Theorem 5.1. Let E be an irreducible numerically flat sheaf on a product X × Y of
complete varieties X and Y . Then there exist irreducible numerically flat sheaves E1 on
X and E2 on Y such that E � p∗E1 ⊗ q∗E2.
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Proof. Let us fix a point x0 ∈ X and an irreducible numerically flat subsheaf K ⊂ Ex0 .
Let us set F = Hom(p∗K, E). Since the sheaf F is numerically flat, by Corollary 4.6 we
know that q∗F is numerically flat. It is easy to see that the induced map

ϕ : q∗q∗F ⊗ p∗K → E

is injective on {x0} × Y . Since (q∗F ) ⊗ k(x0) = Hom(K, Ex0) is non-zero, q∗q∗F ⊗ p∗K

is numerically flat and E is irreducible, ϕ is an isomorphism. �

The following lemma follows from the proof of Theorem 5.1 but we give a slightly differ-
ent proof without using Theorem 4.1 (so in particular the proof is completely algebraic)
in a case sufficient for the applications in the next section.

Lemma 5.2. Let X and Y be complete varieties. Let E be a numerically flat sheaf on
X ×k Y . Assume that for some point y0 ∈ Y , Ey0 is simple (i.e. End(Ey0) = k). Then
there exists a numerically trivial line bundle L on Y such that E � p∗Ey0 ⊗ q∗L.

Proof. For simplicity let us assume that X is smooth and projective. Let us set F =
Hom(p∗Ey0 , E). Since the sheaf F is numerically flat, by Corollary 3.2 we know that q∗F

is locally free. Therefore, the induced map

q∗q∗F ⊗ p∗Ey0 → E

is surjective on all fibres {x}×Y and hence it is surjective. Since Ey0 is simple, L = q∗F

is a line bundle. Therefore, the above map is a surjective map of locally free sheaves of
the same rank and hence it is an isomorphism. This also shows that L is numerically
trivial. �

Proposition 5.3. Let X and Y be complete varieties. Let E be a numerically flat sheaf
on X ×k Y . Assume that for some point x0 ∈ X and y0 ∈ Y , Ex0 and Ey0 are simple.
Then both Ex0 and Ey0 are line bundles and E � p∗Ey0 ⊗ q∗Ex0 .

Proof. By the above lemma we know that E � p∗Ey0 ⊗ q∗L for some line bundle L.
Therefore,

Ex0 � q∗((p∗Ey0 ⊗ q∗L) ⊗ p∗Ox0) � L⊕ rk Ey0 .

Since Ex0 is simple, Ey0 is a line bundle and Ex0 � L. �

The following definition is an analogue of [7, Definition 2.5] where the corresponding
notion is defined for stratified sheaves.

Definition 5.4. Let E be a numerically flat sheaf on a complete variety X/k. We say
that E is abelian if there exists a numerically flat sheaf E′ on X ×k X and a closed point
x0 ∈ X such that E′ restricted to both p−1(x0) and q−1(x0) is isomorphic to E.

Proposition 5.3 implies that a simple abelian numerically flat sheaf on a complete
variety has rank 1. Since every numerically flat sheaf has a filtration with irreducible
quotients, we get the following corollary describing the category of representations of
πS

ab(X, x).
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Corollary 5.5. Let E be an abelian numerically flat sheaf on a complete variety X.
Then E has a filtration 0 = E0 ⊂ E1 ⊂ · · · ⊂ Er = E in which all quotients Ei/Ei−1 are
numerically trivial line bundles. Moreover, if E is simple then it is a line bundle.

Note that the last part of the corollary is non-trivial as even on complex projective
varieties, a simple, semistable bundle need not be stable.

Remark 5.6. In the next section we will see that every numerically flat sheaf on an
abelian variety is abelian. Therefore, the above corollary generalizes [14, Theorem 2]
which describes numerically flat sheaves on abelian varieties assuming boundedness of
semistable sheaves with fixed numerical invariants (this is proven in [11]). Mehta and
Nori proved this theorem using reduction to the case of abelian varieties defined over an
algebraic closure of a finite field. Our proof is completely different.

Lemma 5.7. Let G be an affine k-group scheme. Then the category of represen-
tations of the largest abelian quotient Gab of G is isomorphic to the full subcate-
gory of the category of representation of G, whose objects are those G-modules V for
which there exists a G × G-module W such that we have isomorphisms of G-modules
W |G×{e} � W |{e}×G � V .

Proof. We give a naive proof in the case of algebraic groups. The reader is asked to
rewrite it in terms of group schemes using a precise definition of derived subgroup scheme
(see [22, 10.1]).

Let V be a Gab-module. Since Gab is abelian, the multiplication map Gab×Gab → Gab

is a homomorphism of affine group schemes. Hence we can treat V as a G × G-module
obtaining the required module W .

Now let V be a G-module for which there exists ρ : G × G → GL(W ) and isomor-
phisms of G-modules W |G×{e} � W |{e}×G � V . The representation ρ̃ : G → GL(V )
corresponding to V is given by ρ̃(g) = ρ(g, e) = ρ(e, g). Since

ρ(g, h) = ρ(g, e) · ρ(e, h) = ρ(e, h) · ρ(g, e),

we have ρ̃(ghg−1h−1) = e. Therefore, ρ̃ vanishes on the derived subgroup of G and hence
it defines the required representation of Gab. �

The largest abelian quotient of the S-fundamental group scheme of X is called the
abelian part of πS(X, x) and denoted by πS

ab(X, x).
Lemma 5.7, together with Theorem 4.1, implies that πS

ab(X, x) is Tannaka dual to the
(neutral Tannakian) category of abelian numerically flat sheaves on X. This also explains
the name ‘abelian’ in Definition 5.4.

Remark 5.8. Note that Corollary 5.5 follows immediately from the interpretation of
abelian numerically flat bundles given above and the fact that irreducible representations
of abelian group schemes are one-dimensional (see [22, Theorem 9.4]). In fact, this also
proves that all subsheaves Ei in the filtration are abelian.
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Let G be an abelian group. Then we define the k-group scheme Diag(G) by setting

(Diag(G))(Spec A) = Homgr(G, A×)

for a k-algebra A, where Homgr(G, A×) denotes all group homomorphisms from G to
the group of units in A. This is the same as taking Spec k[G] with the natural k-group
scheme structure.

Theorem 5.9. Let X be a smooth projective variety defined over an algebraically closed
field k. If the characteristic of k is positive then we have an isomorphism

πS
ab(X, x) � lim

←
Ĝ × Diag((Picτ X)red),

where Ĝ denotes the Cartier dual of G and the inverse limit is taken over all finite local
group subschemes G of Pic0 X. If k has characteristic zero then we have

πS
ab(X, x) � H1(X, OX)∗ × Diag(Picτ X).

Proof. By [22, Theorem 9.5] πS
ab(X, x) is a product of its unipotent and multiplicative

parts.
By Nori’s results mentioned in § 2.3 (see [19, Chapter IV, Proposition 6]) we know

that in positive characteristic the abelian part of the unipotent part (or equivalently,
the unipotent part of the abelian part) πU (X, x) of the S-fundamental group is isomor-
phic to the inverse limit of Cartier duals of finite local group subschemes of PicX. In
characteristic zero, πU

ab(X, x) = H1(X, OX)∗.
On the other hand, since the character group of πS(X, x) is isomorphic to the reduced

scheme underlying Picτ X (in characteristic zero Picτ X is already reduced), the diagonal
part of πS

ab(X, x) is given by Diag((Picτ X)red), which finishes the proof. �

Let us recall that the Neron–Severi group NS(X) = (PicX)red/(Pic0 X)red is finitely
generated. We have a short exact sequence

0 → (Pic0 X)red → (Picτ X)red → NS(X)tors → 0,

where NS(X)tors is the torsion group of NS(X) (it is a finite group). Therefore, we have
a short exact sequence

0 → Diag(NS(X)tors) → Diag((Picτ X)red) → Diag((Pic0 X)red) → 0.

6. Numerically flat sheaves on abelian varieties

Let A be an abelian variety defined over an algebraically closed field of characteristic p

and let An be the kernel of the multiplication by n map nA : A → A.
Let Ar

pn be the reduced part of Apn . Then Apn is a product of Ar
pn , its Cartier dual

Âr
pn (which is a local and diagonalizable group scheme) and a local–local group scheme

A0
pn (see [18, § 15]; local–local means that both the group scheme and its Cartier dual
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are local). Let r be the p-rank of A. Then Ar
pn � (Z/pnZ)r, Âr

pn � (µpn)r and A0
pn is a

group scheme of order p2(dim A−r)n.
The p-adic discrete Tate group T d

p (A) is defined as the inverse limit lim←−Ar
pn (see [18,

§ 18]). This is a Zp-module. Similarly, we define the p-adic local–local Tate group T 0
p (A)

as the inverse limit lim←−A0
pn . For an arbitrary prime l (possibly l = p) we also define the

l-adic Tate group scheme as Tl(A) = lim←−Aln (note that for l = p our notation differs
from that in [18]).

The following theorem is analogous to [3, Theorem 21].

Theorem 6.1. Let A be an abelian variety defined over an algebraically closed field k.
Then πS(A, 0) is abelian and it decomposes as a product of its unipotent and diagonal
parts. Moreover, if the characteristic of k is positive then

πS(A, 0) � T 0
p (A) × T d

p (A) × Diag(Pic0 A).

In characteristic zero we have

πS(A, 0) � H1(A,OA)∗ × Diag(Pic0 A).

Proof. Let us first remark that every numerically flat bundle E on A is abelian. To show
this one can take the addition map m : A×k A → A. Then E′ = m∗E restricted to either
p−1(0) or q−1(0) is isomorphic to E. This shows that πS(A, 0) is abelian and we can
use Theorem 5.9. In positive characteristic, local group subschemes of the dual abelian
variety Â = Pic0 A are of the form A0

pn × Âr
pn . So the inverse limit of their Cartier duals

is isomorphic to T 0
p (A) × T d

p (A). On the other hand, since Picτ A = Pic0 A, the diagonal
part of πS(A, 0) is given by Diag(Pic0 A). �

We can also give another proof of the above theorem without using that πS(A, 0) is
abelian (which uses the rather difficult Theorem 4.1). Namely, as in the proof of [3,
Theorem 21] it is sufficient to show that for every indecomposable numerically flat sheaf
E on A there exists a unique line bundle L ∈ Pic0(A), such that L⊗E has a filtration by
subbundles with each successive quotient trivial. But by Corollary 5.5 every numerically
flat bundle E on A has a filtration 0 = E0 ⊂ E1 ⊂ · · · ⊂ Er = E in which all quotients
Ei/Ei−1 are numerically trivial line bundles (in fact, this filtration is just a Jordan–
Hölder filtration for an arbitrary polarization, but Corollary 5.5 says a bit more about
this filtration).

Now if E is indecomposable then it is easy to see that all the quotients in the filtration
are isomorphic (otherwise one can prove by induction that the filtration would split as
H1(A, L) = 0 for a non-trivial line bundle L on the abelian variety A), which finishes
the proof.

Corollary 6.2. Let A be an abelian variety defined over an algebraically closed field of
positive characteristic. Then

πN (A, 0) � lim
←−

An �
∏

l prime

Tl(A).
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The above corollary also follows from [20, Remark 3] and [15, Theorem 2.3]. It is well
known that the above corollary implies the Serre–Lang theorem (see [18, § 18]), although
this sort of proof is much more complicated than the original one. In [20] Nori had to
use the Serre–Lang theorem to prove the corollary.

7. The Albanese morphism

Let X be a smooth projective variety and let x ∈ X be a fixed point. Let albX : X →
AlbX be the Albanese morphism mapping x to 0. The variety AlbX is abelian and
it is dual to the reduced scheme underlying Pic0 X. Since the S-fundamental group
scheme of an abelian variety is abelian, we have the induced homomorphism πS

ab(X, x) →
πS

1 (AlbX, 0). The following proposition proves that this homomorphism is faithfully flat
and it describes its kernel.

Theorem 7.1. We have the following short exact sequence:

0 → lim
G⊂Pic0 X

Ĝ/Gred × Diag(NS(X)tors) → πS
ab(X, x) → πS

1 (AlbX, 0) → 0,

where the limit is taken over all local group schemes G ⊂ Pic0 X.

Proof. The Albanese morphism induces alb∗
X : Pic0(AlbX) � (Pic0 X)red → Pic0 X,

which is the natural closed embedding. By Theorem 5.9 we have the commutative diagram

πS
ab(X, x) ��

�
��

πS
1 (AlbX, 0)

�
��

lim
G⊂Pic0 X

Ĝ × Diag((Picτ X)red) �� lim
G⊂(Pic0 X)red

Ĝ × Diag((Pic0 X)red)

where the limits are taken over local group schemes G and the lower horizontal map is
induced by alb∗

X . In particular, the homomorphism πS
ab(X, x) → πS

1 (AlbX, 0) is faithfully
flat and one can easily describe its kernel. �

Theorem 7.1 implies in particular that if Pic0 X is reduced then the sequence

0 → Diag(NS(X)tors) → πS
ab(X, x) → πS

1 (AlbX, 0) → 0

is exact. Moreover, if Picτ X is connected and reduced (e.g. if X is a curve or a prod-
uct of two curves as in proof of Proposition 3.1) then πS

ab(X, x) → πS
1 (AlbX, 0) is an

isomorphism.

Corollary 7.2 (cf. [16, Chapter III, Corollary 4.19]). We have

0 → lim
G⊂Pic0 X

Ĝ/Gred × Diag(NS(X)tors) → πN
ab(X, x) → πN

1 (AlbX, 0) → 0

and

0 →
(

lim
G⊂Pic0 X

Ĝ/Gred

)
red

× Diag(NS(X)tors) → πét
ab(X, x) → πét

1 (AlbX, 0) → 0.
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Proof. For a group scheme H let us consider the directed system of quotients H → G,
where G is a finite group scheme (or an étale finite group). Let us consider the functor
F (F ′) from the category of affine group schemes to the category of pro-finite group
schemes (pro-finite groups, respectively), which to H associates the inverse limit of the
above directed system. Note that these functors are exact, as the directed systems that
we consider satisfy the Mittag–Leffler condition. Moreover, the functor F (F ′) applied
to πS

1 (X, x) gives πN
1 (X, x) (πét

1 (X, x), respectively). Therefore, the required assertions
follow by applying the functors F , F ′ to the sequence from Theorem 7.1. �

8. Varieties with trivial étale fundamental group

This section contains computation of the S-fundamental group scheme for varieties with
trivial étale fundamental group. It contains a generalization of the main result of [5] and
it is based on the method of [4].

Let X be a smooth projective variety defined over an algebraically closed field of
characteristic p > 0. Let Mr be the moduli space of rank r slope stable bundles with
numerically trivial Chern classes. It is known that it is a quasi-projective scheme.

A closed point [E] ∈ Mr is called torsion if there exists a positive integer n such that
(Fn

X)∗E � E.

Lemma 8.1. Assume that πét(X, x) = 0. If E is a strongly stable numerically flat vector
bundle then its rank is equal to 1 and there exists n such that (Fn

X)∗E � OX .

Proof. By assumption all vector bundles En = (Fn
X)∗E are stable. Let N be the Zariski

closure of the set {[E0], [E1], . . . , } in Mr. If N has dimension 0 then some Frobenius
pull back E′ = (Fn

X)∗E is a torsion point of M = Mr. In this case by the Lange–Stuhler
theorem (see [10, Satz 1.4]) there exists a finite étale covering f : Y → X such that f∗E′

is trivial. But by assumption there are no non-trivial étale coverings so E′ is trivial.
Therefore, we can assume that N has dimension at least 1. Note that the set N ′ of

irreducible components of N of dimension greater than or equal to 1 is Verschiebung
divisible (see [4, Definition 3.6]), since V |N is defined at points En for n � 1. Now we
can proceed exactly as in proof of [4, Theorem 3.15] to conclude that the trivial bundle
is dense in N ′, a contradiction. �

Proposition 8.2. Assume that πét(X, x) = 0. Let E be a rank r numerically flat vector
bundle on X. Then there exists some integer n � 0 such that (Fn

X)∗E � Or
X .

Proof. Proof is by induction on the rank r of E. When r = 1 then the assertion follows
from the above lemma.

Let us recall that there exists an integer n such that (Fn
X)∗E has a Jordan Hölder

filtration E0 = 0 ⊂ E1 ⊂ · · · ⊂ Em = (Fn
X)∗E in which all quotients Ei = Ei/Ei−1 are

strongly stable numerically flat vector bundles (see [12, Theorem 4.1]). By taking further
Frobenius pull backs and using the above lemma we can also assume that Ei � OX .

By our induction assumption taking further Frobenius pull backs we can also assume
that Em/E1 � Or−1

X . Now we need to show that there exists some integer s such that
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the extension
0 → (F s

X)∗E1 → (F s
X)∗E → (F s

X)∗(Em/E1) → 0

splits. To prove that it is sufficient to note that the endomorphism F ∗ : H1(X, OX) →
H1(X, OX) is nilpotent. But we know that F ∗ induces the Fitting decomposition
H1(X, OX) = H1(X, OX)s ⊕ H1(X, OX)n into stable and nilpotent parts and the asser-
tion follows from equality

H1(X, OX)s = Hom(πét
1 (X, x), Z/p) ⊗Fp k = 0.

�

Corollary 8.3. If πét(X, x) = 0 then πS(X, x) � πN (X, x).

As a special case we get [5, Theorem 1.2]: if πN (X, x) = 0 then πS(X, x) = 0.
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