
THE AERONAUTICAL JOURNAL NOVEMBER 2019 VOLUME 123 NO 1269 1788

pp 1788–1806. c© Royal Aeronautical Society 2019
doi:10.1017/aer.2019.80

A real-time on-chip network
architecture for mixed criticality
aerospace systems
S. Majumder
sm@es.aau.dk
J.F.D. Nielsen
jdn@es.aau.dk
A. La Cour-Harbo
alc@es.aau.dk
H. Schiøler
henrik@es.aau.dk
T. Bak∗

tba@es.aau.dk
Department of Electronic Systems, Aalborg University
Aalborg, Denmark

ABSTRACT
Integrated Modular Avionics enables applications of different criticality levels to share
the same hardware platform with an established temporal and spatial isolation. On-chip
communication systems for such platforms must support different bandwidth and latency
requirements of applications while preserving time predictability. In this paper, our concern is
a time-predictable on-chip network architecture for targeting applications in mixed-criticality
aerospace systems. The proposed architecture introduces a mixed, priority-based and time-
division-multiplexed arbitration scheme to accommodate different bandwidth and latency in
the same network while preserving worst-case time predictability for end-to-end communi-
cation without packet loss. Furthermore, as isolation of erroneous transmission by a faulty
application is a key aspect of contingency management, the communication system should
support isolation mechanisms to prevent interference. For this reason, a sampling port and
isolated sampling buffer-based approach is proposed with a transmission authorisation control
mechanism, guaranteeing spatial and temporal isolation between communicating systems.

Keywords: Mixed-criticality system, Network on-chip, Real-time system, Embedded
system, On-Chip communication, Integrated Modular Avionics

∗ This research is funded by Independent Research Foundation Denmark under grant number 6111-00363B.

Received 8 November 2018; revised 21 May 2019; accepted 12 July 2019.

https://doi.org/10.1017/aer.2019.80 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2019.80
https://orcid.org/0000-0001-7900-9785
mailto:sm@es.aau.dk
mailto:jdn@es.aau.dk
mailto:alc@es.aau.dk
mailto:henrik@es.aau.dk
mailto:tba@es.aau.dk
https://doi.org/10.1017/aer.2019.80

MAJUMDER ET AL A REAL-TIME NOC FOR MIXED-CRITICALITY SYSTEMS 1789

1.0 INTRODUCTION
A modular aerospace system, where multiple applications of different criticality and certifi-
cation assurance level are integrated on a shared computational resource, require analysable,
deterministic and hard-real-time end-to-end communication for certification as well as safety
purposes.

Systems of different criticality levels can have different timing requirements. For example
a flight control system, an application of Design Assurance Level A (DAL A)(1), the highest
level of criticality in aviation standards, has hard-real-time timing requirements where the
timing margins are less than 10milliseconds(2), whereas a multimedia entertainment system,
a DAL E application, does not have any such real-time requirements at all. The on-chip com-
munication system should have the capability of prioritising critical applications to meet the
hard-real-time requirements and eliminate the need for additional on-chip communication
systems for soft-real-time requirements.

Communication between applications in an aerospace system is built upon the concept
of sampling ports, where a fresh data packet overwrites an older data packet in a single
packet buffer, and the receiving application can read it single or multiple times(3). Each sub-
system may produce/consume single or multiple channel(s) once per computational cycle,
where, each channel is assigned to specific parameters from IO devices or other subsystems.
However, frequent communication between the applications and certain intellectual property
cores (IPcores) (e.g. memory blocks or hardware-accelerators) can be expected and requires
a larger communication bandwidth.

A faulty communication in the airborne system, as identified in Ref. (2), can be detected by
the consumer application with a data validation technique, except for delivery of a message
to a wrong recipient. Such an error can be caused by a faulty producer application or a faulty
communication system, and some protection technique is essential to identify the source of
incoming messages and guarantee the authenticity of received data packets.

The recent developments in on-chip communications are primarily focused on Network-on-
Chip (NoC) architecture. The development is driven by general purpose computation needs
and focused on efficient utilisation of network resources and best over-all performance(4), and
it often neglects the time-predictability aspects.

In this work, we present an on-chip network targeting application in aerospace systems-on-
chip. We propose a mixed, priority-based and time-division-multiplexed (TDM) arbitration
to support different bandwidth and latency requirements of mixed-criticality systems on the
same network with additional data protection and isolation mechanism for safe and time-
analysable end-to-end communication.

The specific contributions of this work include:
� A real-time on-chip communication network architecture to accommodate different

bandwidth and latency in the same network.
� An arbitration mechanism to support different bandwidth and latency requirements with

time-analysable end-to-end communication without packet loss.
� A configurable isolation mechanism to prevent interference from erroneous transmission,

and a hardware-level protection mechanism against unauthorised communication.

2.0 BACKGROUND AND RELATED WORK
2.1 Mixed criticality in aerospace system
In Integrated Modular Avionics (IMA)(5), several systems and subsystems of different crit-
icality levels and functionalities are integrated on one hardware platform. Resource sharing

https://doi.org/10.1017/aer.2019.80 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2019.80

1790 THE AERONAUTICAL JOURNAL NOVEMBER 2019

and robust partitioning are the key concepts for such an implementation, where each partition
is allocated a set of spatial resources and a mechanism in the platform that provides spatial
segregation between them. The temporal isolation is established by allocating resources to
the partitions at specific time slots and preventing access outside the time slot assigned to it.
Hardware architecture of a typical IMA platform can consist of a set of computing processing
modules that are grouped into clusters so that each group is connected to the same ARINC
664(6) switch. Related systems and subsystems are implemented in the same group for low
latency communication over the same switch(7). Recent advancement in microprocessor tech-
nology provides a many-core processor, isolated from each other, where the IMA architecture
can be implemented(8) with an on-chip communication network for inter-system communi-
cation(9,10). Such single-core equivalent multi-core system, mutually isolated processors with
dedicated resources, avails isolation between software running on separate processors and the
requirement of isolation comes to the NoC for overall isolation in the system.

2.2 Network on Chip
The use of NoC in a real-time system imposes complex constraints in the overall design(11).

Xpipes(12) is a NoC where the network is tailored to meet the bandwidth requirements at its
design stage. Such a system could be hard to implement as foreseeing the exact communica-
tion load is difficult to analyse and affects the scope of any future modification of the system.
A circuit switching method is applied in SoCBUS(13) and a concept called a packet-connected
circuit was introduced where a data packet is switched through a dynamic minimum route
locking the circuit as it moves. This type of communication is effective where the traffic
follows a fixed rule, but not effective where the data is not patterned like in an avionics sys-
tem, where data sequence depends upon the relative state of the applications. In Ref. (14), an
alternative solution is proposed based on backtrack probing to avoid waiting for blocked chan-
nels to become available, seeking for alternative non-minimal routes. A synchronous circuit
switching NoC is presented in Ref. (15), and a concept of spatial division multiplexing is
introduced where the lane is divided to provide physical separation between data streams.

2.2.1 Priority

A connectionless packet-switching approach is demonstrated in Ref. (16), where the routers
work independently and a wormhole switching technique is typically used. The flows are
prioritised based on some fixed manner, and the flow with the highest priority is given pref-
erence. The drawback of such a design is that packets with low priorities may be dropped or
stalled for a long time and has a longer latency. In Ref. (17), the authors propose a low end-
to-end latency with guaranteed service traffic. In Refs. (18–20), the authors address the low
priority packet block problem in connectionless NoC by introducing the concept of increasing
priority over waiting time. In contrast, this work offers a mixed, best effort and guaranteed
service traffic where flow with the highest priority is given preference by allocating more
bandwidth, while flow with lower priority is given the minimum bandwidth allocated by the
system designer to maintain worst-case time analysable communication.

2.2.2 Time Division Multiplexing

Time Division Multiplexing (TDM) is an arbitration scheme where a resource is shared
between channels in the time domain; only one channel is given access to the resources to
transmit for a fixed interval of time, called slots.

https://doi.org/10.1017/aer.2019.80 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2019.80

MAJUMDER ET AL A REAL-TIME NOC FOR MIXED-CRITICALITY SYSTEMS 1791

The concept of TDM is used in Refs. (21) and (22–24), where the resource is allocated
to channels based on time slots as an alternative to circuit switching. In Ref. (25), a glob-
ally asynchronous locally synchronous NoC has been illustrated for real-time application
with mesosynchronous routers. The implementation uses a wormhole switching technique
with TDM to prevent stall and deadlock and provides a solution in terms of no buffer-
ing, arbitration, real-time operation and no packet loss. However, the protection mechanism
is not addressed in this work, which focusses on Worst-Case Execution Time (WCET)
communication.

2.2.3 Related topologies

A star topology, where multiple ends are connected at a single point, can furnish a single
cycle end-to-end flit transfer with effective control and monitoring capabilities at the cost of
restricted communication between ends, where only one end can transmit at any given time.
Such a topology offers an efficient solution for one-to-many and low latency communication
and supports easy implementation of TDM or cyclic access to each end. As multiple ends
are connected to a single point (one router), the packet routing is simple, and determinism is
easy to achieve. Moreover, as all flits are routed through one single central router, the com-
munication in the network can be easily monitored. Similarly, any subsystems can be isolated
from the network without affecting other subsystems by restricting its access to transmit from
the central router. However, the waiting time for transmission from a transmitter is linearly
dependent upon the total number of transmitters in the network and can be long when a large
number of communicating ends are connected.

In a tree topology, communication between the closer ends can be very fast as the flits need
to hop through just one or a very few node(s). However, communication delay between two
ends situated at two far ends of the network can have high latency as the communication gets
bottlenecked at the top node.

3.0 ARCHITECTURE
In this work, a hybrid of star and tree topology has been considered, and this section explic-
itly addresses the architecture, the architectural benefits of the mixed-topology approach and
microarchitecture of the network components.

3.1 Overall architecture
The network is built around a hub, interfaced with multiple routers in the network in a star
topology and each router is attached to a single or multiple network-interfaces in a reverse fat-
tree topology, as shown in Fig. 1. An end-to-end data packet propagation from a producer to
a consumer through the network components is shown in Fig. 2. Under circumstances where
one or multiple routers dysfunction, such an architecture allows the operation in the rest of
the network to be invariant.

Instead of conventional first in, first out (FIFO) buffers, dedicated sampling buffers are
used to provide isolation to each channel. In cases of violation of transmitting agreement i.e.
maximum allowed bandwidth, only the associated sampling buffer gets overwritten (dropping
of old data packets of the violating channel), and the communication in the network and other
data channels remain unaffected.

The phit size, physical channel width, is equal to the flit size in this network; thus, each flit
can hop in a single cycle when access is provided.

https://doi.org/10.1017/aer.2019.80 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2019.80

1792 THE AERONAUTICAL JOURNAL NOVEMBER 2019

Hub

NI 2

NI 2

NI 2

NI 2 NI 1 NI 3

NI 3

NI 1

NI 1

NI 3

NI 3 NI 1

Router 2Router 1

Router 3Router 4

Figure 1. The proposed NoC architecture with 4 routers and 12 network-interfaces (NI). Communication
flow between two NIs is highlighted.

3.2 Network interface
The NI in a NoC has a critical role in implementing end-to-end communication between
two nodes. Figure 2 shows an example of data flow from a producer (Processor 1) to a con-
sumer (Processor 2) via associated NIs. This section addresses the overall architecture and
functionality of a NI in the proposed architecture.

Each NI has two ends, a front end and a back end, interfacing with the communicating end
and the router, respectively. An NI is connected to the router with separate transmission and
reception lines for simultaneous tx-rx operation and interfaced with the communicating end
(i.e. a producer/consumer) with a standard memory-mapping technique. Additionally, each NI
has a sampling transmission (Tx) buffer, a transmission channel index buffer and dedicated
(Rx) sampling buffers for each receiving channel, as shown in Fig. 3.

An NI can handle a fixed number of channels, and one or multiple NIs can be connected to
a producer or consumer depending upon the requirement for the number of channels. To send
a data packet to a destination NI, a producer writes the data in the transmission buffer with
the channel id of the data packet with a standard memory writing method. Each channel has a
configurable destination address stored in the NI that can be configured and re-configured by
the producer before starting the network by writing in the control registers. The data packets
are transmitted to the associated router. Each NI has a static identification number, and each

https://doi.org/10.1017/aer.2019.80 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2019.80

MAJUMDER ET AL A REAL-TIME NOC FOR MIXED-CRITICALITY SYSTEMS 1793

Tx buffer ch id

Rx buffer(s)
Network
Interface

Processor 1

MM_addr

NIRouter

Tx buffer ch id

Rx buffer(s)
Network
Interface

Processor 2

MM_addr

NI Router

Hub

Back end

Front end
Memory mapped interface

Figure 2. Block diagram showing end-to-end data packet flow.

NI in the network can be uniquely identified by a combination of associated router identifica-
tion number and NI identification number, which is used as a unique destination address for
transmission.

A fresh data packet written in the NI transmission buffer is sent to the connected router
and concatenated with the destination address and channel id in its header. There could be
application specific needs where the producer repeatedly sends the exact same data packets to
the consumer; to identify the reception of a fresh data packet from the NI, at the router, a single
bit signal line (NI to router) is toggled by the NI on every transmission. This mechanism has
additional protective benefits that are explained later.

At the beginning of a reception (data flow from a router to NI), the associated router sets
a single bit state signal to active, and the NI starts listening to the reception channel. On
successful reception, the NI validates the received message by checking the source address in
the header of the incoming data packet. Like a destination address, each NI has configurable
expected-source addresses (address of the producers) for each receiving channel; The data
packet is saved in the sampling buffer dedicated to the channel only if the source address
matches with the expected-source-address, otherwise discarded.

3.3 Router
The routers in this network operate in a fixed routing scheme without any routing algorithm.
Each router has a separate transmission and reception line to interface with the hub with two

https://doi.org/10.1017/aer.2019.80 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2019.80

1794 THE AERONAUTICAL JOURNAL NOVEMBER 2019

Tx Sample
buffer

+1

ch id

dest
addr

Tx Sample
bufferTx Sample

bufferRx Sample
bufferEn

Source check

En

En

T
x

D
at

a
to

gg
le

R
x

ac
tiv

e
R

x
D

at
a

datawrite

config

address

read_id

dataread

Network Interface

F
ro

n
t

en
d

B
ac

k
en

d

Source addr

Figure 3. Microarchitecture of the network-interface. The dashed lines represent configuration mode
operations.

n-bit lines indicating access-request and access-grant status as shown in Fig. 4, where n is the
number of NIs connected to the router.

Each router has dedicated sampling buffers for each channel from each NI to guarantee
isolation. The sampling buffers hold two flits (one data packet) with an 8-bit destination
address.

Once a fresh data packet is received from an NI, the router raises a transmission request
by setting the associated bit in the request line as high. The data packet received from the
NIs are stored in their associated sampling buffers, unless the router gets transmission access.
Once access is gained, the router transmits the data packet from the sampling buffer in three
flits; i.e. one header flit, followed by two payload flits. The router adds a source address in the
header flit next to the destination address.

There is no dedicated buffer for reception operation (hub to router); instead, the router
packs the two payload flits with the source address and sends it to the destination NI (refer
Fig. 8). Each router has a fixed and unique id so that a router NI id can be uniquely identified
in the network.

3.4 Hub
The hub is the central and most critical component of the proposed architecture and controls
arbitration. This section explains the microarchitecture of the hub.

The hub has separate transmission and reception channels for each router connected over a
crossbar (X-bar), as shown in Fig. 5. The hub is memory-less and all the routing performed

https://doi.org/10.1017/aer.2019.80 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2019.80

MAJUMDER ET AL A REAL-TIME NOC FOR MIXED-CRITICALITY SYSTEMS 1795

Chnnel id

sampling
buffer

transmission req

router addressChnnel id

sampling
buffer

Chnnel id

sampling
buffer

Unpacking
in flits

Unpacking
in flits

Unpacking
in flits

Tranm
ission

access

reception ctrl

Packing flits

destination NI

destination ch id

En

En

En

74

1

74

32

1

3

32

3

Figure 4. Microarchitecture of the router in a three-NI configuration.

in the hub is atomic. Furthermore, the hub has separate n-bit request and access lines for each
router connected, where n is the number of NIs connected to each router. The hub provides
transmission access to each router for a specific NI when requested by setting the associated
bit as high in the access line in a priority-TDM arbitration scheme, explained in the next
section. The hub enables the Rx data line only from the router with transmission access. An
erroneous transmission from a faulty router outside its access time gets discarded at the hub.
Once the access is provided to a router, the router starts transmitting, and the hub checks
for the destination router address in the header flit and activates the circuit to the destination
router in the X-bar. The path is locked until the last flit of the packet propagates through it i.e.
the second payload flit. Each transmission line to the routers has a single bit transmission-state
line that is held as high by the hub during an active transmission to the destination router.

If the hub reads a predefined destination address (e.g. 1111 1111, which is not a valid
destination address in this four-router configuration), the hub broadcasts the packet to all the
routers in the network.

https://doi.org/10.1017/aer.2019.80 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2019.80

1796 THE AERONAUTICAL JOURNAL NOVEMBER 2019

D
es

tin
at

io
n

A
dd

r
ch

ec
k

ac
ce

ss
 r

eq
ch

ec
k

Access
Control

Arbitrator

32 32

13

3

a

c

b

d

e

Figure 5. Microarchitecture of the hub in a four-router configuration: (a) transmission request lines from
routers, (b) access lines to router, (c) input-data lines, (d) output-data lines and (e) active transmission

lines.

4.0 ARBITRATION
In this section, we will discuss the conceptual aspects of the proposed arbitration and a generic
way of implementation without concentrating on the specifics of the actual implementation in
the NoC.

The goal of the arbitration is to accommodate a priority-based scheme with different band-
width and different latency allocation to each communicating node, guarantying end-to-end
time-deterministic communication without any packet loss. To accomplish this, a mixed
concept of TDM and a priority-token-passing scheme is proposed.

Assume that a number of producers are connected to a central node that handles the arbitra-
tion by controlling the transmission line from each producer. Each producer can have different
bandwidth and different latency requirements. However, the whole concept is based on the
assumption that the size of the data packet is defined and identical for all the messages. Each
producer is assigned a single or multiple slots in a TDM cycle based on its bandwidth require-
ments, and each slot in the TDM cycle has the same length as the transmission time of a
data packet. To assure completion of undergoing data packet transmission i.e. if one data
packet is unpacked in n flits and one flit transfer is m clock cycles long, then the slot length
in the TDM cycle is n × m clock cycles. A higher bandwidth requirement of a producer is
addressed by assigning a higher number of TDM slots to the producer, where a low latency

https://doi.org/10.1017/aer.2019.80 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2019.80

MAJUMDER ET AL A REAL-TIME NOC FOR MIXED-CRITICALITY SYSTEMS 1797

S1
S2

S3

S4

S9

S13

S16

Producer 3Producer 2Producer 1 Producer 4

Figure 6. The figure shows allocated slots to different producers to meet latency and bandwidth
requirements.

requirement is addressed by assigning multiple slots at multiple intervals in the TDM cycle,
as shown in Fig. 6.

Figure 6 represents a hypothetical case where access is provided to four producers by a
TDM cycle of 16 slots; Assume that producer 1 has the highest priority, low bandwidth and
low latency requirements, producer 4 has the lowest priority and high bandwidth requirement,
where producers 2 and 3 have moderate bandwidth requirement but the priority of producer
3 is higher than producer 2. The assumption taken into consideration is not random, and a
relation to a practical scenario is drawn later in this section. The low latency requirement
of producer 1 is accommodated by assigning multiple slots at multiple intervals to ensure
that worst-possible waiting time to get access is small. The higher bandwidth requirement of
producer 4 is fulfilled by assigning multiple slots. Producer 2 and 3 are assigned slots as per
bandwidth requirements.

However, in a practical implementation, multiple slots assigned to each producer to meet its
latency requirements are not always used, and such guaranteed service traffic is not efficient
in terms of resource utilisation. For example, producer 1 only uses one of the multiple slots
assigned to it to guarantee low latency transmission; additionally, as the TDM cycle of the
network is often much shorter than the computational cycle of the communicating nodes, all
of the producers do not transmit at every TDM cycle.

A priority-based token passing scheme, in addition to the TDM schedule, offers better
resource utilisation where transmission access is given to the producers based on a concept
of dynamic priority. The transmission access priority of a producer is determined by a prior
knowledge of a priority assigned to each producer by the system designer and the slot the
producer is competing for. All the fresh transmission requests are evaluated for the next slot,
and the ongoing transmission is never interrupted to prevent unfinished or broken data packets
at the producing or consuming end. Unserved accesses requests are re-considered for the

https://doi.org/10.1017/aer.2019.80 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2019.80

1798 THE AERONAUTICAL JOURNAL NOVEMBER 2019

Producer 3
Priority 3

Producer 2
Priority 2

Producer 1
Priority 4

Producer 4
Priority 0

S1
S2

S3

S4

S9

S13

S1

S16

Figure 7. The figure shows transmission request and transmission access in the proposed priority-TDM
cycle.

subsequent slot unless it receives transmission access. A producer drops the access request
when all the associated data packets are transmitted.

Each producer has the highest dynamic priority at the slot(s) initially assigned to it in the
TDM cycle and definitely gets transmission access irrespective of the access requests from
other high priority producers. The producer with the highest priority gets the transmission
access when competing for a free/unused slot initially assigned to another producer.

This TDM-dynamic-priority scheme is elaborated in Fig. 7 with the same four producer
scenarios considered earlier. The arrows show the transmission by each producer where the
thin lines represent the time in the TDM cycle when the transmission request is received from
each producer. At the beginning, producer 2 and 3 competes for slot 1 (which is allocated to
producer 1 in the TDM cycle), and producer 3 gets the transmission access as it has the higher
priority than producer 2 and no transmission request from producer 1; however, producer
2 gets the access of slot 2 and slot 3 as the dynamic priority of producer 2 is highest as
these slots are allocated to it in the TDM cycle (refer to Fig. 6). Producer 2 completes the
transmission and returns access at the end of slot 3, and producer 3 gets the access to the
following slot. Transmission request from producer 1, with the highest priority, is received
before completion of slot 4, and access is given for slot 5. The lowest priority producer 4
with the highest bandwidth requirements get the access at slot 8 when producer 3 finishes
transmission. Producer 4 continues transmission unless finished at slot 15, and the network is
idle at slot 16.

Such an arbitration can offer deterministic worst-case latency for all the producers and
guarantee transmission of packets of different priorities. This is a mixture of best effort and
guaranteed service where best effort is attempted when possible, but a guaranteed service is
maintained under all possible conditions, even for the producers with lowest priority.

https://doi.org/10.1017/aer.2019.80 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2019.80

MAJUMDER ET AL A REAL-TIME NOC FOR MIXED-CRITICALITY SYSTEMS 1799

The effectiveness of the arbitration can be better understood by analysing in the context
of flight control implementation, where signals with different functionalities and require-
ments can be categorised as discrete, sampling and streaming signals. Discrete signals are
triggered on the occurrence of some event that are not frequent but needs low latency end-to-
end transmission to meet hard-real-time constraints. Sampling data are regular and between
subsystems or IO devices that are transmitted limited times (mostly once) per computational
cycle. Streaming data, like log/data recorder or multimedia, has high bandwidth but lenient
latency requirements.

The hypothetical example we considered earlier, in fact, represents the same framework
where producer 1 represents discrete, producer 2 and 3 represent sampling and producer 4
represents streaming data transmission. When all the producers obey the transmission agree-
ment, the operation takes place as explained. In case of a dysfunction in a high priority
transmission, where the producer transmits more than the agreement, the arbitration guar-
antees transmission from low-priority producers, that is not achievable by a best effort only
traffic.

5.0 IMPLEMENTATION
Microarchitectures of the network components and the arbitration have been explained in
previous sections. This section explains the operation of the network.

5.1 Operation
The network must be configured before operation by configuring the destination and sources
addresses in the NIs for each channel. This is done by writing in the destination address
registers and expected-source address registers with a standard memory writing technique.
There is no memory access mechanism like Direct memory access (DMA) in this network,
and at the beginning of a transmission, the producer pushes a data packet to the associated NI
by a standard writing method for sending it to a pre-configured destination. Recall, the NI’s
interface with the communicating ends via a memory-mapped interface. As size of the data
packets and the number of flits per data packet are predefined and fixed to avoid any skew, the
need of a tail flit is obsolete in this architecture. The payload size is set to eight words, which
should accommodate all data types used in control applications. The producer is responsible
for evaluating the data size before transmission; if the data type is greater than the payload
size, the data should be segmented and each segment is sent separately; however, a data type
less than the payload size does not need any special treatment.

Once the writing process by the producer is complete, the data packet is transferred to the
router in the next clock cycle. The data packet received from the NI at the router contains an
8-bit destination address, followed by a 2-bit channel id, followed by the payload as shown
in Fig. 8. The flitisation and de-flitisation is done at the router on the received data from the
NIs and the hub, respectively. The data packet from an NI is unpacked into flits, with a single
header flit followed by the payload flits for transmission. The router adds a source address
i.e. a concatenation of the router address, NI address and channel id in the header, which is
later used for authentication. We have used a concept of the dynamic header where the size
and information in the header changes as the packets flows through the network to reduce the
amount of data flow, as shown in Fig. 8.

The router sets the associated transmission request line as high, and the line is held high
until all the flits from that specific NI are transmitted. The transmission access given to the

https://doi.org/10.1017/aer.2019.80 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2019.80

1800 THE AERONAUTICAL JOURNAL NOVEMBER 2019

Figure 8. Packing and unpacking of the data packet and data packet header at different stages of flow –
dst: 8-bit destination address; src: 8-bit source address; NI: 2-bit NI address; ch: 2-bits channel id.

routers are NI specific, and the router only transmits packets from the associated NI. This is
how the notion of prioritised arbitration implemented in the hub is carried to the NIs.

The hub consumes a single flit from the X-bar for the router with the transmission access
every clock cycle. A link is established between an input phit and an output phit based on the
destination address carried by the first flit, and the associated transmission state line to the
router is set to high in the same clock cycle. This path is maintained for at least the next two
flits (two cycles) and until the hub revokes the access.

The input line from the hub to the router can consume a phit at every cycle. Three succes-
sive incoming flits are pipe-lined and re-structured for transmission through router-to-NI line
that has a different phit size. The destination router de-flitise the flits with only destination
channel id and the source address in the header before sending it to the destination NI.

At the consumer end, the channel of the received data packet is identified from the channel
id in the header. Furthermore, the source id in the header is evaluated to check the authenticity
of the producer. The packet is stored in the receiving channel buffer if the source address
matches the expected source address, pre-configured in the NI.

5.2 Scheduling and latency analysis
The arbitration mechanism needs a static schedule before the network can operate, where
slots for each channel should be configured as per latency and bandwidth requirements. This
scheduling is done by the user and a separate process. A low latency requirement is fulfilled
by assigning multiple distributed slots in the TDM cycle. This could be a complex process to
strategically accommodate multiple slots in the TDM cycle as adding a new slot changes the
TDM cycle time and affects the latency of other schedules. Moreover, the maximum number
of slots in the TDM cycle is also limited due to physical limitation of resources. In this work,
the maximum number of slots is fixed to 96.

A tool is developed that computes the schedule with an iterative method. The user needs
to input the number of producers and bandwidth and latency requirements for each producer.
The tools initiate by assigning the number of slots based on bandwidth requirements only,
where higher requirement of bandwidth is accommodated by assigning more than one slot
to the channel. Next, the tool sequentially picks the channel and inserts additional slots or
removes slots assigned to the selected channel to meet latency requirements. Asserting or
removing slots for one channel affects the schedule of other channels, and the tool iterates
the process until the latency requirements are met for all the channels. The tool outputs the

https://doi.org/10.1017/aer.2019.80 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2019.80

MAJUMDER ET AL A REAL-TIME NOC FOR MIXED-CRITICALITY SYSTEMS 1801

schedule and the total number of slots in the TDM-cycle. If the number of required cycles
computed by the tool exceeds the physical limitation of the network, either the network needs
to be reconfigured or the latency requirements should be more lenient, or number of channels
can be reduced.

The end-to-end latency is dynamic and depends upon the number of communicating ends
and load on the network. However, the worst-case latency only depends on the number of
communicating nodes used in the network and fixed unless the configuration is modified. The
worst-case latency can be computed by reversing the concept of scheduling, as:

Lchannel =
(⌊

Stotal − 1

Schannel

⌋
+ 1

)
× tslot + 1 . . . (1)

where, latency of a channel in clock cycles is Lchannel, Schannel is the number of slots assigned
to the channel, Stotal is the total number of slots in the TDM-cycle and tslot is the clock cycle
per TDM-slot.

5.3 Protection and isolation
Data protection and established isolation are one of the primary concerns for application in
mixed-criticality systems and a key contribution of this work. This section elaborates the
isolation and protection aspect of the architecture in end-to-end packet flow.

An arbitrary transmission starts with a producer writing a data packet in the transmission
buffer of the associated NI. There is no channel specific buffer for packet under transmission
in the NI; however, the packet is transferred to the connected router atomically, establishing
a temporal isolation between two successive packets from the same producer. Routers have
dedicated sampling buffer to hold the packets under transmission, unless the transmission
access is gained. The sampling buffers are isolated registers in the physical hardware, offering
spatial isolation between each data packet. In a dysfunction condition where producer violates
the transmission agreement and a new data packet is received at the router before the previous
packet is transmitted, the old packet gets overwritten by the new packet, but data packets in
other buffers remain unaffected.

The arbitration is implemented in the hub, and transmission access is provided in a deter-
ministic schedule, guaranteeing access to each producer. The hub controls the transmission
lines with a circuit switching mechanism, and only the router with transmission access is con-
nected to the X-bar at any point of time, ensuring no-packet collision. The memoryless hub
operations are atomic, establishing a temporal isolation. On the receiving end of the router,
flits are packed and forwarded to the destination NIs. At the NI, each channel has its dedi-
cated sampling buffer where the fresh data packet is saved for the consuming end to read.
A dedicated sampling buffer provides a spatial isolation that prevents each feature from get-
ting overwritten by a data packet from another channel before consumed by the consumer
application when a transmission agreement is violated by a faulty application.

Communication between multiple systems is prone to erroneous transmission from a faulty
application to a wrong recipient. Such a fault is hard to detect in the software if the faulty data
is ranged within the expected data range at the consumer end.

In this network, the destination address is configured in the NI for each channel, and a
dysfunction in the producing application cannot tamper with the destination. Additionally, the
receiving NI has a pre-configured authorised source address for each channel. On reception of
a data packet, the consumer NI checks for the source address before registering the message in
the reading buffer. The source address is added by the router in the header during propagation,

https://doi.org/10.1017/aer.2019.80 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2019.80

1802 THE AERONAUTICAL JOURNAL NOVEMBER 2019

router Producer NI Hub

ch 3

Router Cosumerch 2

ch 1

NI

ch 3

ch 2

ch 1

Figure 9. (Colour online) Flow diagram showing temporal and spatial isolation in different stages. The
arrows marked in red shows temporal isolation and the blocks and arrows marked in green show spatial

isolation.

and the application has no control over it. Such a mechanism provides a two-step protection
to prevent transmission to the wrong recipient.

Additionally, faults like frozen data are hard to detect where the producer system may
transmit the same data to the consumer if there is no change in physical state. For example,
in a cruise or hover condition, a flight control application can correctly send the same attitude
data to a display application. A time stamp in DMA-based solutions significantly increases
data flow and needs additional software to handle the timing data. In this work, the data
packet transmission from the NI to the router is accompanied by a toggling signal that changes
on every fresh transmission from the producer despite the content of the data packet; the
router only registers the data from the NI when the toggling signal changes state, ensuring the
transmission of only fresh data packets. The spatial and temporal isolation at different stages
of data-packet flow in the proposed architecture is represented by a flow diagram in Figure 9.

6.0 RESULTS AND DISCUSSION

6.1 Experimental setup
All the hardware is defined in Verilog HDL and synthesised on FPGA threads. In this work,
we have used Xilinx ARTIX 7 and Intel Cyclone V SoC chip, although the hard embedded
processor on the SoC was kept untouched. The board has a default 50MHz oscillator and two
external oscillators of 80MHz and 100MHz and has been used for experimentation.

Each network component (NI, router and hub) are separate modules and defined as a
Quartus custom/external IPCores, written in Verilog. Intel NIOS II soft processors are used as
producers and consumers and connected with the NIs with an avalon memory-mapped inter-
face. All the network components and the communication ends share the same global clock
and reset signals. The components are inter-connected with Intel’s Quartus Platform designer
tool. The connections between network components (NI-router and router-hub) are not visible
to the platform designer tool and should be externally connected by editing the top module
before synthesisation. Quartus Prime lite edition tool has been used for synthesis.

6.2 Performance
To evaluate the performance of the proposed network architecture, an example network has
been configured with four routers and twelve NIs as shown in Fig. 1.

Table 1 shows worst-case latency analysis in different network configurations. Note that
with the increase in the number of channels, the latency of each channel increases.

Table 1 shows worst-case latency analysis without any priority. However, if a channel has a
lower latency requirement, meeting that requirement increases the worst-case latency of other
channels in the network. Figure 10 shows the effect of lowering the latency of one channel in
the rest of the channels in a 36-channel configuration.

https://doi.org/10.1017/aer.2019.80 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2019.80

MAJUMDER ET AL A REAL-TIME NOC FOR MIXED-CRITICALITY SYSTEMS 1803

Table 1
Worst case latency analysis for different configurations with 8 bytes payload

and 50MHz oscillator. All channels have equal priority

Number of components Latency
Router NIs Channels in cycles in msec

2
2 6 19 0.00038
4 12 37 0.00074
6 18 55 0.00110

3
3 9 28 0.00056
6 18 55 0.00110
9 27 83 0.00166

4
4 12 37 0.00074
8 24 73 0.00146

12 36 109 0.00218

Table 2
Worst-case bandwidth of a channel in a 4-router, 36-channel configuration
with different network clock frequencies. All channels have equal priority

Clk (MHz) Megabits per second Packets per second
50 29.357 4,58,714
80 46.972 7,33,944
100 58.715 9,17,430

1 2 3 4 5 6 7 8 9 10
slots assigned

0
12.5

25

50

100
112.5

125
137.5

150

la
te

nc
y

(c
yc

le
s)

Figure 10. (Colour online) The bars in red represent the latency of a channel with low latency requirements.
The bars in blue show the latency of other channels. The horizontal axis shows the number of slots

assigned to the low latency channel, and vertical axis shows the latency in cycles.

The bandwidth of the network depends upon the network clock frequency. The user
can avail different oscillators depending on the bandwidth requirement. Table 2 shows the
minimum bandwidth for a 4-router, 36-channel configuration with different clock frequencies.

7.0 CONCLUSION
We have proposed a network-on-chip architecture for the intended application in real-time
mixed-criticality systems, like integrated modular avionics platforms, which has some unique

https://doi.org/10.1017/aer.2019.80 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2019.80

1804 THE AERONAUTICAL JOURNAL NOVEMBER 2019

benefits: real-time end-to-end communication with isolation between data packets under
transmission, different latency and bandwidth allocation in the same network and protection
mechanism for authentic transmission that plays a critical role in safety-critical applications.
Additionally, the concept of combined priority and TDM arbitration has been extended for
better utilisation of the network resources to allow more low priority applications to utilise the
network while maintaining determinism worst-case latency for all the applications. However,
the topology is subject to a linear extension in worst-case latency with expansion.

IMA is new technology with evolving guidance and requirements. The use of multi-
core processors is new in today’s avionics, and the exact requirements of inter-core and
inter-application communication is still under investigation(2). The performance of the pro-
posed architecture, in terms of bandwidth and latency, is more than adequate to meet the
requirements of conventional on-board applications. The fixed resources for the network com-
ponents set a limit to the performance capabilities of the proposed architecture and increased
bandwidth or low latency demand in one channel affects the other channels. However, the
worst-case performance is deterministic and analysable for the system designer, and no
anomaly occurs during run-time. The hub in this architecture is the most critical component
and could be a single point of failure. However, the applications do not have any effect on the
hub, and the hub is only susceptible to hardware failures. A redundant implementation of the
hub or the entire network can be considered for enhancing reliability measures.

The work was mainly focused on meeting the requirements of safety-critical aerospace
applications, and the scope of efficient resource utilisation was not considered. Furthermore,
the isolation mechanism degrades the efficiency of resource utilisation as compared to general
purpose communication. Further extension of this research to support inter-chip communi-
cation and scalability can be addressed in future research. We have implemented a lighter
version of the proposed network in an asymmetric multiprocessor architecture to demonstrate
improvements in the reliability of on-board computations in small airborne platforms(10).

ACKNOWLEDGEMENT
The authors would like to thank John-Josef Leth from Aalborg University and Martin
Schoeberl and Jens Sparsø from Technical University of Denmark for their insightful
comments and helpful discussion.

REFERENCES
1. FAA. Software Consideration in Airborne Systems and Equipment Certification, December

1992.
2. FAA. Assurance of Multicore Processors in Airborne Systems, DOT/FAA/TC-16/51, July 2017.
3. ALENA, R. L., OSSENFORT, J. P., LAWS, K. I., GOFORTH, A. and FIGUEROA, F. Communications for

integrated modular avionics, 2007 IEEE Aerospace Conference, 2007, pp 1–18. doi:10.1109/
AERO.2007.352639.

4. HESHAM, S. RETTKOWSKI, J., GÖHRINGER, D. and ABD EL GHANY, M. A. Survey on real-time
network-on-chip architectures, International Symposium on Applied Reconfigurable Computing,
2015, pp 191–202.

5. I. RADIO TECHNICAL COMMISSION FOR AERONAUTICS, RTCA: DO-297: Integrated Modular Avionics
(IMA) Development Guidance and Certification Considerations, 2005.

6. FUCHS, C. M., SCHNEELE, A. S. and KLEIN, E. The evolution of avionics networks from ARINC 429
to AFDX, Proceedings of the Seminars Future Internet (FI), Innovative Internet Technologies
and Mobile Communication (IITM) and Aerospace Networks (AN), Technische University of
Munich, Summer Semester 2012, pp 65–76.

https://doi.org/10.1017/aer.2019.80 Published online by Cambridge University Press

doi:10.1109/AERO.2007.352639
doi:10.1109/AERO.2007.352639
https://doi.org/10.1017/aer.2019.80

MAJUMDER ET AL A REAL-TIME NOC FOR MIXED-CRITICALITY SYSTEMS 1805

7. BIEBER, P., BONIOL, F., BOYER, M., NOULARD, E., PAGETTI, C., BIEBER, P., BONIOL, F., BOYER, M.,
NOULARD, E., PAGETTI, C. and CHALLENGES, N. New Challenges for Future Avionic Architectures,
2015, pp 1–10.

8. PERRET, Q., MAURERE, P., NOULARD, E., PAGETTI, C., SAINRAT, P. and TRIQUET, B. Temporal isolation
of hard real-time applications on many-core processors, 2016 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2016, pp 1–11. doi:10.1109/RTAS.2016.
7461363.

9. MOUSTAPHA LO, F. M. P. R. and NICOLAS VALOT. Implementing a real-time avionic application on
a many-core processor, 42nd European Rotorcraft Forum (ERF), Lille, France, 2016, pp 1–10.

10. MAJUMDER, S., DALSGAARD NIELSEN, J., BAK, T. and LA COUR-HARBO, A. Reliable flight control
system architecture for agile airborne platforms: an asymmetric multiprocessing approach. The
Aeronautical Journal, n.d., 1–23. doi:10.1017/aer.2019.30.

11. SANO, K., SOUDRIS, D., HÜBNER, M. and DINIZ, P. C. Applied Reconfigurable Computing 11th
International Symposium, ARC 2015 Bochum, Germany, April 13–17, 2015 Proceedings,
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), Vol. 9040, 2015, pp 191–201. doi:10.1007/
978-3-319-16214-0.

12. BERTOZZI, D. and BENINI, L . Xpipes: a network-on-chip architecture for gigascale systems-on-
chip, IEEE Circuits and Systems Magazine, 2004, 4, pp 18–31.

13. WIKLUND, D. and LIU, D. Socbus: switched network on chip for hard real time embedded systems,
Proceedings International Parallel and Distributed Processing Symposium, 2003, p 8. doi:10.
1109/IPDPS.2003.1213180.

14. PHAM, P. H., PARK, J., MAU, P. and KIM, C. Design and implementation of backtracking wave-
pipeline switch to support guaranteed throughput in network-on-chip, IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 2012, 20, (2), pp 270–283. doi:10.1109/TVLSI.2010.
2096520.

15. WOLKOTTE, P. T., SMIT, G. J. M., RAUWERDA, G. K. and SMIT, L. T. An energy-efficient recon-
figurable circuit-switched network-on-chip, 19th IEEE International Parallel and Distributed
Processing Symposium, 2005, p. 155a. doi:10.1109/IPDPS.2005.95.

16. BOLOTIN, E., CIDON, I., GINOSAR, R. and KOLODNY, A. QNOC: QOS architecture and design process
for network on chip, Journal of Systems Architecture, 2004, 50, (2), pp 105–128, Special issue on
networks on chip. doi:https://doi.org/10.1016/j.sysarc.2003.07.004.

17. LO, S. H., LAN, Y. C., YEH, H. H., TSAI, W. C., HU, Y. H. and CHEN, S. J. QOS aware BINOC
architecture, 2010 IEEE International Symposium on Parallel Distributed Processing (IPDPS),
2010, pp 1–10. doi:10.1109/IPDPS.2010.5470359.

18. CORRÊA, E. D. F., SILVA, L. A. D. P. E., WAGNER, F. R. and Carro, L. Fitting the router characteristics
in NOCS to meet QOS requirements, Proceedings of the 20th Annual Conference on Integrated
Circuits and Systems Design, SBCCI ’07, ACM, New York, NY, USA, 2007, pp 105–110. doi:
10.1145/1284480.1284514.

19. LU, C. H., CHIANG, K. C. and HSIUNG, P. A. Round-based priority arbitration for predictable
and reconfigurable network-on-chip, 2009 International Conference on Field-Programmable
Technology, 2009, pp 403–406. doi:10.1109/FPT.2009.5377690.

20. DIEMER, J., ERNST, R. and KAUSCHKE, M. Efficient throughput-guarantees for latency-sensitive
networks-on-chip, 2010 15th Asia and South Pacific Design Automation Conference (ASP-
DAC), 2010, pp 529–534. doi:10.1109/ASPDAC.2010.5419828.

21. MILLBERG, M., NILSSON, E., THID, R. and JANTSCH, A. “Guaranteed bandwidth using looped con-
tainers in temporally disjoint networks within the nostrum network on chip,” Proceedings Design,
Automation and Test in Europe Conference and Exhibition, Paris, France, 2004, pp 890–895
Vol. 2. doi:10.1109/DATE.2004.1269001

22. GOOSSENS, K., DIELISSEN, J. and RADULESCU , A. Aethereal network on chip: concepts, architec-
tures, and implementations, IEEE Design Test of Computers, 2005, 22, (5), 414–421. doi:10.
1109/MDT.2005.99.

23. GOOSSENS, K. HANSSON, A. The aethereal network on chip after ten years: goals, evolution,
lessons, and future, Design Automation Conference, 2010, pp 306–311. doi:10.1145/1837274.
1837353.

https://doi.org/10.1017/aer.2019.80 Published online by Cambridge University Press

doi:10.1109/RTAS.2016.7461363
doi:10.1109/RTAS.2016.7461363
doi:10.1017/aer.2019.30
doi:10.1007/978-3-319-16214-0
doi:10.1007/978-3-319-16214-0
doi:10.1109/IPDPS.2003.1213180
doi:10.1109/IPDPS.2003.1213180
doi:10.1109/TVLSI.2010.2096520
doi:10.1109/TVLSI.2010.2096520
doi:10.1109/IPDPS.2005.95
doi:https://doi.org/10.1016/j.sysarc.2003.07.004
doi:10.1109/IPDPS.2010.5470359
doi:10.1145/1284480.1284514
doi:10.1145/1284480.1284514
doi:10.1109/FPT.2009.5377690
doi:10.1109/ASPDAC.2010.5419828
doi:10.1109/DATE.2004.1269001
doi:10.1109/MDT.2005.99
doi:10.1109/MDT.2005.99
doi:10.1145/1837274.1837353
doi:10.1145/1837274.1837353
https://doi.org/10.1017/aer.2019.80

1806 THE AERONAUTICAL JOURNAL NOVEMBER 2019

24. STEFAN, R. A., MOLNOS, A. and GOOSSENS, K. Daelite: a TDM NOC supporting QOS, multicast,
and fast connection set-up, IEEE Transactions on Computers, 2014, 63, (3), pp 583–594. doi:10.
1109/TC.2012.117.

25. KASAPAKI, E., SCHOEBERL, M., SORENSEN, R. B., MULLER, C. GOOSSENS, K. and SPARSO, J. Argo:
A Real-Time Network-on-Chip Architecture with an Efficient GALS Implementation, IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 2016, 24, (2), pp 479–492. doi:
10.1109/TVLSI.2015.2405614.

https://doi.org/10.1017/aer.2019.80 Published online by Cambridge University Press

doi:10.1109/TC.2012.117
doi:10.1109/TC.2012.117
doi:10.1109/TVLSI.2015.2405614
doi:10.1109/TVLSI.2015.2405614
https://doi.org/10.1017/aer.2019.80

	A real-time on-chip network architecture for mixed criticality aerospace systems
	INTRODUCTION
	BACKGROUND AND RELATED WORK
	Mixed criticality in aerospace system
	Network on Chip
	Priority
	Time Division Multiplexing
	Related topologies

	ARCHITECTURE
	Overall architecture
	Network interface
	Router
	Hub

	Arbitration
	IMPLEMENTATION
	Operation
	Scheduling and latency analysis
	Protection and isolation

	RESULTS AND DISCUSSION
	Experimental setup
	Performance

	CONCLUSION

