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tri-dimensional gravity wave interactions

Frédéric Nouguier1,†, Bertrand Chapron2 and Charles-Antoine Guérin1

1Mediterranean Institute of Oceanography (MIO), UM 110, Université de Toulon, CNRS,
Aix-Marseille Université, IRD, 83957 La Garde, France

2Laboratoire d’Océanographie Spatiale, Ifremer, 29280 Plouzané, France

(Received 13 May 2014; revised 13 February 2015; accepted 16 March 2015;
first published online 30 April 2015)

We revisit and supplement the description of gravity waves based on perturbation
expansions in Lagrangian coordinates. A general analytical framework is developed to
derive a second-order Lagrangian solution to the motion of arbitrary surface gravity
wave fields in a compact and vectorial form. The result is shown to be consistent
with the classical second-order Eulerian expansion by Longuet-Higgins (J. Fluid
Mech., vol. 17, 1963, pp. 459–480) and is used to improve the original derivation
by Pierson (1961 Models of random seas based on the Lagrangian equations of
motion. Tech. Rep. New York University) for long-crested waves. As demonstrated,
the Lagrangian perturbation expansion captures nonlinearities to a higher degree than
does the corresponding Eulerian expansion of the same order. At the second order, it
can account for complex nonlinear phenomena such as wave-front deformation that
we can relate to the initial stage of horseshoe-pattern formation and the Benjamin–Feir
modulational instability to shed new light on the origins of these mechanisms.

Key words: surface gravity waves, waves/free-surface flows

1. Introduction

The Lagrangian description of interactions between multiple surface gravity waves
was pioneered by Pierson (1961) half a century ago. Pierson explicitly derived
a first-order solution for two-dimensional surfaces and pushed the calculation to
the second order for long-crested surfaces. He showed that first-order results of
a Lagrangian analysis included more realistic features than did using its Eulerian
counterpart, such as sharp crests and flat troughs. In the present work, we revisit and
correct this classical analysis to provide a general analytical framework, and to derive
a compact and vectorial form of a second-order Lagrangian description of arbitrary
tri-dimensional gravity wave fields. The analysis of tri-dimensional multiple wave
systems is much richer than the analysis of long-crested surfaces or monochromatic
waves as some geometrical and dynamical characteristics of the wave field can only
be accounted for by considering interactions between different, non-aligned free wave
vectors.

† Email address for correspondence: frederic.nouguier@univ-tln.fr
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166 F. Nouguier, B. Chapron and C.-A. Guérin

To date, exploration of the numerical and analytical possibilities offered by
the Lagrangian formalism somehow have been overlooked. A renewed interest in
Lagrangian approaches and their mathematical (Yakubovich & Zenkovich 2001;
Buldakov, Taylor & Taylor 2006; Clamond 2007) or practical implications (Gjosund
2003; Fouques, Krogstad & Myrhaug 2006; Fouques & Stansberg 2009) has arisen
and has provided the means to better evaluate the statistical and geometrical
description of free surface and mass transport (Socquet-Juglard et al. 2005; Lindgren
2006; Aberg 2007; Aberg & Lindgren 2008; Nouguier, Guérin & Chapron 2009; Hsu,
Chen & Wang 2010; Hsu, Ng & Hwung 2012). The underlying reason behind these
remarkable properties is that the Lagrangian representation is clearly well-suited to
the description of steep waves and is a very useful mathematical tool for the correct
evaluation of statistical quantities (such as height, slope and curvature distribution) of
random gravity wave fields at limited costs in terms of analytical complexity.

Our main finding is given by (4.47) which summarizes the Lagrangian expressions
of second-order displacements of water particles and pressure in the whole fluid
domain. The analysis is restricted to infinite depth but there is no conceptual
difficulty in relaxing this assumption. Full consistency with the second-order Eulerian
expansion of Longuet-Higgins (1963) is demonstrated. Pierson’s (1961) original
second-order Lagrangian solution for long-crested waves is discussed and adjusted
to agree with both Longuet-Higgins (1963) and our own derivations. We further
discuss two remarkable phenomena which are not captured by second-order Eulerian
expansions. First, the formation of horseshoe patterns is identified as being the result
of a non-isotropic drift current. Second, Benjamin–Feir modulational instability is
also revealed to be inherently present in the second-order Lagrangian framework
as a simple beat effect between two neighbouring harmonics instead of an energy
exchange between carrier and sideband waves.

2. Eulerian versus Lagrangian expansions
We shall consider an incompressible fluid of constant density ρ and of infinite

depth, subject only to the restoring force of gravity (surface tension and viscosity are
ignored). The pressure is set to a constant: pa at the free surface of the fluid. A fixed
system of axes (x̂, ŷ, ẑ) with upwards-directed vertical vector ẑ is chosen.

2.1. Eulerian description
In the Eulerian description, any position in space is identified by its coordinates
(x, y, z), which can be decomposed into its horizontal projection r = (x, y) and
vertical elevation z. Under potential assumption, the evolving field of gravity waves
is described by its elevations η(r, t) and velocity potential Φ(x, y, z, t), with t being
the time variable. Under Eulerian coordinates the potential solves Laplace’s equation
inside the volume together with dynamic and kinematic conditions at the borders:

1Φ = 0, z<η(x, y, t)
lim

z→−∞
∇Φ = 0,

Φ t + 1
2∇Φ · ∇Φ =−gη, z= η(x, y, t)

Φz = ηt +∇η · ∇Φ, z= η(x, y, t),

 (2.1)

where g is the acceleration due to gravity. System (2.1) describes potential waves. In
the classical perturbative approach (Hasselmann 1962; Longuet-Higgins 1963; Weber
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Lagrangian description of tri-dimensional gravity wave interactions 167

& Barrick 1977) the field of elevation η and the velocity potential Φ at the position
and time (r, t) are sought in the form

η= η0 + η1 + η2 + · · ·
Φ =Φ0 +Φ1 +Φ2 + · · · .

}
(2.2)

The naught terms, η0 and Φ0, are the reference solutions corresponding to a flat fluid
interface and the next terms, η1 and Φ1, are the solutions provided by the linearized
equations. The successive terms, ηn and Φn, are nth-order corrections with respect to
one small parameter. In the general case of multiple waves, this small parameter is
not well identified but in the case of a monochromatic wave it can be linked to the
wave steepness.

2.2. Lagrangian description
In the Lagrangian approach (Lamb 1932), fluid evolution is described by the motion
of fluid particles. The spatial coordinates R = (x, y, z) of the particles now depend
on their independent reference labels ζ = (α, β, δ) and time t, that is explicitly x =
x(α, β, δ, t), y = y(α, β, δ, t) and z = z(α, β, δ, t). Hereafter ζ is chosen to be the
locus of particles at rest. For ease of reading we shall introduce dedicated notations
for the horizontal component of particle labels and positions, ξ = (α, β) and r= (x, y),
respectively.

The evolution of particle coordinates is driven by Newton’s law of dynamics:

Rtt + ĝz=− 1
ρ
∇Rp (2.3)

where p = p(R) is the local pressure. This dynamical equation is coupled with the
continuity equation:

|J| = 1; ∂

∂t
|J| = 0 with J=

xα yα zα
xβ yβ zβ
xδ yδ zδ

 . (2.4a,b)

Multiplying (2.3) by J gives

JRtt + g∇(R · ẑ)+ 1
ρ
∇p= 0 (2.5)

which is the basic equation given by Lamb (1932). From now on the spatial gradient
relative to the independent Lagrangian variables (α, β, δ) will be denoted by ∇.

Solutions to these equations need not be irrotational. However, if a function F(ζ , t)
can be found such that

dF= (JRt) · dζ (2.6)

is a perfect differential then there is no vorticity (see § A.1). Here dζ = (dα, dβ, dδ)
denotes an infinitesimal label variation. Following the methodology described by
Stoker (1957) we may seek at solution in the form of a simultaneous perturbation
expansion for position, pressure and the vorticity function:

R=R0 +R1 +R2 + · · ·
p= pa − ρgδ + p1 + p2 + · · ·

F= F0 + F1 + F2 + · · ·

 (2.7)

where the naught variables refer to particles at rest.
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3. First-order solution: the Gerstner wave
Let us map the fluid domain onto the half-space δ 6 0. From now on, δ = 0

corresponds to the free surface η under pressure pa. The zeroth-order solution to
expansion (2.7) is related to particles at rest and can be written

R0 = ζ ,

p0 = pa − ρgδ
F0 = 0
|J| = 1.

 (3.1)

First-order quantities are solutions to linearized Lagrangian equations. When taken at
the first order, equation (2.5) can be written

R1tt + g∇(R1 · ẑ)+ 1
ρ
∇p1 = 0 (3.2)

and the continuity equation is expressed by

x1α + y1β + z1δ =∇ ·R1 = 0. (3.3)

In order to simplify the calculations presented in the next section and to ensure an
irrotational solution at the first order (see (3.9) below), we shall investigate solutions
of the form R1 =∇w in an effort to see whether there exists a function for w(ζ , t).
This last quantity must satisfy the following equation:

∇(wtt + gwδ + p1/ρ)= 0. (3.4)

Setting p1 to 0 at δ = 0 gives

w= cos(k · ξ −ωt)ekδ; ω2 = gk; p1 = 0 (3.5a−c)

where k= (kα, kβ) is an independent bi-dimensional vector in the (α, β) domain and
k a constant parameter. At the first order in ε, the relation of continuity (3.3) can be
written

1w= (−k2
α − k2

β + k2)w= 0 (3.6)

leading to ‖k‖ = k. As R1 is a spatial displacement, a suitable solution is R1 =
∇(ak−1w) which leads to the first-order solution:

r= ξ − ak̂ sin(k · ξ −ωt)ekδ

z= δ + a cos(k · ξ −ωt)ekδ

p= p0 − ρgδ.

 (3.7)

From now on, we shall use the notation k̂= k/k for the direction of a vector k and k
for its norm. This solution describes the trajectories of water particles as circles whose
radii decrease exponentially with water depth. The spatial profile of such waves is a
trochoid moving in the direction k with a crest to trough wave amplitude defined by
a, being the circle radius of the trajectories of particles at the free surface.

Two centuries ago, Gerstner (1809) derived an exact solution to the equation of
motion (2.3) and obtained the same solution (3.7) for water particle trajectories (r, z)
with, however, a slightly different pressure term:

p= p0 − ρgδ + 1
2 k−2ρω2e2kδ. (3.8)
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Lagrangian description of tri-dimensional gravity wave interactions 169

The Gerstner wave has been described in classical textbooks (e.g. Lamb 1932;
Kinsman 1965) even though its stability was investigated only recently (Naciri &
Mei 1992; Leblanc 2004). It has always been criticized in view of its non-vanishing
vorticity. This calls for some discussion on the presence of vorticity. Wind waves do
in general exhibit vorticity, although it is in fact low. The main reason for which
most of the studies have been devoted to irrotational waves is the considerable
simplification offered by potential theory in the analytical derivations. It turns out
that the predictions of potential theory agree reasonably well with observations,
which does not mean that real waves are irrotational but rather that vorticity has
only secondary effects. However, discrepancies are bound to become visible as the
quality and accuracy of observations improve and it will soon become necessary to
account for vorticity. The main shortcoming of the Gerstner solution is that it does
not address a wide class of solutions with low vorticity. Its vorticity has in fact a very
special distribution and there is no rationale for it to be more relevant than any other
distribution of the same order. In the present analytical framework, the construction
of a weakly nonlinear solution to the exact inviscid equations is more general and it
is possible to examine arbitrary distributions with low vorticity and evaluate, at least
coarsely, the importance of this effect.

As already derived by Pierson (1961), equation (2.6) at first order in ε can be
written

dF=R1t · dζ (3.9)

which is a perfect differential of F1 since dF=∇F1 · dζ with

F1 = ak−1wt = aω
k

sin(k · ξ −ωt)ekδ. (3.10)

Therefore, there is no vorticity at the first order and the Gerstner wave (with the
corresponding pressure given by (3.7)) is an irrotational solution at the considered
order of the expansion.

Owing to the linearity of (2.5), we can write an extended solution to the first-order
equations as a continuous superposition of independent harmonics defined by their
wavenumber k in the form:

R1 =∇Φ1 with Φ1 = φ1 + c.c., (3.11)

where ‘c.c.’ designates the complex conjugate of a given quantity and

φ1 = 1
2

∫
R2

A(k)
k

ei(k·ξ−ωt)ekδdk. (3.12)

Here A(k) is the orbital amplitude and the factor 1/2 accounts for the complex plus
conjugate formulation of Φ1. Such an orbital spectrum has been already introduced
in the statistical studies of Lagrangian wave fields (Pierson 1961; Daemrich &
Woltering 2008; Lindgren & Lindgren 2011) and describes the spectral content of
particle motion. It is sometimes termed the ‘undressed’ spectrum (Elfouhaily et al.
1999) when it refers to a nonlinear transformation of an underlying linear surface
(Creamer et al. 1989).

In the present state of knowledge, establishing the relationship between the orbital
(Lagrangian) and the surface (Eulerian) spectrum is still an issue. When the amplitude
A(k) is taken to be a complex random variable with independent uniformly distributed
random phases, the resulting function φ1 is a complex random Gaussian process by
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virtue of the law of large numbers. However, the random surface η defined by the
locus of particles at the free surface is no longer Gaussian. This implies that the
corresponding distribution of elevation, slopes and curvatures distributions deviate
from the normal distribution. Statistical properties of such random wave fields have
been studied in detail (e.g. Pierson 1961; Gjosund 2003; Aberg & Lindgren 2008;
Lindgren & Aberg 2009; Nouguier et al. 2009; Lindgren & Lindgren 2011) and have
been found to be more consistent with ocean wave field measurements. A contrario,
it should be noted that a first-order expansion in the Eulerian framework, which
expresses the surface and its derivatives as a linear superposition of free harmonics,
is bound to the Gaussian statistics.

4. Second-order Lagrangian solution
This section is devoted to the second-order Lagrangian expansion. We recall

the corresponding equations and detail the calculations to derive the second-order
displacements and the pressure terms as functions of the Lagrangian variables. To
simplify notation we shall omit the integration elements (dk, dk′) and domains (R2

and R2 ×R2) in the following single and double integrals.

4.1. Second-order equations
Retaining the second-order terms in (2.5) we obtain:

R2tt + g∇z2 +∇p2/ρ =−H(Φ1)∇Φ1tt, (4.1)

where H is the Hessian operator, that is the square matrix built with the second-order
partial derivatives relative to the (α, β, δ) variables:

H(Φ1)=

∂
2
αα ∂2

αβ ∂2
αδ

∂2
βα ∂2

ββ ∂2
βδ

∂2
δα ∂2

δβ ∂2
δδ

Φ1. (4.2)

For practical purposes we rewrite the right-hand side of (4.1) as

−H(Φ1)∇Φ1tt = S+ T (4.3)

with

S= (Sα, Sβ, Sδ)=−H(φ1)∇φ1tt + c.c. (4.4)
T= (Tα, Tβ, Tδ)=−H(φ1)∇φ

∗
1tt + c.c. (4.5)

where the superscript ‘∗’ refers to the complex conjugate. Straightforward derivations
given in § A.2 lead to

(Sα, Sβ)=
∫∫

N gkk′
i
2
(k̂+ k̂′)+ c.c.

Sδ =
∫∫

N gkk′ + c.c.

 (4.6)

and

(Tα, Tβ)=
∫∫

N gkk′
i
2
(k̂− k̂′)+ c.c.

Tδ =
∫∫

N gkk′ + c.c.

 (4.7)
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where the kernels N and N depend on the variables k, k′, ξ , δ and t and are defined
as follows:

N =Be−i(ω+ω′)te(k+k′)δ and N =Be−i(ω−ω′)te(k+k′)δ (4.8a,b)

with

B(k, k′, ξ)= 1
4(1− k̂ · k̂

′
)A(k)A(k′)ei(k+k′)·ξ (4.9)

B(k, k′, ξ)= 1
4(1+ k̂ · k̂

′
)A(k)A∗(k′)ei(k−k′)·ξ . (4.10)

Analogously, the continuity equation (2.4) at the second order can be written

x2α + y2β + z2δ +Φ1ααΦ1ββ +Φ1ααΦ1δδ +Φ1ββΦ1δδ −Φ2
1αβ −Φ2

1αδ −Φ2
1βδ = 0 (4.11)

and can be rewritten in the form (see § A.3)

∇ ·R2 = V +W (4.12)

with

V =
∫∫

1
2
(kk′ − k · k′)N + c.c. and W =

∫∫
1
2
(kk′ + k · k′)N + c.c. (4.13a,b)

4.2. Second-order expressions
Due to the linearity of (4.1) and (4.12), we shall first consider the solution to (4.1)
with the sole S term on the right-hand side, that is,

R2tt + g∇z2 +∇p2/ρ = S. (4.14)

We furthermore assume that r2, z2 and p2 can be written as the following integrals:

r2 =
∫∫

N iR+ c.c. (4.15)

z2 =
∫∫

NZ + c.c. (4.16)

p2 = ρg
∫∫

NP + c.c., (4.17)

where R, Z and P are unknown kernels depending on k and k′. Inserting these
expressions in (4.14) leads to a set of equations for the kernels:

−ZΩ+ + (Z +P)(k+ k′)= kk′

−Ω+R+ (k+ k′)(Z +P)= 1
2 kk′(k̂+ k̂′),

}
(4.18)

where we have defined
Ω± =

(√
k±√k′

)2
. (4.19)

Inserting again (4.15)–(4.17) into (4.12) and keeping only the terms involving the
kernel N leads to a third equation:

−R · (k+ k′)+Z(k+ k′)= 1
2(kk′ − k · k′). (4.20)
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Equations (4.18) and (4.20) can easily be solved leading to

R= ωk+ω′k′
2(ω+ω′)

Z = 1
4(k+ k′ +Ω−)
P =√kk′.

 (4.21)

Analogously, we have to solve (4.1) with the sole term T on the right-hand side, which
gives

R2tt + g∇z2 +∇p2/ρ = T. (4.22)

Again, we assume that there exist r2, z2 and p2 in the form given in (4.15)–(4.17) with
some other kernels N , R, Z and P . Since (4.12) involving the kernel N has already
been solved, the only remaining terms are those involving N in (4.12). A set of three
equations is thus obtained for the unknown kernels:

−ZΩ− + (Z +P)(k+ k′)= kk′

−Ω−R+ (k− k′)(Z +P)= 1
2 kk′(k̂− k̂′)

−R · (k− k′)+Z(k+ k′)= 1
2(kk′ + k · k′).

 (4.23)

Again, this system can easily be solved, leading to

R= ωk+ω′k′
2(ω−ω′)

Z = 1
4(k+ k′ +Ω+)
P =−√kk′

 if ω 6=ω′. (4.24)

The case ω = ω′ will be discussed in detail in § 4.3. At this point we have found a
solution to the second-order Lagrangian expansion (4.1) in the form

r2 =
∫∫

i(NR+N R)+ c.c. (4.25)

z2 =
∫∫

(NZ +N Z)+ c.c. (4.26)

p2 = ρg
∫∫

(NP +N P)+ c.c. (4.27)

However, the expression of p2 does not satisfy the boundary condition p2 = 0
at δ = 0 and needs to be corrected. Noting that N = Be−i(ω+ω′)t e(k+k′)δ and
N = Be−i(ω−ω′)t e(k+k′)δ, a very simple way to satisfy to the boundary condition
is to complete p2 in the form:

p2 = ρg
∫∫

PBe−i(ω+ω′)t(e(k+k′)δ − eK+δ)+PBe−i(ω−ω′)t(e(k+k′)δ − eK−δ)+ c.c. (4.28)

where the additional kernels K+ and K− must be determined. The pressure at the
second order can thus be written as

p2 =
∫∫

((N −N ′)P + (N −N ′)P)+ c.c. (4.29)
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where we have introduced the two kernels N ′ and N ′, which only differ from N and
N , respectively, by the real exponential term:

N ′ =Be−i(ω+ω′)teK+δ and N ′ =Be−i(ω−ω′)teK−δ. (4.30a,b)

It is therefore natural to assume a complete expression of r2 and z2 in the form

r2 =
∫∫

i(NR−N ′R′ +N R−N ′R′)+ c.c. (4.31)

z2 =
∫∫

(NZ −N ′Z ′ +N Z −N ′Z ′)+ c.c., (4.32)

where the primed kernels need to be found. To achieve this, we recall these
expressions in (4.1) and identify the terms pertaining to the N ′ kernel only. This
leads to the following equations:

−Ω+Z ′ +K+(Z ′ + P)= 0 (4.33)
−Ω+R′ + (k+ k′)(Z ′ + P)= 0, (4.34)

as well as
−R′ · (k+ k′)+K+Z ′ = 0 (4.35)

from the continuity equation. Inserting (4.33) into (4.34) and multiplying by (k +
k′)/Ω+ leads to

−R′ · (k+ k′)+ ‖k+ k′‖2

K+
Z ′ = 0 (4.36)

which is consistent with (4.35) if and only if

K+ = ‖k+ k′‖ (4.37)

(we discard the mathematical solution K+=−‖k+ k′‖ which is non-physical because
of the asymptotic constraint p2→ 0 when δ→−∞). We can now solve (4.33) and
(4.34) to obtain

R′ =
√

kk′(k+ k′)
Ω+ − ‖k+ k′‖

Z ′ =
√

kk′‖k+ k′‖
Ω+ − ‖k+ k′‖ .

 (4.38)

Repeating the same procedure with the kernel N ′ leads to another set of equations:

−Ω−Z ′ +K−(Z ′ + P)= 0
−Ω−R′ + (k− k′)(Z ′ + P)= 0
−R′ · (k− k′)+K−Z ′ = 0

 (4.39)

which admit the solution K− = ‖k− k′‖ and

R′ = −
√

kk′(k− k′)
Ω− − ‖k− k′‖

Z ′ = −
√

kk′‖k− k′‖
Ω− − ‖k− k′‖ .

 (4.40)
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4.3. Interaction of harmonics of equal frequencies
The complete kernels involved in the integral representation of R2 and p2 have
now been found. However, in order to complete the solution to the second-order
Lagrangian equations we need to discuss the case ω=ω′ which was initially discarded
in (4.24).

A generalized expression of the horizontal second-order term corresponding to
kernel solutions (4.24) for the case ω=ω′ would be written as the limit

r2 = lim
γ→0

∫∫
R4−E

iRN + c.c. (4.41)

where E is the R4 subdomain so that |ω − ω′|< γ and where R, defined at (4.24),
contains a singularity at ω=ω′.

If this integral were to admit a finite value, it would have to be defined in the sense
of Cauchy principal value (PV):

r2 = PV
∫∫

R4
i
ωk+ω′k′
2(ω−ω′)Be−i(ω−ω′)te(k+k′)δ + c.c. (4.42)

The existence of the finite limit (4.41) is shown in appendix B ensuring that (4.42) is
the correct expression of r2.

4.4. Second-order vorticity
A complete Lagrangian second-order solution has now been found. We can verify
a posteriori that it is indeed irrotational. For this, we have to investigate the second-
order expression of the function dF, that is,

dF2 = [R2t + H(Φ1)∇(Φ1t)] · dζ , (4.43)

which we chose to rewrite in the form

dF2 =
∫

t
dt [R2tt + H(Φ1)∇(Φ1tt)+ H(Φ1t)∇(Φ1t)] · dζ (4.44)

where the symbol
∫

t dt refers to temporal integration. Inserting (4.1) into this last
expression leads to

dF2 =∇
[∫

t
dt
(
−(gz2 + p2/ρ)+ 1

2
(Φ1t)

2

)]
· dζ . (4.45)

This provides F2 in the form:

F2 =
∫

t
dt
(

1
2
(Φ1t)

2 − gz2 − p2/ρ

)
. (4.46)

The existence of such a function F2 warrants the absence of vorticity at the second
order.
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4.5. Second-order solution
To summarize all of the expressions established previously, the general solution to the
second-order terms of (2.7) can be written as follows:

r2=
∫∫

i

(
ωk+ω′k′
2(ω+ω′)e

(k+k′)δ −
√

kk′(k+ k′)
Ω+ − ‖k+ k′‖e‖k+k′‖δ

)
Be−i(ω+ω′)t + c.c.

+PV
∫∫

i

(
ωk+ω′k′
2(ω−ω′)e

(k+k′)δ +
√

kk′(k− k′)
Ω− − ‖k− k′‖e‖k−k′‖δ

)
Be−i(ω−ω′)t + c.c.

z2=
∫∫ (

k+ k′ +Ω−
4

e(k+k′)δ −
√

kk′‖k+ k′‖
Ω+ − ‖k+ k′‖e‖k+k′‖δ

)
Be−i(ω+ω′)t + c.c.

+
∫∫ (

k+ k′ +Ω+
4

e(k+k′)δ +
√

kk′‖k− k′‖
Ω− − ‖k− k′‖e‖k−k′‖δ

)
Be−i(ω−ω′)t + c.c.

p2= ρg
∫∫ √

kk′
(

e(k+k′)δ − e‖k+k′‖δ
)
Be−i(ω+ω′)t + c.c.

− ρg
∫∫ √

kk′
(

e(k+k′)δ − e‖k−k′‖δ
)
Be−i(ω−ω′)t + c.c.


(4.47)

where B and B are defined in (4.9) and (4.10) and Ω± in (4.19).

5. Comparison with classical models
5.1. Consistency with the Eulerian approach of M. S. Longuet-Higgins

Before investigating the consistency of this model with classical Eulerian models,
it is instructive to establish the correspondence between Eulerian and Lagrangian
expansions. Let us consider the surface η(r, t) implicitly defined by the locus of
particle trajectories (r(t), z(t)) and denote η = η0 + η1 + η2 + · · · as its Eulerian
expansion in order of steepness above a reference plane. Applying successive Taylor
expansions and making use of the correspondence between the (α, β, δ) Lagrangian
labels and the (x, y, z) coordinate system of the Eulerian description, it can be easily
shown that

η0 = z0

η1 = z1 − r1 · ∇ξη0

η2 = z2 − r1 · ∇ξη1 − r2 · ∇ξη0 − 1
2 r1∇ξ∇ξη0r1

ηn = zn − · · ·

 (5.1)

where ∇ξ is the horizontal bi-dimensional gradient and ∇ξ∇ξ the corresponding
Hessian. The expansion can in principle be pursued at an arbitrary order even
though it becomes algebraically more complex. From this it can seen than any
nth-order term in the surface elevation (ηn) can be obtained from the combination
of an nth-order term in the vertical particle position (zn) and lower-order terms
(rp, zp), p 6 n − 1. Hence, any given order of the Lagrangian expansion provides
the complete corresponding Eulerian order and is moreover involved in higher-order
Eulerian terms.

The classical Eulerian approach (Hasselmann 1962; Longuet-Higgins 1963) to the
nonlinear theory of gravity waves consist in seeking both the elevation η and the
velocity potential Φ at the free surface in a perturbation series (2.2). The expansion
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is usually performed about the mean horizontal plane of the leading order η0 so that
no zeroth-order term is present:

η(ξ , t)= η1(ξ , t)+ η2(ξ , t)+ · · · (5.2)
Φ(ξ , t)=Φ1(ξ , t)+Φ2(ξ , t)+ · · · . (5.3)

In these two equations and the rest of this section, the fixed Eulerian coordinate
system (x, y) has been simply replaced by the (α, β) system. The first-order terms
are given by the classical spectral representation,

η1(ξ , t)=
N∑

j=1

aj cosψj, ψj = kj · ξ −ωjt+ ϕj (5.4)

Φ1(ξ , t)=
N∑

j=1

bj cosψj, (5.5)

where ϕj is the phase associated to the kj component. The higher-order terms in the
expansion involve nth-order multiplicative combinations of these spectral components.
The perturbation expansions of elevation and velocity potential are identified
simultaneously by injecting the successive Fourier expansions in Navier–Stokes
equations. The leading, quadratic, nonlinear term for elevation was provided by
Longuet-Higgins (1963) in the form

η2(ξ , t)= 1
2

N∑
i,j=1

aiaj[Kij cosψi cosψj +K ′ij sinψi sinψj], (5.6)

Kij = (kikj)
−1/2[B−ij + B+ij − ki · kj] + ki + kj (5.7)

K ′ij = (kikj)
−1/2

[
B−ij − B+ij − kikj

]
(5.8)

B±ij =
Ω±ij (ki · kj ∓ kikj)

Ω±ij − ‖ki ± kj‖ (5.9)

Ω±ij = (
√

ki ±
√

kj)
2 (5.10)

where as usual k=‖k‖. (Note that the factor 1/2 is missing in the original paper by
Longuet-Higgins, as was later acknowledged by the author himself.) The first-order
Lagrangian expansion was shown to be close but not perfectly consistent with the
second-order Eulerian perturbation expansion of Longuet-Higgins (see Nouguier et al.
2009). We will now show that full consistency is achieved with Longuet-Higgins
approach with the second-order Lagrangian expansion at the surface, that is,

η1 = z1

η2 = z2 − r1 · ∇ξ z1

}
(5.11)

where, again, ∇ξ is the horizontal bi-dimensional gradient. It should be noted from
(5.11) that r2 is absent emphasizing that the second-order Eulerian formalism misses
all effects related to r2 contribution.

From (4.47), we have at the free surface (δ = 0)

z2 = 1
2

∫∫ {(
k+ k′ +Ω−

4
−
√

kk′‖k+ k′‖
Ω+ − ‖k+ k′‖

)
(1− k̂ · k̂

′
)akak′ cos(ψ +ψ ′)

+
(

k+ k′ +Ω+
4

+
√

kk′‖k− k′‖
Ω− − ‖k− k′‖

)
(1+ k̂ · k̂

′
)akak′ cos(ψ −ψ ′)

}
(5.12)
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with ak = ‖A(k)‖ and ψ = k · ξ − ωt + ϕk where ϕk is the phase of A(k). Following
some basic algebra z2 can be rewritten in the form

z2 = 1
2

∫∫
akak′

[
K cos(ψ) cos(ψ ′)+

(
K ′ + k′ · k̂+ k · k̂

′)
sin(ψ) sin(ψ ′)

]
(5.13)

where kernels K and K ′ are the continuous version of kernels Kij and K ′ij of (5.7)
wherein the subscripts i and j are related to non-primed and primed variables.

To complete the expression (5.11) we observe that

− r1 · ∇ξη1|δ=0 = −∇ξ (Φ1) · ∇ξ (Φ1δ)|δ=0

= −
∫∫

(k′ · k̂)akak′ sin(ψ) sin(ψ ′)

= −
∫∫

1
2
(k′ · k̂+ k · k̂

′
)akak′ sin(ψ) sin(ψ ′). (5.14)

The combination of (5.13) and (5.14) yields

η2 = 1
2

∫∫
akak′[K cos(ψ) cos(ψ ′)+K ′ sin(ψ) sin(ψ ′)], (5.15)

which is the continuous version of (5.6) derived by Longuet-Higgins (1963).

5.2. Consistency with the Lagrangian derivation of W. J. Pierson
In 1961 W. J. Pierson derived a Lagrangian second-order solution to the discrete long-
crested problem. He considered waves travelling in the positive α direction only and
found the solutions in the forms (equations (27) and (28) in Pierson (1961)):

x(α, δ, t) = α −
∑

i

aiekiδ sin(ψi)−
∑
j>i

∑
i

aiaj

g

(
ω3

i +ω3
j

ωj −ωi

)
e(kj+ki)δ sin(ψj −ψi)

+
∑
j>i

∑
i

aiaj

g
(ωj +ωi)ωje(kj−ki)δ sin(ψj −ψi)+

∑
i

a2
iωikie2kiδt (5.16)

z(α, δ, t) = δ +
∑

i

aiekiδ cos(ψi)+
∑
j>i

∑
i

aiaj

g
(ω2

i +ωiωj +ω2
j )e

(kj+ki)δ

× cos(ψj −ψi)−
∑
j>i

∑
i

aiaj

g
(ωj +ωi)ωje(kj−ki)δ cos(ψj −ψi) (5.17)

p(α, δ, t) = pa − ρgδ + ρg
∑

i

a2
i ki

2
(e2kiδ − 1)− 2ρ

∑
j>i

∑
i

aiajωiωje(kj+ki)δ

× cos(ψj −ψi)+ 2ρ
∑
j>i

∑
i

aiajωiωje(kj−ki)δ cos(ψj −ψi) (5.18)

with ψi = kiα −ωit+ ϕi.
The comparison of our continuous solution with the discrete formulation of Pierson

is not straightforward due to the PV formulation of one of the terms. However, it
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should be noted that within a small subspace D of R4 around the singularity domain
(|ω−ω′|< ε) we have

PV
∫∫

D
i
(
ωk+ω′k′
2(ω−ω′)e

(k+k′)δe−i(ω−ω′)t
)
B+ c.c.'

∫∫
D

1
2
ωk(k̂+ k̂

′
)e(k+k′)δBt. (5.19)

This result corresponds to a temporal secular term. More detailed comments on this
term can be found in § 6.1.

Moreover, we can note that (see (4.40)):

R′ −−→
k→k′

k(
̂̂k− k̂

′
). (5.20)

Within a small subspace D′ of R4 defined by ‖k− k′‖< ε and due to the symmetry
of the previous limit we have∫∫

D′
i

√
kk′(k− k′)

Ω− − ‖k− k′‖e‖k−k′‖δBe−i(ω−ω′)t + c.c.−−→
ε→0

0 (5.21)

since integration is realized over all k and k′.
Restricting solution (4.47) to the discrete case of long-crested waves travelling in the

same positive α direction (k̂ · k̂
′= 1, ‖k− k′‖= s(k− k′) where s is the sign of k− k′)

we obtain the following expressions for the second-order displacements and pressure:

x2 = −
∑

i,j
i6=j

[
ωiki +ωjkj

2(ωi −ωj)
e(ki+kj)δ +

√
kikj(ki − kj)

Ω−ij − s(ki − kj)
es(ki−kj)δ

]
aiaj sin(ψi −ψj)

+
∑

i

a2
iωikie2kiδt (5.22)

z2 =
∑

i,j

[
ki + kj +Ω+ij

4
e(ki+kj)δ +

√
kikjs(ki − kj)

Ω−ij − s(ki − kj)
es(ki−kj)δ

]
aiaj cos(ψi −ψj) (5.23)

p2 = −ρg
∑

i,j

√
kikj
(
e(ki+kj)δ − es(ki−kj)δ

)
aiaj cos(ψi −ψj) (5.24)

where non-primed and primed variables of (4.47) are related to the subscripts i and j,
respectively. Making use of the dispersion relationship ω2 = gk we can rewrite after
straightforward manipulations

x2 = −
∑
j>i

∑
i

aiaj

g

(
ω3

i +ω3
j

ωj −ωi

)
e(kj+ki)δ sin(ψj −ψi)

+
∑
j>i

∑
i

aiaj

g
(ωj +ωi)ωje(kj−ki)δ sin(ψj −ψi)+

∑
i

a2
iωikie2kiδt (5.25)

z2 =
∑
j>i

∑
i

aiaj

g
(ω2

i +ωiωj +ω2
j )e

(kj+ki)δ cos(ψj −ψi)

−
∑
j>i

∑
i

aiaj

g
(ωj +ωi)ωje(kj−ki)δ cos(ψj −ψi)+

∑
i

1
2

a2
i kie2kiδ (5.26)
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p2 = ρg
∑

i

a2
i ki

2
(e2kiδ − 1)− 2ρ

∑
j>i

∑
i

aiajωiωje(kj+ki)δ cos(ψj −ψi)

+ 2ρ
∑
j>i

∑
i

aiajωiωje(kj−ki)δ cos(ψj −ψi) (5.27)

which differs from the original derivation of Pierson (1961) (5.16)–(5.18) by the
constant term

∑
i(a

2
i kie2kiδ)/2 in the vertical displacement corresponding to the

mean of z2. A closer inspection of Pierson’s original derivation shows that he used
∂|J|/∂t= 0 as its basic continuity equation. However, this does not necessarily imply
that |J| = 1 and can lead to erroneous solutions. Using equation ∂|J|/∂t= 0 instead of
|J| = 1 allows the cancellation of all of the time-independent terms in the solutions.
This is the reason why the mean level of z2 is absent in the derivations of Pierson
(1961) which must be rectified as (5.25)–(5.27).

6. Analysis of the second-order solution
6.1. Stokes drift

We will now investigate some remarkable properties of the second-order Lagrangian
solution. The first is the customary Stokes drift, first introduced in the celebrated work
by Stokes (1847) and extended to the tri-dimensional case by Kenyon (1969) and
Phillips (1977). The Stokes drift manifests itself in a net horizontal displacement after
one wave period or, more generally, after time averaging. The net mass transport can
be evaluated using the horizontal velocity r2t estimation. As shown in the derivation
below, only the third integral term r2 (see (4.42)) in the expression of r2 has a non-
vanishing temporal mean. Equation (6.1) gives the horizontal velocity for this term
only (note that the apparent singularity disappears after differentiation):

r2t =
∫∫

1
2
(ωk+ω′k′)e(k+k′)δBe−i(ω−ω′)t + c.c. (6.1)

We now consider the time average of this quantity:

〈r2t〉t = lim
T→∞

1
T

∫ T/2

−T/2
dt
∫∫

R4

1
2
(ωk+ω′k′)Be−i(ω−ω′)te(k+k′)δ + c.c. (6.2)

Inverting time and space integrals and using

lim
T→∞

1
T

∫ T/2

−T/2
cos[(ω−ω′)t] dt= ð(ω−ω′) (6.3)

where ð is the Dirac distribution, we obtain

〈r2t〉t =
∫∫

R4
ð(ω−ω′)1

2
ωk(k̂+ k̂

′
)Be2kδ + c.c. (6.4)

All other terms in r2t have a vanishing temporal mean due to their ω−ω′ dependency
which appears after temporal differentiation and due to the Dirac function. This is
why r2t is replaced by r2t in (6.4). Equation (6.4) is thus the total mean average of
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the horizontal displacement of particles. Using again (6.3) in the space domain, we
derive the spatial mean of (6.4) which can be written

〈r2t〉ξ t =
∫∫

R4
ð(ω−ω′)ð(k̂− k̂

′
)
1
2
ωk(k̂+ k̂

′
)
1
4
(1+ k̂ · k̂

′
)A(k)A∗(k′)e2kδ + c.c. (6.5)

Simplified as

〈r2t〉ξ t =
∫
ωk‖A(k)‖2e2kδ (6.6)

the classical Stokes drift velocity is easily identified. The mean Stokes drift 〈r2〉ξ t

is thus already included as a part of the r2 expression (4.47) and is the results of
the self-interaction of the different harmonics. Clamond (2007) derived this result
for a monochromatic wave and noted that after subtraction of this mass transport
component, the orbits of water particles remained closed and symmetric even for
steep waves (see also Longuet-Higgins 1987). As noted before in § 5.1, equation
(5.11), the contribution of r2 is absent in the Eulerian expansion, leading to the
absence of the Stokes drift in the second-order Eulerian expansion.

6.2. Distortion of wave fronts
In the case of tri-dimensional multiple wave interactions, a residual spatial Stokes drift
pattern, namely 〈r2t〉t − 〈r2t〉ξ t, remains. It results from the interaction of harmonics
of equal time frequency but having different propagation directions. This phenomena
which cannot exist in the bi-dimensional case (because ω = ω′ implies k = k′) is
responsible for the increase of the wave shape asymmetry over time. An example is
shown in figure 1. Two harmonics of equal frequency but propagating in different
directions create a spatially varying shear over the sea surface (figure 1b). This shear
tends to slow down the troughs relatively to the crests leading to an asymmetric
wave shape that can be related to the first stage of the formation of the well-known
horseshoe patterns (see figure 1c). The front–back symmetry of the waves and the
absence of slope skewness are nonetheless preserved.

Shrira, Badulin & Kharif (1996) and later Annenkov & Shrira (1999) proposed a
mathematical solution to explain the apparition and the persistence of the horseshoe
pattern by quintet resonant interactions coupled with wind and dissipation and noted
that waves developed front–back asymmetries. The two main characteristics of the
horseshoe patterns are (a) a life time largely exceeding the associated wave period
and (b) a persistent shape with front–back asymmetry.

For clarity, in the explanations below, the term ‘harmonic’ is used for a Lagrangian
wave vector component and the term ‘wave’ is used for an Eulerian (surface) wave
vector component. Even though cross-comparison of harmonic interactions and wave
interactions is not an easy task, we can try to estimate which harmonics are involved
in the development of such wave front deformations. Bi-harmonic interaction terms
are present in both horizontal (x2, y2) and vertical (z2) second-order Lagrangian
displacements. Therefore, simply using bi-harmonic Lagrangian interactions should
a priori make it possible to obtain, at least partially, the interactions of a wave
quartet in the Eulerian framework. Horseshoe patterns observed by Collard & Caulliez
(1999) present peculiar features that can be compared with the model presented. Their
experiment starts from an almost monochromatic wave with wavenumber k0. The wave
field later degenerates and gives rise to crescent-shape patterns. The spatiotemporal
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FIGURE 1. (Colour online) Interaction of two harmonics of equal amplitudes (A= 0.08 m)
and wavenumbers (k = 1.104 rad m−1) but different directions of propagation: + and −
48.2◦ relative to direction α. (a) Sea surface elevation at t = 0. (b) α component of the
Stokes drift velocity: 〈r2t〉t (β component vanishes). Such component is independent of α.
We can see a mean Stokes drift of about 3 cm s−1 and its spatial variations leading to
increasing crescent shape patterns. (c) Sea surface elevation after a long time period of
30 s. The surface has developed distorted wave fronts.

analysis of this experiment shows that a pair of harmonics (k1, k2) are created so
that:

k1 + k2 = 3k0 and ω1 +ω2 = 3ω0. (6.7a,b)

The case called ‘steady pattern’ in Collard & Caulliez (1999) is defined with k1 = k2
and consequently ω1 = ω2. In this specific case, the results presented in figure 1
suggest that no k0 component is necessary to obtain wave front deformation since
the secular term in 〈r2t〉t − 〈r2t〉ξ t is generated by the k1 and k2 component interaction
only. However, since the k0 component is obviously present in the experiment of
Collard & Caulliez (1999), it was not experimentally possible to check whether such
component is indispensable to the wave front deformation. Yet, it could be said that
k0 is indirectly necessary to the emergence of the perfectly symmetric pair of wave
vectors (k1, k2) through the resonant interaction defined by (6.7). It should therefore
be interesting to experimentally show that a unique bi-harmonic structure such as that
presented in figure 1 is sufficient to create horseshoe patterns. However, in order to
obtain such wave shapes, our methodology only performs satisfactorily when very low
steepness and very long time periods are considered. Indeed, first- and second-order
steady nonlinearities should remain low until the secular second-order term becomes
observable. Experiments made by Kimmoun, Branger & Kharif (1999) show that
beyond a certain level of steepness, no wave front asymmetry is observed and that
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steady first- and second-order nonlinearities, as described in § 6.3, become the main
contributors to the wave shape deformation.

However, in the simulation presented in figure 1, the requirement of low steepness
of the k1 and k2 component is fulfilled and, for comparison purposes with Collard
& Caulliez (1999), we added a k0 component in the orbital spectrum which was
chosen so that k1 + k2 = 3k0, ϕ0 =−π/2 and ϕ1 = ϕ2 = 0 (but obviously where ω1 +
ω2 6= 3ω0). This reproduced the ‘steady’ horseshoe patterns presented in Collard &
Caulliez (1999). Figure 2(a) shows the wave field obtained after 30 s and figure 2(b,c)
show the temporal record of the water surface elevation and its Fourier transform.
As pointed out by Collard & Caulliez (1999), such wave field contains a (3/2)ω0
harmonic (0.524 Hz) emanating from the simple first-order contribution of k1 and k2.
We believe that the front–back asymmetry of the horseshoe pattern observed in real
conditions comes from higher-order interactions (Lagrangian cubic order) that would
create a k0 component with an angular frequency of ω0 but with a slightly different
phase.

In any case, even if the spatial drift we found tended to slowly twist the wave shape
and made it tend towards the horseshoe pattern, this drift led to a constant increase
of the surface deformation over time giving rise to unrealistic shapes after a long
time period. Moreover, as already noted by Shrira et al. (1996), steady wave solutions
of inviscid equations do not present front–back asymmetries. Hence, the secular term
can only belong to a transitory state of the surface and cannot be used for long time
periods as suggested by the domain of validity of the series expansion.

As already mentioned, the Stokes drift manifests itself through a secular term which
is undesirable in a perturbation expansion. Indeed, as commented by Buldakov et al.
(2006), third-order solutions will make the secular term interact with the leading order
creating unrealistic diverging secular terms in both horizontal and vertical particles
expansion. As a result, the second-order solution cannot be valid at arbitrary long
time periods. Furthermore, any attempt to pursue the Lagrangian expansion beyond
the second order should be accompanied with a particles relabelling as suggested by
Clamond (2007) who claimed that a steady solution with Stokes drift cannot be found
without adapting the Lagrangian references. The apparition of the mean secular term
in a Lagrangian expansion comes from a misrepresentation of steady waves and can
be avoided, at least in the case of a monochromatic wave, by a correct time-and-
space-dependent water particles relabelling leading to a valid solution at all time and
orders. However, as this paper deals with tri-dimensional multiple wave system and
is restricted to the second-order expansion, we shall not enter into such details and
leave these considerations for further studies.

6.3. Sharp crests, mean elevation and skewness coefficient
For the temporal mean of the second-order vertical displacement at the surface we
write

〈z2〉t,δ=0 =
∫∫

R4
ð(ω−ω′)1

2
kB+ c.c. (6.8)

This shows that the second-order vertical displacement has a non-vanishing mean
due to the interaction of waves of equal frequency. The (k̂ − k̂

′
) phase term in B

describes a spatial oscillating pattern perpendicular to the mean direction of the waves
and is the main contributor to the vertical second-order displacement. To illustrate this
statement, we use the same bi-harmonic system as described above. Figure 3 displays
first- and second-order surface slices along an equi-α contour corresponding to a crest
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FIGURE 2. (Colour online) Surface elevation obtained with three harmonics, k0 =
0.491 rad m−1, k1= k2= 1.104 rad m−1, respective amplitudes, a0= 0.24 m and a1= a2=
0.06 m, directions of propagation relative to α, θ0= 0, θ1=−θ2= arccos(2/3), and phases
ϕ0 = −π/2, ϕ1 = ϕ2 = 0. (a) Sea surface elevation at t = 30 s. (b) Temporal record of
the water surface elevation at fixed point (α, β) = (0, 0). (c) Fourier transform of the
temporal record (figure 2b). We can identify frequency f0 = (2π)−1√gk0 and harmonic
(3/2)f0 coming for k1 and k2 contribution.
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FIGURE 3. (Colour online) Slices along an equi-α contour (perpendicular to the mean
direction of wave) of the first- and second-order Lagrangian surface. The slices pass
through a wave crest. The different second-order contributions are superimposed as well
as their combined effects (arrows).

position. As can be plainly seen, the second-order vertical term tends to permanently
sharpen the crests and flatten the troughs by a positive vertical shift relative to the
z2 mean level. Contrarily to the Lagrangian first-order terms, the sharpening and
flattening effects apply in a direction perpendicular to the wave direction leading to
a more ‘short-crested’ wave pattern. The horizontal term y2 has the same effect even
though it is in quadrature with the vertical motion. The combination of both effects
is represented using arrows on figure 3.

Kimmoun et al. (1999) used an advanced methodology to derive the surface
topography from wave tank experiments. In their sixth experiments, two waves with
equal wavelength and different directions interact and develop a short-crested wave
field that is analysed and compared with their theoretical calculations. The second
wave is obtained by reflexion of the first on a vertical wall. They pushed their
theoretical Eulerian calculations up to the third order in the wave steepness parameter
to compare with their observations. The sixth experiment (see figure 4a) clearly shows
‘rhombic form of the crest and the elliptic form of the troughs’ that also appear on
the second-order Lagrangian simulation plotted on figure 4(b). First-order Eulerian
and Lagrangian simulations are respectively plotted in figure 4(c,d).

It was shown by Pierson (1961, equation (45)) that the first-order Lagrangian
surface has a relative mean level:

η1 =−
∫

k‖A(k)‖2. (6.9)

The mean sea level is affected by the non-vanishing mean of the second-order
elevation term (see mean level of z2 on figure 3). At the surface,

〈z2〉ξ ,t =
∫

1
2

k‖A(k)‖2 (6.10)
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FIGURE 4. Interaction of two harmonics of equal amplitudes (A = 0.43 cm) and
wavelength (λ = 7.8 cm) but different directions of propagation: + and − 33◦ relative
to direction β: (a) figure 14 from Kimmoun et al. (1999); (b) second-order Lagrangian
profile; (c) first-order Eulerian profile; (d) first-order Lagrangian profile.

is the unique second-order contributor to mean surface elevation at the leading order
giving the overall sea level:

η2 =−
∫

1
2

k‖A(k)‖2. (6.11)

When this mean level is naturally tared by a Lagrangian sensor (free-floating buoys,
etc.), it results in a mean sea level greater by an amount of |η2| than an Eulerian
measuring system (fixed probes, etc.) does. This conclusion has already been reached
by Longuet-Higgins (1986) (see equation (3.7)) via a different route. The author
emphasized the importance of this effect in particular with respect to ocean surface
remote sensing applications. However, as already stated by Longuet-Higgins (1987),
Lagrangian orbits are highly symmetrical at the second-order leading to a vanishing
skewness. In random ocean wave fields, such second-order dynamical effects have
strong impacts on waves height, slope and curvature distributions and are responsible
for their deviation from the Gaussian law. These statistical properties are of great
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interest in the ocean remote-sensing community but a systematic study goes beyond
the scope of this paper and is left for further developments.

6.4. Modulational Benjamin–Feir instability, a simple beat effect
It is now well known that Benjamin–Feir (BF) instability results from a nonlinear
quartet-wave resonant phenomenon (Benjamin & Feir 1967). An initial uniform
monochromatic Stokes wave of moderate amplitude develops side-band harmonics
with an exponential rate of growth and degenerates into a sequence of wave packets.

In this section we do not wish to enter into a complex analytical analysis but would
like to show, on the basis of theoretical and numerical considerations, that the periodic
regime of BF instability is already present (at least partly) and symmetric (i.e. with
no frequency downshift) in the Lagrangian second-order solution.

We shall not study the growth period since we only consider periodic solutions
but we shall show that, at the second order of the nonlinear Lagrangian parameter,
a periodic modulation process exists between the carrier and two existing sideband
harmonics and can be interpreted as a Lagrangian Benjamin–Feir modulation. We
shall show that, surprisingly, what is considered to be a periodical exchange of energy
between waves from a Eulerian point of view is in fact a simple beat effect which
appears naturally when a two-wave system has close frequencies in the Lagrangian
framework. The same initial sea state is used in the Eulerian framework and shows
that this phenomenon is clearly absent up to the second order.

6.4.1. System of three aligned harmonics
In order to illustrate this statement, let us consider a bi-dimensional and uni-

directional case defined up to the second order by (5.16) and (5.17). We focus on a
bi-harmonics system defined by its wavenumbers k0 and k2 (0< k0 < k2) where k0 is
the carrier wavenumber, k2 the satellite wavenumber and ϕ0 and ϕ2 their respective
phases. The carrier wave is chosen with wavenumber k0 = π/2 rad m−1 propagating
in the α direction and corresponding to a 4 m wavelength and a 1.6 s time period.
Its orbital amplitude a0= 0.2228 m is chosen so that s= k0a0= 0.35. It must however
be emphasized that a0 is the orbital spectral amplitude and that the real amplitude of
the carrier never exceed 0.2 m leading to a maximum steepness of 0.3. The satellite
wavenumber is k2= k0× (1+ p) with p= 0.1. Its orbital amplitude is a2= a0× c with
c= 0.08.

We generate a surface of 90 m length with a 12.5 cm label spatial sampling over
a thousand periods of the carrier wave and evaluate, at each step in time, the spectral
amplitude of the surface η(α, t) (a numerical interpolation of the surface profile on a
regular grid was realized prior to its Fourier transform), the horizontal x(α, t) and
vertical z(α, t) particle displacement processes at the surface δ = 0. We therefore
evaluate the Fourier transforms η̂(k, t), x̂(k, t) and ẑ(k, t) defined by

Ψ̂ (k, t)=
∫
(Ψ (α, t)−Ψ )eikα dα, (6.12)

where Ψ stands for any of the three quantities η, x or z and where the upper line
Ψ refers to the spatial average. These quantities are constant in time and are given
in table 1 together with the orbital spectral amplitudes |A(k)|. We have selected the
wavenumbers associated to non-vanishing amplitudes. All harmonics of the orbital
spectrum are aligned and produce a unique temporal secular term corresponding to a
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k k2 − k0 2k0 − k2 k0 k2 2k2 − k0

|A(k)| 0 0 0.2228 0.0178 0
|x̂(k)| 0.2785 0 0.2228 0.0178 0
|ẑ(k)| 0.0062 0 0.2228 0.0178 0
|η̂(k)| 0.0018 0.04627 0.1979 0.0598 0.0093

TABLE 1. Orbital |A(k)|, horizontal |x̂|, vertical |ẑ| motions and surface |η̂| spectral
amplitudes obtained from a two-wave orbital system: (k0, k2) = π/2 × (1, 1 + p) and
(a0, a2)= s/k0 × (1, c) with s= 0.35, p= 0.1 and c= 0.08.

global horizontal translation of the sea surface profile. This main constant drift can
easily be removed by adapting the frame of reference ensuring the validity of the
second-order expansion, in this case only, even for long time periods.

Even though neither the vertical |ẑ| nor horizontal |x̂| displacement spectra contain
a 2k0− k2 component, this component is present in the surface spectrum. The k2− k0
component is an important contributor to the second-order horizontal displacement:

−a0a2

g

(
ω3

0 +ω3
2

ω2 −ω0

)
sin [(k2 − k0)x− (ω2 −ω0)t+ ϕ2 − ϕ0] . (6.13)

Table 1 clearly shows the k0 − (k2 − k0)= 2k0 − k2 harmonic in the surface spectrum
due to the combination of the horizontal k2 − k0 term and the k0 term. We can
therefore easily deduce that the angular frequency and phase of this term become
2ω0−ω2 and 2ϕ0−ϕ2. The other interaction term with wavenumber k0+ (k2− k0)= k2
has the same frequency ω2 and phase ϕ2 as the orbital first-order k2 component of
the orbital spectrum and simply affects its amplitude.

The case presented in table 1 shows that the k2 component of the surface spectrum
benefits from a constructive interaction of the k0 and (k2 − k0) terms since its
amplitude (0.0598) is increased relatively to the specified orbital amplitude (0.0178).
Conversely, the amplitude of the k0 component is decreased relatively to orbital
amplitude due to a destructive interaction. As expected, the surface spectrum also
contains a very small 2k2 − k0 term arising from the combination term k2 + (k2 − k0).

Now, let us suppose that an extra k1 component is added to the orbital spectrum
in such a way that k1 = 2k0 − k2 as shown in figure 5 and denote ω1 and ϕ1 as the
associated angular frequency and phase. This component will therefore have the same
spatial wavenumber as the k0 − (k2 − k0) term presented above but with a slightly
different temporal frequency. These two terms will therefore generate a temporal beat
effect with angular frequency 1ω such as

1ω=ω1 − (2ω0 −ω2) (6.14)

and thus the phase of k1 amplitude temporal evolution will only depend on the global
phase:

θ = ϕ1 − (2ϕ0 − ϕ2). (6.15)

Inverting k1 and k2 in the previous considerations we obtain the same behaviour for
the k2 component. Now, letting the triple-harmonic structure system evolve in time
leads to a periodic evolution of the two side-band harmonic amplitudes which share
the same time period:

T = 2π

1ω
(6.16)
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FIGURE 5. (Colour online) Spectral repartition of the orbital spectrum components with
k1 + k2 = 2k0.

0.05

 0.10

0.15

 0.20

0.25

0 200 400 600 800 1000 1200 1400 1600
t

A
m

pl
itu

de

Carrier

HF sideband
LF sideband
Carrier-Euler
HF sideband-Euler

LF sideband-Euler

FIGURE 6. (Colour online) Time evolution of the spectral amplitudes of the carrier
wave (ω0 = 3.93 rad s−1), the low- and the high-frequency sidebands (ω1 = 3.74 and
ω2 = 4.11 rad s−1). Solid lines represent the Lagrangian expansion and dashed lines the
Eulerian expansion. The period defined in (6.16) is 726 s.

and the same evolution phase depending on the unique value θ . The time evolution
of the carrier, high-frequency (HF) and low-frequency (LF) side-band amplitudes is
presented in figure 6. The corresponding Eulerian case is presented for comparison
purposes and clearly shows that the BF modulation is absent up to the second order.
Shemer (2010) had already derived these two results using a different technique in the
Eulerian framework by pushing the nonlinearity at the third order and considering the
evolution of a wave quartet.

It should be noted that the mean level and the variations of each satellite amplitude
are not fully controlled by the ratio c= a2/a0 and depend on the carrier characteristics
and on the other satellite. This makes the quantitative comparison between the two
approaches complicated. However, it does not change the conclusion that a strong
modulation–demodulation of the carrier wave and of the two satellites is present at
the second order in the Lagrangian framework while the Eulerian point of view does
not show any interaction even if the sea surface spectrum presents new harmonics
relative to the first order.

6.4.2. Carrier harmonic with two lateral side-band harmonics
Let us now consider a symmetric triple-harmonic structure such as 2k0 = k1 + k2

with ω1−ω0> 0 and ω2−ω0> 0. This configuration is possible in the tri-dimensional
case only and is represented in figure 7. Figure 8 show surface profiles derived using
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FIGURE 7. (Colour online) Spectral repartition of the orbital spectrum components with
k1 + k2 = 2k0.
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FIGURE 8. Sea surface profiles derived from second-order solutions of Lagrangian (a) and
Eulerian (b) expansion. Here t= 17 s.

second-order solutions of the Eulerian (Longuet-Higgins 1963) expansion and the
Lagrangian (2.7) expansion with (3.7) and (4.47) using the same triple-harmonic
structure. The carrier wave is chosen with amplitude a0 = 0.2 m and propagates
in the α direction with wavenumber k0 = 1.58 rad m−1 corresponding to a 3.97 m
wavelength and a 1.58 s time period. Two satellites of equal amplitude a1 = a2 =
0.04 m with wavenumbers k1 = k2 = k0/[cos(37.08◦)] rad m−1 propagate with angles
+37.08◦ and −37.08◦ relative to the α direction. The phases of each of the three
harmonics are set to zero. Spatial sampling is 25 cm.

We generate an 8 m× 8 m surface with a 25 cm spatial sampling over 10 periods
of the carrier wave and a time evolution process is realized by increasing the time
variable. A bi-dimensional spectral analysis of the surfaces is realized at each step
in time by fast Fourier transform. Again, a numerical interpolation of the Lagrangian
surface on a regular grid is realized prior to the Fourier transform. Figure 9 shows
the surfaces spectra obtained at t= 17 s showing the three-wave pattern. As expected,
the surface in the Lagrangian framework contains more harmonics than in the
Eulerian framework due to the multiple possible combinations between horizontal and
vertical particle harmonics. Figure 10 shows the time evolution of the three harmonic
amplitudes. Again, the Eulerian case is presented for comparison purposes showing
that the BF modulation is absent.

In the presented tri-dimensional structure, we can see that sideband harmonics
modulations are synchronous leading to strong opposite modulation between carrier
and harmonics amplitudes. We can also see that the mean amplitude of the carrier
in the Lagrangian framework is always notably smaller than the prescribed value
(0.2) which is the consequence of constructive harmonics interactions. This decrease
of the carrier amplitude is amplified by the fact that the prescribed amplitude is
the orbital spectrum amplitude and not the sea surface spectrum amplitude. On the
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FIGURE 9. Eulerian (a) and Lagrangian (b) surface spectra. Here t= 17 s.
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FIGURE 10. (Colour online) Evolution of the carrier and satellites amplitudes as a
function of time.

contrary, the two sideband harmonics take advantage of the positive interaction
permanently increasing their mean amplitudes. In any case, the observed modulation
depth is related to the amplitude of the second-order horizontal term relatively to
the first-order component having the same wavenumber. Moreover, we note that
the horizontal second-order term is inversely proportional to the difference of the
carrier and sideband harmonic frequencies (see (6.13)). Increasing this difference
rapidly leads to a strong reduction of the modulation process. Additional numerical
simulations with greater frequency differences between the carrier and the sideband
harmonics were made and confirm this statement, which is consistent with the
proximity of the frequencies observed in BF instability experiments.

Here, we focus on the modulation–demodulation resonance that can be related
to a BF modulational instability. We have shown that, from a Lagrangian point of
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view, no energy is exchanged between the involved orbital harmonics. Conversely, the
Eulerian interpretation of this phenomenon, based on the surface spectrum analysis
instead of the orbital analysis, is a permanent and periodical energy exchange between
the carrier wave and its two sideband harmonics. This shows that the Lagrangian
formulation is in a certain way a more natural and easier point of view. Moreover,
in the Lagrangian framework, the time invariability of the harmonics amplitudes
suggests that the side-band generation process (the instability itself) can be clearly
separated from the modulational part (beating phenomena). However, it is known
that asymmetric evolution of the sideband harmonics, responsible for the frequency
down-shift effect, is obtained when the modulation increases and when stronger
nonlinear effects or dissipation are taken into account. These phenomena are clearly
absent at the Lagrangian second-order and will be considered in future studies
together with the derivation of the instability domain of an initial monochromatic
Stokes wave.

7. Conclusion
In this paper, the second-order perturbation expansion in Lagrangian coordinates

has been derived to study the interactions between deep-water surface gravity
waves. In its compact and vectorial form, the proposed solution extends initial
investigations (Pierson 1961), fully recovers the classical second-order Eulerian
expansion (Longuet-Higgins 1963) and naturally includes the well-known Stokes drift
velocity. As further illustrated in the case of tri-dimensional wave interactions, a
residual spatial Stokes drift will result from harmonics of equal frequency but having
different propagation directions. This phenomenon leads to an increase of the wave
shape asymmetry along the propagation, and can be related to the development of
short-crested wave patterns, as a possible initial stage of formation of horseshoe
patterns. Indeed, Lagrangian second-order terms will contribute to sharpening and
flattening effects, but, contrary to the first-order correction, these effects are applied
in the perpendicular direction to the wave’s direction.

The modulation aspect of the BF instability is further shown to be captured
as a beat effect in the Lagrangian framework. A periodic modulation emerges
between the carrier and two sideband harmonics. As demonstrated, the orbital
spectrum remains unchanged as the waves evolve in time, while the corresponding
surface Eulerian spectrum exhibits periodical variations for the carrier and sideband
harmonic amplitudes. It should be noted that the asymmetric evolution of the sideband
harmonics, and the associated frequency downshift, are not recovered at this second
Lagrangian order.

The extension of the proposed expansion to the case of varying depth and surface
current could also follow the same formalism, and its further investigation should be
considered in the future.
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Appendix A
A.1. Perfect differential and vorticity

There is no vorticity if the velocity field Rt can be written in the form:

Rt =∇F (A 1)
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where F is any scalar function. Noting that dF=∇F · dR, we thus have

dF= xt dx+ yt dy+ zt dz. (A 2)

Replacing terms dx,dy and dz by their respective particle-label-dependent expressions:

dx= xα dα + xβ dβ + xδ dδ (A 3)
dy= yα dα + yβ dβ + yδ dδ (A 4)
dz= zα dα + zβ dβ + zδ dδ (A 5)

where dζ = (dα, dβ, dδ) denotes an infinitesimal label variation, we can rewrite

dF= (JRt) · dζ (A 6)

where J is defined in (2.4). Thereby, if a function F(ζ , t) can be found such that dF
is a perfect differential, there is no vorticity.

A.2. Combination of first-order terms in Newton’s law
Consider the right-hand side of (4.1), −H(Φ1)∇Φ1tt, where H and ∇ are respectively
the Hessian and the gradient operator:

H(Φ1)=
φ1αα φ1αβ φ1αδ

φ1αβ φ1ββ φ1βδ

φ1αδ φ1βδ φ1δδ

+ c.c. and ∇Φ1tt =
φ1αtt

φ1βtt

φ1δtt

+ c.c. (A 7a,b)

We can write −H(Φ1)∇Φ1tt = S+ T where S= (Sα, Sβ, Sδ) and T = (Tα, Tβ, Tδ) are
tri-dimensional vectors:

S=−H(φ1)∇φ1tt + c.c. (A 8)
T=−H(φ1)∇φ

∗
1tt + c.c. (A 9)

where the star superscript ‘∗’ means the complex conjugate. We will investigate
successively the explicit form of S and T. Introducing the two kernels

K= 1
4

A(k)A(k′)
kk′

ei(k+k′)·ξ−i(ω+ω′)te(k+k′)δ (A 10)

K= 1
4

A(k)A∗(k′)
kk′

ei(k−k′)·ξ−i(ω−ω′)te(k+k′)δ (A 11)

and using φ1 expression, the α component of S can be written

Sα = −
∫∫ [

(ikα)2(ik′α)(−iω′)2 + (ikα)(ikβ)(ik′β)(−iω′)2 + (ikα)kk′(−iω′)2
]
K+ c.c.

= −
∫∫

ikαgk′
[
kαk′α + kβk′β − kk′

]
K+ c.c.

=
∫∫

ikαgk′(kk′ − k · k′)K+ c.c. (A 12)
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Making use of the symmetric integration over k and k′ in the second term we can
rewrite

Sα =
∫∫

g
ikk′

2

(
kα
k
+ k′α

k′

)
(kk′ − k · k′)K+ c.c. (A 13)

The same procedure can be applied to the β component, leading to

(Sα, Sβ)=
∫∫

N gkk′
i(k̂+ k̂′)

2
+ c.c. (A 14)

where N is defined is (4.8). As to the δ component of S, it is found to be

Sδ = −
∫∫ [

(ikα)k(ik′α)(−iω′)2 + (ikβ)k(ik′β)(−iω′)2 + k2k′(−iω′)2
]
K+ c.c.

=
∫∫

N gkk′ + c.c. (A 15)

For the α component of T,

Tα =
∫∫

ikαgk′(k · k′ + kk′)K+ c.c., (A 16)

we invert k and k′ in the c.c. expression to obtain

Tα =
∫∫

g
ikk′

2

(
kα
k
− k′α

k′

)
(kk′ + k · k′)K+ c.c. (A 17)

Applying the same technique to the β component we come up with (4.6) which can
be written

(Tα, Tβ) =
∫∫

i(k̂− k̂′)
2

gkk′(k · k′ + kk′)K+ c.c. (A 18)

=
∫∫

i(k̂− k̂′)
2

gkk′N + c.c. (A 19)

Finally, the δ component of T can easily be derived as

Tδ =
∫∫

gkk′(kk′ + k · k′)K+ c.c. (A 20)

=
∫∫

gkk′N + c.c. (A 21)

A.3. Combination of first-order terms in the conservation law
The combination of first-order terms in the conservation law (4.12) can be written

Φ1ααΦ1ββ +Φ1ααΦ1δδ +Φ1ββΦ1δδ −Φ2
1αβ −Φ2

1αδ −Φ2
1βδ (A 22)
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where Φ1 = φ1 + φ∗1 . After the combination of all of the terms in the form φ1mnφ1pq
and φ∗1mnφ

∗
1pq where m, n, p, q can be any of the variables α, β or δ we obtain∫∫ [

(ikα)2(ik′β)
2 + (ikα)2k′2 + (ikβ)2k′2 − (ikα)(ikβ)(ik′α)(ik′β)

− (ikα)k(ik′α)k′ − (ikβ)k(ik′β)k′
]
K+ c.c.

=
∫∫ [

1
2
(kαk′β − kβk′α)

2 + kk′(k · k′ − kk′)
]
K+ c.c.

=−
∫∫ [

kk′(1− k̂ · k̂
′
)
kk′ − k · k′

2

]
K+ c.c.

=−
∫∫

kk′ − k · k′

2
N + c.c. (A 23)

In the same manner, the combination of the terms φ1mnφ
∗
1pq gives

−
∫∫

kk′ + k · k′

2
N + c.c. (A 24)

Appendix B
In this appendix we prove the existence of the following integral in the sense of

the Cauchy PV:

r2 = PV
∫∫

R4
i
ωk+ω′k′
2(ω−ω′)Be−i(ω−ω′)te(k+k′)δ + c.c. (B 1)

By definition, this can be rewritten

r2 = lim
γ→0

∫∫
R4−E
− H(k, k′)

4(ω−ω′)e
(k+k′)δ (B 2)

where E is the domain such as |ω−ω′|< γ and

H(k, k′)= (ωk+ω′k′)(1+ k̂ · k̂
′
)|A(k)||A(k′)| sin[(k− k′) · ξ − (ω−ω′)t+ ϕk − ϕk′]

(B 3)
where ϕk and ϕk′ are respectively the phases of A(k) and A(k′). We denote H0(k, k̂, k̂

′
)

the value of (B 3) when k= k′ (ω=ω′):
H0(k, k̂, k̂

′
) = H(k, kk̂

′
)

= ωk(k̂+ k̂
′
)(1+ k̂ · k̂

′
)|A(k)||A(kk̂

′
)| sin[k(k̂− k̂

′
) · ξ + ϕk − ϕkk̂

′]. (B 4)

Focusing now on the integral,

r0
2 = lim

γ→0

∫∫
R4−E
−H0(k, k̂, k̂

′
)

4(ω−ω′) e(k+k′)δ (B 5)

and noting that H0(k, k̂
′
, k̂) = −H0(k, k̂, k̂

′
) leads to a vanishing value of r0

2 since
integration is realized over all directions of k and k′. We can thus rewrite (B 2) in the
form

r2 = lim
γ→0

∫∫
R4−E
−H(k, k′)− H0(k, k̂, k̂

′
)

4(ω−ω′) e(k+k′)δ (B 6)
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or, more explicitly,

r2 = lim
γ→0

∫∫
R4−E

i
4
(1+ k̂ · k̂

′
)e(k+k′)δ

×
[
(ωk+ω′k′)A(k)A∗(k′)ei(k−k′)·ξ−i(ω−ω′)t − kω(k̂+ k̂

′
)A(k)A∗(kk̂

′
)eik(̂k−k̂

′
)·ξ

ω−ω′
]

+ c.c. (B 7)

The limit when ω→ω′ of the term between brackets can be written

−ikω(k̂+ k̂
′
)A(k)A∗(kk̂

′
)eik(̂k−k̂

′
)·ξ t (B 8)

ensuring (B 2) to be a finite limit and that r2 is integrable in the Cauchy PV sense.
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