Extremal Numbers for Odd Cycles

ZOLTAN FÜREDI^{1†}and DAVID S. GUNDERSON^{2‡}

¹Rényi Institute of Mathematics, Hungarian Academy of Sciences, Reáltanoda utca 13–15, H-1053, Budapest, Hungary (e-mail: z-furedi@illinois.edu, furedi.zoltan@renyi.mta.hu)
²Department of Mathematics, University of Manitoba, 521 Machray Hall, Winnipeg, Manitoba R3T 2N2, Canada (e-mail: David.Gunderson@umanitoba.ca)

Received 15 October 2013; revised 20 June 2014; first published online 1 December 2014

We describe the C_{2k+1} -free graphs on *n* vertices with maximum number of edges. The extremal graphs are unique for $n \notin \{3k-1, 3k, 4k-2, 4k-1\}$. The value of $ex(n, C_{2k+1})$ can be read out from the works of Bondy [3], Woodall [14], and Bollobás [1], but here we give a new streamlined proof. The complete determination of the extremal graphs is also new.

We obtain that the bound for $n_0(C_{2k+1})$ is 4k in the classical theorem of Simonovits, from which the unique extremal graph is the bipartite Turán graph.

2010 Mathematics subject classification : Primary 05C35 Secondary 05D99

1. Introduction, exact Turán numbers

Given a class of simple graphs \mathcal{F} , let us call a graph \mathcal{F} -free if it contains no copy of F as a (not necessarily induced) subgraph for each $F \in \mathcal{F}$. Let $ex(n, \mathcal{F})$ denote the maximal number of edges in an \mathcal{F} -free graph on n vertices. If the class of graphs $\mathcal{F} = \{F_1, F_2, ...\}$ consists of a single graph then we write ex(n, F) instead of $ex(n, \{F\})$.

Let $T_{n,p}$ denote the *Turán graph*, the complete equi-partite graph, $K_{n_1,n_2,...,n_p}$ where $\sum_i n_i = n$ and $\lfloor n/p \rfloor \leq n_i \leq \lceil n/p \rceil$. By Turán's theorem [12, 13] we have $ex(n, K_{p+1}) = e(T_{n,p})$; furthermore, $T_{n,p}$ is the unique K_{p+1} -free graph that attains the extremal number. The case $ex(n, K_3) = \lfloor n^2/4 \rfloor$ was shown earlier by Mantel [10].

[†] Research supported in part by the Hungarian National Science Foundation OTKA 104343, and by the European Research Council Advanced Investigators grant 267195.

[‡] Research supported by NSERC Discovery grant 228064.

There are very few cases when the Turán number $ex(n, \mathcal{F})$ is known exactly for all *n*. One can mention the case when $F = M_{\nu+1}$ is a matching of a given size, $\nu + 1$. Erdős and Gallai [6] showed that

$$\operatorname{ex}(n, M_{\nu+1}) = \max\left\{ \binom{2\nu+1}{2}, \binom{\nu}{2} + \nu(n-\nu) \right\}.$$

For the path on k vertices Erdős and Gallai [6] determined an asymptotic value, and $ex(n, P_k)$ was determined for all n and k by Faudree and Schelp [7] and independently by Kopylov [9]. Erdős and Gallai [6] determined an asymptotic value for the class of long cycles

$$\mathcal{C}_{\geqslant \ell} := \{C_{\ell}, C_{\ell+1}, C_{\ell+2}, \dots\}$$

The exact value of the Turán number $ex(n, C_{\geq \ell})$ was determined by Woodall [15] and independently and at the same time by Kopylov [9].

There is one outstanding result which gives infinitely many exact Turán numbers: Simonovits' chromatic critical edge theorem [11]. It states that if $\min\{\chi(F) : F \in \mathcal{F}\} = p+1 \ge 3$ and there exists an $F \in \mathcal{F}$ with an edge $e \in E(F)$ such that by removing this edge we have $\chi(F-e) \le p$, then there exists an $n_0(\mathcal{F})$ such that $T_{n,p}$ is the only extremal graph for \mathcal{F} for $n \ge n_0$. The authors are not aware of any (non-trivial) further result when $ex(n, \mathcal{F})$ is known for all n, nor any F for which the value of $n_0(F)$ had been determined, except the case of odd cycles discussed below.

2. The result; the extremal graphs without C_{2k+1}

The aim of this paper is to determine the Turán number of odd cycles for all *n* together with the extremal graphs. The value of $ex(n, C_{2k+1})$ can be extracted from the works of Bondy [2, 3], Woodall [14], and Bollobás [1, pp. 147–156] concerning (weakly) pancyclic graphs. For a recent presentation see Dzido [5], who also considered the Turán number of wheels. But here we give a new streamlined proof and a complete description of the extremal graphs.

Since $K_{\lceil n/2 \rceil, \lfloor n/2 \rfloor}$ contains no odd cycles, for any $k \ge 1$ we have $ex(n, C_{2k+1}) \ge \lfloor n^2/4 \rfloor$. For C_3 equality holds for all *n*, with the only extremal graph being $T_{n,2}$ by the Turán–Mantel theorem. From now on, we suppose that $2k + 1 \ge 5$. Also, for $n \le 2k$ obviously $ex(n, C_{2k+1}) = \binom{n}{2}$, so we may suppose that $n \ge 2k + 1$.

Every edge of an odd cycle is colour-critical, so Simonovits' theorem implies that the complete bipartite graph is the only extremal graph, and

$$ex(n, C_{2k+1}) = e(T_{n,2}) = \lfloor n^2/4 \rfloor$$
 for $n \ge n_0(C_{2k+1})$.

After choosing the right tools we present a streamlined proof, and show that $n_0(C_{2k+1}) = 4k$ when $2k + 1 \ge 5$.

We define two classes of C_{2k+1} -free graphs which could have at least as many edges as $T_{n,2}$ for $n \leq 4k - 1$. A *cactus* $B(n; n_1, \ldots, n_s)$ (for $n \geq 2$, $s \geq 1$ with $\sum_i (n_i - 1) = n - 1$) is a connected graph where the 2-connected blocks are complete graphs of sizes n_1, \ldots, n_s . Let g(n,k) denote the largest size of an *n*-vertex cactus avoiding C_{2k+1} . For this maximum all

block sizes should be exactly 2k but at most one, which is smaller. Write *n* in the form n = (s-1)(2k-1) + r, where $s \ge 1$, $2 \le r \le 2k$ are integers. Then

$$g(n,k) = (s-1)\binom{2k}{2} + \binom{r}{2}.$$
(2.1)

Note that $g(n,k) > \lfloor n^2/4 \rfloor$ for $3 \le n \le 4k-3$ and we have $g(n,k) = e(T_{n,2}) = \lfloor n^2/4 \rfloor$ if $n \in \{4k-2, 4k-1\}$. Thus the Simonovits threshold $n_0(C_{2k+1})$ is at least 4k.

For $n \ge k$, define the graph $H_1(n,k)$ on *n* vertices by its degree sequence; it has *k* vertices of degree n-1 and all other vertices have degree *k*. Then $H_1(n,k)$ is a complete bipartite graph $K_{k,n-k}$, together with all possible edges added in the first partite set. This graph does not contain the cycle C_{2k+1} . Letting $h_1(n,k)$ denote the size of $H_1(n,k)$,

$$h_1(n,k) = \binom{k}{2} + k(n-k).$$
 (2.2)

Note that $h_1(n,k) \leq g(n,k)$ for all $k \leq n$ and here equality holds if n is in the form n = (s-1)(2k-1) + r, where $s \geq 1$ and $r \in \{k, k+1\}$.

Theorem 2.1. For any $n \ge 1$ and $2k + 1 \ge 5$,

$$ex(n, C_{2k+1}) = \begin{cases} \binom{n}{2} & \text{for } n \leq 2k, \\ g(n,k) & \text{for } 2k+1 \leq n \leq 4k-1, \text{ and} \\ \lfloor n^2/4 \rfloor & \text{for } n \geq 4k-2. \end{cases}$$

Furthermore, the only extremal graphs are K_n for $n \leq 2k$; B(n; 2k, n - 2k + 1) for $2k + 1 \leq n \leq 4k - 1$; $H_1(n,k)$ for $n \in \{3k - 1, 3k\}$; and the complete bipartite graph $K_{\lfloor n/2 \rfloor, \lfloor n/2 \rfloor}$ for $n \geq 4k - 2$.

3. A lemma on 2-connected graphs without C_{2k+1}

Lemma 3.1. Suppose that $n \ge 2k + 1 \ge 5$, and G is a 2-connected, C_{2k+1} -free, non-bipartite graph with at least $\lfloor n^2/4 \rfloor$ edges. Then $e(G) \le ex(n, C_{2k+1})$, and here equality holds only if $n \in \{3k - 1, 3k\}$ and $G = H_1(n, k)$.

For $5 \leq 2k + 1 \leq n$, define the graph $H_2(n,k)$ on *n* vertices and

$$h_2(n,k) := \binom{2k-1}{2} + 2(n-2k+1)$$

edges, consisting of a complete graph K_{2k-1} containing two special vertices which are connected to all other vertices. Then $H_2(n,k)$ is a 2-connected C_{2k+1} -free graph. For k = 2the graphs $H_1(n,k)$ and $H_2(n,k)$ are isomorphic. Recall a result of Kopylov [9] in the following form. Suppose that the 2-connected graph G on n vertices contains no cycles of length 2k + 1 or larger and $n \ge 2k + 1 \ge 5$. Then

$$e(G) \leq \max\{h_1(n,k), h_2(n,k)\},$$
(3.1)

and this bound is the best possible. Moreover, only the graphs $H_1(n,k)$ and $H_2(n,k)$ could be extremal. For further explanation and background see the recent survey [8].

The other result we need is due to Brandt [4]. Let G be a non-bipartite graph of order n and suppose that

$$e(G) > (n-1)^2/4 + 1.$$
 (3.2)

Then G contains cycles of every length between 3 and the length of its longest cycle.

Proof of Lemma 3.1. The inequality $e(G) \leq ex(n, C_{2k+1})$ follows from the definition. Suppose that equality holds. Apply Brandt's theorem (3.2). We obtain that *G* contains cycles of all lengths 3, 4, ..., ℓ , where ℓ stands for the longest cycle length in *G*. It follows that $\ell \leq 2k$. Kopylov's theorem (3.1) implies that

$$\max\{g(n,k), \lfloor n^2/4 \rfloor\} \leq \exp(n, C_{2k+1}) = e(G) \leq \max\{h_1(n,k), h_2(n,k)\}$$

Since $g(n,k) > h_2(n,k)$ except for $(n,k) \in \{(5,2), (6,2)\}$, and $g(n,k) > h_1(n,k)$ unless *n* is in the form n = (s-1)(2k-1) + r, where $s \ge 2$ and $r \in \{k, k+1\}$, we obtain that $e(G) = h_1(n,k)$, *n* should be in this form, and $G = H_1(n,k)$.

Finally, $h_1(n,k) < \lfloor n^2/4 \rfloor$ for $n \ge 4k$ so we obtain that indeed $n \in \{3k - 1, 3k\}$.

4. The proof of Theorem 2.1

Suppose that *G* is an extremal C_{2k+1} -free graph, *i.e.*, $e(G) = ex(n, C_{2k+1})$. Then *G* is connected. Consider the cactus-like block-decomposition of *G*, $V(G) = V_1 \cup V_2 \cup \cdots \cup V_s$, where the induced subgraphs $G[V_i]$ are either edges or maximal 2-connected subgraphs of *G*. Let $n_i := |V_i|$. Then we have $n - 1 = \sum_i (n_i - 1)$, and each $n_i \ge 2$. We have $e(G[V_i]) = ex(n_i, C_{2k+1})$; otherwise one can replace $G[V_i]$ with an extremal graph of the same order n_i and obtain another C_{2k+1} -free graph of size larger than e(G). Therefore $e(G[V_i]) \ge \lfloor n_i^2/4 \rfloor$, and there are three types of blocks:

- complete graphs (if $n_i \leq 2k$),
- bipartite blocks with $e(G[V_i]) = \lfloor n_i^2/4 \rfloor$.

Finally,

• if $n_i \ge 2k + 1$ and $G[V_i]$ is not bipartite, then Lemma 3.1 implies that $n_i \in \{3k - 1, 3k\}$ and $G[V_i] = H_1(n_i, k)$.

We may rearrange the graphs $G[V_i]$ and the sets V_i in such a way that they share a common vertex $v \in \cap V_i$ and otherwise the sets $V_i \setminus \{v\}$ are pairwise disjoint. The new graph G^* obtained is also C_{2k+1} -free and extremal, and it has the same size and order as G.

If s = 1 then we are done. Suppose $s \ge 2$. If all blocks are complete graphs, then $e(G) \le g(n,k)$. Since $g(n,k) < e(T_{n,2})$ for n > 4k - 1, we get that $n \le 4k - 1$ and G^* (and G) has only two blocks and at least one of them is of size 2k.

Finally, suppose that there are two blocks V_i and V_j , $|V_i| = a$ and $|V_j| = b$, such that $G[V_i]$ and $G[V_j]$ are not both complete subgraphs. We claim that in this case one can remove the edges of $G[V_i]$ and $G[V_j]$ from G^* and place a copy of $T_{a+b-1,2}$ or some other graph L onto $V_i \cup V_j$ such that the new graph obtained is C_{2k+1} -free and it has more edges than e(G), a contradiction.

Indeed, if $G[V_i]$ is a large bipartite graph, $a := n_i \ge 2k + 1$, $G[V_i] = T_{a,2}$ and $G[V_j]$ is a complete bipartite graph, too, then we can increase $e(G^*)$ since

$$e(T_{a,2}) + e(T_{b,2}) \leqslant \frac{1}{4}a^2 + \frac{1}{4}b^2 < \left\lfloor \frac{1}{4}(a+b-1)^2 \right\rfloor = e(T_{a+b-1,2}).$$
(4.1)

In the remaining cases the inequalities concerning the number of edges of e(L) are just elementary algebra. If $G[V_i] = T_{a,2}$ and $G[V_j] = H_1(b,k)$ or K_b then we can replace them again with a complete bipartite graph $T_{a+b-1,2}$. From now on, we may suppose that each block is either a complete graph (of size at most 2k) or an $H_1(a,k)$. If $G[V_i] = H_1(a,k)$ for some $a \in \{3k - 1, 3k\}$ and $G[V_j] = H_1(b,k)$ (with $b \in \{3k - 1, 3k\}$) or $G[V_j] = K_b$ with $k \leq b \leq 2k$, then we replace $G[V_i] \cup G[V_j]$ again with a $T_{a+b-1,2}$. Finally, if $G[V_i] = H_1(a,k)$ for some $a \in \{3k - 1, 3k\}$ and $G[V_j] = K_b$ with $2 \leq b \leq k$, then we replace $G[V_i] \cup G[V_j]$ with two complete graphs of sizes 2k and a + b - 2k and use

$$e(H_1(a,k)) + e(K_b) < e(B(a+b-1;2k,a+b-2k))$$

to get a contradiction. This completes the proof of the claim and Theorem 2.1. \Box

References

- [1] Bollobás, B. (1979) Extremal Graph Theory, Academic Press.
- [2] Bondy, J. A. (1971) Pancyclic graphs I. J. Combin. Theory Ser. B 11 80-84.
- [3] Bondy, J. A. (1971) Large cycles in graphs. Discrete Math. 1 121–132.
- [4] Brandt, S. (1997) A sufficient condition for all short cycles. In 4th Twente Workshop on Graphs and Combinatorial Optimization. Discrete Appl. Math. 79 63–66.
- [5] Dzido, T. (2013) A note on Turán numbers for even wheels. Graphs Combin. 29 1305–1309.
- [6] Erdős, P. and Gallai, T. (1959) On maximal paths and circuits of graphs. Acta Math. Acad. Sci. Hungar. 10 337–356.
- [7] Faudree, R. J. and Schelp, R. H. (1975) Path Ramsey numbers in multicolorings. J. Combin. Theory Ser. B 19 150–160.
- [8] Füredi, Z. and Simonovits, M. (2013) The history of degenerate (bipartite) extremal graph problems. In *Erdős Centennial* (L. Lovász *et al.*, eds), Vol. 25 of *Bolyai Society Mathematical Studies*, pp. 167–262.
- [9] Kopylov, G. N. (1977) Maximal paths and cycles in a graph. Dokl. Akad. Nauk SSSR 234 19–21. (English translation in Soviet Math. Dokl. 18 (1977) 593–596.)
- [10] Mantel, W. (1907) Solution to Problem 28, by H. Gouwentak, W. Mantel, J. Teixeira de Mattes, F. Schuh, and W. A. Wythoff. *Wiskundige Opgaven* 10 60–61.
- [11] Simonovits, M. (1974) Extremal graph problems with symmetrical extremal graphs: Additional chromatic conditions. *Discrete Math.* **7** 349–376.
- [12] Turán, P. (1941) Eine Extremalaufgabe aus der Graphentheorie (in Hungarian). Math. Fiz Lapok 48 436–452.
- [13] Turán, P. (1954) On the theory of graphs. Colloq. Math. 3 19-30.
- [14] Woodall, D. R. (1972) Sufficient conditions for circuits in graphs. Proc. London Math. Soc. (3) 24 739–755.
- [15] Woodall, D. R. (1976) Maximal circuits of graphs I. Acta Math. Acad. Sci. Hungar. 28 77-80.