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Abstract. Self-focusing is one of the key issues in laser plasma physics applications.
Problems involving a multidimensional beam within an inhomogeneous plasma are
difficult to handle. This paper presents the investigation of two-dimensional self-
focusing of a laser beam in a plasma whose density n(r, z) is a function of radial as
well as z coordinates. The nonlinear mechanism responsible for modification of the
background density and the dielectric function is of ponderomotive type. A varia-
tional technique is used here for deriving the equations for the beam width and the
longitudinal phase. It is observed numerically that an initially diffracting beam
is accompanied by oscillatory self-focusing of the beam with distance of propaga-
tion. The effect of inhomogeneity scale lengths is also observed. The increase in
Lr (= L‖/L⊥) results in oscillatory self-focusing and defocusing with distance of
propagation. Furthermore, critical fields for self-trapping of a laser beam as a func-
tion of refraction, diffraction lengths and scale lengths of inhomogeneities are also
evaluated. Lastly, whatever parameters are chosen, the phase is always negative.

1. Introduction
In a nonlinear medium, if a high-power electromagnetic beam increases the electric
susceptibility and thus the refractive index with wave intensity, then in a region
where the wave amplitude is slightly amplified, the refractive index is also enhanced.
From the viewpoint of geometrical optics, the light rays bend towards this region,
which further increases the refractive index and consequently bends the light rays
even more. The beam thus creates a refractive-index profile across its cross-section
corresponding to its own intensity profile, and focuses itself. The phenomenon was
predicted by Askar’yan (1962), and is called self-focusing of radiation. It has been
extensively studied in this context of laser-beam propagation since the early 1960s
(Chio et al. 1964; Talanov 1965; Kelly 1965; Akhmanov et al. 1968; Perkins and
Valeo 1974; Max 1976; Sodha et al. 1976; Lam and Lippman 1977; Anderson et al.
1979; Cohen et al. 1991; Malkin 1993; Berge 1997). Research into this process has
acquired further importance with the availability of very high-power laser beam
facilities such as the National Ignition Facility (Paisner et al. 1994) because of its
relevance to inertial-confinement fusion plasmas. It is required that intense laser
beams be propagated through long-scale underdense plasmas to achieve successful
controlled nuclear fusion. However, such a situation is prone to vigorous growth of
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laser–plasma instabilities (Kruer 1988). Among the instabilities having deleterious
effects, self-focusing and filamentation are the key ones to be understood and re-
solved (Kaw et al. 1973; Schmidt 1988; Berger et al. 1993). In the so-called hotspots
of the laser beam, self-focusing or filamentation grows unstably through a feedback
mechanism of increased electron thermal pressure and ponderomotive force. The
latter two reinforce each other to expel the plasma, resulting in increased refractive
index, which leads to further concentration of intensity in the regions of hotspots.
The overall effect is distortion of the propagation characteristics of incident beam,
poor efficiency of beam energy coupling to the target, and loss of symmetry of
energy deposition leading to hydrodynamic instabilities of the target.

Theoretical investigations of self-focusing of laser beams in plasmas have been
carried out by a number of researchers during the past three and half decades. They
have used WKB and paraxial-ray approximations (Akhmanov et al. 1968; Sodha
et al. 1976, 1981; Subbarao 1998; Sughiara and Nishimura 1995). As discussed by
Wagner et al. (1968), the trial function is substituted into the evolution equation,
where the nonlinear refractive index is Taylor-expanded in the transverse direction.
The procedure was generalized to include the phase dynamics (Akhmanov et al.
1968). The alternative approach of moment theory (Lam and Lippman 1977; Vlasov
et al. 1971; Zakharov 1972) is based on certain moments, and the evolution of
transverse coordinates is considered. In spite of their mathematical simplicity, these
theories give qualitatively good results.

A model frequently used to describe the self-focusing of laser beam in a Kerr
medium with quadratic nonlinearity is(

i
∂

∂z
+∇2

⊥ + |E|2
)

E = 0 (1)

Here E is the envelope of the electric field, ∇2
⊥ is the Laplacian in the transverse

direction, and z is the direction of propagation. The dynamics of self-focusing de-
scribed by (1) is determined by the relative competition between spatial dispersion
that spreads the beam in transverse direction and attracting nonlinearity that
compresses the beam. When the nonlinearity overbalances the dispersion, beam
collapse occurs and a singularity in E is formed. Problems of singularity formation
and collapse have been discussed in detail elsewhere (Sulem and Sulem 1999).

Here, we consider the propagation dynamics of a beam undergoing self-focusing
in an underdense plasma. Several parametric processes occur long before the criti-
cal surface is approached. However, an oscillating two-stream instability – a purely
growing instability – occurs near the critical surface. Although there is interplay
between some of these nonlinear processes for example coupled stimulated Raman
scattering (SRS) and stimulated Brillouin scattering (SBS), self-focusing is sup-
posed to influence these coupled processes (Amin et al. 1993). Our aim in this paper
is to investigate the self-focusing process alone in an inhomogeneous plasma. We
use here the model of Andreev et al. (1987). Earlier several investigators considered
one-dimensional self-focusing (Akhmanov et al. 1968; Max 1976; Sodha et al. 1976).
In such cases, plasmas are considered inhomogeneous in the transverse direction
and homogeneous in the direction of propagation. Nonlinearity of types collisional,
ponderomotive, or relativistic type (Max 1976; Sodha et al. 1976, 1981) causes re-
distribution of the carriers along the wavefront, modifying the background density,
which results in self-induced inhomogeneity in the radial direction only. However,
plasmas are inhomogeneous in nature, and to account for such plasmas, Andreev
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et al. (1987) considered a more realistic model. They did so to account for exper-
imental results where filaments of dimensions 5–20µm were observed during the
interaction of a laser beam with a corona plasma. Such an inhomogeneous plasma
leads to qualitatively new features in the formation of a transport channel and the
self-focusing of the laser beam. The situation is also quite similar to the existence
of a preformed plasma used in laser-guiding schemes where a nonuniform plasma
channel is formed by a prepulse. Another case resembling this situation is the prop-
agation of intense radio waves through an ionospheric plasma. Although this may
be referred to as enhanced focusing, we refer to it as self-focusing, since transverse
inhomogeneity combines with the effect of the ponderomotive term (the last term
in (9)). Specifically, in laser–plasma interaction, plasmas that are nonuniform in
the propagation direction up to the critical density are considered. Andreev et al.
(1987), who investigated this problem, considered an inhomogeneous plasma by as-
suming inhomogeneity in two directions. This approach is relevant in the sense that
plasmas of different scale lengths are produced, depending on the pulse duration.
Since long-scale-length plasmas are required for inertial-confinement fusion, the rel-
evant physics issues such as dependence of the propagation characteristics of the
beam on different scale lengths must be investigated. Even though moment theory
was used earlier to establish the condition for self-focusing, in later investigations,
Andreev et al. (1987) used the paraxial-ray approximation to set up an equation
for the beam-width parameter (cf. equation (2.1) of Andreev et al. 1987). Recently,
Subbarao et al. (1998) have pointed out that the popular theory (Akhmanov et al.
1968; Max 1976; Sodha et al. 1974) based on a paraxial-ray approximation should be
used only when low-power laser beams are considered. Preferably, moment theory
or a variational approach or a corrected version of the paraxial-ray approximation
(Subbarao et al. 1998) should be used for high-power laser beams. A variational
approach that is approximately analytical, but fairly general in nature, is used
here. This approach has also been used recently for self-focusing in a laser speckle
(Tikhonchuk et al. 1997). Furthermore, it is reported to give a correct phase de-
scription (Karlsson et al. 1992). The limitation of the variational approach is that
it is not suitable for the study of collapse and singularity formation, but we are not
investigating such a problem here.

In this paper, a Gaussian laser beam as a trial function is considered. Section 2
deals with the basic formulation of the problem, where the Lagrangian for the
problem is set up and the reduced variational problem is derived. Section 3 is
devoted to discussions of the important results.

2. Basic formulation
We begin with the usual assumption that the field of the laser beam can be described
by the scalar Helmholtz equation(

∂2

∂z2 +∇2
⊥

)
E + k2

0ε(r, |E|2)E = 0, (2)

where k0 = ω0/c, with ω0 as the angular frequency and c the velocity of light in
vacuum. The dielectric function and other parameters in the case of ponderomotive
nonlinearity are given as follows (Andreev et al. 1987):

ε(r, |E|2) = 1− n0(r)
nc

e−|E|
2/E2

p , (3)
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nc =
mω2

4πe2 , (4)

E2
p = 16πnckB(Te + Ti). (5)

Here nc is the cut-off density, kB is Boltzmann’s constant, and Te and Ti are the
electron and ion temperatures respectively. The field Ep is typically the field of
nonlinearity given by (5). We use the model of Andreev et al. (1987) with a two-
dimensional background variation of the plasma density given as

n0(r) = n1(z) + n2(r⊥), (6)

where n2� n1.
Further, under the assumption of smooth longitudinal variation, it is possible to

employ a parabolic approximation to solve (2) outside a small neighbourhood of
the critical density surface n0(rc) = nc:

E(z, r⊥) = ε(z, r⊥)N−1/2
‖ (z) exp

[
−ik0

∫ z

0
N‖(z′) dz′

]
, (7)

where

N‖(z) =
[
1− n1(z)

nc

]1/2

,

n1(z) =
ncz

L‖
for 0 < z < L‖. Here L‖ is the longitudinal scale length and the longitudinal profile
is

N‖(z) =
(

1− z

L‖

)1/2

, (8)

With (7) substituted into (2) and using the WKB approximation, we get the non-
linear Schrödinger equation with exponential nonlinearity:

2ik0
∂ε

∂ξ
= ∇2

⊥ε + k2
0

[
n1

nc
(1− e−I )− n2

nc
e−I
]
ε, (9)

where

ξ(z) =
∫ z

0

1
N‖(z′)

dz′ (10)

n2 =
ncr

2
⊥

L2
⊥
,

and

I =
|ε|2

[1− n1(z)/nc]1/2E2
p

. (11)

Here L⊥ is the transverse scale length. Both longitudinal variation of density as
well as transverse density profiles are introduced here. As mentioned earlier, addi-
tion of n2 here leads to the existence of a preformed plasma channel. However, in the
absence of n2, the first term in the square brackets in (9) contributes to self-focusing
and the problem reduces to earlier work of Andreev (1983) with longitudinal inho-
mogeneity only. This feature becomes more apparent in our calculations, where we
have plotted the normalized beam width as a function of the dimensionless distance
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of propagation. Equation (9) is the same as that derived earlier (cf. equation (1.2)
of Andreev et al. 1987).

Equation (9) although nonintegrable, conserves the following invariant:

Q =
∫
|ε|2r⊥ dr⊥. (12)

Equation (12) implies that the power is conserved and hence |ε0|2πa2 = const, and
gives an explicit reference as to how the beam radius relates to the beam amplitude.
It may be mentioned that the invariant (12) is a consequence of the symmetry
relative to phase shift. Equation (9) also conserves the Hamiltonian

H =
∫ [

r

∣∣∣∣∂ε∂r
∣∣∣∣2 − F (I)

]
r⊥ dr⊥ (13)

where

F (I) =
∫ I

0
G(I) dI

with

G(I) =
[
n1

nc
(1− e−I )− n2

nc
e−I
]
. (14)

Conservation of the Hamiltonian results from the conservation of translational
invariance in ξ. Similarly, invariance relative to spatial variation in x and y is
related to conservation of momentum.

The conservation laws enunciated above do not hold if we consider (2) as such with
fast variation included in the amplitude. It is only in the slowly varying envelope
approximation (WKB approximation) that ∂2E/∂z2 is replaced by the first term
in (2), leading to invariants of (9).

It must further be mentioned that |ε|2/E2
p is dimensionless parameter, which

determines the intensity of beam required for self-focusing. It can be shown that
|ε|2/E2

p is equivalent to 3
4α(m/M )E−2

0 , where α is a nonlinearity parameter. The
importance of this parameter can be realized from a graph of (r0ωp/c)2 versus
3
4α

m
ME2

0 (Sodha et al. 1976). These two terms (r0ωp/c)2 and |ε|2/E2
p together deter-

mine the threshold intensity for self-trapping. Since an exact solution of (9) is not
available, one must use numerical or approximate analytical methods. The varia-
tional approach, although heuristic in nature, is used where the solution is assumed
to maintain a prescribed approximate profile. Such methods simplify the problem,
reducing it to a system of ordinary differential equations for the evolution of a
few parameters. However, the method may not be able to capture the delicate bal-
ance associated with the critical collapse (Berge 1998), although it can be fairly
satisfactorily used to study self-focusing in an underdense plasma. Moreover, the
method is also not applicable in the vicinity of critical surface, since the assumption
of smooth variation of N‖ assumed in (8) and used to arrive at (9) breaks down
at critical surface. We have used this method here, and (9) is reformulated as a
variational problem corresponding to a Lagrangian L so as to make δL/δz = 0
equivalent to (9). The Lagrangian L corresponding to (9) is given by

L = r

∣∣∣∣∂ε∂r
∣∣∣∣2 − ιk0r

(
ε
∂ε∗

∂ξ
− ε∗ ∂ε

∂ξ

)
− k2

0r

[
n1

nc
(1− e−I )− n2

nc
e−I
]
|ε|2. (15)
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Thus, the solution to the variational problem

δ

∫∫∫
Ldx dy dz = 0 (16)

also solves the nonlinear Schrödinger equation (9). Using the trial wave function
(Andreev et al. 1987)

ε(r, ξ) = ε0(ξ) exp
(
− r2

⊥
a2(ξ)

− ιk0r
2
⊥

2a(ξ)
da

dξ

)
, (17)

we can integrate over r⊥ to find 〈L〉 as

〈L〉 = 〈L0〉 + 〈L1〉, (18)

where

〈L0〉 =
|ε0(ξ)|2

2
− ik0a

2(ξ)
4

(
ε0
∂ε∗0
∂ξ
− ε∗0

∂ε0

∂ξ

)
+
k2

0a
3

8
d2

dξ2 |ε0(ξ)|2 (19a)

〈L1〉 = −k
2
0a

2

4
n1

nc

[
ε2

0 − E2
p

(
1− n1

nc

)1/2

(1− e−I0 )

]

+
k2

0a
2

8

E2
p

L2
⊥

(
1− n1

nc

)1/2

[E1(I0) + ln I0 + C] (19b)

where E1(I0) is the exponential integral (Abramowitz and Stegun 1965), C =
0.57721 is Euler’s constant, and

I0 =
(ε0/Ep)2

N‖(ξ)
. (20)

It must be mentioned that in evaluating the integrals appeared in (16), we have
used standard results (Abramowitz and Stegun 1965). Further, using the procedure
of Anderson et al. (1979) and Anderson (1983) as well as Karlsson et al. (1992),
it is possible to arrive at the following equations for the beam width a and the
longitudinal phase delay φ :

d2a

dξ2 =
8

k2
0a

3
+

4n1

anc

[
e−I0 − 1

I0
(1− e−I0 )

]
− 4a
I0L2
⊥

[E1(I0) + ln I0 + C − 1
2 (1− e−I0 )] (21)

dφ

dξ
=

3
k0a2 − k0

n1

nc

[
1
2 − 3

2e
−I0 +

1
I0

(1− e−I0 )
]

− k0a
2

L2
⊥I0

[E1(I0) + ln I0 + C − 3
4 + 3

4e
−I0 ]. (22)

It is convenient to work in dimensionless variables. For this purpose, we introduce
the following transformations:

z = −L‖ζ2, N‖ = ζ for 0 < ζ < 1, (23a,b)

n1

nc
= 1 +

z

L‖
, ξ = 2L‖(1−N‖(z)) (23c,d)
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and arrive at the following simplified equations for the beam width and phase:

d2a

dζ2 =
32L2

‖
k2

0a
3
−

16L2
‖

a
(1− ζ2)

[
1
I0

(1− e−I0 )− e−I0

]

−
16aL2

‖
I0L2
⊥

[E1(I0) + ln I0 + C − 1
2 (1− e−I0 )] (24)

and

dφ

dζ
= − 6L‖

k0a2 + 2k0L‖(1− ζ2)
[

1
2 − 3

2e
−I0 +

1
I0

(1− e−I0 )
]

+
2k0a

2L‖
I0L2
⊥

[E1(I0) + ln I0 + C − 3
4 + 3

4e
−I0 ]. (25)

To cast these two equations in more succinct form, the well-known terminology used
in self-focusing phenomenon is considered. For this purpose, we introduce the length
scale of nonlinear refraction Rnl = Ep/

√
2ε0, the diffraction length Rg = 1

2k0a
2
0 and

the dimensionless beam width A = a/a0. Then (24) and (25) can be rewritten in the
following forms:

d2A

dζ2 =
8L2
‖

R2
gA

3 −
16L2

‖
Aa2

0T
(1− ζ2)[1− (1 + T )e−T ]

−
16AL2

‖
TL2
⊥

[E1(T ) + lnT + C − 1
2 (1− e−T )] (26)

and

dφ

dζ
= − 3L‖

RgA2 +
4RgL‖
a2

0T
(1− ζ2)

[
T
(

1
2 − 3

2e
−T ) + 1− e−T ]

+
4A2RgL‖
TL2
⊥

[E1(T ) + lnT + C − 3
4 + 3

4e
−T ], (27)

where

T =
1

2R2
nlζ

3. Discussion
Equations (26) and (27) are not amenable to analytical solution. Equation (26),
representing the evolution of the normalized beam width, is very important and
contains significant physics (cf. equation 2.1 of Andreev et al. 1987). The right-hand
side of (26) contains three terms, each emanating from different physical concept
contained in (9). The first term on the right-hand side of (26), representing spatial
dispersion, leads to diffractional divergence in the absence of nonlinear terms. The
additional factor of L2

‖ appearing in the numerator of this term results from the
longitudinal inhomogeneity introduced in the direction of propagation. The second
term in (26), arising on account of ponderomotive nonlinearity (the second term
on the right-hand side of (9)), prevents the spread of flow by counteracting the
diffractional divergence. Its peculiar form has its origin in the particular form of the
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Figure 1. Variation of normalized beam width A with dimensionless distance of propagation
ζ for different Rnl with a0 = 0.005 cm, Rg = 0.075 cm, L‖ = 0.075 cm, and L⊥ = 0.075 cm.
Curve 1 corresponds to Rnl = 0.05, curve 2 to Rnl = 0.1, and curve 3 to Rnl = 0.5.

trial function and is a consequence of the averaging process used in the variational
approach. It is a major dominant term that although initially small, competes with
the diffraction term to determine the overall evolution of beam width. A special
feature of this term is that it contains inhomogeneity as well as Rnl. The last
additional term comes from the relative inhomogeneity (L‖/L⊥) introduced into
the problem as well as ponderomotive nonlinearity, and is a consequence of the
last term on the right-hand side of (9). Likewise, it also evolves with ζ, varying
in the different regions of propagation, and also contributes to self-focusing. In
the absence of the last term, the fate of the beam evolution is determined by the
relative competition of the first two terms.

We have performed numerical computations of (26) and (27) using the Runge–
Kutta method while maintaining a specific relationship between Rg, Rnl, L‖, and
L⊥. In Fig. 1, the normalized beam width is plotted as a function of the dimen-
sionless distance of propagation ζ for three different values of Rnl and with other
parameters chosen as follows:

a0 = 0.005 cm, Rg = 0.075 cm, L‖ = 0.075 cm, L⊥ = 0.075 cm,

There are several salient features observed in Fig. 1:

(a) A decrease in Rnl results in overall weakening of the second and third terms,
since it appears through T . This leads to overall dominance of diffraction phe-
nomenon, resulting in self-defocusing of the beam, as is obvious from curve 1.

(b) The second term, which is vanishingly small in the initial stage (it is zero at
ζ = 1), evolves with ζ, but in (1 + T )e−T the exponential factor overcomes the
factor 1 + T , resulting in weakening of this term for smaller ζ.

(c) It is also observed that the nonlinearity plays a significant role only when the
beam has undergone some propagation through the plasma. Thus diffraction is
the dominant mechanism in the initial stage, as is obvious from curves 1 and 2.
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Table 1.

ζ 1.0 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50 0.45 0.40

A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.999 0.999 0.999

Particularly in this stage, the last term counteracts the diffraction, preventing
the steep rise in A, and defocusing is significantly slowed down when the second
and third terms both contribute significantly. This becomes more apparent from
curve 3.

(d) When the diffraction and nonlinear second terms are almost of the same order,
the last term plays a significant role in self-focusing phenomenon. In such a
case, when combined with the second term for the chosen set of parameters, it
leads to oscillatory self-focusing. Each time a minimum in A is achieved, the
diffraction term becomes large, and after some increase in normalized beam
width, focusing sets in again, with an overall effect of oscillatory self-focusing.

(e) As we approach the critical surface, the beam tends to defocus (curve 3) and
focusing is slowed (curve 2). However, the theory is not valid in the neighbour-
hood of the critical surface (ζ = 0). The theory breaks down completely in the
neighbourhood of and at the critical surface. This is because the variation of
N‖ (expressed in E through (7)) with ζ is assumed to be slow, and it is because
of this that the derivatives of N‖ have been neglected. On the other hand, N‖
varies abruptly at or near the critical surface, and the present approach is not
valid.

In the absence of the second term (longitudinal inhomogeneity), it is possible
to find critical value of the power/intensity required for self-trapping of the beam.
In such a case, the beam propagates in a self-generated waveguide mode without
convergence or divergence. In the absence of the second term and with ζ = 1 (z = 0),
the condition for self-trapping results in the following equation:

L2
⊥
R2
g

= 4R2
nl[E1(T1) + ln T1 + C − 1

2 (1− e−T1 )] = FN (Rnl), (28)

where

T1 =
1

2R2
nl

=
ε2

0

E2
p

.

Since (28) is a trancendental equation, it must be solved numerically or graphically.
We have used the latter approach here, where values of L2

⊥ versus R2
g have been

plotted. Then FN (Rnl) is plotted as a function of Rnl. It is observed that (28) is
satisfied only for certain values of Rnl, L2

⊥, and R2
g. As is obvious from Fig. 2,

there are two values of Rnl, corresponding to the intersection of the curves, for
which (28) is satisfied. These, the only possible value of Rnl, determine the critical
threshold power required for self-trapping of the beam. From these values, we can
calculate Ecr1 and Ecr2. We have solved (26) (in the absence of the second term on
the right-hand side) numerically, particularly for these values of Rnl. For example,
when Rnl = 1.0, the other parameters are L‖ = 0.075, Rg = 1.0, and L⊥ = 1.0.
Similarly, for the other value of Rnl, namely Rnl = 1.50, the other parameters are
L‖ = 0.075, Rg = 1.2247, and L⊥ = 1.2247. The results of propagation for these
two sets of values are shown in Table 1.
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Figure 2. Variation of FN (Rnl) with Rnl for various values of L1 (= L2
⊥) and R1 (= R2

g)
with a fixed value of L‖. Curve 1 is for FN versus Rnl and curve 2 for L1 versus R1.
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Figure 3. Variation ofAwith ζ for different Lr (= L‖/L⊥) withRnl = 0.1 cm,Rg = 0.075 cm,
and a0 = 0.005 cm. Curve 1 corresponds to Lr = 1, curve 2 to Lr = 2, and curve 3 to Lr = 4.

As is obvious from the table, it is observed that the normalized beam width
A (= a/a0) exhibits a self-trapping mode over a fairly long distance of propagation.

In order to observe the effect of inhomogeneity scale lengths, we have plotted the
normalized beam width A as a function of ζ for different values of Lr (= L‖/L⊥)
corresponding to Rnl = 0.1, the other parameters being the same as mentioned
earlier. The smaller the scale-length ratio of the inhomogeneity, the stronger is the
self-focusing, as is apparent from Fig. 3. An initially defocusing curve exhibits fo-
cusing with distance of propagation. However, an increase in Lr for the same value
of Rnl results in oscillatory self-focusing and defocusing. This results from variation
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Figure 4. Variation of A with ζ for longitudinal inhomogeneity and both scale lengths of
inhomogeneity, with Lr = 2.0 and the other parameters the same as mentioned in the
caption of Fig. 3. Curve 1 corresponds to longitudinal inhomogeneity and curve 2 to both
scale lengths of inhomogeneities.
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Figure 5. Plot of the longitudinal phase delay φ(ζ) for different values of Rnl and with the
other parameters the same as mentioned in the caption of Fig. 1. Curve 1 corresponds to
Rnl = 1.0, curve 2 corresponds to Rnl = 1.2, and curve 3 to Rnl = 1.5.

in the nonlinear focusing terms on the right-hand side of (26) with increasing Lr.
Further, on increasing the value of Rnl, oscillatory self-focusing and strong defo-
cusing with distance of propagation is observed. Nonetheless, the finer details of
the critical balance between diffraction and nonlinear refraction cannot be deter-
mined in the neighbourhood of the critical surface, and the present approach is not
suitable for such a study (Burge 1998).
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In order to identify the role of the addition of transverse inhomogeneity, we have
plotted the beam width A as a function of ζ for two cases:

(i) when L⊥ is missing, i.e. only longitudinal inhomogeneity is present;

(ii) when both scale lengths of inhomogeneity are present.

In the absence of transverse inhomogeneity, as is obvious from curve 1 in Fig. 4,
defocusing sets in the final stage of propagation. However, when both scale lengths
are introduced, self-focusing is enhanced, as is observed in curve 2.

Lastly, Fig. 5 displays the longitudinal phase delay φ with ζ for various values
of Rnl, with the other parameters remaining the same as mentioned earlier. For
large Rnl, the phase is primarily due to the diffraction term, and the correspond-
ing change in phase with distance of propagation is very small. However, with
increasing Rnl, the nonlinearity contributes significantly, and the phase evolves as
a monotonically decreasing function with propagation as well as preserving neg-
ative values throughout the transit. This compares well with the results obtained
by Karlsson et al. (1992) for the case of nonlinear optical fibres.
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