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Abstract

A random binary search tree grown from the uniformly random permutation of [n] is
studied. We analyze the exact and asymptotic counts of vertices by rank, the distance
from the set of leaves. The asymptotic fraction ck of vertices of a fixed rank k ≥ 0 is
shown to decay exponentially with k. We prove that the ranks of the uniformly random,
fixed size sample of vertices are asymptotically independent, each having the distribution
{ck}. Notoriously hard to compute, the exact fractions ck have been determined for k ≤ 3
only. We present a shortcut enabling us to compute c4 and c5 as well; both are ratios of
enormous integers, the denominator of c5 being 274 digits long. Prompted by the data,
we prove that, in sharp contrast, the largest prime divisor of the denominator of ck is at
most 2k+1 + 1. We conjecture that, in fact, the prime divisors of every denominator for
k > 1 form a single interval, from 2 to the largest prime not exceeding 2k+1 + 1.
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1. Introduction

1.1. Background and definitions

Various parameters of the many models of random rooted trees are fairly well understood if
they relate to a near-root part of the tree or to a global tree structure. The first group includes,
for instance, the numbers of vertices at given distances from the root, the immediate progeny
sizes for vertices near the top, and so on. See [8] for a comprehensive treatment of these results.
The tree height and width are parameters of a global nature; see, for example, [3], [11]–[13],
[17], and [18]. Profiles of random trees have been studied in [6] and [16]. In recent years
there has been a growing interest in analysis of the random tree fringe, i.e. the tree part close
to the leaves; see, [1], [2], [5], [9], [10], [14], and [15]. Diversity of models and techniques
notwithstanding, a salient feature of these studies is usage of the inherently recursive nature of
the random trees in question. Deletion of the root of a tree produces a forest of rooted subtrees
that are conditionally independent, each being distributed as the random tree for the properly
chosen tree size.

Received 21 March 2016; revision received 6 December 2016.
∗ Postal address: Department of Mathematics, University of Florida, 358 Little Hall, Gainesville, FL 32611-8105,
USA. Email address: bona@ufl.edu
∗∗ Postal address: Department of Mathematics, The Ohio State University, 231 West 18th Avenue, Columbus, OH
43210-1175, USA. Email address: bgp@math.ohio-state.edu

850

https://doi.org/10.1017/apr.2017.24 Published online by Cambridge University Press

http://www.appliedprobability.org
mailto:bona@ufl.edu?subject=Adv. Appl. Prob.%20paper%2016182
mailto:bgp@math.ohio-state.edu?subject=Adv. Appl. Prob.%20paper%2016182
https://doi.org/10.1017/apr.2017.24


On a random search tree 851

Not surprisingly, the technical details of fringe analysis become quite complex as soon as the
focus shifts to layers of vertices further away from the leaves. So while there are explicit results
on the (limiting) fraction of vertices at a fixed, small distance from the leaves, an asymptotic
behavior of this fraction, as a function of the distance, remains an open problem. In this paper
we will solve this problem for the random decreasing binary trees, known also as binary search
trees. We hope to study other random trees in a subsequent paper.

A decreasing binary tree on vertex set [n] = {1, 2, . . . , n} is a binary plane tree in which
every vertex has a smaller label than its parent. Note that this means that the root must have
label n. Also note that every vertex has at most two children, and that every child v is either a
left child or a right child of its parent, even if v is the only child of its parent.

Decreasing binary trees on vertex set [n] are in bijection with permutations of [n]. In order
to see this, let p = p1p2 · · · pn be a permutation. The decreasing binary tree of p, which we
denote by T (p), is defined as follows. The root of T (p) is a vertex labelled n, the largest entry
of p. If a is the largest entry of p on the left of n, and b is the largest entry of p on the right of n,
then the root will have two children, the left one will be labelled a, and the right one labelled b.
If n is the first (respectively, last) entry of p then the root will have only one child, and that
is a left (respectively, right) child, and it will necessarily be labelled n − 1, as n − 1 must be
the largest of all remaining elements. Define the rest of T (p) recursively, by taking T (p′) and
T (p′′), where p′ and p′′ are the substrings of p on the two sides of n, and affixing them to a

and b.

1.2. Recent results

For the rest of this paper, whenever we say tree, we will mean a decreasing binary tree.
If v is a vertex of a tree T then let the rank of v be the number of edges in the shortest

path from v to a leaf of T that is a descendant of v. So leaves are of rank 0, neighbors of
leaves are of rank 1, and so on. Motivated by a series of recent papers [7], [14] concerning
the neighbors of leaves, Bóna [2] proved that, for any k ≥ 0, the probability that a randomly
selected vertex of a randomly selected tree is of rank k converges to a rational number ck as n

goes to ∞. He also computed that c0 = 1
3 , c1 = 3

10 , c2 = 1721
8100 , and c3 ≈ 0.105. It is worth

mentioning that following this, Devroye and Janson [5] computed the same four values of ck

with a completely different method based on the ideas and techniques of branching processes.
While the existence of ck for all k was established in both [2] and [5] for all k ≥ 0, the exact
values of ck for k = 4, 5, say, appeared to be out of reach.

The existing studies left wide open a series of very basic questions. Obviously,
∑

k ck ≤ 1,
but is {ck} a probability distribution, i.e.

∑
k ck = 1, and if yes, is {ck} the limiting distribution

of the rank of a uniformly random vertex of the tree? What about the limiting joint distribution
of the ranks of the random, fixed size, sample of the tree vertices? At exactly what speed does ck

approach 0? Is there a chance that a better understanding of the random tree structure can be
used to compute, exactly, the constants ck for some k > 3?

1.3. Main results

In this paper we are able to answer these questions. As in [2], our proofs continue to use the
nonlinear, quadratic recurrences for the generating functions of counts of vertices with a given
rank. To extract the required estimates from these recurrences, we use auxiliary enumerative
schemes that lead to the linear recurrences being eminently amenable to asymptotic analysis.
We feel confident that, properly modified, this approach can be applied to other models of
random trees.
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Theorem 1.1. (i) The equality
∑

k≥0 ck = 1 holds, and so {ck} is the probability distribution
of a random variable R.

(ii) Let Rn be the rank of the uniformly random vertex of the tree. Then for every 0 < ρ < 3
2 ,

we have limn→∞ E[ρRn ] = E[ρR] < ∞. Consequently, Rn → R in distribution, and with all
its moments, and ck = O(qk) for every 0 < q < 2

3 .

(iii) Let R(1)
n , . . . , R

(t)
n be the ranks of the uniformly random t-tuple of vertices of the tree. Then

(R
(1)
n , . . . , R

(t)
n ) converges in distribution to (R(1), . . . , R(t)) with the components R(j) being

independent copies of R.

(iv) Consequently, for each k, the fraction of vertices of rank k converges in probability to ck .

Part (ii) is consistent, broadly, with the conjecture in [2] stating that the sequence {ck} is
log-concave. Focusing exclusively on this sequence we show that the decay of ck is exactly
exponentially fast.

To state the result concisely, introduce the function g(α) = α+α log(2/α)−1. The equation
g(α) = 0 has two positive roots. Let α0 denote the smaller root; α0 ≈ 0.373.

Theorem 1.2. There exists γ > 0 such that, for all k ≥ 1,

γ e−k/α0 ≤ 1 −
k−1∑
j=0

cj ≤ 6k + 7

3

(
1

3

)k

.

Note that if lim k−1 log(1/ck) exists, and we conjecture it does, then this limit is in [log 3,

1/α0].
In the course of proving these theorems, we stumbled on a shortcut in the computation of ck

described in [2]. It enabled us to obtain the precise values of c4 and c5, thus going beyond
c0, . . . , c3 already found in [2] and [5].

Our numerical results and Theorem 1.1(iv) taken together show that, in a random binary
search tree, with high probability, about 99.875 percent of all vertices are of rank 5 or less.
When written in their simplest form, the numerators and denominators of the rational numbers ck

grow very fast. For instance, the denominator of c5, which we denote by denom(c5), has 274
digits. Despite its enormity, the largest prime divisor of denom(c5) is 61. We conjectured and
proved that this remarkable pattern holds for all k: the largest prime divisor of denom(ck) is
at most 2k+1 + 1. So the 274-digit denominator of c5 has no prime divisor larger than 65, i.e.
larger than 61, which is indeed its prime divisor!

On the basis of our data, we conjecture that, for k ≥ 2, the set of prime divisors of denom(ck)

is an uninterrupted interval of primes from 2 to the largest prime divisor, thus (by the prime
number theorem) having length ≈ 2k+1/(k log 2) for large k. If true, this probably means that
denom(ck) is a product of certain factorials, hinting at some auxiliary enumerative scheme
taking over at n = ∞.

That same data makes us believe that the numerator and the denominator of ck are comparable
in order of magnitude, but the numerator has very few prime factors, with the smallest one
rapidly growing as k increases.
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2. Convergence of the random rank Rn

We start by introducing En,k , the expected number of vertices of rank k. Our focus is on the
existence and the values of the limits

ck = lim
n→∞

En,k

n
, k ≥ 0.

Equivalently, ck is the limiting probability that Rn, the rank of a uniformly random vertex of
the (uniformly) random tree is k.

The data on ck that we mentioned in Section 1.2 makes plausible a conjecture that {ck} is
actually a probability distribution, so that there exists a random variable R such that P(R =
k) = ck and Rn → R in distribution. Our first theorem confirms this conjecture with room to
spare, demonstrating that the moment generating function of Rn converges to that of R for any
argument below 3

2 .

Theorem 2.1. For every ρ < 3
2 , we have lim sup E[ρRn ] < ∞. Consequently, {ck} is a

probability distribution of a random variable R and lim E[ρRn ] = E[ρR].
Proof. Let pn,k be the probability that the root is of rank k. Setting E0,k ≡ 0, we have

En,k = pn,k + 1

n

n−1∑
j=0

(Ej,k + En−1−j,k), n ≥ 1. (2.1)

For n = 1, this equation holds trivially, since E1,k = p1,k = 1{k=1}. For n > 1, the equation
holds because (2.1) just adds the expected value of the indicator of the event ‘root is of rank k’
to the expected total count of the nonroot vertices of rank k, the latter being first computed
for trees in which the left subtree of the root is of size j . The existence of ck := lim En,k/n,
rational or not, will follow immediately from the next lemma.

Lemma 2.1. Let {xn}n≥0, {yn}n≥1, and ε ∈ (0, 1) be such that x0 = 0, yn = O(n1−ε), and

xn = yn + 1

n

n−1∑
j=0

(xj + xn−1−j ), n ≥ 1.

Then there exists a finite limn→∞ xn/n.

Proof. First of all, (2.1) is equivalent to

xn = yn + 2

n

n−1∑
j=0

xj , n ≥ 1.

Standard manipulation shows that

nxn − (n + 1)xn−1 = nyn − (n − 1)yn−1, n ≥ 1,

or
xn

n + 1
− xn−1

n
= yn

n + 1
− yn−1

n

n − 1

n + 1

= nyn − (n − 1)yn−1

n(n + 1)

= yn

n + 1
− yn−1

n
+ O(n−1−ε), n ≥ 1. (2.2)
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Telescoping, we obtain, for 1 < m < n,

xn

n + 1
− xm

m + 1
= yn

n + 1
− ym

m + 1
+ O(m−ε) = O(m−ε).

Thus, {xn/(n + 1)} is a fundamental Cauchy sequence, whence there exists a finite
limn→∞ xn/(n + 1), likewise limn→∞ xn/n. �

Note that dropping the middle expression in (2.2) and adding the resulting equations, we
obtain

xn = (n + 1)

n∑
j=1

jyj − (j − 1)yj−1

j (j + 1)
, (2.3)

which will come in handy later.
Let us proceed with the proof of Theorem 2.1. Since pn,k = O(1), the conditions of

Lemma 2.1 obviously hold for xn = En,k and yn = pn,k with ε ∈ (0, 1]. Consequently, for
each k ≥ 0, there exists a finite limit ck := lim En,k/n. Further, we have∑

k

En,k

n
= 1 �⇒

∑
k

ck ≤ 1.

Next, given ρ > 1, introduce
Hn(ρ) =

∑
k≤n−1

ρk
En,k,

which is the expected value of
∑

v∈[n] ρR(v), where R(v) denotes the rank of a generic vertex v.
Then, analogously to (2.1),

Hn(ρ) = hn(ρ) + �

n

n−�∑
j=�

(Hj(ρ) + Hn−�−j(ρ)), n > � , (2.4)

where hn(ρ) = E[ρR(root)]. How large are hn(ρ) and Hn(ρ)?
Let Xn,j denote the random number of leaves at (edge) distance j from the root; Ln =∑
j Xn,j is the total number of leaves. Then

ρR(root) ≤
∑

j ρjXn,j

Ln

�⇒ hn(ρ) ≤ E

[∑
j ρjXn,j

Ln

]
. (2.5)

We will show that Ln is of order n so it is likely that hn(ρ) is at most of order n−1 ∑
j ρj

E[Xn,j ].
So let us bound

∑
j ρj

E[Xn,j ]. To this end, attach to the random tree ‘external’ vertices, so
that every vertex of the tree itself has exactly two descendants; thus, every leaf � gets two
external descendants, and every nonleaf vertex of the tree with one (left/right) descendant gets
an additional external (right/left) descendant. Let Xn,j denote the total number of external
nodes at distance j from the root. It was shown in [13] that

Mj(x) :=
∑
n≥�

E[Xn,j]xn = �j

j!
(

log
�

� − x

)j

, j > �.

Introduce Mj(x) = ∑
n≥0 xn

E[Xn,j ]; so M0(x) = x. Arguing as in [13], it can be shown that,
for j ≥ 2,

dMj(x)

dx
= 2

1 − x
Mj−1(x).
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Note that [xn]M0(x) ≤ [xn] log(1/(1 −x)) for every n ≥ 0. By induction on j , it follows that,
for j > 0,

E[Xn,j ] = [xn]Mj(x) ≤ 2j

j ! [x
n]

(
log

1

1 − x

)j

= E[Xn,j]. (2.6)

Therefore, for every r > 0,∑
j≥0

rj
E[Xn,j ] = [xn]

∑
j≥0

rjMj (x)

≤ [xn]
∑
j≥0

rjMj(x)

= [xn]
∑
j≥0

(2r)j

j !
(

log
1

1 − x

)j

= [xn] exp

[
2r log

1

1 − x

]
= [xn](1 − x)−2r

=
(

n + 2r − 1

n

)

= �(n + 2r)

�(n + 1)�(2r)

= O(n2r−1),

the last equality following from the Stirling formula for the gamma function. Thus, for r > 0,∑
j

rj
E[Xn,j ] = O(n2r−1). (2.7)

Consequently, for the numerator in the bound (2.5) of hn(ρ), we have

E

[∑
j

ρjXn,j

]
= O(n2ρ−1).

It remains to show that the denominator Ln in (2.5) is quite likely to be of order n, so that
hn(ρ) = O(n2ρ−1/n) = O(n2ρ−2). To be more specific, it was shown in [4] that E[Ln] =
(n + 1)/3, so we should expect that P(Ln < an) is very small if a < 1

3 .

Lemma 2.2. If x ∈ (0, 1] and y ∈ (0, y(x)), where

y(x) := (2
√

1 − x)−1 log
1 + √

1 − x

1 − √
1 − x

,

then, setting L0 = 0, we obtain

∑
n≥0

yn
E[xLn ] = √

1 − x
1 + e2y

√
1−x((1 − √

1 − x)/(1 + √
1 − x))

1 − e2y
√

1−x((1 − √
1 − x)/(1 + √

1 − x))
. (2.8)
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Proof. Since, for n > 1,

E[xLn ] = 1

n

n−1∑
k=0

E[xLk ]E[xLn−1−k ],

we obtain

∂

∂y

∑
n≥0

yn
E[xLn ] = x+

∑
n≥2

yn−1
n−1∑
k=0

E[xLk ]E[xLn−1−k ] =
(∑

n≥0

yn
E[xLn ]

)2

−(1−x). (2.9)

Integrating and using
∑

n≥0 yn
E[xLn ]|y=0 = 1, we obtain (2.8), provided that the denominator

in (2.8) is positive, a condition equivalent to y < y(x). �
Corollary 2.1. Let a < 1

3 . For δ ∈ (0, 1), b ∈ (a, 1
3 ), and large enough n, we have

P(Ln < an) ≤ exp(−(b − a)n1−δ).

Proof. We start with a Chernoff-type bound

P(Ln < an) ≤ x−any−n
∑
ν≥0

yν
E[xLν ] for all x < 1, y < y(x). (2.10)

Choose x = exp(−n−δ); then

y(x) = 1 + 1

3nδ
+ O(n−2δ),

so we may choose y = exp(cn−δ), c ∈ (b, 1
3 ). From the right-hand side of (2.8), it follows that∑

n yn
E[xLn ] = O(nδ). So, using also (2.8) and (2.10), we have

P(Ln < an) = O[nδ exp(an1−δ − cn1−δ)] = O[exp(−(b − a)n1−δ)],
completing the proof of the corollary. �

Armed with (2.10), we return to (2.5). Let D(�) denote the edge distance between the root
and a generic leaf �. By the Cauchy–Schwartz inequality,

∑
j

ρjXn,j =
∑

�

ρD(�) ≤ L
1/2
n

(∑
�

ρ2D(�)

)1/2

≤ n1/2
(∑

j

ρ2jXn,j

)1/2

.

Therefore, applying the Cauchy–Schwartz inequality again and using (2.7),

E

[
1{Ln≤an}

∑
j

ρjXn,j

]
≤ n1/2(E[1{Ln≤an}])1/2

(
E

[∑
j

ρ2jXn,j

])1/2

= n1/2
P

1/2(Ln ≤ an)

(∑
j

ρ2j
E[Xn,j ]

)1/2

= O[n1/2n(2ρ2−1)/2
P

1/2(Ln ≤ an)]
= O[nρ2

P
1/2(Ln ≤ an)].
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Using the bound (2.7), with ρ2 instead of ρ, and Corollary 2.1, we obtain

E

[
1{Ln≤an}

∑
j

ρjXn,j

]
= O

(
nρ2

exp

(
− (b − a)n1−δ

4

))
= o(1).

Therefore, by (2.5) and (2.7),

hn(ρ) ≤ E

[
1{Ln<an}

∑
j

ρjXn,j

]
+ 1

an

∑
j

ρj
E[Xn,j ] = o(1) + O(n2ρ−2). (2.11)

Lemma 2.3. For every fixed ρ < 3
2 , the limit limn→∞ n−1Hn(ρ) exists and is finite. Conse-

quently,
∑

k≥0 ck = 1,
∑

k≥0 ρkck < ∞, and so ck = o(ρ−k).

Proof. By (2.4) and (2.11), xn := Hn(ρ) and yn := hn(ρ) satisfy the condition of Lemma 2.1
with ε ∈ (0, 3 − 2ρ]. Hence, there exists a finite

lim
n→∞ n−1Hn(ρ) = lim

n→∞ n−�
E

[ ∑
v∈[n]

ρR(v )

]
= lim

n→∞ n−�
∑

k≤n−�

ρk
En,k.

Since n−1 ∑
k≤n−1 En,k = 1, and there exists ck = limn→∞ n−1

En,k , (k ≥ 0), we conclude
that

∑
k ck = 1, and

lim
n→∞ n−1

∑
0<k≤n−1

ρk
En,k =

∑
k≥0

ρkck < ∞. �

From Lemma 2.3, it follows that Rn, the rank R(v) of the uniformly random vertex v,
converges in distribution to R, (P(R = k) = ck , k ≥ 0) fast enough for E[ρRn ] to converge to
E[ρR] if ρ < 3

2 . The proof of Theorem 2.1 is complete. �
Next we will show that the ranks of a finite ordered tuple of the random vertices are mutually

independent in the limit n → ∞.

Theorem 2.2. Let t > 1 be fixed. For an ordered, fixed, t-tuple k = (k1, . . . , kt ), let pn(k)

denote the probability that the uniformly random t-tuple of vertices v = (v1, . . . , vt ) have ranks
R(v1) = k1, . . . , R(vt ) = kt . Then limn→∞ pn(k) = ∏t

j=1 ckj
.

Proof. Let En,k denote the expected number of t-tuples of vertices v1, . . . , vt with ranks
k1, . . . , kt , respectively; so En,k = (n)tpn(k). So the claim is equivalent to

En,k = nt
t∏

j=1

ckj
+ o(nt−1).

For t = 1, the claim is obviously true. For t ≥ 2, suppose that for τ < t and the tuples
(k1, . . . , kτ ), we have

En,(k1,...,kτ ) = nτ
τ∏

j=1

ckj
+ o(nτ−1).

Now we prove the claim for t-tuples in general.
First note that

En,k = E
′
n,k + E

′′
n,k;
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here E
′
n,k is the contribution of the tuples v such that no vi is a descendant of vj , while E

′′
n,k

comes from the remaining tuples v. Let us introduce the notation (a)b = a(a−1) · · · (a−b+1).
Obviously, and rather crudely,

E
′′
n,k ≤ (t)2(n − 2)t−2En,

where En is the expected number of pairs v = (v1, v2) such that v2 is a descendant of v1. Now

En = n − 1 + 2

n

n−1∑
j=0

Ej .

Indeed, n − 1 is the total number of the pairs (v1, v2) with v1 = n, i.e. v1 being at the root of
the tree. As En = O(n log n), we see that

E
′′
n,k = O(nt−1 log n). (2.12)

We emphasize that this simple bound holds independently of the claim we are proving. Now
we turn to E

′
n,k. Here none of the vertices from the tuple v can be at the root of the whole tree.

So there are two distinct possibilities for the tuples v = (v1, . . . , vt ):

• all vj are contained in exactly one of two subtrees rooted at the two children of the root;

• there is a nonempty, proper subset A ⊂ [t] such that the vertices vj are in the left subtree
if and only if j ∈ [A].

Thus, denoting kA = {kj , j ∈ A}, and kAc = {kj , j ∈ [t] \ A},

E
′
n,k = 2

n

n−1∑
j=0

E′
j,k + 1

n

n−2∑
j=1

∑
∅�=A⊂[t]

E
′
j,kA

E
′
n−j−1,kAc

. (2.13)

Indeed, conditioned on the size of left subtree, the two subtrees are uniformly random decreasing
trees of sizes j and n − 1 − j , respectively, and the number of tuples with ranks kA in this
tree and the number of tuples with ranks kAc in the right subtree are independent. Hence, the
product of the expectations in the second sum. The first sum accounts for tuples v that lie
entirely in just one of the two subtrees.

By (2.12) and the inductive assumption,

E
′
j,kA

= Ej,kA
− O(j |A|−1 log j) = j |A| ∏

i∈A

cki
+ o(j |A|),

E
′
n−1−j,kAc

= En−1−j,kAc − O((n − j)|Ac|−1 log(n − j))

= (n − 1 − j)|Ac| ∏
i∈Ac

cki
+ o((n − j)|Ac|).

It follows easily that, for each A in question,

1

n

n−2∑
j=1

E
′
j,kA

E
′
n−j−1,kAc

=1

n

t∏
i=1

cki

n−2∑
j=1

j |A|(n − 1 − j)|Ac| + o(nt )

=nt
t∏

i=1

cki

∫ 1

0
x|A|(1 − x)|Ac| dx + o(nt ).
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So, adding these expressions for all subsets A in question, the second sum on the right-hand
side of (2.13) is equal to

nt
t∏

i=1

cki

∫ 1

0

t−1∑
a=1

(
t

a

)
xa(1 − x)t−a dx + o(nt ) = t − 1

t + 1
nt

t∏
i=1

cki
+ o(nt ).

Therefore, for every ε > 0, there exists B1 = B1(ε) > 0 such that

1

n

n−2∑
j=1

∑
∅�=A⊂[t]

E
′
j,kA

E
′
n−j−1,kAc

≤ b+
n := t − 1

t + 1
nt

t∏
i=1

cki
+ εnt + B1. (2.14)

This implies that E
′
n,k ≤ E+

n,k, where

E+
n,k = b+

n + 2

n

n−1∑
j=0

E+
j,k, E+

j,k = 0, j < t.

So, using (2.3),

E+
n,k = (n + 1)

n∑
j=2

jb+
j − (j − 1)b+

j−1

j (j + 1)
;

here, by (2.14),

jb+
j − (j − 1)b+

j−!
j (j + 1)

= ((t − 1)/(t + 1)
∏

i cki
+ ε)(j t+1 − (j − 1)t+1) + B1

j (j + 1)

≤
(

t − 1

t + 1

∏
i

cki
+ ε

)
(t + 1)j t−2 + B1j

−2.

Therefore, summing over j ∈ [2, n],

E
′
n,k ≤ E+

n,k ≤ (nt + nt−1)

(∏
i

cki
+ ε

t + 1

t − 1

)
+ (n + 1)B1

π2

6
.

Similarly, for every ε > 0, there exists B2 = B2(ε) > 0 such that

E
′
n,k ≥ (nt + nt−1)

(∏
i

cki
− ε

t + 1

t − 1

)
− O(nB2).

Thus,

E
′
n,k = nt

t∏
i=1

cki
+ o(nt ).

Combining this estimate with (2.12), we complete the proof of the induction step. �
Let Vn,k be the total number of vertices of rank k in all binary search trees on n vertices. So

Vn,0 = Ln is the total number of leaves.

Corollary 2.2. We have Vn,k/n → ck in probability. That is, for every ε > 0, we have
P(|Vn,k/n − ck| > ε) = o(1) as n → ∞.

Proof. We know that E[Vn,k]/n = En,k/n → ck , and we also know that E[Vn,k(Vn,k −
1)/n(n − 1)] → c2

k . It remains to apply Chebyshev’s inequality. �
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Note that the result P(|Vn,k/n−ck| > ε) = o(1) in Corollary 2.2 would not be enough for us.
Recall though that, for Ln := Vn,0, we were able to show (Corollary 2.1) that Vn,0 < (c0 − ε)n

with probability at most exp(−εn1−δ), and that is smaller than n−K for all K > 0. We
conjecture that the analogous property holds for all Vn,k . A weaker claim, analogously proved,
will suffice for our needs in Section 3.

Lemma 2.4. There exists an absolute constant β > 0, such that, for δ < 1 and n ≥ n(δ),

P

(
Vn,k <

βn

3

)
≤ exp

(
−βn1−δ

2

)
.

Proof. We split the proof into two parts. (i) Clearly, Vn,k ≥ Vn,k, which is the total number
of vertex-to-leaf paths of length k such that every nonleaf vertex of the path has only one child.
Introduce

F(x, y) =
∑
n≥0

yn
E[xVn,k ], V�,k := �.

Obviously, Vn,k ≤ n; so for y < 1 the series converges if xy < 1. In particular, F(x, 1
2 ) is

analytic for |x| < 2. As F(1, 1
2 ) = 2, we have, for x → 1,

F
(
x, 1

2

) = 2 + α(x − 1) + O((x − 1)2), α = F ′
x

(
1, 1

2

) =
∑
n≥1

2−n
E[Vn,k] > �. (2.15)

Now Vn,k = � for n ≤ k, Vk+� ,k = � (respectively, 0) with probability 2k/(k + 1)!
(respectively, 1 − 2k/(k + 1)!), and, for n > k + 1,

E[xVn,k ] = 1

n

n−1∑
j=0

E[xVj,k ]E[xVn−�−j,k].

It follows, after simple algebra, that, for x < 1 and y > 0 such that the series for F(x, y)

converges,
∂

∂y
F (x, y) = F 2(x, y) − (1 − x)yk 2k

k! ,
blending with (2.9) for k = 0. Consequently, for y ≥ 1

2 ,

∂

∂y
F (x, y) ≤ F 2(x, y) − a(1 − x), a = 1

k
!.

Introduce G(x, y), y ≥ 1
2 , the solution of

∂

∂y
G(x, y) = G2(x, y) − a(1 − x), G

(
x, 1

2

) = F
(
x, 1

2

)
.

Integrating the last equation and using

G2(x, 1
2

) − a(1 − x) = F 2(x, 1
2

) − a(1 − x) > 0,

it follows that G(x, y) exists for x < 1, y ∈ [ 1
2 , y1(x)),

y1(x) := 1

2
+ (2

√
a(1 − x))−1 log

F(x, 1/2) + √
a(1 − x)

F (x, 1/2) − √
a(1 − x)

, (2.16)
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and it is given by

G(x, y) = √
a(1 − x)

× 1 + e(2y−1)(a(1−x))1/2
((F (x, 1/2) − √

a(1 − x))/(F (x, 1/2) + √
a(1 − x)))

1 − e(2y−1)(a(1−x))1/2
((F (x, 1/2) − √

a(1 − x))/(F (x, 1/2) + √
a(1 − x)))

= O

(
1

y1(x) − y

)
, y ↑ y1(x), (2.17)

uniformly for x < 1. Consequently, F(x, y) exists for y < y1(x), and F(x, y) ≤ G(x, y) for
y ∈ [ 1

2 , y1(x)). Using (2.15) and (2.16), we obtain, for x → 1,

y1(x) = 1 + (1 − x)β + O((1 − x)2), β = α

4
+ a

24
. (2.18)

(ii) Armed with (2.17), (2.18), and F(x, y) ≤ G(x, y), we choose x = e−n−δ
and y = e6βn−δ/7,

which is strictly below y1(x) for large n, and apply the Chernoff-type bound, i.e.

P

(
Vn,k <

βn

�

)
≤ x−βn/3y−nF (x, y)

≤ x−βn/3y−nG(x, y)

= O

(
nδ exp

(
βn1−δ

3
− 6βn1−δ

7

))

≤ exp

(
−βn1−δ

2

)
. �

3. A closer look at the distribution {ck}
In Theorem 2.1, we proved the existence of the finite limn→∞ n−1∑

k ρk
En,k for ρ < 3

2 ,
which implied that 1 − ∑k−1

j=0 ck = O(qk) for every q > 2
3 . Focusing exclusively on the

sequence {ck}, we prove a considerably stronger bound.

Theorem 3.1. The following inequality holds:

1 −
k∑

j=0

cj ≤ 6k + 7

3

(1

3

)k

.

Proof. We split the proof into four parts. (i) For n ≥ 1, k ≥ 0, let an,k be the total
number of vertices of rank k in all n! permutations of [n], and let bn,k be the total number of
permutations for which the root of the tree is of rank k. So an,k/n! = En,k , the expected number
of rank-k vertices in the random tree, and bn,k/n! is the probability that its root is of rank k.
Introduce Ak(x) = ∑

n>0 xnan,k/n! and Bk(x) = ∑
n>0 xnbn,k/n!; in particular, B0(x) = x.

From [2, Lemmas 3.1 and 3.2],

A′
k(x) = 2

1 − x
Ak(x) + B ′

k(x), k ≥ 0,

B ′
k(x) = 2Bk−1(x)

(
1

1 − x
−

k−2∑
j=0

Bj (x)

)
− Bk−1(x)2, k > 0.

(3.1)
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Introduce A≤k(x) = ∑
0≤j≤k Aj (x) and B≤k(x) = ∑

0≤j≤k Bj (x). In particular, A≤k(x) is
the generating function of {∑j≤k En,j }n≥0. It follows from (3.1) that

A′≤k(x) = 2

1 − x
A≤k(x) + B ′≤k(x), k ≥ 0, (3.2)

d

dx

(
1

1 − x
− B≤k(x)

)
=

(
1

1 − x
− B≤k−1(x)

)2

− 1, k > 0. (3.3)

Equation (3.3) can also be obtained directly via the conditional independence argument as
follows. Let pn,≤k be the probability that the root rank is k at most, so pn,>k := 1 − pn,≤k

is the probability that the root rank strictly exceeds k. Clearly, pn,≤k = ∑
j≤k bn,j /n!, and,

therefore, B≤k(x) is the generating function of {pn,≤k}n≥1. Then, for n > 1 and k ≥ 0,

pn,>k =
(

1

n

) n−1∑
j=0

pj,>k−1pn−j−1,>k−1,

where p0,>k−1 := 1, since conditioned on the left subtree having size k, the left subtree and
the right subtree are independent. Consequently, as p1,>k = 0 for all k ≥ 0,

d

dx

∑
n≥1

pn,>kx
n =

(∑
n≥0

pn,>k−1x
n

)2

− p0,>k−1p0,>k−1 =
(∑

n≥0

pn,>k−1x
n

)2

− 1.

Here

∑
n≥1

pn,>kx
n =

∑
n≥1

(1 − pn,≤k)x
n = x

1 − x
− B≤k(x) = 1

1 − x
− 1 − B≤k(x),

and

∑
n≥0

pn,>k−1x
n = 1 +

∑
n≥1

pn,>k−1x
n = 1 + x

1 − x
− B≤k−1(x) = 1

1 − x
− B≤k−1(x)

with B≤−1(x) := 0.
So

d

dx

(
1

1 − x
− B≤k(x)

)
=

(
1

1 − x
− B≤k−1(x)

)2

− 1.

(ii) From (3.2), it follows that, for k > 0,

A≤k(x) = 1

(1 − x)2

∫ x

0
(1 − y)2B ′≤k(y) dy

= 1

(1 − x)2

[
(1 − x)2B≤k(x) + 2

∫ x

0
(1 − y)B≤k(y) dy

]
.

So for x ↑ 1, we have

A≤k(x) ∼ 2

(1 − x)2

∫ 1

0
(1 − y)B≤k(y) dy.
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Since A≤k(x) is the generating function of {∑j≤k En,j }n>0 and n−1 ∑
j≤k En,j → ∑k

j=0 cj ,
it follows by the Tauberian theorem that

k∑
j=0

cj = 2
∫ 1

0
(1 − y)B≤k(y) dy. (3.4)

Obviously,

B≤k(x) = x

1 − x
− B>k(x),

where B>k(x) is the generating function of {bn,>k/n!}, bn,>k being the number of permutations
such that the root rank (strictly) exceeds k. Consequently,

1 −
k∑

j=0

cj = 2
∫ 1

0
(1 − y)B>k(y) dy. (3.5)

Thus, to bound 1 − ∑k
j=0 cj from above we need to bound B>k(x) from above. Clearly, bn,>k

is bounded above by the number of permutations for which there exists a root-to-leaf path of
(edge) length exceeding k. The success of this approach depends on how efficient our search
would be for finding a path that has a good chance to be comparable in length to the shortest
path.

(iii) We introduce a randomized greedy algorithm with a plausibly good chance to find such a
competitive path. If there are two nonempty subtrees at the root of the tree, we delete a subtree
with probability proportional to the number of vertices in it. We repeat the same procedure
at the root of the remaining subtree and continue until the remaining subtree is a leaf of the
whole tree. The resulting sequence of roots of the nested subtrees forms a root-to-leaf path in
the whole tree.

For n ≥ 1, k ≥ −1, let πn,>k denote the probability that the length of this path exceeds k;
obviously, pn,>k ≤ πn,>k . Further, πn,>−1 = 1, and, for n > 1, k ≥ 0,

πn,>k = 2

n
πn−1,>k−1 + 1

n

n−2∑
j=1

[
n − 1 − j

n − 1
πj,>k−1 + j

n − 1
πn−1−j,>k−1

]
,

or

(n)2πn,>k = 2(n − 1)πn,>k−1 + 2
n−2∑
j=1

(n − 1 − j)πj,>k−1. (3.6)

Introduce P>k(x) = ∑
n>0 πn,>kx

n; in particular,

P>−1(x) =
∑
n>0

xn = x

1 − x
.

Obviously, B>k(x) ≤ P>k(x), and so (3.5) yields

1 −
k∑

j=0

cj ≤ 2
∫ 1

0
(1 − y)P>k(y) dy, k ≥ 0. (3.7)
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Since πn,>k = 0 for n ≤ k, we have P
(t)
>k(0) = 0 for t ≤ k. It follows from (3.6) that

d2
P>k(x)

dx2 =
∑
n≥2

(n)2πn,>kx
n−2

= 2
∑
n≥2

(n − 1)πn−1,>k−1x
n−2 + 2

∑
n≥2

xn−2
n−2∑
j=1

(n − 1 − j)πj,>k−1

= 2
d

dx

∑
ν≥1

πν,>k−1x
ν + 2

∑
j≥1

πj,>k−1x
j

∑
n≥j+2

(n − 1 − j)xn−2−j

= 2
dP>k−1

dx
+ 2

(∑
j≥1

πj,>k−1x
j

)(∑
ν≥1

νxν−1
)

= 2
dP>k−1

dx
+ 2

(1 − x)2 P>k−1(x).

Thus,
d2

P>k(x)

dx2 = 2
dP>k−1

dx
+ 2

(1 − x)2 P>k−1(x) (3.8)

with P
(r)
>k(0) = 0 for r ≤ k. In light of (3.7) it seems necessary, as before, to integrate

successively the differential equations (3.8) for P>k′(x), k′ = 1, 2, . . . , k, and then to evaluate
the right-hand side of the bound (3.7). In fact, that is how we computed the bounds (3.7) for k

up to 10; linearity of (3.8) was critical for success of this computation. The data showed, rather
compellingly, that the bound decays faster than ( 1

2 )k . In the absence of any tractable expression
for P>k(x) when k is large, the issue was to find a way to bound the integral in (3.7) without
such an expression.

(iv) Linearity of (3.8) to the rescue again! Introduce

Ik,t =
∫ 1

0
(1 − y)tP>k(y) dy, k ≥ −1, t > 0;

so

1 −
k−1∑
j=0

ck ≤ 2Ik,1, k > 0. (3.9)

First note that, for t > 0,

I−1,t =
∫ 1

0
(1 − y)tP>−1(y) dy =

∫ 1

0
[−(1 − y)t + (1 − y)t−1] dt = 1

t (t + 1)
. (3.10)

Let us show that, for k ≥ 0, t > 0,

Ik,t = 2

(t + 2)2
[Ik−1,t + (t + 2)Ik−1,t+1]. (3.11)

Indeed, using P
(r)
>k(0) = 0 for r = 0, 1 and (3.8),

Ik,t =
∫ 1

0
(1 − y)tP>k(y) dy

= 1

(t + 2)2

∫ 1

0
(1 − y)t+2 d2

P>k(y)

dy2 dy
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= 2

(t + 2)2

∫ 1

0
(1 − y)t+2

[
dP>k−1(y)

dy
+ P>k−1(y)

(1 − y)2

]
dy

= 2

(t + 2)2

[
(t + 2)

∫ 1

0
(1 − y)t+1

P>k−1(y) dy +
∫ 1

0
(1 − y)tP>k−1(y) dy

]

= 2

(t + 2)2
[Ik−1,t + (t + 2)Ik−1,t+1].

In particular,
Ik,1 = 1

3 [Ik−1,1 + 3Ik−1,2] ≥ 1
3Ik−1,1,

so that Ik,1 ≥ constant×( 1
3 )k . Next We show that, in fact, Ik,1 ≤ constant×( 1

3 )k , i.e. Ik,1 is of
order ( 1

3 )k exactly.
To this end, fix τ > 0 and consider Ik,t for k ≥ −1 and t ≥ τ . Let us show that

Ik,t ≤ 1

(t + 1)2

(
2

τ + 2

)k+1

. (3.12)

By (3.10), the bound holds for k = −1. Inductively, if it holds for some k ≥ 0 then by (3.11),

Ik+1,t ≤ 2

(t + 2)2

[
1

(t + 1)2

(
2

τ + 2

)k+1

+ t + 2

(t + 2)2

(
2

τ + 2

)k+1]

= 2

(t + 2)3

(
2

τ + 2

)k+1

≤ 1

(t + 1)2

(
2

τ + 2

)k+2

.

So the bound (3.12) is proven. In particular, for t ≥ 4,

Ik,t ≤ 1

(t + 1)2

(
1

3

)k+1

�⇒ Ik,4 ≤ 0.05

(
1

3

)k+1

.

Using (3.11) for t = 3, we have

Ik,3 = 1
10 Ik−1,3 + 1

2Ik−1,4 ≤ 0.1Ik−1,3 + 0.025
( 1

3

)k
.

Iterating this recurrence inequality and using (3.10) for I−1,3, we obtain

Ik,3 ≤ 1

3 · 4

(
1

10

)k+1

+ 0.025

(
1

3

)k ∑
j≥0

(
3

10

)j

=
(

1

3

)k+1( 1

12
+ 0.025

(
30

7

))

≤ 1

5

(
1

3

)k+1

. (3.13)

Analogously, using (3.11) for t = 2 in conjunction with (3.13), we iterate the resulting
recurrence inequality

Ik,2 ≤ 1
6Ik−1,2 + 2

15

( 1
3

)k
.
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Recalling (3.10) for I−1,2, we obtain

Ik,2 ≤ ( 1
3

)k+1
. (3.14)

Finally, combining (3.11) for t = 1 and (3.14), we have

Ik,1 ≤ 1
3Ik−1,1 + ( 1

3

)k
.

Using this recurrence, and (3.10) for I−1,1, we arrive at

Ik,1 ≤ 6k + 7

6

(
1

3

)k

. (3.15)

The bounds (3.9) and (3.15) taken together imply that

1 −
k∑

j=0

cj ≤ 6k + 7

3

(
1

3

)k

. �

Next we prove a qualitatively matching lower bound for 1−∑k
j=0 cj . Introduce the function

g(α) = α + α log(2/α) − 1. The equation g(α) = 0 has two positive roots. Let α0 denote the
smaller root; α0 ≈ 0.373. It was proved in [13] that the likely length of the shortest path from
the root of the random tree to a leaf is at least (α0 − ε) log n for every ε > 0.

Theorem 3.2. There exists a positive constant γ such that, for all k ≥ 0,

1 −
k∑

j=0

cj ≥ γ e−k/α0 .

Proof. We split the proof into two parts. (i) Given an integer m, consider the random tree
on [m]. Let Sm denote the edge length of the shortest path from the root to a leaf. Then, for
every s ∈ [0, m − 1],

P(Sm ≤ s) =
∑
μ≤s

P(Sm = μ) ≤
∑
μ≤s

E[Xm,μ],

where Xm,μ is the total number of leaves at distance μ from the root. By (4.1), proved
independently in the next section,

E[Xm,μ] ≤ 2μ

(μ − 1)!
(log m + 1)μ−1

m
.

So, given γ > 0, we have, for μ ≤ γ log m,

E[Xm,μ] ≤ μ

m(log m + 1)

2μ(log m + 1)μ

μ! ≤ γ eγ

m

(
2 log m

μ/e

)μ

.

As a function of μ, the right-hand side increases for μ ≤ 2 log m. Assuming that γ ≤ 2, we
obtain

P(Sm ≤ γ log m) ≤ γ 2eγ log m

m

(
2e

γ

)γ log m

= γ 2eγ (log m)eg(γ ) log m.

Now g(α) is strictly increasing on [0, α0], from g(0) = −1 to g(α0) = 0. So picking γ = α0/2
say, we obtain

P

(
Sm ≤

(
α0

2

)
log m

)
≤

(
α0

2

)2

eα0/2mg(α0/2) log m = o(1). (3.16)
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For α := μ/ log m ∈ (α0/2, α0), we have (see [13])

E[Xm,μ] = (1 + O(εm))K(α)(log m)−1/2eg(α) log m, K(α) := (
√

2πα�(α))−1eα−1,

where limm→∞ εm = 0. By the convexity of g(α) on [0, α0],
g(α) ≤ g(α0) + (α − α0)g

′(α0) = (α − α0)g
′(α0),

where g′ := g′(α0) > 0. Therefore,
∑

α∈(α0/2,α0]E[Xm,μ] is of order

(log m)−3/2
∫ α0g

′

α0g′/2
e−x dx = O((log m)−3/2).

Recalling (3.16), we conclude that

P(Sm ≤ α0 log m) = O((log m)−3/2). (3.17)

(ii) Given � ≥ 0, let Yn,� denote the total number of subtrees of size m ≥ �. Then, for n ≥ �,

E[Yn,�] = 1 + 1

n

n−1∑
j=0

(E[Yj,�] + E[Yn−1−j,�])

with E[Yj,�] = 0 for j < �. The standard computation shows that

E[Yn,�]
n + 1

= 2

� + 1
− 1

n + 1
�⇒ E[Yn,�]

n
=

(
1 + 1

n

)(
2

� + 1
− 1

n + 1

)
. (3.18)

Consider a generic subtree on m ≥ � vertices. Conditioned on its vertex set {p(i1), . . . , p(im)},
i1 < · · · < im, this subtree has the same distribution as the tree on [m] grown from a uniformly
random permutation of [m]. So, denoting S(p(i1), . . . , p(im)) the length of the shortest root-
to-leaf path in this subtree by (3.17), we have, uniformly for m ≥ �,

P(S(p(i1), . . . , p(im)) > α0 log � | p(i1), . . . , p(im)) = 1 − O((log �)−3/2).

Let Zn,� denote the total number of the subtrees of size m ≥ � such that the shortest root-to-leaf
path has length exceeding α0 log �; clearly,∑

j≥α0 log �

En,j ≥ E[Zn,�].

From this equation, it follows that

E[Zn,� | Yn,�] = [1 − O((log �)−3/2)]Yn,�.

Combining this with (3.18), we obtain

E[Zn,�]
n

= 2

� + 1
[1 + O((log �)−3/2 + n−1)].

Therefore,∑
j≥α0 log �

cj = lim
n→∞ n−1

∑
j≥α0 log �

En,j ≥ lim inf
n→∞

E[Zn,�]
n

= 2

� + 1
[1 + O((log �)−3/2)].
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Pick k > 0 and set � = �ek/α0�. Then the above estimate implies that

∑
j>k

cj ≥ 2

�ek/α0� + 1
[1 + O(k−3/2)] ≥ 2

3
e−k/α0 [1 + O(k−3/2)]. �

Remark 3.1. By Theorems 3.1 and 3.2, the radius of convergence of
∑

k ckx
k is in the interval

[3, e1/0.373...]. What is the exact value of the radius?

4. Variations

Besides En,k , the expected counts of rank-k vertices, it is also natural to consider Fn,k and
Gn,k , the expected number of all pairs (v, u), where v is a vertex of rank k and u is a descendant
leaf of v and the expected number of all pairs (v, u), where v is a vertex of rank k and u is a
closest descendant leaf of v.

Let us show that, for each k, there exist finite limits fk = limn→∞ Fn,k/n, and gk =
limn→∞ Gn,k/n. Consider Fn,k , for example. Introducing fn,k , the expected product of the
number of leaves of the random tree and the indicator of the event {root rank = k}, we have

Fn,k = fn,k +
(

1

n

) n−1∑
j=0

(Fj,k + Fn−1−j,k), n > 1.

For n > 0, fn,0 = 0; for k > 0, using (2.6),

fn,k ≤ (n − 1)P(root rank = k)

≤ nE[Xn,k]

≤ n2k[xn] 1

k!
(

log
1

1 − x

)k

= 2k n

n! [yk−1](y + 1) · · · (y + n − 1)

= 2k n(n − 1)!
n!

( ∑
0<i1<···<ik−1<n

1

i1 · · · ik−1

)

≤ 2k

(k − 1)!
( ∑

1≤i≤n−1

1

i

)k−1

≤ 2k

(k − 1)! (log n + 1)k−1

= O((log n)k−1). (4.1)

So xn := Fn,k and yn := fn,k meet the conditions of Lemma 2.1 with ε ∈ (0, 1). Consequently,
for each k, there exists a finite fk := limn→∞ Fn,k/n.

To compute fk and gk , we need the recurrences similar to (3.2) and (3.3). Introduce
fn,>k = ∑

j>k fn,j , and Ak(x) = ∑
n≥1 xnFn,k , Bk(x) = ∑

n≥1 xnfn,k , and B>k(x) =∑
n≥1 xnfn,>k . Then Bk(x) = B>k−� (x) − B>k(x).
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Lemma 4.1. For all nonnegative integers k, the following equalities hold:

d

dx
Ak(x) = �

� − x
Ak(x) + d

dx
Bk(x), (4.2)

d

dx
B>k(x) = �

(
�

� − x
− B≤k−� (x)

)
B>k−� (x). (4.3)

Here {B≤t (x)} is the sequence determined by the recurrence (3.3), B≤−1(x) := 0, and
B>−� (x) = B≥�(x) is the generating function of the expected numbers of leaves, i.e.

B>−� (x) = x − �

�
+ �

�(� − x)�
.

Consequently,

fk = 2
∫ 1

0
(1 − x)Bk(x) dx. (4.4)

Proof. Let ‘root’ denote the root of the random tree Tn on [n]. Let Ln denote the total
number of leaves of Tn. For n ≥ 2, Ln = L′ + L′′, where L′ and L′′, denote the total number
of leaves in the left subtree T ′ and the right subtree T ′′, respectively. Let root′ (respectively,
root′′) denote the root of T ′ (respectively, T ′′) if this subtree is nonempty. If both subtrees are
nonempty then

1{R(root)>k)} = 1{R(root′)>k−1} 1{R(root′′)>k−1}, k ≥ 0.

Let 0 < j < n − 1. Now, conditioned on the event ‘the vertex set of T ′ is a given set J of j

elements from [n] \ root’, the subtrees T ′ and T ′′ are independent, and marginally distributed
as Tj and Tn−1−j , respectively. So

E[1{R(root)>k} Ln | J ] = E[1{R(root′)>k−1} 1{R(root′′)>k−1}(L′ + L′′) | J ]
= E[1{R(root′)>k−1} 1{R(root′′)>k−1}(Lj + Ln−1−j )]
= E[1{R(root′)>k−1} Lj ] P(R(root′′) > k − 1)

+ E[1{R(root′′)>k−1} Ln−1−j ] P(R(root′) > k − 1)

= fj,>k−1pn−1−j,>k−1 + fn−1−j,>k−1 pj,>k−1,

where pν,>k−1 := P(R(root of Tν) > k − 1). Setting f0,>k−1 = 0, p0,>k−1 = 1, we see that
the last equality also holds for j = 0, n − 1. Since |J | is uniform on {0, . . . , n − 1}, we obtain

fn,>k = E[1{R(root)>k} Ln] = 2

n

n−1∑
j=0

fj,>k−1pn−1−j,>k−1.

It follows immediately that

d

dx

∑
n≥1

fn,>kx
n = 2

(∑
n≥0

pn,>k−1x
n

)(∑
n≥1

fn,>k−1x
n

)
,

which is equivalent to (4.3), since

∑
n≥0

pn,>k−1x
n = 1 +

∑
n≥1

(1 − pn,≤k−1)x
n = 1 + x

1 − x
− B≤k−1(x) = 1

1 − x
− B≤k−1(x).
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Equation (4.2) is implied by a simple recurrence

Fn,k = fn,k + 2

n

n−1∑
j=0

Fj,k, n ≥ 2, k ≥ 0.

Finally, from (4.2), we obtain

fk = lim
x↑1

(1 − x)2Ak(x) =
∫ �

�
(� − x)�

d

dx
Bk(x) dx = �

∫ �

�
(� − x)Bk(x) dx.

The proof of Lemma 4.1 is complete. �
Next, introduce

Âk(x) =
∑
n≥1

xnGn,k and B̂k(x) =
∑
n≥1

xngn,k,

where gn,k := E[1{R(root)=k} Ln] and Ln is the number of leaves closest to the root of the tree.

Lemma 4.2. The following equalities hold:

d

dx
Âk(x) = 2

1 − x
Âk(x) + d

dx
B̂k(x), k ≥ 0, (4.5)

d

dx
B̂k(x) = 2[1 + B≥k−1(x)]B̂k−1(x), k > 0, (4.6)

with B̂0(x) = x. Consequently,

gk = 2
∫ 1

0
(1 − x)B̂k(x) dx. (4.7)

Proof. Let us prove (4.6). Recall that Ln denotes the total number of leaves closest to the
root of Tn. For n ≥ 2, let L′ and L′′ denote the total number of leaves in the left subtree T ′ and
the right subtree T ′′ closest to the respective root. Let k > 0. If both subtrees are nonempty,
i.e. 0 < j < n − 1 then

1{R(root=k)} Ln = 1{R(root′)=k−1} 1{R(root′′)=k−1} Ln

+ 1{R(root′)=k−1} 1{R(root′′)>k−1} Ln + 1{R(root′)>k−� } 1{R(root′′)=k−� } Ln

= 1{R(root′)=k−1} 1{R(root′′)=k−1}(L′ + L′′)
+ 1{R(root′)=k−1} 1{R(root′′)>k−1} L′ + 1{R(root′)>k−� } 1{R(root′′)=k−� } L′′.

The contribution of the first product on the last right-hand side to E[1{R(root)=k} Ln | J] is

gj,k−1pn−1−j,k−1 + gn−1−j,k−1pj,k−1.

The total contribution of the second product and the third product is

gj,k−1pn−1−j,>k−1 + gn−1−j,k−1pj,>k−1,

so that

E[1{R(root)=k} Ln | J] = gj,k−�pn−�−j,≥k−� + gn−�−j,k−�pj,≥k−� .
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The last equation continues to hold for j = 0 and j = n − 1, if we set p0,≥� = 1 for all � ≥ 0.
Consequently,

gn,k = E[1{R(root)=k} Ln] = �

n

n−�∑
j=�

gj,k−�pn−�−j,≥k−� ,

and (4.6) follows immediately. And, as before, (4.5) is the direct consequence of

Gn,k = gn,k + 2

n

n−1∑
j=0

Gj,k, n ≥ 2, k ≥ 0.

Equation (4.7) is proved in the same way as (4.4). �
Introduce Ln,k and L̂n,k , the total number of descendant leaves of rank-k vertices and the

total number of descendant leaves closest to rank-k vertices. Recalling the notation Vn,k for the
total number of rank-k vertices, we see that Ln,k/Vn,k and L̂n,k/Vn,k are the average numbers
of descendant leaves and the closest descendant leaves per vertex of rank k.

Theorem 4.1. For all nonnegative integers k, the following equalities hold:

lim
n→∞ E

[
Ln,k

Vn,k

]
= fk

ck

, lim
n→∞ E

[
L̂n,k

Vn,k

]
= gk

ck

.

Proof. Consider Ln,k/Vn,k, for instance. Observe first that Ln,k ≤ n. Now, for a = 1/k!
and ε > 0, write

E

[
Ln,k

Vn,k

]
= E

[
Ln,k

Vn,k

1{Vn,k<0.03an}
]

+ E

[
Ln,k

Vn,k

1{Vn,k≥0.03an} 1{|Vn,k/n−ck |>ε}
]

+ E

[
Ln,k

Vn,k

1{Vn,k≥0.03an} 1{|Vn,k/n−ck |≤ε}
]

= E1 + E2 + E3.

Here, by Lemma 2.4 and Corollary 2.2, respectively,

E1 ≤ ne−0.01an1−δ → 0, E2 = O

(
P

(∣∣∣∣Vn,k

n
− ck

∣∣∣∣ > ε

))
→ 0 as n → ∞,

and

E3 = 1

n(ck + O(ε))
E[Ln,k 1{Vn,k≥�.��an} 1{|Vn,k/n−ck|≤ε}]

= E[Ln,k/n]
ck + O(ε)

[
1 + O

(
P(Vn,k < 0.03an) + P

(∣∣∣∣Vn,k

n
− ck

∣∣∣∣ > ε

))]
.

Therefore,

lim
ε↓0

lim sup
n→∞

E3 = lim
ε↓0

lim inf
n→∞ E3 = fk

ck

.

So limn→∞ E[Ln,k/Vn,k] = fk/ck. The proof for E[L̂n,k/Vn,k] is similar. �
Note that a slight modification of the proof of Corollary 2.2 shows that, in probability,

Ln,k/n → fk and L̂n,k/n → gk . Therefore, Ln,k/Vn,k → fk/ck, and L̂n,k/Vn,k → gk/ck

in probability as well.
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Using MAPLE® to integrate the differential equations (4.3) and (4.6), we compute {fj }j≤2
and {gj }j≤2 via (4.4) and (4.7), respectively, as

f0 = 1
3 , f1 = 17

30 , f2 = 152 389
170 100 , g0 = 1

3 , g1 = 1
3 , g2 = 49

180 .

Therefore,

f0

c0
= 1,

f1

c1
= 17

9
,

f2

c2
= 152 389

361 41
,

g0

c0
= 1,

g1

c1
= 10

9
,

g2

c2
= 2205

1721
.

Remark 4.1. (i) The fact that g0, g1 are both 1
3 follows from the observation that, for n ≥ 2,

the number of pairs (v, u), where v is a rank-k vertex and u is its closest descendant leaf, is the
same as the number of all leaves when k = 0 or k = 1.

(ii) The data suggest that both fk/ck and gk/ck increase with k, albeit at a slower rate for gk/ck .

5. Numerics and gap-free factorization conjecture

In conclusion we present some intriguing experimental data on number-theoretic properties
of {ck}. Recall that, by (3.4),

k∑
j=0

cj = 2
∫ 1

0
(1 − y)B≤k(y) dy. (5.1)

Then, using (3.3),∫ 1

0
(1 − y)B≤k(y) dy = 1

2

∫ 1

0
(1 − y)2B≤k(y)′ dy

= 1

2

∫ 1

0
[2 − 2y + y2 − (1 − (1 − y)B≤k−1(y))2] dy,

so
k∑

j=0

cj =
∫ 1

0
[2 − 2y + y2 − [1 − (1 − y)B≤k−1(y)]2] dy. (5.2)

Equation (5.2) enables us to compute ck directly through B≤k−1(x), without knowing Bk(x).
Using this simplification, we have obtained the exact values of c4 and c5. That is, we have

computed that c4 is equal to

122 058 464 141 653 662 196 290 113 232 646 304 412 999 902 283 512 425 580 156 787 323
3 353 377 025 022 449 199 852 900 725 670 960 067 418 280 803 797 231 788 288 000 000 000 ,

a fraction whose denominator has 67 digits, and whose approximate value is 0.0364. Combining
this with the values of ci for i ≤ 4, we see that about 99.14 percent of all vertices in all trees
of size n are of rank 4 or less, and the same holds with high probability for the random tree as
well.

The prime factorization of the denominator denom(c4), when c4 is written in simplest terms,
obtained by MAPLE, is even more interesting, since it is

denom(c4) = 217 × 318 × 59 × 78 × 118 × 137 × 176 × 195 × 234 × 292 × 31.

So the largest prime divisor of denom(c4) is 31, which is a tiny number compared to denom(c4).
Even more striking is the fact that denom(c4) is divisible by every prime up to 31. In stark
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contrast, the numerator of c4, while comparable in size to the denominator, is the product of
just two primes, the smaller of which is 232 196 467.

This surprising fact warrants a second look at the numbers ck for k ≤ 3, already com-
puted in [2]. The factorized representation of the denominators, including denom(c4) are as
follows:

• denom(c0) = 3,

• denom(c1) = 2 × 5,

• denom(c2) = 22 × 34 × 52,

• denom(c3) = 28 × 37 × 55 × 73 × 113 × 132 × 17, and

• denom(c4) = 217 × 318 × 59 × 78 × 118 × 137 × 176 × 195 × 234 × 292 × 31.

So all denom(ck) for k ≤ 4 have very small prime divisors. With the exception of k = 0 and
k = 1, it seems that the prime divisors of denom(ck) are precisely the first t prime numbers
for some t . Those two exceptions may be a reflection of how relatively simple the counting of
leaves and their fathers is.

Even though the computation of c4 was already exceptionally time consuming, we decided
to compute the next value c5. This task turned out to be so problematic that time and again
we were tempted to give up. Mobilizing all the insight into the algebraic form of the functions
Bj (x), we eventually obtained the answer. The approximate value of c5 is 0.0074. So, with high
probability, about 99.875 percent of all vertices are of rank 5 or less. The number denom(c5)

has 274 digits, and its prime factorization is

248 × 342 × 528 × 718 × 1116 × 1316 × 1717 × 1916 × 2315 × 2912 × 3112 × 3710 × 419

× 438 × 477 × 535 × 593 × 612.

If not for this strikingly simple factorization, we would not dare to type in the 274-digit long
monster. So yet again, denom(ck) has only very small prime factors, and it is divisible by every
prime up to its largest prime factor, 61. (As for the numerator, its smallest prime divisor must
be extremely large as MAPLE’s factorization algorithm failed the task.)

Based on these data points, we guessed at and proved the following theorem.

Theorem 5.1. Let denom(ck) be the denominator of ck when ck is written in its smallest terms.
Then the largest prime divisor of the denominator is at most 2k+1 + 1; this bound is attained
for k = 3, 4, 5.

Conjecture 5.1. Let k ≥ 2, and let pk be largest prime divisor of denom(ck). Then denom(ck)

is divisible by every prime less than pk .

Perhaps it is also true that the smallest prime divisor of the numerator of ck grows super-
exponentially with k, but we hesitate to make any specific guess. The reason the second
conjecture is out of reach for now is simple: the numerator of ck is a sum of a very large set of
summands, and we are unable to prove that the sum will not be divisible by at least as high a
power of a given prime p as the denominator of ck .

Proof of Theorem 5.1. Before embarking on the proof, we will need a few simple technical
lemmas.
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Recall that Bk(x) denotes the exponential generating function for the numbers of trees on
vertex set [n] whose root is of rank k. The first two examples are B0(x) = x, and B1(x) =
2 log(1/(1 − x)) − 2x − x3/3.

Lemma 5.1. For all natural numbers k, we have Bk(x) ∈ PL, meaning that Bk(x) is a bivariate
polynomial Pk(u, v) at u = (1 − x), v = log 1/(1 − x).

Proof. See Lemma 4.1 of [2]. �

It was also proved in [2] that the class PL is closed under integration. In fact, the following,
stronger statement is true.

Lemma 5.2. Let b and c be nonnegative integers, and let us write

∫
(1 − x)b log

(
1

1 − x

)c

dx =
m∑

i=1

ai(1 − x)bi log

(
1

1 − x

)ci

with the rational numbers ai written in their simplest form. Then, for all i, the denominator
of ai has no prime divisor larger than b + 1.

Proof. This follows by induction on c, the initial case of c = 0 being obvious. Indeed,
integration by parts yields∫

(1 − x)b log

(
1

1 − x

)c

dx

= − log

(
1

1 − x

)c
(1 − x)b+1

b + 1
+

∫
(1 − x)b

b + 1
c log

(
1

1 − x

)c−1

dx, (5.3)

and the proof is complete. Note that this argument also shows that in the statement of Lemma 5.2,
the inequalities bi ≤ b + 1 and ci ≤ c hold. �

Note that equation (5.3) implies that

Ib,c :=
∫ 1

0
(1 − x)b log

(
1

1 − x

)c

dx = 1{c=0}
b + 1

+ c

b + 1
Ib,c−1,

so iterating the same operation, we obtain

Ib,c = c!
(b + 1)c+1 . (5.4)

Lemma 5.3. When written in simplest form, no term of Bk(x) has a denominator with a prime
divisor larger than 2k+1 − 1. Furthermore, both the exponent bi of (1 − x) and the exponent ci

of log(1/(1 − x)) in the PL form of Bk(x) are at most as large as 2k+1 − 1.

Proof. We prove the lemma by strong induction on k. It is straightforward to check that
B0(x) and B1(x) satisfy both requirements. Now let us assume that the claims of the lemma
are true for all Bj (x) with j < k, and prove them for Bk . Equation (3.1) shows that B ′

k(x)

is a quadratic form of Bi(x) with i < k and (1 − x)−1. Consequently, B ′
k(x) is of the form∑m

i=1 ai(1 − x)bi log(1/(1 − x))ci , where bi ≥ −1 is an integer, while ai is rational and ci is
a nonnegative integer. Moreover, it follows from (3.1) and the induction hypothesis that, in the
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sum representing B ′
k(x), both the exponent bi of (1 − x) and the exponent ci of log(1/(1 − x))

are at most as large as 2(2k − 1) = 2k+1 − 2.
Now the contribution of

∑
i:bi=−1 ai(1 − x)bi log(1/(1 − x))ci to Bk(x) itself is

∑
i:bi=−1

ai

ci + 1
log

(
1

1 − x

)ci+1

with ci + 1 ≤ 2k+1 − 1. As for the contribution to Bk(x) of the remaining summands with
bi ≥ 0, using Lemma 5.2 and by (5.3), we see that in all the summands neither the exponent
of (1 − x) nor the exponent of log(1/(1 − x)) can exceed 2k+1 − 1, since integration of the
terms with bi ≥ 0 and ci ≥ 0 will increase these exponents by at most 1. As addition and
multiplication of terms will not result in the appearance of a larger prime divisor, the claim for
Bk(x) is proved. �

Armed with these lemmas, we complete the proof of Theorem 5.1 as follows. By (5.1),

ck = lim
x↑1

(1 − x)2Ak(x) = 2
∫ 1

0
(1 − x)Bk(x) dx.

Here

Bk(x) =
∑

i

ai(1 − x)bi

(
log

1

1 − x

)ci

, 0 ≤ bi, ci ≤ 2k+1 − 1,

and no ai has a denominator with a prime divisor larger than 2k+1 − 1. From (5.4), it follows
that ck is the sum of rational numbers, whose denominators do not have prime divisors exceeding
2k+1 + 1, which is a common upper bound for the largest denominator of ai and for the largest
bi + 2. This completes the proof of the theorem. �
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