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Inertial instability in a rotating shear flow redistributes absolute linear momentum in
such a way as to neutralize the instability. In the absence of other instabilities, the
final equilibrium can be predicted by a simple construction based on conservation
of total momentum. Numerical simulations, invariant in the along-stream direction,
suppress barotropic instability and allow only inertial instability to develop. Such
simulations, at high Reynolds numbers, are used to test the theoretical prediction.
Four representative examples are given: a jet, a wall-bounded jet, a mixing layer and
a wall-bounded shear layer.

1. Introduction
Planar shear flows in a rotating environment are subject to both inertial and

barotropic instabilities. A schematic illustrating the basic problem and geometry
is shown in figure 1(a). The basic horizontal-shear flow u =U (y) is indicated
by the arrows pointing in the x-direction. The system rotates about the z-axis
with angular rate Ω = f/2, where f is the Coriolis parameter. Inertial instability
produces perturbation vorticity aligned along the x-direction, resulting in overturning
motions in the (y, z)-plane. Barotropic instability produces vorticity aligned along
the z-direction resulting in meandering and possible breakup of the jet. Occurring
simultaneously, these instabilities may lead to very complicated flows.

The effects of either instability acting alone can be analysed separately by imposing
symmetries on the developing flow. Allowing no along-stream (x) variation would
permit only the inertial instability to develop. Simulations subject to this restriction
prove valuable tools in the analysis of the inertial instability. Shen & Evans (1998)
and Griffiths (2003a) are recent studies based on this method that have revealed
much about the nonlinear evolution of the inertial instability in planar shear flows.
Depending on the initial velocity profile, the inertial instability may be dominant and
act for a considerable time without the barotropic instability coming into play. Shen &
Evans (1998) argue that this is the case for strong shear currents in the oceans’ upper
mixed layer. They model these currents with shear flows of high Rossby number,
Ro > 1, where Ro =U/f L with U and L being characteristic velocity and length
scales. They find that the inertial instability is dominant with a growth rate at least
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Figure 1. (a) Schematic of the rotating channel indicating the basic current U (y) and two types
of instabilities (inertial and barotropic). (b) Schematic showing how to construct the predicted
momentum distribution (thin solid curve) from the initially unstable distribution (thick solid
curve). The initially unstable region is ya < y < yb , that is where dm/dy > 0. Equilibration sets
m= mc over the wider range yl < y < yr .

twice that of the barotropic instability. This was confirmed in fully three-dimensional
simulations (Shen & Evans, 2002). Even if the initial conditions are such that the
two types of instabilities grow together, or if the barotropic instability dominates,
it is still interesting to understand what the effects of the inertial instability acting
alone would be. It may be that this instability helps maintain the vorticity structure
of the products of barotropic instability when that instability is dominant. For these
reasons, it is important to understand the long-term equilibration of flows subject
to inertial instability acting alone. Shen & Evans (1998), Griffiths (2003a) and other
x-invariant studies have gone a long way toward this end. Here we present a method
for predicting the final equilibrated state and test it against x-invariant numerical
simulations.

The condition for inertial instability in an inviscid fluid depends on the gradient
of the absolute linear momentum of the flow, m(y) = U (y) − fy (Charney 1973;
Holton 1992). If f dm/dy > 0, an inviscid flow is inertially unstable. This requires
sufficiently strong anti-cyclonic shear, dU/dy >f . We will show that an unstable flow
adjusts in such a way as to set dm/dy = 0 over a range of y that can be predicted
based on a simple construction. The range over which equilibration occurs, that is
where m becomes constant, is generally larger than the initial instability range. The
idea for this new construction is based on a previous study of inertial instability of
vortices (Kloosterziel, Carnevale & Orlandi 2007) in which we found that the range
of equilibration could be determined by total angular-momentum conservation. For
planar shear flows, the construction will instead be based on conservation of total
linear momentum.

The construction can best be explained by considering a typical example, such as
the jet-like flow shown in figure 1(a). The corresponding momentum distribution m(y)
is shown as the thick solid curve in figure 1(b). The vertical dashed lines indicate the
instability region ya < y <yb where dm/dy > 0. We draw a horizontal line (at level
m =mc) from a point on the initial profile (yl, mc) to the left of the instability region
(see figure 1b), to a point (yr, mc) on the profile to the right of the instability region.
For a simple flow with an m-distribution as in figure 1(b) (with a single minimum
adjacent to a maximum), mc, yl and yr are uniquely determined by the constraint of
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total momentum conservation, i.e. by∫ yr

yl

(mc − m(y))dy = 0. (1.1)

For y < yl and y >yr the momentum distribution remains unchanged. By construction,
the predicted momentum distribution m(y) has the same total momentum as the
original unstable profile. In the region of constant m =mc (yl � y � yr ), the predicted
equilibrated velocity is u(y) = mc + fy, while outside this region it is unchanged,
i.e. u(y) = U (y). In the examples discussed below, the values of mc, yl and yr were
determined with a simple search algorithm.

Another way to describe the instability condition is that f Q must be less than zero
for instability, where Q =ωz + f is the potential vorticity of the flow. In x-invariant
flow, Q = −∂u/∂y + f , and setting m equal to a constant is equivalent to setting
Q =0. The important point is that our construction predicts the limits of the region
over which Q =0 in equilibrium.

2. Illustrative examples
We test the predictions of our construction against numerical simulations of the

Navier–Stokes equations in four cases: a Gaussian jet, a wall-bounded jet, a mixing
layer and a wall-bounded shear layer. The method of simulation is a channel model
based on the staggered mesh scheme. The model is described in detail in Orlandi
(2000). For the present purposes, the numerical code is modified to simulate flows
invariant in the along-stream (x) direction. Thus, although there are three velocity
components, they only depend spatially on the cross-stream variable y and the vertical
variable z. The flow is periodic in the vertical direction, while the computational
domain in the y-direction is terminated by free-slip vertical walls. Only free-slip
walls are used since no-slip walls do not conserve momentum. The initial velocity
field was constructed from the basic velocity field plus a random perturbation. The
perturbation was applied in all three velocity components and at all points in the
domain. The root mean square amplitude of the perturbation was 0.01% of max(|U |).

Our prediction is expected to be valid for large Reynolds numbers where inertial
effects dominate viscous effects. By comparison between simulations with different
resolutions, we found that a resolution of 513 × 513 grid points would satisfactorily
resolve the flow at the highest Reynolds numbers reported here. This resolution was
used in all examples that follow.

2.1. A Gaussian jet

Our first example is the Gaussian jet

U (y) = U0 exp(−y2/2σ 2), (2.1)

where U0 is the maximum velocity and σ the width (standard deviation) of the profile.
We use these velocity and length scales to define the Reynolds number Re = U0 σ/ν. In
the following discussion, all quantities have been non-dimensionalized with the length
scale σ and the time scale 1/f . In figure 2(a), we show the evolution of the vertically
averaged momentum m̄ for the jet with U0 = 5 and Reynolds number Re = 5000. The
initial distribution is drawn as a thick dashed curve. The instability region is where
the slope of this curve is positive. The predicted equilibrium profile is the thick solid
curve. The thin curves represent intermediate times. Typically, there is a rapid change
of the distribution as it approaches the predicted equilibrium (see the thin dashed line
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Figure 2. Profiles of the vertically averaged momentum m for the Gaussian jet with U0 = 5.
The simulation was performed on the domain [−8 � y � 8] × [−8 � z � 8] with free-slip
walls at y = −8 and y = +8. (a) Evolution in time for the case Re = 5000. (b) Comparison at
t = 40 of profiles with Re = 200, 1000 and 5000.

at t = 20), followed by a slow viscous-dominated diffusion of the distribution (see the
thin solid line at t =100).

Additional simulations were performed for a wide range of Reynolds numbers.
Figure 2(b) shows the equilibrated profiles at t = 40 for Re = 200, 1000 and 5000. With
increasing Re, the prediction is better approximated. Similar results were obtained
by Griffiths (2003a) for zonal stratified flow on an equatorial β-plane. He showed
that in a range of equilibration, for increasing Re, the final potential vorticity in his
simulations approached ever closer to zero.

The process that achieves the mixing of momentum m is illustrated in the horizontal
vorticity (ωx) contour plots in figure 3(a–c), for the case Re = 1000. During the initial
exponential phase of the growth of the perturbation, a vertical stack of vortices
of alternating sign is formed within the inertially unstable region, that is where
dm/dy > 0 (between the thick vertical dashed lines in figure 3a). This is just as
expected from linear theory (see Ooyama 1966). These vortices represent the fastest
growing perturbations, and their vertical scale decreases with increasing Re. They are
overturning motions in the (y, z)-plane. As these vortices amplify in strength, nonlinear
interactions result in the pairing of oppositely signed vortices, forming dipoles. The
dipoles self-advect to the right or left depending on their initial orientation. They
propagate outside the instability region. Mutual interactions result in a turbulent flow
with dipoles moving in various directions. This is seen in figure 3b (t = 14). Note
that only half of the computational domain is shown and that there are twice as
many dipolar structures than are shown. We chose a moderate value Re =1000 for
this example in order to clearly visualize these dipoles. For much larger Re, there are
far more dipoles and they are more difficult to present, unless a far smaller portion
of the domain (in the vertical) is shown. Similar pairing and propagation of these
vortices in the (y, z)-plane have previously been found by Griffiths (2003b) in a study
of inertial instability on the equatorial β-plane. There is an analogous evolution in
the instability of a vortex aligned along the rotation axis (Kloosterziel et al. 2007)
where the perturbation appears as toroidal vortices encircling the initial vortex (for
laboratory examples of such toroidal vortices see Afanasyev & Peltier 1998). The
strongest dipole activity tends to be limited to the predicted equilibration range,
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Figure 3. (a–c) The vorticity field ωx: (a) t = 10, �ω = 0.9, (b) t = 14, �ω = 1.7, (c) t = 100,
�ω = 0.05; solid/dashed contours represent positive/negative ωx . The �ω are the contour
increments. The thick dashed vertical lines delimit the instability region. The thick solid
vertical lines delimit the equilibration range. (d–f ) The momentum field m at (d) t = 10, (e)
t = 14, (f) t = 100 with contour increments �m= 0.5. In this example Re = 1000. Only a part
[−5 � y � 3] × [−4 � z � 4] of the full computational domain [−8 � y � 8] × [−8 � z � 8]
is shown.

although there is some penetration beyond the limits of that range. At longer times,
there is very low-amplitude vorticity evident everywhere (see panel (c) at t = 100), but
this vorticity just continues to decay.

The corresponding evolution of the m-field is illustrated in figure 3(d–f). The early
growth of the vortices results in the wave-like pattern in the momentum contours
within the instability region (panel d). The effect of the dipoles in creating regions
of low and high strain and generally mixing momentum is seen in panel (e). The
effect of the dipoles penetrates well beyond the instability region, strongly affecting
the whole region where change is predicted. In panel (f), the flow is shown at t = 100.
At this late time, the contours of m are all nearly vertical (so that m and, hence, u

has become virtually depth independent). But, a waviness that oscillates in time along
these contours persists for some time. The region of well mixed m is evident.

The example shown in figure 3 is representative of moderate- and high-Re flows
where nonlinear processes dominate the evolution. At lower Re, we find that, in the
early stages of the evolution, the regular stack of alternating vortices still forms (as
in figure 3a), but the vortices do not pair and translate. Instead, they decay in place,
and the evolution is then dominated by viscous diffusion. The example shown in
figure 2(b) for Re = 200 is such a case.
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Figure 4. Profiles of the vertically averaged momentum m for the wall-bounded Gaussian jet
with U0 = 5 from the simulation on a domain [−2 � y � 6] × [−8 � z � 8]. The position of
the free-slip wall at y = − 2 is indicated by a thick vertical line. (a) Evolution in time for the
case Re = 5000. The predicted velocity is shown as a thick solid curve and the initial condition
as a thin dotted curve. The prediction for the full mixing layer is included as a thick dashed
line for comparison (compare figure 2). (b) m profiles at t = 40 for Re =400, 1000 and 5000.

Viscous dissipation will eventually drain all of the energy for any finite Re. However,
for the high-Re simulations discussed here, the energy loss is rapid during the inertial
instability and then slow thereafter. It is the rapid adjustment phase that is of interest
to us and not the slow viscous decay. Thus, it is interesting to compare the energy
loss from the rapid adjustment phase with the predicted energy loss. Simple models
of flows based on piecewise-linear velocity fields show that the predicted equilibrium
velocity field always has less energy than the initial unstable field. We do not have
a proof that our construction obeys this rule for arbitrary velocity profiles, but since
these may be approximated by piecewise-linear profiles, it seems reasonable to suppose
that an energy loss will always be predicted. For the Re = 5000 run discussed above,
the predicted energy loss is 28 %, while the observed loss at t =40, just after the rapid
adjustment, is 23 %.

2.2. Wall-bounded jet

If, instead of the full jet discussed above, we consider a jet bounded by a free-slip
wall, the construction for predicting the equilibrium flow may need to be modified. If
the wall is inserted at y >yl where yl is the left end of the equilibration region for the
full jet, then one end of the new equilibration region will bounded by the wall. Thus
we set the new yl at the wall and follow the same procedure as before to predict the
new mc. This will be different from the full jet case, because the momentum that had
been to the left of the wall is no longer available for mixing. For example, consider
inserting a wall at y = −2 in the Gaussian jet (2.1) with the profile shown in figure 2.
Since the relatively low-amplitude momentum that was redistributed from y < −2 in
the full-jet case is no longer available, the new mc will be larger. The construction for
the wall-bounded jet is shown in figure 4(a). The initial jet momentum is drawn as
a thin dotted line. The prediction is superimposed as a thick solid curve. The horizontal
thick dashed line indicates the predicted momentum mc for the full jet (from figure 2).
As anticipated, the new level for mc in the wall-bounded jet is higher than in the
full-jet case. In terms of velocity, this change in mc implies that the velocity in the
equilibration region will be higher in the wall-bounded case than in the full-jet case.
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Figure 5. Profiles of the vertically averaged momentum m and velocity u for the mixing layer
with U0 = 2 from a simulation on a domain [−16 � y � 16] × [−16 � z � 16]. (a) Evolution
of m for the case Re = 10 000. (b) Comparison of m profiles at t = 100 for Re =80, 400 and
10 000. (c) Evolution of u for the case Re = 10 000. (d) Comparison of u profiles at t = 100 for
Re = 80, 400 and 10 000. In each panel, the initial profile is the thick dashed curve and the
predicted profile is the thick solid curve.

Also shown is the vertically averaged momentum at times t = 10 and 40. Relaxation
occurs very rapidly between t = 10 and t = 15. The profile at t = 15 (not shown) is
very close to that at t = 40. In panel (b), we show the profile at t = 40 for different
Re. This demonstrates the tendency to approach the prediction in the limit of high
Re. The predicted energy loss for this case is 10 %, and by t = 40 the observed loss
was 12 %.

2.3. Mixing layer

An important example of a planar shear flow, rather different from the Gaussian jet,
is the horizontal mixing layer. Here there are two oppositely directed currents with a
sharp velocity gradient between. A model for such a flow is

u = U0erf(y/σ ). (2.2)

The momentum distribution for U0 = 2 is shown in figure 5(a, b), as a thick dashed
line. Although the momentum distribution is rather different from the jet case, the
construction can be applied in a straightforward manner. The prediction is that,
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in the equilibration range, the momentum will be mixed to mc =0. With U0 = 2,
the equilibration range will be −2 <y < + 2. Beyond that range, the momentum
distribution remains the same as in the initial state. The prediction is shown as a
thick solid curve in panels (a) and (b). In the evolution of the vertically averaged
momentum distribution, there is not much change before t = 5. Then the profile
is rapidly transformed from the initial (thick dashed curve) toward the prediction
(thick solid curve). The dotted curve in panel (b) shows the profile at t = 14, an
intermediate time during this phase of the evolution. By time t = 20 (not shown) the
profile approximates the prediction fairly well. The effect of varying the Reynolds
number on the equilibrated state is illustrated in panel (b). For all Re, the equilibrated
flows have dm/dy � 0 everywhere. In the equilibration region, the prediction is more
closely approximated the higher the value of Re. However, note that there is some
mismatch at the highest Re (Re = 10 000) just beyond the equilibration region.

The evolution of the velocity profile for Re = 10 000 is illustrated in figure 5(c).
The thick dashed line shows the initial velocity profile and the thick solid line
the prediction. In panel (d), we see that the vertically averaged velocity better
approximates the prediction in the equilibration range as Re increases. However,
for the highest Re, there is an overshoot just outside the equilibration range. The
overshoot is related to the mismatch between the vertically averaged momentum and
the prediction as seen in figure 5(b).

Regarding the energy balance, in this case the final predicted velocity magnitude
is everywhere less than or equal to the initial value. Thus it is clear that there
is a net energy loss. The percentage change will depend on how much of the
domain is included in the energy calculation. Computing energy just in the region
with −4 <y < 4 gives a predicted loss of 17 %, while the observed loss at t = 50
(Re = 10 000) was 15 %.

2.4. Wall-bounded shear

Given the symmetry of the mixing layer (2.2) about y = 0, one might naively think
that inserting a free-slip wall at y = 0 would not change the evolution toward the
equilibrated flow on either side of the wall. However, from the point of view of
momentum mixing, this cannot be, as we can see in figure 6. Negative momentum from
y < 0 is no longer available for mixing with the positive momentum in the instability
region where dm/dy > 0. Thus the predicted equilibrium mc will have to be higher than
in the full-mixing-layer case. Mixing m to a constant value mc > 0 can be accomplished
by mixing the momentum with m<mc at small y with higher momentum found within
and just beyond the instability region. The resulting prediction, shown in figure 6
as a thick solid curve, should be compared to the full-mixing-layer prediction (thick
dashed curve). The new predicted mixed region is narrower than before. The resulting
predicted velocity no longer vanishes at y = 0 (where we put the no-slip wall).
Throughout the equilibration range, the new velocity is larger than the equilibrium
velocity for the positive-y side of the full mixing layer. Vertically averaged profiles
for the case with Re = 10 000 at t =13 and t = 20 are also shown. In this simulation
there is relatively little change in the profile before t = 10. Relaxation occurs very
rapidly between t = 10 and t = 20. From t = 20 to t = 100, the profile does not change
significantly. Again there is some overshoot compared to the prediction just beyond
the end of the equilibration range. In terms of energy change, the predicted loss in
the domain 0 <y < 4 is 0.8 %, while the observed loss at t = 20 (Re = 10 000) is 0.9 %.
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Figure 6. Evolution of the vertically averaged momentum m for the wall-bounded shear layer
with U0 = 2 from a simulation at Re = 10 000 on a domain [0 � y � 4] × [−4 � z � 4]. The
predicted velocity is shown as a thick solid curve and the initial condition as a thin dotted
curve. The prediction for the full mixing layer is included as a thick dashed line for comparison
(compare figure 5). The free-slip wall at y = 0 is indicated by a thick vertical line.

3. Conclusion
We have introduced a simple construction that predicts the equilibrium toward

which inertial instability acting alone will drive a rotating planar shear flow at large
Re. The prediction is strictly valid only if the dynamics is restricted to be invariant in
the along-stream direction. If this symmetry condition is relaxed, barotropic instability
may compete with inertial instability. However, the present work contributes a new
understanding of the tendency of the inertial instability operating in isolation. This
can help analyse the competition between inertial and barotropic instabilities in
the unrestricted dynamics. The construction is based on total linear momentum
conservation. For simple flows, the constant value mc to which momentum is mixed
is easily determined. The prediction also gives the limits of the cross-stream range in
which equilibration occurs. This is generally wider than the initial instability region.
The velocity profile within this range follows from u =mc+fy. Outside this range, our
prediction is that the velocity profile will be unchanged. We have tested the prediction
for four different types of flow and found that within the equilibration range it is
approached very well as Re is increased. However, in some cases, just beyond the
equilibration range, we observe a tendency to somewhat overshoot the prediction for
large Re. The magnitude of the overshoot tends to increase with Re for a given time,
although for a given Re it eventually decreases with time. The overshoot is caused by
dipolar vortices in the (y, z)-plane which propagate somewhat beyond the predicted
equilibration range. Perhaps the spikes of potential vorticity found after equilibration
in the zonally symmetric simulations by Griffiths (2003a, figure 8) on the equatorial
β-plane are analogous to these overshoots. At this point we can only speculate on the
t → ∞ behaviour in the Re → ∞ limit. On the one hand, the construction may prove
perfectly valid. On the other, although the prediction may prove valid in the predicted
equilibration range, m may also be mixed to a constant value beyond that range,
and then the final energy will be greater than that suggested by our construction.
In fact, by mixing sufficiently far beyond the equilibration range, one can achieve a
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steady state with the same energy as in the initial unstable state (at the expense of
introducing discontinuities in u).
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