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We describe the C2k+1-free graphs on n vertices with maximum number of edges. The

extremal graphs are unique for n /∈ {3k − 1, 3k, 4k − 2, 4k − 1}. The value of ex(n, C2k+1)

can be read out from the works of Bondy [3], Woodall [14], and Bollobás [1], but here we

give a new streamlined proof. The complete determination of the extremal graphs is also

new.

We obtain that the bound for n0(C2k+1) is 4k in the classical theorem of Simonovits,

from which the unique extremal graph is the bipartite Turán graph.

2010 Mathematics subject classification: Primary 05C35

Secondary 05D99

1. Introduction, exact Turán numbers

Given a class of simple graphs F , let us call a graph F-free if it contains no copy of F

as a (not necessarily induced) subgraph for each F ∈ F . Let ex(n,F) denote the maximal

number of edges in an F-free graph on n vertices. If the class of graphs F = {F1, F2, . . . }
consists of a single graph then we write ex(n, F) instead of ex(n, {F}).

Let Tn,p denote the Turán graph, the complete equi-partite graph, Kn1 ,n2 ,...,np where∑
i ni = n and �n/p� � ni � �n/p�. By Turán’s theorem [12, 13] we have ex(n,Kp+1) =

e(Tn,p); furthermore, Tn,p is the unique Kp+1-free graph that attains the extremal number.

The case ex(n,K3) = �n2/4� was shown earlier by Mantel [10].
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There are very few cases when the Turán number ex(n,F) is known exactly for all n.

One can mention the case when F = Mν+1 is a matching of a given size, ν + 1. Erdős and

Gallai [6] showed that

ex(n,Mν+1) = max

{(
2ν + 1

2

)
,

(
ν

2

)
+ ν(n − ν)

}
.

For the path on k vertices Erdős and Gallai [6] determined an asymptotic value, and

ex(n, Pk) was determined for all n and k by Faudree and Schelp [7] and independently by

Kopylov [9]. Erdős and Gallai [6] determined an asymptotic value for the class of long

cycles

C�� := {C�, C�+1, C�+2, . . . }.

The exact value of the Turán number ex(n, C��) was determined by Woodall [15] and

independently and at the same time by Kopylov [9].

There is one outstanding result which gives infinitely many exact Turán numbers:

Simonovits’ chromatic critical edge theorem [11]. It states that if min{χ(F) : F ∈ F} =

p + 1 � 3 and there exists an F ∈ F with an edge e ∈ E(F) such that by removing this

edge we have χ(F − e) � p, then there exists an n0(F) such that Tn,p is the only extremal

graph for F for n � n0. The authors are not aware of any (non-trivial) further result when

ex(n,F) is known for all n, nor any F for which the value of n0(F) had been determined,

except the case of odd cycles discussed below.

2. The result; the extremal graphs without C2k+1

The aim of this paper is to determine the Turán number of odd cycles for all n together

with the extremal graphs. The value of ex(n, C2k+1) can be extracted from the works of

Bondy [2, 3], Woodall [14], and Bollobás [1, pp. 147–156] concerning (weakly) pancyclic

graphs. For a recent presentation see Dzido [5], who also considered the Turán number

of wheels. But here we give a new streamlined proof and a complete description of the

extremal graphs.

Since K�n/2�,�n/2� contains no odd cycles, for any k � 1 we have ex(n, C2k+1) � �n2/4�.
For C3 equality holds for all n, with the only extremal graph being Tn,2 by the Turán–

Mantel theorem. From now on, we suppose that 2k + 1 � 5. Also, for n � 2k obviously

ex(n, C2k+1) =
(
n
2

)
, so we may suppose that n � 2k + 1.

Every edge of an odd cycle is colour-critical, so Simonovits’ theorem implies that the

complete bipartite graph is the only extremal graph, and

ex(n, C2k+1) = e(Tn,2) = �n2/4� for n � n0(C2k+1).

After choosing the right tools we present a streamlined proof, and show that n0(C2k+1) = 4k

when 2k + 1 � 5.

We define two classes of C2k+1-free graphs which could have at least as many edges as

Tn,2 for n � 4k − 1. A cactus B(n; n1, . . . , ns) (for n � 2, s � 1 with
∑

i(ni − 1) = n − 1) is a

connected graph where the 2-connected blocks are complete graphs of sizes n1, . . . , ns. Let

g(n, k) denote the largest size of an n-vertex cactus avoiding C2k+1. For this maximum all
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block sizes should be exactly 2k but at most one, which is smaller. Write n in the form

n = (s − 1)(2k − 1) + r, where s � 1, 2 � r � 2k are integers. Then

g(n, k) = (s − 1)

(
2k

2

)
+

(
r

2

)
. (2.1)

Note that g(n, k) > �n2/4� for 3 � n � 4k − 3 and we have g(n, k) = e(Tn,2) = �n2/4� if

n ∈ {4k − 2, 4k − 1}. Thus the Simonovits threshold n0(C2k+1) is at least 4k.

For n � k, define the graph H1(n, k) on n vertices by its degree sequence; it has k vertices

of degree n − 1 and all other vertices have degree k. Then H1(n, k) is a complete bipartite

graph Kk,n−k , together with all possible edges added in the first partite set. This graph

does not contain the cycle C2k+1. Letting h1(n, k) denote the size of H1(n, k),

h1(n, k) =

(
k

2

)
+ k(n − k). (2.2)

Note that h1(n, k) � g(n, k) for all k � n and here equality holds if n is in the form

n = (s − 1)(2k − 1) + r, where s � 1 and r ∈ {k, k + 1}.

Theorem 2.1. For any n � 1 and 2k + 1 � 5,

ex(n, C2k+1) =

⎧⎪⎪⎨
⎪⎪⎩

(
n
2

)
for n � 2k,

g(n, k) for 2k + 1 � n � 4k − 1, and

�n2/4� for n � 4k − 2.

Furthermore, the only extremal graphs are Kn for n � 2k; B(n; 2k, n − 2k + 1) for 2k + 1 �
n � 4k − 1; H1(n, k) for n ∈ {3k − 1, 3k}; and the complete bipartite graph K�n/2�,�n/2� for

n � 4k − 2.

3. A lemma on 2-connected graphs without C2k+1

Lemma 3.1. Suppose that n � 2k + 1 � 5, and G is a 2-connected, C2k+1-free, non-bipartite

graph with at least �n2/4� edges. Then e(G) � ex(n, C2k+1), and here equality holds only if

n ∈ {3k − 1, 3k} and G = H1(n, k).

For 5 � 2k + 1 � n, define the graph H2(n, k) on n vertices and

h2(n, k) :=

(
2k − 1

2

)
+ 2(n − 2k + 1)

edges, consisting of a complete graph K2k−1 containing two special vertices which are

connected to all other vertices. Then H2(n, k) is a 2-connected C2k+1-free graph. For k = 2

the graphs H1(n, k) and H2(n, k) are isomorphic. Recall a result of Kopylov [9] in the

following form. Suppose that the 2-connected graph G on n vertices contains no cycles of

length 2k + 1 or larger and n � 2k + 1 � 5. Then

e(G) � max{h1(n, k), h2(n, k)}, (3.1)

and this bound is the best possible. Moreover, only the graphs H1(n, k) and H2(n, k) could

be extremal. For further explanation and background see the recent survey [8].
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The other result we need is due to Brandt [4]. Let G be a non-bipartite graph of order

n and suppose that

e(G) > (n − 1)2/4 + 1. (3.2)

Then G contains cycles of every length between 3 and the length of its longest cycle.

Proof of Lemma 3.1. The inequality e(G) � ex(n, C2k+1) follows from the definition.

Suppose that equality holds. Apply Brandt’s theorem (3.2). We obtain that G contains

cycles of all lengths 3, 4, . . . , �, where � stands for the longest cycle length in G. It follows

that � � 2k. Kopylov’s theorem (3.1) implies that

max{g(n, k), �n2/4�} � ex(n, C2k+1) = e(G) � max{h1(n, k), h2(n, k)}.

Since g(n, k) > h2(n, k) except for (n, k) ∈ {(5, 2), (6, 2)}, and g(n, k) > h1(n, k) unless n is in

the form n = (s − 1)(2k − 1) + r, where s � 2 and r ∈ {k, k + 1}, we obtain that e(G) =

h1(n, k), n should be in this form, and G = H1(n, k).

Finally, h1(n, k) < �n2/4� for n � 4k so we obtain that indeed n ∈ {3k − 1, 3k}.

4. The proof of Theorem 2.1

Suppose that G is an extremal C2k+1-free graph, i.e., e(G) = ex(n, C2k+1). Then G is

connected. Consider the cactus-like block-decomposition of G, V (G) = V1 ∪ V2 ∪ · · · ∪ Vs,

where the induced subgraphs G[Vi] are either edges or maximal 2-connected subgraphs of

G. Let ni := |Vi|. Then we have n − 1 =
∑

i(ni − 1), and each ni � 2. We have e(G[Vi]) =

ex(ni, C2k+1); otherwise one can replace G[Vi] with an extremal graph of the same order ni
and obtain another C2k+1-free graph of size larger than e(G). Therefore e(G[Vi]) � �n2

i /4�,
and there are three types of blocks:

• complete graphs (if ni � 2k),

• bipartite blocks with e(G[Vi]) = �n2
i /4�.

Finally,

• if ni � 2k + 1 and G[Vi] is not bipartite, then Lemma 3.1 implies that ni ∈ {3k − 1, 3k}
and G[Vi] = H1(ni, k).

We may rearrange the graphs G[Vi] and the sets Vi in such a way that they share a

common vertex v ∈ ∩Vi and otherwise the sets Vi \ {v} are pairwise disjoint. The new

graph G∗ obtained is also C2k+1-free and extremal, and it has the same size and order

as G.

If s = 1 then we are done. Suppose s � 2. If all blocks are complete graphs, then

e(G) � g(n, k). Since g(n, k) < e(Tn,2) for n > 4k − 1, we get that n � 4k − 1 and G∗ (and

G) has only two blocks and at least one of them is of size 2k.

Finally, suppose that there are two blocks Vi and Vj , |Vi| = a and |Vj | = b, such that

G[Vi] and G[Vj] are not both complete subgraphs. We claim that in this case one can

remove the edges of G[Vi] and G[Vj] from G∗ and place a copy of Ta+b−1,2 or some other

graph L onto Vi ∪ Vj such that the new graph obtained is C2k+1-free and it has more

edges than e(G), a contradiction.
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Indeed, if G[Vi] is a large bipartite graph, a := ni � 2k + 1, G[Vi] = Ta,2 and G[Vj] is a

complete bipartite graph, too, then we can increase e(G∗) since

e(Ta,2) + e(Tb,2) � 1

4
a2 +

1

4
b2 <

⌊
1

4
(a + b − 1)2

⌋
= e(Ta+b−1,2). (4.1)

In the remaining cases the inequalities concerning the number of edges of e(L) are just

elementary algebra. If G[Vi] = Ta,2 and G[Vj] = H1(b, k) or Kb then we can replace them

again with a complete bipartite graph Ta+b−1,2. From now on, we may suppose that each

block is either a complete graph (of size at most 2k) or an H1(a, k). If G[Vi] = H1(a, k)

for some a ∈ {3k − 1, 3k} and G[Vj] = H1(b, k) (with b ∈ {3k − 1, 3k}) or G[Vj] = Kb with

k � b � 2k, then we replace G[Vi] ∪ G[Vj] again with a Ta+b−1,2. Finally, if G[Vi] = H1(a, k)

for some a ∈ {3k − 1, 3k} and G[Vj] = Kb with 2 � b � k, then we replace G[Vi] ∪ G[Vj]

with two complete graphs of sizes 2k and a + b − 2k and use

e(H1(a, k)) + e(Kb) < e(B(a + b − 1; 2k, a + b − 2k))

to get a contradiction. This completes the proof of the claim and Theorem 2.1.
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