
Math. Struct. in Comp. Science (2004), vol. 14, pp. 285–327. c© 2004 Cambridge University Press

DOI: 10.1017/S0960129504004141 Printed in the United Kingdom

TQL: a query language for semistructured data

based on the ambient logic

LUCA CARDELLI† and GIORGIO GHELLI‡

†Microsoft Research, Cambridge, U.K.
‡Università di Pisa, Pisa, Italy

Email: ghelli@di.unipi.it

Received 2 May 2002; revised 15 April 2003

The ambient logic is a modal logic that was proposed for the description of the structural

and computational properties of distributed and mobile computation. The structural part of

the ambient logic is, essentially, a logic of labelled trees, hence it turns out to be a good

foundation for query languages for semistructured data, much in the same way as first-order

logic is a fitting foundation for relational query languages. We define here a query language

for semistructured data that is based on the ambient logic, and we outline an execution

model for this language. The language turns out to be quite expressive. Its strong

foundations and the equivalences that hold in the ambient logic are helpful in the definition

of the language semantics and execution model.

1. Introduction

Unstructured collections, or unstructured data, are collections that do not respect a

predefined schema, and hence need to carry a description of their own structure. These

are called semistructured when one can recognise in them some degree of homogeneity.

This partial regularity makes semistructured collections amenable to access through

query languages, but not through query languages that have been designed to access

fully structured databases. New languages are needed that are able to tolerate the data

irregularity, and that can be used to query, at the same time, both data and structure.

Semistructured collections are usually modelled in terms of labelled graphs, or labelled

trees (Abiteboul et al. 1999).

The ambient logic is a modal logic that was proposed for the description of the

structural and computational properties of distributed and mobile computation (Cardelli

and Gordon 2000). The logic comes equipped with a rich collection of logical implications

and equivalences. The structural part of the ambient logic is, essentially, a logic designed to

describe properties of labelled trees. It is therefore a good foundation for query languages

for semistructured data, much in the same way as first-order logic is a fitting foundation

for relational query languages.

In this paper we present TQL, a query language for semistructured data that is based

on the ambient logic.

The language turns out to be quite expressive, even though a TQL query is not much

more than a nesting of comprehension operations, each built around a logical formula

expressed in our ‘tree logic’. The fact that the tree logic can be used naturally to

https://doi.org/10.1017/S0960129504004141 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004141

G. Ghelli and L. Cardelli 286

express types and constraints over semistructured data opens interesting possibilities.

In a nutshell, problems like subtyping, constraint implication, constraint satisfiability,

query correctness and query containment become special cases of the validity problem

for this logic. The same holds for their combinations, such as query containment in the

presence of constraints, or query correctness in the presence of subtyping. The high level

of expressiveness of the logic allows us to describe complex types and constraints. For

example, the type and constraint languages proposed in Hosoya (2000) and Buneman et al.

(2001c) can be easily translated into the tree logic. Of course, if the full power of the logic

is used, every aspect of static query analysis (correctness, containment, subtyping . . .)

becomes undecidable, since the validity of a tree-logic formula is undecidable in general.

However, we believe that decidable subsets of the logic can be defined that are expressive

enough to encode interesting type and constraint systems. The search for decidable subsets

with the ‘right’ balance of expressiveness and cost is an open problem, but the first results

in this field are emerging (Calcagno et al. 2003; Cohen 2002). This unified framework for

types, constraints, and queries is a central, but long-term, aim of the TQL project, and

currently we are just taking the first steps in this direction.

In this paper we first introduce the query language TQL through some examples, then

we present its full formal definition, and, finally, we define a formal execution model that

is the basis of the current TQL implementation.

The paper is structured as follows. In Section 2 we present a preview of the query

language. In Section 3 we define the tree data model. In Section 4 we present the logic upon

which the query language of Section 5 is based. In Section 6 we briefly discuss how to rep-

resent types and constraints in TQL logic. In Section 7 we present the evaluation model. In

Section 8 we compare TQL with related proposals. In Section 9 we draw some conclusions.

2. TQL by examples

2.1. The simplest queries

We present here TQL through some examples. We begin with standard queries, borrowed

from the W3C XML Query Use Cases (W3C 2002a). TQL queries are evaluated with

respect to a global environment, defined by the user, where some variables are bound to

local or remote XML files. We assume here that the variable $Bib has been bound to the

document available at //tql.di.unipi.it/tql/pubb.xml, which contains bibliographic

entries, as in the fragment below, written using TQL syntax:

bib[

book[year[1999]

| title[DataOnTheWeb]

| author[first[Serge] | last[Abiteboul]]

| author[first[Dan] | last[Suciu]]

| author[first[Peter] | last[Buneman]]

| publisher[MorganKaufmann]

| price[45]

]

book[year[1995]

https://doi.org/10.1017/S0960129504004141 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004141

TQL: a query language for semistructured data 287

| title[FoundationsDatabases]

| author[first[Serge] | last[Abiteboul]]

| author[first[Richard] | last[Hull]]

| author[first[Victor] | last[Vianu]]

| publisher[Addison]

| price[60]

]

| book[year[1999]

| title[ProcICDT99]

| editor[first[Peter] | last[Buneman]]

| publisher[Springer]

| price[12]

]

...

]

In this format, bib[C] stands for an element tagged bib whose contents are C, while

C1|C2 is the concatenation of two elements, or, more generally, of two sets of elements.

TQL notation is different from XML because TQL is intended as a language to query

semistructured data in general, that is, unordered trees with labelled edges; XML is just

one way to construct such trees, using tagged elements (and attributes) to build labelled

edges.

The basic TQL query is from Q |= A select Q’, where Q is the subject (or data source)

to be matched against the formula A, and Q’ is the result expression. The matching of Q

and A returns a set of bindings for the variables that are free in A. Q’ is evaluated once

for each of these bindings, and the concatenation of the results of all these evaluations is

the result of the query.

For example, consider the following TQL query, which returns the titles of all books

written in 1999, and is evaluated in an environment where $Bib is bound as specified

above:

from $Bib |= .bib[.book[.year[1999]

And .title[$t]

]

]

select title[$t]

The formula:

.bib[.book[.year[1999] And .title[$t]]]

is a logical formula, which should be read as: ‘there is a path .bib[.book[]] that

reaches a place that matches .year[1999] And .title[$t], that is, a place where you

find both a path .year[] leading to 1999 and a path .title[] leading to something

that we shall call $t’. Since //tql.di.unipi.it/tql/pubb.xml contains two books with

year 1999, and with titles DataOnTheWeb and ProcICDT99, the query first computes the

set of bindings:

{[$t = DataOnTheWeb]; [$t = ProcICDT99]}

https://doi.org/10.1017/S0960129504004141 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004141

G. Ghelli and L. Cardelli 288

The subquery title[$t] is then evaluated once for each binding, yielding the result:

title[DataOnTheWeb] | title[ProcICDT99].

The formula .t[A] reads ‘there exists an element t whose contents satisfy A’; it is

actually defined in terms of three primitive operators, truth T, horizontal splitting A1 |
A2, and element matching t[A]. The element formula t[A] only matches a one-element

document: while .t[A] matches both trees t[D] and t[D]|u[E]|... (provided that A

matches D), the formula t[A] only matches the first one. The truth formula T matches

every tree. Finally, the formula A1 | A2 matches D iff D is equal, modulo reordering, to

D1 | D2, with A1 matching D1 and A2 matching D2. For example, the following tree/formula

pairs match, provided that $A is bound to Date:

title[IDB] | author[Date] | year[1994] author[$A] | title[IDB] | year[1994]

title[IDB] | year[1994] T

title[IDB] | author[Date] | year[1994] author[$A] | T

author[Date] author[$A] | T

The formula used in the last two lines can be read as ‘there is author[$A] and

something else’, hence it is equivalent to .author[$A] (the fourth pair matches since the

empty tree matches T). For this reason, we do not take .t[A] as primitive, but define it

as an abbreviation of t[A]|T.
The decomposition operator | is more expressive than the derived step operator .t[A],

since it can be also used to analyse the horizontal structure of a tree. For example, in

the next query, by matching the formula year[1999] | $EverythingElse against each

book, we return, for any book whose year is 1999, everything but the year. Here .a.b[A]

abbreviates .a[.b[A]]:

from $Bib |= .bib.book[year[1999]

| $EverythingElse

]

select BookOf1999[$EverythingElse]

Since we have two 1999 books, there are two possible bindings for $EverythingElse,

each corresponding to the whole contents of a 1999 book without its year edge; hence

the result is:

BookOf1999[title[DataOnTheWeb] | author[first[Serge] | last[Abiteboul]] ...]

| BookOf1999[title[ProcICDT99] | editor[first[Peter] | last[Buneman]] ...]

While in these examples we match variables with trees, a TQL variable can also be

matched against a tag.

For example, the following query returns any tag inside a book tagging an element that

contains first[Serge] (the result is SergeTag[author]):

from $Bib |= .bib.book.$tag.first[Serge]

select SergeTag[$tag]

From now on, as a convention, we will use lowercase initials for variables that are

bound to tags and uppercase initials for variables that are bound to trees.

https://doi.org/10.1017/S0960129504004141 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004141

TQL: a query language for semistructured data 289

2.2. Matching and logic

TQL logic, being a dialect of the ambient logic, contains both structural and first-order-

logic operators. The structural operators (t[A], A1 | A2, . . .) can be used to express

matching conditions, and the others can be used to combine such conditions, and to

quantify variables.

For example, the condition in the following query requires the existence of a title field,

of a $x field containing Springer, and of either an author.last or an editor.last

path leading to Buneman†.

from $Bib |=

.bib.book [.title[$t]

And Exists $x. .$x[Springer]

And (.author.last[Buneman] Or

.editor.last[Buneman])

]

select title[$t]

The pattern Exists $x. .$x[A] is common enough to deserve the abbreviation .%[A],

which we will use from now on (‘%’ can be read as ‘match any label’).

Conjunction, disjunction and existential quantification can be found in many match-

based languages. TQL, however, has the full power of first-order logic, hence we can also

express universal quantification and negation of arbitrary formulas. This will be discussed

later.

Finally, TQL logic also includes a recursion operator, which can be used, for example,

to define another derived path operator, .%*[A], that matches a path of arbitrary length

(this is formally described in Section 4.3).

For example, the following query finds, at any nesting depth, any publication $pub

where Suciu plays a role $role. It returns the title of the publication and the field where

Suciu appears, preserving the tags of both.

from $Bib |= .%*.$pub[.title[$T]

And .$role[.lastname[Suciu]]

]

select $pub[title[$T] | $role[Dan Suciu]]

2.3. Restructuring the data source

In TQL, a subquery can appear wherever a tree expression is expected. This feature can

be exploited to use the nesting structure of the query in order to describe the nesting

structure of the result. For example, in our data source there is an entry for each book,

containing the list of its authors. We can restructure it to obtain an entry for each author,

containing the list of its books. The structure of the result can be visualised as follows,

where t[F]* indicates an arbitrary repetition t[F] | t[F] | ... of the t[F] structure:

† In Exists $x. .$x[Springer] we have two dots: the first belongs to Exists (as in ∃x.P (x)), while the

second belongs to .$x[Springer], and means $x[Springer] | T.

https://doi.org/10.1017/S0960129504004141 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004141

G. Ghelli and L. Cardelli 290

author[authorname[...]

| book[...]*

]*

Observe how this structure is reflected in the structure of the following query, with a

from-select for each *:

from $Bib |= .bib.book.author[$A]

select author[authorname[$A]

| from $Bib |= .bib.book[author[$A]

| $OtherFields

]

select book[$OtherFields]

]

This query performs a nested loop. For each binding of $A to a different author, it returns

an edge author[authorname[$A]]|book[...]|...|book[...]], where book[...] |...|
book[...] is the result of the inner query, that is, it contains one book element for each

book whose author is $A. As in a previous example, we extract, from the input book, all

the fields but the author.

This query also exemplifies the double role of variables inside formulas. The outer

formula provides the bindings for $A that satisfy the outer condition, while the inner

formula, which is evaluated once for each binding [$A = C], provides those bindings of

$A and $OtherFields that bind $A with C and satisfy the inner condition. Hence, we

may say that the first occurrence binds $A and the others verify that binding. This will be

formalised later on.

2.4. Checking schema properties and key constraints

In this section we show how TQL can be used to check structural properties of

semistructured data. When a closed formula A expresses a property of interest, we can

check it by running a query like from Q |= A select success: this query returns an

edge labelled success if A holds for Q, and an empty tree otherwise.

As a first example, we consider a query that verifies if the tag title is mandatory for

book elements in the $Bib document.

from $Bib |= bib[Not .book[Not .title[T]]]

select title_is_mandatory

The formula Not .book[Not .title[T]] means: it is not the case that there exists

a book whose contents do not contain any title, that is, each book contains a title.

TQL actually features an operator !t[A] defined as Not .t[Not A], which we can

use directly, as in the following query. Here !book.title[T] is an abbreviation for

!book[.title[T]], hence it means: for every book there is a title.

from $Bib |= bib[!book.title[T]]

select title_is_mandatory

The formula !t[A] is dual to .t[A] in the same sense as ∀x.A is dual to ∃x.A, or ∧ is

dual to ∨. In TQL, every primitive operator has a derived dual; this implies that negation

https://doi.org/10.1017/S0960129504004141 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004141

TQL: a query language for semistructured data 291

can always be pushed inside any operator. Hence we can rewrite any query so that only

atomic formulas are negated. In fact, when negation appears in a query, in most cases

the TQL optimiser pushes it down to the atomic formulas (tree variables, tree emptiness,

comparisons), since negation is quite expensive. This is the reason why, although we claim

that unlimited negation is an important feature of TQL, we will see very little explicit use

of negation in our examples.

The next query verifies that title never appears twice in a field, showing once more

how | can be used to express horizontal properties:

from $Bib |= Not bib[.book[.title[T] | .title[T]]]

select title_never_appears_twice

Another important property is whether a given tag is a key. There are many possible

generalisations of the relational notion of key to the semistructured case. The statement

below, for example, says that title is a mandatory field, and that it is impossible to find

two separate books with the same title (more precisely, with one title in common). As

above, the | operator can be used to express the fact that we have two distinct subtrees

with the same title. In traditional logical approaches, based on first-order or modal logics,

we need some notion of ‘node identity’, or ‘world identifier’, in order to express the

existence of two distinct nodes that satisfy a given property:

from $Bib |=

bib[!book[.title[T]]

And foreach $X. Not (.book.title[$X] |

.book.title[$X])

]

select each_title_is_key

Of course, if the system knows that $Bib satisfies bib[!book[.title[T]]], this

knowledge implies that

bib[!book[.title[T]]

And foreach $X. Not (.book.title[$X] | .book.title[$X])]

is equivalent (over $Bib) to

bib[foreach $X. Not (.book.title[$X] | .book.title[$X])].

Properties like bib[!book[.title[T]]] can be easily derived from type declaration

expressed using TQL logic (see Section 6.1), and the equivalence above is a simple

consequence of the rules that we present later (Section 4.2). We will not comment further

on this point, since this kind of optimisation is not exploited by the current implementation

of TQL.

The next query checks that the $Bib element contains only elements labelled book, by

asking that each tag inside the outer bib is equal to book.

from $Bib |= bib[foreach $x .$x[T] implies $x=book]

select only_book_inside_bib

This query can be rewritten using path operators as follows:

https://doi.org/10.1017/S0960129504004141 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004141

G. Ghelli and L. Cardelli 292

from $Bib |= bib[Not (.Not book)[T]]

select only_book_inside_bib

Here Not book is a tag-expression that stands for any tag different from book. Hence,

.Not book[T] means: there exists a subelement whose tag is different from book. Hence,

Not (.Not book[T]) means: there exists no subelement whose tag is different from book.

2.5. Extracting the tags that satisfy a property

In a TQL query a tag variable can appear wherever a tag can appear. Hence, we can take

the query that checks whether title is a key, and substitute title with $k, as follows:

from $Bib |=

bib[!book[.$k[T]]

And foreach $X. Not (.book.$k[$X] |

.book.$k[$X])

]

select key[$k]

This query is well formed, and it returns the set of all subtags of book whose content

is a key for our set of books.

This is an instance of a general property of TQL. For every query Q that checks a

property P of a tag t, if we substitute t with a tag variable, we obtain a query that finds the

set of all tags that satisfy P . And if this set is finite, our implementation will compute it.

This unique property is due to the fact that TQL does not constrain the appearance

of free variables in formulas. For example, in the query above we have a universal

quantification foreach $X of a formula with a free variable $k. We are not aware of

any other query languages where such a quantification over an open formula is allowed.

The query evaluation algorithm we exploit to allow this kind of quantification is indeed

non-standard, and quite sophisticated. It is described in Conforti et al. (2003).

In other query languages, this kind of generalisation is definitely less trivial. For

example, in XQuery, one has to modify the structure of the query, for example by adding

an outer for clause to bind the variable that replaces that tag.

A similar generalisation can be performed for the queries that check whether a label

is mandatory, or occurs only once, inside another one. We present below a query that

almost produces a DTD for any input XML file (modulo ordering). The query extracts

all the tags in the database and lists, for each one, all the labels that must or may appear,

and distinguishes among those the ones that may be repeated and the ones that appear

only once. This query may look frightening at first sight, but it is just a generalisation of

the simple queries we presented above.

We first extract all tags that appear anywhere (.%*.$tag...) and contain some subtag

(.%*.$tag[.%[T]]). For each such tag, we return a structure

$tag[mandatory subtags[]*

| optional subtags[]*

| list subtags[]*

| non list subtags[]*]

https://doi.org/10.1017/S0960129504004141 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004141

TQL: a query language for semistructured data 293

that computes two partitions of its subtags: the first divides mandatory from optional

tags; and the second divides list (that is, repeatable) from non-list subtags.

A subtag is mandatory if it is never the case that we find $tag without $subtag inside:

Not (.%*.$tag[Not .$subtag[T]]).

A subtag is optional if there is a $tag element with a $subtag inside, and there is one

with no $subtag inside: .%*.$tag[.$subtag[T]] And .%*.$tag[Not .$subtag[T]].

A subtag is a list-subtag if there is a $tag element where it appears twice:

.%*.$tag[.$subtag[T] | .$subtag[T]].

A subtag is a non-list-subtag if it sometimes appears once (.%*.$tag[.$subtag[T]])

but it never appears twice: Not .%*.$tag[.$subtag[T] | .$subtag[T]].

Here is the query, defined over a database $parts:

from $parts |= .%*.$tag[.%[T]]

select $tag[mandatory_subtags

[from $parts |= Not (.%*.$tag[Not .$subtag[T]])

select $subtag[]

]

| optional_subtags

[from $parts |= .%*.$tag[.$subtag[T]]

And .%*.$tag[Not .$subtag[T]]

select $subtag[]

]

| list_subtags

[from $parts |= .%*.$tag[.$subtag[T] | .$subtag[T]]

select $subtag[]

]

| non_list_subtags

[from $parts |= .%*.$tag[.$subtag[T]]

And Not .%*.$tag[.$subtag[T] | .$subtag[T]]

select $subtag[]

]

]

2.6. Recursion

TQL logic also includes two recursion operators (rec and maxrec), which are very similar

to the µ and ν operators (minimal and maximal fix point) of modal logic. These can be

used to traverse arbitrarily deep paths, generalising the .%* operator we have seen before,

and to express recursive tree properties. Consider, for example, the following formula:

rec $Binary. 0 Or (%[$Binary] | %[$Binary])

The formula describes a binary tree, defined as either an empty tree, or a tree with two

children, both of which are binary.

The following query features a combination of horizontal analysis and vertical recursion.

In order to check whether the tag tt only appears once, we split the source into one edge

where tt only appears once, and the rest where tt never appears. In the first edge, either

https://doi.org/10.1017/S0960129504004141 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004141

G. Ghelli and L. Cardelli 294

tt appears immediately and never again (tt[NoTtHere]), or it is not here, but appears

once inside (%[$ttOnce] And Not tt[T]). Hence, the formula looks like:

rec $ttOnce. (tt[NoTtHere] Or (%[$ttOnce] And Not tt[T]))

| NoTtHere

This is the actual query, where NoTtHere is expressed by Not .%*.tt[T]:

from $Source |= rec $ttOnce. (tt[Not .%*.tt[T]] Or (%[$ttOnce] And Not tt[T]))

| Not .%*.tt[T]

select ttAppearsOnce

As before, by substituting tt with a variable, we get a query that computes the tags

that only appear once.

All the queries in this section, as written here, have been checked on the TQL

implementation. Running such queries on realistic pieces of data requires, in our prototype,

quite a long time. This is not surprising, since the current implementation is a ‘proof of

concept’, aimed at showing that such a language can be implemented. Much work remains

to be done on query optimisation.

We hope that the reader is now curious about the complete and formal definition of

TQL. This is the theme of the next sections.

3. TQL data model

We represent semistructured data as information trees. In this section we first define

information trees, then we give a syntax to denote them, and, finally, we define an

equivalence relation that determines when two different expressions denote the same

information tree. The syntax, and in a sense the semantics, of information trees corresponds

to the ‘spatial’ subset of the ambient calculus, that is, to ambients with no actions (Cardelli

and Gordon 2000).

3.1. Information trees

In this section, we formally define unordered edge-labelled trees as nested multisets; of

course, any other model for unordered labelled trees would do. Ordered trees could be

represented as nested lists. This option would have an impact on the logic, where the

symmetric A | B operator could be replaced by an asymmetric one, A;B. This change

might actually simplify some aspects of the logic, but in this paper we stick to the original

notion of unordered trees from Cardelli and Gordon (2000).

For a given set of labels Λ, we define the set IT of information trees, ranged over by

I , as the smallest collection such that:

— the empty multiset, {}, is in IT; we use 0 as a notation for {};
— if m is in Λ and I is in IT, then the singleton multiset {〈m, I〉} is in IT; we use m[I]

as a notation for {〈m, I〉};
— IT is closed under multiset union

⊎
j∈J M(j), where J is an index set, and M ∈ J →

IT; we use Par j∈J M(j) as a notation for
⊎

j∈J M(j), and I | I ′ for binary union

I � I ′.

https://doi.org/10.1017/S0960129504004141 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004141

TQL: a query language for semistructured data 295

Table 3.1. Info-terms and their information tree meaning.

F ::= info-term

0 denoting the empty multiset

m[F] denoting the multiset {〈m, F〉}, where m∈Λ

F | F denoting multiset union

�0� =def 0 =def {}
�m[F]� =def m[�F�] =def {〈m, �F�〉}
�F ′ | F ′′� =def �F ′� | �F ′′� =def �F ′� � �F ′′�

Table 3.2. Congruence over info-terms.

F ≡ F

F ′ ≡ F ⇒ F ≡ F ′

F ≡ F ′, F ′ ≡ F ′′ ⇒ F ≡ F ′′

F ≡ F ′ ⇒ m[F] ≡ m[F ′]

F ≡ F ′ ⇒ F | F ′′ ≡ F ′ | F ′′

F | 0 ≡ F

F | F ′ ≡ F ′ | F
(F | F ′) | F ′′ ≡ F | (F ′ | F ′′)

3.2. Information terms

We denote finite information trees by the syntax of information terms (info-terms),

borrowed from the ambient calculus (Cardelli and Gordon 1998) and defined in Table 3.1.

Table 3.1 also defines a function �F� mapping the info-term F to the denoted information

tree.

We often abbreviate m[0] as m[], or as m. We assume that Λ includes the disjoint

union of any basic data type of interest (integers, strings. . .), hence 5[0], or 5, is a

legitimate info-term. We assume that ‘|’ associates to the right, that is, F | F ′ | F ′′ is read

F | (F ′ | F ′′).

3.3. Congruence over info-terms

The interpretation of info-terms as information trees induces an equivalence relation

F ≡ F ′ on info-terms. It coincides with ambient-calculus congruence, when restricted to

this set of terms. This relation is called info-term congruence, and it can be axiomatised as

the minimal congruence that includes the commutative monoidal laws for | and 0, as in

Table 3.2. This axiomatisation of congruence is sound and complete with respect to the

information tree semantics. That is, F ≡ F ′ if and only if F and F ′ represent the same

information tree.

https://doi.org/10.1017/S0960129504004141 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004141

G. Ghelli and L. Cardelli 296

3.4. Information trees and other data models

We can compare our information trees with three popular models for semistructured data:

OEM data (Papakonstantinou et al. 1996), UnQL trees (Buneman et al. 1996), and XML

Query Data Model (W3C 2002c). The first obvious difference is that OEM and UnQL

models can be used to represent both trees and graphs, while here we focus only on trees.

Our approach can be applied to graphs as well, by substituting the tree-edge constructor

m[F] with a graph-edge constructor label (fromNode, toNode), and the tree logic with the

corresponding graph logic defined in Cardelli et al. (2002). However, we believe that a full

graph language would also need operators to create new nodes and to hide the identity

of nodes. For this reason, we prefer to focus here on the simpler issue of trees, which

is rich enough to warrant a separate study, and we leave the issues of node hiding and

generation to future studies (Cardelli et al. 2003).

UnQL trees are characterised by the fact that they are considered equivalent modulo

bisimulation, which essentially means that information trees are seen as sets instead of

multisets. For example, m[n[] | n[]] is considered the same as m[n[]]; hence UnQL trees

are more abstract, in the precise sense that they identify more terms than we do.

On the other hand, information trees are more abstract than OEM data, since OEM

data can distinguish a DAG from its tree-unfolding.

Our data model is essentially an unordered version of the XML Query Data Model,

as defined by the W3C (W3C 2002c). Apart from order, the other main difference is that

the W3C model considers seven different kinds of nodes (elements, attributes, text, . . .),

while we only consider one (essentially, elements), and the W3C model also assigns a node

identity to every node, which we do not consider. In practice, the node identity allows

two nodes to be compared in a way that distinguishes them if they have been built by

two different applications of a node constructor.

The W3C model describes data as node-labelled forests, while we talk in terms of edge-

labelled trees. The two are perfectly isomorphic. TQL data can be seen as node-labelled

forests by interpreting 0 as the empty forest, F | F ′ as forest union, and t[F] as a tree

rooted in a node labelled by t and whose children are the trees in the forest F .

Finally, the implemented version of TQL has a richer data model, since there we

consider two types of edges (or ‘nodes’), element edges t[F] and text (or PCData) edges t,

which always lead to a leaf. Text edges have very little impact on the language structure,

so in this paper we simply assume that a piece of text t in the XML input is mapped to

a terminal edge t[0].

4. The tree logic

In this section we present the tree logic. The tree logic is based on Cardelli and Gordon’s

modal ambient logic, which was defined with the aim of specifying spatial and temporal

properties of the mobile processes that can be described through the ambient calculus

(Cardelli and Gordon 2000). The ambient logic is particularly attractive for us because

it is equipped with a large set of logical laws for tree-like structures, in particular,

logical equivalences, which provide a foundation for query rewriting rules and query

https://doi.org/10.1017/S0960129504004141 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004141

TQL: a query language for semistructured data 297

Table 4.1. Formulas.

η ::= label expression

n label constant

x label variable

A,B ::= formula

0 empty tree

η[A] location

A | B composition

T true

¬A negation

A∧B conjunction

X tree variable

∃x.A quantification over label variables

∃X.A quantification over tree variables

η ∼ η′ label comparison

ξ recursion variable

µξ.A recursive formula (least fixpoint); ξ may appear only positively

optimisation. Moreover, we hope to exploit the current research on decision procedures

for (sublogics of) the ambient logic (Calcagno et al. 2003; Cohen 2002), to build tools

to decide the problems (query correctness, containment, equivalence) that we described in

Section 1.

We start here from a subset of the ambient logic as presented in Cardelli and

Gordon (2000), but we enrich it with information tree variables, label comparison and

recursion. All the results in Sections 4.1 and 4.2 are standard results of the ambient logic

transposed to this specific variant. For this reason, we will not give details of the proofs

here, but will only give the essential outlines.

4.1. Formulas

The syntax of tree logic formulas is presented in Table 4.1.

The symbol ∼, in the label comparison clause, stands for any label comparison operator

chosen in a predefined family Θ; we assume that Θ contains at least equality, the SQL

string matching operator like, and their negations. A recursion variable ξ can only appear

positively in its scope; this means that an even number of negations must be traversed in

the path that goes from each occurrence of ξ to its binder.

We assume that the quantifiers ∃x.A, ∃X.A and µξ.A, bind their variables as far to

the right as possible; for example, ∃x.A∧A′ means ∃x.(A∧A′). Negation binds more

strongly than any other operator, so that ¬A∧A′ means (¬A)∧A′. No other precedence

rule is assumed. The interpretation of a formula A is given by a semantic map �A�ρ, δ
that maps A to a set of information trees, with respect to the valuations ρ and δ. The

https://doi.org/10.1017/S0960129504004141 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004141

G. Ghelli and L. Cardelli 298

Table 4.2. Formulas as sets of information trees.

�0�ρ, δ =def {0}
�η[A]�ρ, δ =def {ρ(η)[I] | I ∈ �A�ρ, δ}
�A | B�ρ, δ =def {(I | I ′) | I ∈ �A�ρ, δ , I

′ ∈ �B�ρ, δ}
�T�ρ, δ =def IT
�¬A�ρ, δ =def IT \ �A�ρ, δ
�A∧B�ρ, δ =def �A�ρ, δ ∩ �B�ρ, δ
�X�ρ, δ =def {ρ(X)}
�∃x.A�ρ, δ =def

⋃
n∈Λ �A�ρ[x �→n], δ

�∃X.A�ρ, δ =def

⋃
I∈IT �A�ρ[X�→I], δ

�η ∼ η′�ρ, δ =def if ρ(η) ∼ ρ(η′) then IT else �
�µξ.A�ρ, δ =def

⋂
{S ⊆ IT | S ⊇ �A�ρ, δ[ξ �→S]}

�ξ�ρ, δ =def δ(ξ)

valuation ρ maps label variables x to labels (elements of Λ) and tree variables X to

information trees, while δ maps recursion variables ξ to sets of information trees.

We say that F satisfies A under ρ, δ, when the information tree �F� is in the set �A�ρ, δ ,

and then we write F �ρ,δ A:

F �ρ,δ A =def �F�∈�A�ρ, δ

We also talk about information trees satisfying a formula, as follows:

I �ρ,δ A =def I∈�A�ρ, δ

The context will disambiguate the notation. In both cases we omit δ when it is the empty

function.

The semantic definition is probably easier to understand in terms of the associated

satisfaction relation. For example, the interpretation of ∃ corresponds to the following

property of the satisfaction relation:

F �ρ,δ ∃X.A ⇔def �F� ∈
⋃

I∈IT �A�ρ[X�→I], δ

⇔ ∃I ∈ IT. �F� ∈ �A�ρ[X�→I], δ

⇔ ∃I ∈ IT. F �ρ[X�→I],δ A

Along the same lines, one can prove the following properties of conjunction and negation:

F �ρ,δ ¬A ⇔ ¬(F �ρ,δ A)

F �ρ,δ A∧B ⇔ F �ρ,δ A ∧ F �ρ,δ B

The | case is characterised by the following property:

F �ρ,δ A | B
⇔def ∃I ′, I ′′. �F� = I ′ | I ′′, I ′ ∈�A�ρ, δ , I

′′ ∈�B�ρ, δ
⇔ ∃I ′, I ′′, F ′, F ′′. �F� = I ′ | I ′′, I ′ = �F ′�, I ′′ = �F ′′�, F ′ �ρ,δ A, F ′′ �ρ,δ B
⇔ ∃F ′, F ′′. �F� = �F ′ | F ′′�, F ′ �ρ,δ A, F ′′ �ρ,δ B
⇔ ∃F ′, F ′′. F ≡ F ′ | F ′′, F ′ �ρ,δ A, F ′′ �ρ,δ B.

https://doi.org/10.1017/S0960129504004141 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004141

TQL: a query language for semistructured data 299

Table 4.3. Some properties of satisfaction.

F �ρ,δ 0 ⇔ F ≡ 0

F �ρ,δ η[A] ⇔ ∃F ′. F ≡ ρ(η)[F ′] ∧ F ′ �ρ,δ A
F �ρ,δ A | B ⇔ ∃F ′, F ′′. F ≡ (F ′ | F ′′) ∧ F ′ �ρ,δ A ∧ F ′′ �ρ,δ B
F �ρ,δ T

F �ρ,δ ¬A ⇔ ¬(F �ρ,δ A)

F �ρ,δ A∧B ⇔ F �ρ,δ A ∧ F �ρ,δ B
F �ρ,δ ∃x.A ⇔ ∃m∈Λ. F �ρ[x �→m],δ A
F �ρ,δ ∃X.A ⇔ ∃I∈IT. F �ρ[X�→I],δ A
F �ρ,δ η ∼ η′ ⇔ ρ(η) ∼ ρ(η′)

F �ρ,δ µξ.A ⇔ F �ρ,δ A{ξ ← µξ.A}
F �ρ,δ X ⇔ �F� = ρ(X)

F �ρ,δ ξ ⇔ �F� ∈ δ(ξ)

We list the essential property of each operator in Table 4.3 below. One may use these

properties as a definition of the satisfaction relation, as done in the original ambient-

logic paper (Cardelli and Gordon 2000), but here we follow the style of Caires and

Cardelli (2003), because it works better with the recursion operator.

The semantics of µξ.A is defined here as the least fixpoint of a function that maps a set

of trees S to a set of trees �A�ρ, δ[ξ �→S]. The definition above is actually formulated in terms

of the least (
⋂

) pre-fixpoint, which coincides, by standard lattice-theory arguments, with

the least fixpoint of λS. �A�ρ, δ[ξ �→S], since that function is monotone in S (Lemma 2). This

definition of the semantics induces, on the satisfaction relation, the following property:

F �ρ,δ µξ.A ⇔ F �ρ,δ A{ξ ← µξ.A} (Lemma 3).

The valuation ρ is the mechanism that connects our logic to pattern matching; for

example, m[n[0]] is in �x[X]�ρ, δ if ρ maps x to m and X to n[0]. The process of finding

all possible ρ’s such that I ∈ �A�ρ, δ is our logic-based way of describing the process of

finding all possible answers to a query with respect to a database I . Most of the properties

in Table 4.3 easy to prove. For the recursive case, we need a couple of lemmas.

Lemma 1 (Substitution).

�A�ρ, δ[ξ �→�A′�ρ, δ] = �A{ξ ←A′}�ρ, δ .

Lemma 2 (Monotonicity). For any A, if ξ appears only positively in A, then

S ⊆ S ′ ⇒ �A�ρ, δ[ξ �→S] ⊆ �A�ρ, δ[ξ �→S ′].

If ξ appears only negatively, then

S ⊆ S ′ ⇒ �A�ρ, δ[ξ �→S] ⊇ �A�ρ, δ[ξ �→S ′].

Lemma 3 (Properties of Satisfaction). The properties of Table 4.3 hold.

Proof. A few cases are proved in the text before the table; the others are trivial, apart

from the recursive case.

https://doi.org/10.1017/S0960129504004141 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004141

G. Ghelli and L. Cardelli 300

Table 4.4. Derived Operators.

η[⇒A] =def ¬(η[¬A]) A || B =def ¬(¬A | ¬B)

F =def ¬T A∨B =def ¬(¬A∧ ¬B)

∀x.A =def ¬(∃x.¬A) ∀X.A =def ¬(∃X.¬A)

νξ.A =def ¬(µξ.¬A{ξ ← ¬ξ})

For the property

F �ρ,δ µξ.A⇔ F �ρ,δ A{ξ ← µξ.A},
we first observe that λS. �A�ρ, δ[ξ �→S] is monotone by Lemma 2, since ξ only appears

positively in A. Hence, by the Knaster–Tarski lemma, �µξ.A�ρ, δ is a fixpoint of that

function, that is,

�µξ.A�ρ, δ = �A�ρ, δ[ξ �→�µξ.A�ρ, δ]. (1)

The thesis now follows:

F �ρ,δ µξ.A ⇔ (By definition) �F� ∈ �µξ.A�ρ, δ
⇔ (By 1) �F� ∈ �A�ρ, δ[ξ �→�µξ.A�ρ, δ]

⇔ (By Lemma 1) �F� ∈ �A{ξ ← µξ.A}�ρ, δ
⇔ (By definition) F �ρ,δ A{ξ ← µξ.A}

4.2. Some derived operators

As usual, negation allows us to define many useful derived operators, as described in

Table 4.4. F � m[⇒ A] means that ‘it is not true that, for some F ′, F ≡ m[F ′] and not

F ′ � A’, that is, ‘if F has the shape m[F ′], then F ′ � A’. To appreciate the difference

between m[A] and its dual m[⇒A], consider the following statements:

— F is a book where Date is an author: F � book [.author[Date]].

— If F is a book, then Date is an author: F � book [⇒ .author[Date]].

F � A || B means that ‘it is not true that, for some F ′ and F ′′, F ≡ F ′ | F ′′ and F ′ � ¬A
and F ′′ � ¬B’, which means: for every decomposition of F into F ′ | F ′′, either F ′ � A
or F ′′ � B. To appreciate the difference between the | and the || operators, consider the

following statements:

— There exists a decomposition of F into F ′ and F ′′, such that F ′ satisfies book [A], and

F ′′ satisfies T; that is, there is a book inside F that satisfies A: F � book [A] | T.
— For every decomposition of F into F ′ and F ′′, either F ′ satisfies book [⇒ A], or F ′′

satisfies F; that is, every book inside F satisfies A: F � book [⇒A] || F.
The dual of the least fixpoint operator µξ.A is the greatest fixpoint operator νξ.A;

this operator is not very useful in the present context, since we only use TQL to query

finite trees. For example, on finite trees, both µξ.0 ∨ m[ξ] and νξ.0 ∨ m[ξ] describe every

information tree that matches m[m[. . . m[0] . . .]]. However, the infinite tree m[m[. . .]] is only

matched by νξ.0 ∨ m[ξ].

Satisfaction over the derived operators enjoys the properties in Table 4.5. The first two

are obvious, while the next two are more subtle, and include a coinduction principle.

https://doi.org/10.1017/S0960129504004141 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004141

TQL: a query language for semistructured data 301

Table 4.5. Some properties of satisfaction for derived operators.

F �ρ,δ η[⇒A]⇔ ∀F ′. (F ≡ ρ(η)[F ′] ⇒ F ′ �ρ,δ A)

F �ρ,δ A || B ⇔ ∀F ′, F ′′. F ≡ F ′ | F ′′ ⇒ (F ′ �ρ,δ A ∨ F ′′ �ρ,δ B)

F �ρ,δ νξ.A ⇔ F �ρ,δ A{ξ ← νξ.A}
F �ρ,δ νξ.A ⇔ ∃B. F �ρ,δ B ∧ ∀F ′. F ′ �ρ,δ B ⇒ F ′ �ρ,δ A{ξ ← B}

Table 4.6. Some equations.

η[A] ∧ 0 ⇔ F η[⇒A] ∨ ¬0 ⇔ T

η[A] ∧ η′[A′] ⇔ η[A∧A′] ∧ η = η′ η[⇒A] ∨ η′[⇒A′] ⇔ η[⇒A∨A′]∨ η �= η′

η[A] ∧ (η′[A′] | η′′[A′′] | A′′′) ⇔ F η[⇒A] ∨ (η′[⇒A′] || η′[⇒A′] || A′′′) ⇔ T

η[F] ⇔ F η[⇒ T] ⇔ T

F || F ⇔ F T | T ⇔ T

A | F ⇔ F A || T ⇔ T

Again, these properties form the basis for a pattern matching algorithm. We omit the ob-

vious properties of F, disjunction and universal quantification. Many logical equivalences

have been derived for the ambient logic, and are inherited by the tree logic. These equival-

ences can be exploited by a query logical optimiser. For example, the properties listed in

Table 4.6 can be used to reduce the size of the formula to be evaluated; the first six may

generate a F/T, the last six would propagate it. More equations are listed in Appendix B.

4.3. Path formulas

All query languages for semistructured data provide some way of retrieving all data that

is reachable through a path described by a regular expression. The tree logic is powerful

enough to express this kind of query. We show this fact here by defining a syntax for path

expressions, and showing how these expressions can be translated into the logic. In this

way we obtain a more compact and readable method of expressing common queries, as

partially exemplified in Section 2.

Consider the following statement: X is some book found in the BOOKS collection, and

some author of X is Abiteboul . We can express it in the logic using the m[A] | T pattern

as

BOOKS � book [X∧ (author[Abiteboul] | T)] | T
Using the special syntax of path expressions, we express the same condition as follows:

BOOKS � .book (X).author[Abiteboul]

Our path expressions also support the following features:

— Universally quantified paths. For example, X is a book and every author of X is

Abiteboul:

BOOKS � .book (X)!author[Abiteboul]

https://doi.org/10.1017/S0960129504004141 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004141

G. Ghelli and L. Cardelli 302

Table 4.7. Path formulas.

α ::= label matching expression

η matches any n such that n like η

¬α matches whatever α does not match

β ::= path element

.α some edge matches α

!α each edge matches α

p, q ::= path

β elementary path

pq path concatenation

p∗ Kleene star

p ∨ q disjunction

p(X) naming the tree at the end of the path

— Label negation. For example, X is a book where Date is the value of a field, but is

not the author:

BOOKS � .book (X).(¬author)[Date]

— Path disjunction. For example, X is a book that either deals with SSD or cites some

book Y that only deals with SSD:

BOOKS � .book (X)(.keyword ∨ .cites .book (Y)!keyword)[SSD]

— Path iteration (Kleene star). For example, X is a book that either deals with SSD, or

from which we can reach, through a chain of citations, a book that deals with SSD:

BOOKS � .book (X)(.cites .book)∗.keyword[SSD]

— Label matching. For example, there exists a path through which we can reach some

field X whose label contains e and mail (% matches any substring):

BOOKS � (.%)∗(.%e%mail%)[X]

We define the syntax of paths and its interpretation in Table 4.7. A path-based formula

p[A] can be translated into the tree logic as follows.

We first define the tree formula Matches(x, α) by:

Matches(x, η) =def x like η

Matches(x,¬α) =def ¬Matches(x, α)

Path elements are interpreted by a translation, � �p, into the logic, using the patterns

m[A] | T and m[⇒A] || F that we have previously presented:

�.α[A]�p =def (∃x. Matches(x, α) ∧ x[�A�p]) | T
�!α[A]�p =def (∀x. Matches(x, α) ⇒ x[⇒ �A�p]) || F

General paths are interpreted as follows. p∗[A] is recursively interpreted as ‘either A
holds here, or p∗[A] holds after traversing p’. Target naming p(X)[A] means ‘at the end

https://doi.org/10.1017/S0960129504004141 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004141

TQL: a query language for semistructured data 303

of p we find X, and X satisfies A’; hence it is interpreted using logical conjunction.

Formally, path interpretation is defined as shown below; path interpretation translates all

non-path operators as themselves, as exemplified for T and |.

�pq[A]�p =def �p[q[A]]�p �p∗[A]�p =def µξ.A ∨ �p[ξ]�p

�(p ∨ q)[A]�p =def �p[A]�p ∨ �q[A]�p �p(X)[A]�p =def �p[X ∧ A]�p

�T�p =def T �A | A′�p =def �A�p | �A′�p

5. The tree query language

In this section we build a full query language on top of the logic we have defined.

5.1. The query language

A query language must provide the following functionalities:

— binding and selection to select values from the database and to bind them to variables;

— construction of the result to build a result starting from the bindings collected during

the previous stage.

Our Tree Query Language (TQL) uses the tree logic for binding and selection, and tree

building operations to construct the result. Logical formulas A are as previously defined.

We allow some tree functions f, chosen from a set Φ of functions of type IT → IT,

to appear in the query. For example:

— count(I), which yields a tree n[0], where n is the cardinality of the multiset I;

— sum(I), yielding n[0], where n is the sum of (the multiset of) all the integers i such

that i[. . .] appears in I .

In the implemented systems, the set Φ can be extended by the user with any Java function

with an appropriate signature.

The definition of free variables in a query is standard, except for the from Q �
A select Q′ case. The binder Q � A computes valuations for all the variables that are

free in A and uses them to evaluate Q′, hence it binds in Q′ all variables that are free in

A; this is formalised in the first line in Table 5.2.

Table 5.1. TQL queries.

Q ::= query

from Q � A select Q′ valuation-collecting query

X matching variable

0 empty result

Q | Q composition of results

η[Q] nesting of result

f(Q) tree function, for any f in a fixed set Φ

https://doi.org/10.1017/S0960129504004141 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004141

G. Ghelli and L. Cardelli 304

Table 5.2. Free variables in TQL queries.

FV (from Q � A select Q′) =def FV (Q) ∪ (FV (Q′) \ FV (A))

FV (X) =def {X}
FV (0) =def {}
FV (Q | Q′) =def FV (Q) ∪ FV (Q′)

FV (η[Q]) =def FV (η) ∪ FV (Q)

FV (f(Q)) =def FV (Q)

from Q � A, Q′ � A′ select Q′′ is an abbreviation for from Q � A select from Q′ �
A′ select Q′′.

5.2. Query semantics

From now on V ranges over finite sets of variables V1, ...,Vn, where each variable Vi is

either an information tree variable X, whose universe U (X) is defined to be the set IT
of all information trees, or a label variable x, whose universe U (x) is defined to be the set

Λ of all labels. ρV ranges over valuations with schema V, that is, finite domain functions

mapping each Vi∈V to an element of U (Vi).

The semantics of a query is defined with respect to a ‘context valuation’ ρV , that binds

all the variables that occur free in the query. This context valuation is used to bind some

top-level names, like $Bib in Section 2, to the documents to be queried. Moreover, in a

query from Q � A select Q′, the binder Q � A generates the context valuations that will

be used to evaluate Q′, by enriching the current context valuation with values for the

variables in FV (A).

The semantics of a binder and of a query are defined in Table 5.3.

A binder Q � A denotes a function that takes one valuation ρV such that V ⊇ FV (Q),

and returns a set of valuations �Q � A�ρV . More precisely, it returns all valuations ρ′V
′

that extend the context valuation ρV and such that �Q�ρV �ρ′V′ A. The notation ρ′V
′ ⊇ ρV

means that the graph of the function ρ′V
′
includes that of ρV . This means that V′ ⊇ V, and

that ρ′V
′
and ρV coincide over V, that is, the new valuations do not change the already

defined variables, but assign values to the other free variables.

A query Q denotes a function that takes a valuation ρV such that V ⊇ FV (Q), and

returns a tree �Q�ρV . A query from Q � A select Q′ is evaluated by evaluating the subquery

Q′ once for each valuation ρ′ that is computed by the binder; all the resulting trees �Q′�ρ′

are then combined using Par , the n-ary version of the binary operator |, defined in

Section 3. According to this interpretation, the result of a query from Q � A select Q′

can be an infinite multiset. Therefore, in a nested query, the database Q can be infinite,

even if we start from a finite initial database. Obviously, one would not want this to

happen in practice. One possible solution is to syntactically restrict Q to a variable X.

Another solution is to have a static or dynamic check on the finiteness of the result;

the static-check option is discussed in Section 5.4. The current implementation of TQL

executes a run-time test that, whenever �Q � A�ρV is infinite, raises an ‘infinite result’

run-time exception. We discuss this theme in the next two subsections.

https://doi.org/10.1017/S0960129504004141 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004141

TQL: a query language for semistructured data 305

Table 5.3. Query semantics.

�Q � A�ρV = {ρ′V′ | V′ = V ∪ FV(A), ρ′V
′ ⊇ ρV , �Q�ρV �ρ′V′ A}

�X�ρV = ρV(X)

�0�ρV = 0

�Q | Q′�ρV = �Q�ρV | �Q′�ρV

�m[Q]�ρV = m[�Q�ρV]

�x[Q]�ρV = ρV(x)[�Q�ρV]

�f(Q)�ρV = f(�Q�ρV)

�from Q � A select Q′�ρV = Parρ′V′ ∈�Q�A�
ρV

�Q′�ρ′V′

5.3. Safe queries

It is well known that disjunction, negation, and universal quantification create ‘safety’

problems in logic-based query languages. The same problems appear in our query

language.

Consider, for example, the following query:

from DB � (author[X] ∨ autore[Y]) | T
select author[X] | autore[Y]

Intuitively, every entry in DB that is an author binds X but not Y, and vice-versa

for autore entries. Formally, an unbound variable corresponds to an infinite number of

valuations; for example, if ρ(DB) = author[m[]], then �DB � (author[X] ∨ autore[Y]) | T�ρ
is the infinite set of triples

{(DB �→author[m[]], X�→m[], Y�→I) | I ∈ IT} .

Negation creates a similar problem. Consider the following query:

from DB � ¬author[X]

select notAuthor[X]

Its binder, with respect to the above context valuation, generates the infinite set of bindings

{(DB �→author[m[]], X�→I) | I ∈ (IT \ {m[]})} ,

and the query has the infinite result

Par I∈(IT\{m[]}) notAuthor[I] .

Some queries generate either a finite or an infinite tree, depending on the context

valuation. For example, if A is a closed formula, we have

�DB � A∧¬X�ρ = {ρ′ | ρ′ ⊇ ρ, ρ(DB) �ρ′ A ∧ ¬X }
= {ρ′ | ρ′ ⊇ ρ, ρ(DB) � A, ρ′(X) �= ρ(DB) }

=

{
� if ¬ρ(DB) � A
{ρ′ | ρ′ ⊇ ρ, ρ′(X) �= ρ(DB) } if ρ(DB) � A .

https://doi.org/10.1017/S0960129504004141 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004141

G. Ghelli and L. Cardelli 306

Hence the query

from DB � A∧¬X select a[X]

returns an infinite tree if ρ(DB) � A, and the empty tree otherwise.

We say that a query is safe when its semantics is always finite, independently of the

context valuation. We say that a formulaA is safe with respect to a set of bound variables

V when, for each X /∈ (V ∪ FV (A)) and for each valuation ρ for V ∪ X, its semantics

�X � A�ρ is finite; in this case, we also say that, if the variables in V are bound, then A
binds its other free variables.

Formula and query safety are undecidable. Consider again the formula A ∧ ¬X; it

generates an infinite set of bindings if and only if is applied to a database I such that

I �ε A. Hence, it is safe iff A is unsatisfiable, that is, ¬A is valid. But validity is

undecidable for the tree logic (Charatonik and Talbot 2001).

Unsafe formulas are difficult to evaluate since they return an infinite set. But safe

formulas can be problematic too, since a safe formula may in general contain an unsafe

subformula. For example, the formula ((¬autore[X]) ∧ author[X]) is safe but the first

conjunct is not. The formula ∀x. y[¬(x[T])] is safe, but the subformula inside the quantifier

is not.

This problem has been traditionally confronted by defining a decidable subclass of

‘hereditarily finite’ queries with the property that both the query and all its subqueries

yield finite results. Then one defines a larger, and still decidable, class of queries that

can easily be rewritten in this ‘hereditarily finite’ form. Queries in this larger class are

evaluated, while every other query is discarded as ‘not statically safe’ (Ullman 1982;

Gelder and Topor 1991; Abiteboul et al. 1995).

This approach is not very satisfactory, since many safe queries have to be discarded,

and because complex syntactic conditions have to be chosen, in order to capture a large

enough class of queries. The main advantage of this traditional approach, when applied to

relational queries, is that the static-safeness conditions can be chosen so that the allowed

queries can be translated into an efficient algebraic expression. We are not interested in

this aspect since we want here to search for a new tree-relational algebra better suited for

tree query languages, rather than studying the translation of TQL to traditional relational

algebras.

For these reasons, we pursue here a different road: we define an evaluation mechanism

that works with every formula, safe or unsafe. The mechanism is based on a finite

representation of every computed set of valuations, finite or infinite. This mechanism

allows us to evaluate every binder as it is, with no need to discard some as unsafe or to

rewrite others to a more acceptable form. In this way, our optimiser is free to rewrite any

formula into any other formula, without worrying about syntactic-safety conditions. This

approach is not new in the database field; it can be described as a generalisation of the

constraint database approach (Kanellakis 1995; Kuper et al. 2000).

When the top-down evaluation of a binder is completed, the final result may be either

finite or infinite, even if the intermediate results were infinite. At this point, if the computed

https://doi.org/10.1017/S0960129504004141 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004141

TQL: a query language for semistructured data 307

set of bindings R is infinite, we raise a run-time error, since we are not interested, in the

current implementation, in defining a finite representation of the infinite tree that would

result if we used R to evaluate the select branch.

Hence, although we have solved the problem of evaluating unsafe binders, we still have

a reason to try and statically identify a class of formulas which are guaranteed never

to return an infinite set of valuations: this would allow us to statically analyse a query

and tell the programmer that it is guaranteed never to raise an ‘infinite-result’ exception.

However, this is quite different from relational safety tests. In that case, only the formulas

that pass the test are translated into the algebra and executed. In our case, every formula

can be translated and executed, but, if it does not pass the test, we know that it may

return an infinite result.

The formula evaluation mechanism that copes with infinite results is described in

Section 7, and an example of a static analysis algorithm to characterise a decidable subset

of the safe formulas is described in Section 5.4.

A different solution, which has been widely studied in the database literature, is to

modify the semantics so that each query is evaluated using, instead of Λ, the active

domain, that is, the subset of Λ that only contains the labels found in the database and in

the query. In this way, only finite results can be generated.

This approach is not satisfactory since it makes the semantics of a query depend

on the constants appearing in parts of the database that may be completely unrelated

to the query itself; for this reason, we will not consider it here. Actually, the active

domain semantics is mostly advocated as a tool for theoretic studies about the expressive

power of different query languages, or as a tool in the study of ‘domain independent

queries’, that is, queries whose semantics does not depend on the set Λ. For a discussion

of the classical problem of domain independent queries, and for more references, the

reader may consult any database textbook, such as Abiteboul et al. (1995) or Ullman

(1988).

5.4. Restricted queries

We give here an example of a simple static analysis algorithm to compute a subset of

the variables that are bound by a formula, and we use it to define a notion of restricted

queries such that every restricted query is statically guaranteed to be safe, that is, to

always generate a finite answer. For simplicity, we do not consider recursive operators

here.

We define a predicate V � A
V (A binds V if V is bound) that implies, informally,

that for any I and for any valuation for V, A can only extract finitely many matches

from I; (see Property 1 below for a formal definition). The set of already-bound variables

V is only used when dealing with the equality operator.

The binding predicate is defined as follows. For simplicity, we assume that negation is

pushed down to the leaves of the formula. We have no rules for ¬X, T and η[⇒A], since

these formulas do not bind any variable. We omit the symmetric rules (y = x, n = x) for

the equality case.

https://doi.org/10.1017/S0960129504004141 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004141

G. Ghelli and L. Cardelli 308

Table 5.4. The binding predicate.

V�F
V for any V V�X
X
V� (x = y)
 x ⇔ y ∈ V V� (x = n)
 x

V� (A∧B)
V ⇔ V�A
V∨ V�B
V V� (A∨B)
V ⇔ V�A
V∧ V�B
V
V� (A | B)
V ⇔ V�A
V∨ V�B
V V� (A || B)
V ⇔ V�A
V∧ V�B
V
V�η[A]
V ⇔ V�A
V∨ η =V
V� (∀V′. A)
V⇔ V�A
V∧V′ �=V V� (∃V′. A)
V⇔ V�A
V∧V′ �=V

Table 5.5. Query safety with respect to a context substitution that binds V.

binds(V,A) =def V ∪ {V | V � A
V}
safe(from Q � A select Q′,V)

⇔ FV (A) ⊆ binds(V,A) ∧ safe(Q,V) ∧ safe(Q′, binds(V,A))

safe(X,V)

safe(0,V)

safe(Q | Q′,V) ⇔ safe(Q,V) ∧ safe(Q′,V)

safe(m[Q],V) ⇔ safe(Q,V)

safe(x[Q],V) ⇔ safe(Q,V)

safe(f(Q),V) ⇔ safe(Q,V)

Observe that, as specified by Property 1, the predicate V � A
V only computes a

decidable approximation of the semantic binding relation sembinds:

sembinds(V,A,V)

⇔def ∀I, ρV , V′ ⊇ V ∪ FV (A) ∪ {V}. {ρ′V′(V) | ρ′V′ ⊇ ρV , I �ρ′V′ A} is finite

Property 1: V � A
V⇒ sembinds(V,A,V)

For example, the closed formula A = ∀X. X ∧ ¬X, binds every variable, since it is

unsatisfiable and hence {ρ′V′(V) | I �ρ′V′ A} is empty, while our predicate does not prove

V � A
V for any V. We may perform a better analysis, but the true binding relation

is in general undecidable, since it is at least as hard as unsatisfiability of closed formulas,

as discussed earlier.

Now we can address the issue of query safety. A query Q is safe with respect to a

context valuation ρV if safe(Q,V) holds. safe(from Q � A select Q′,V) holds if: all free

variables in A are bound by A; it is safe to evaluate Q; and it is safe to evaluate Q′

using the valuations produced by A. Any other query is safe unless it contains an unsafe

subquery (Table 5.5).

The soundness of this analysis is expressed by the following properties.

Property 1. If I ranges over finite information trees, and ρV ranges over valuations

mapping the variables in V to labels or to finite trees, then

V � A
V ⇒ ∀I, ρV , V′ ⊇ V ∪ FV (A) ∪ {V}.
the set {ρ′V′(V) | ρ′V′ ⊇ ρV , I ∈ �A�ρ′V′ , ε} is finite.

https://doi.org/10.1017/S0960129504004141 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004141

TQL: a query language for semistructured data 309

Property 2. If ρV ranges over valuations mapping the variables in V to labels or to finite

trees, then

safe(Q,V) ⇒ ∀ρV . �Q�ρV is finite.

The relation V � A
V is very similar to the relations that are used to define static

notions of safety for relational calculus queries, but we are more liberal with respect

to quantified variables. For example, in Gelder and Topor (1991), a query is considered

allowed when

(a) all free variables are bound, and

(b) for every quantification ∃x.A, x is bound by A.

(Other authors embed Condition (b) in the definition of the binding relation (Abiteboul

et al. 1995).) We only require (a)†.

This difference derives from the fact that the classical notion of static safety is meant

to prove that the query is finite and can be translated to an algebraic query defined

over finite relations. We are interested in the finiteness of the query result, but we are

going to translate it into an algebra of infinite tables, where we are able to implement

quantification over infinite structures, hence we do not need to require that quantified

variables are bound.

6. TQL logic, schemas and constraints

6.1. Schemas

Traditional path-based query languages explore the vertical structure of trees. Our logic

can easily describe the horizontal structure as well, as is common in schemas for

semistructured data (for example, in XML DTDs, XDuce Types (Hosoya 2000) and

XSD Schemas (W3C 2002b); however, the present version of our logic only considers

unordered structures).

For example, we can extract the following regular-expression-like sublanguage, inspired

by XDuce and XSD types. Every expression of this language denotes a set of information

trees:

0 the empty tree

A | B an (element of) A next to an (element of) B
A∨B either an A or a B
n[A] an edge n leading to an A
A∗ =def µξ. 0 ∨ (A | ξ) a finite multiset of zero or more A’s

A+ =def A | A∗ a finite multiset of one or more A’s

A? =def 0 ∨A optionally an A
T anything

In general, we believe that a number of proposals for describing the shape of

semistructured data can be embedded in our logic.

† Van Gelder–Topor analysis is actually more sophisticated; we are simplifying it for ease of comparison.

https://doi.org/10.1017/S0960129504004141 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004141

G. Ghelli and L. Cardelli 310

Such proposals usually come with an efficient algorithm for checking membership

or other properties. For example, an efficient algorithm to check subtyping for XDuce

types, based on a set-inclusion constraint solver, is presented in Hosoya et al. (2000).

However, these efficient algorithms, of course, do not fall out automatically from a

general framework such as ours.

6.2. Constraints

While types constrain the shape of data, it is often useful to constrain the values too; the

canonical examples are key constraints and referential integrity constraints.

We have already provided an example of a key constraint in TQL in Section 2.4, and

we observed that many different notions of keys have been studied for semistructured

data. For example, Buneman et al. (2001a) defines a notion of relative keys. Consider a

set of books whose type, expressed as in the previous section, is

BOOKS � books [book [chapter[number[T] | contents[T]]∗
]∗

]

We say that number is a key for chapter relative to books.book, and this means that, for

each specific book, it is never the case that two different chapters have the same number.

Of course, number is not an absolute key for books.book.chapter, since two different

chapters (in two different books) may have the same number. This is expressed in TQL

by the following formula.

BOOKS � ¬books .book [.chapter .number[X] | .chapter .number[X]]

A positive version of the formula can be used to find any chapter number that violates

the constraint, and the book Y involved:

from BOOKS � books .book (Y)[.chapter .number[X] | .chapter .number[X]]

select ReusedChapterNumbers[book [Y] | number[X]]

The notion actually defined in Buneman et al. (2001a) is slightly more complex. The

relative key constraint we have shown is there described as

(books.book (chapter,(number))),

which is a special case of a more general constraint (Q, (Q′, (P1, . . . , Pn))).

(Q, (Q′, (P1, . . . , Pn))) specifies that, for each element e that can be reached through the

path Q from the root (each book) and for each two different subelements e′, e′′, reachable

from e through Q′ (for example, two chapters of the same book) one key-path Pi exists

such that any subelement of e′ reachable through Pi is different from any subelement of e′′

reachable through Pi. This is quite verbose to express in first-order logic, especially because

the actual definition of Buneman et al. (2001a) must distinguish between node-equality

(which is used to compare e′ and e′′) and value-equality (which is used to compare their

Pi-reachable subelements).

When TQL logic is used instead of first-order logic, the same notion becomes much

easier to formalise. It is fully captured by the following formula, where the | operator

https://doi.org/10.1017/S0960129504004141 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004141

TQL: a query language for semistructured data 311

allows us to express the fact that we are talking about two different subtrees with no need

to exploit any notion of node identifier:

∀X1 . . . ∀Xn. ¬.Q[.Q′[.P1[X1] ∧ . . . ∧ .Pn[Xn]] | .Q′[.P1[X1] ∧ . . . ∧ .Pn[Xn]]]

We can exemplify referential integrity constraints by considering the following schema,

describing a list of books and a list of authors:

books[book [author[auth-id [T]]∗ | T]∗]

| authors[author[id [T] | T]∗]

Each author is identified by an auth-id ; the referential constraint specifies that the auth-

id ’s have to be included within the actual id ’s of registered authors. In TQL this can be

expressed as follows:

∀X. .books .book .author .auth-id [X] ⇒ .authors .author .id [X]

As a conclusion, we can say that TQL logic allows types and constraints to be easily

specified, and, as we showed in an earlier example, TQL allows one to write queries to

check whether a constraint holds, to discover where a constraint does not hold, and also

to discover which constraints hold (Section 2.4).

The next step is reasoning about constraints (and types), for example using them to

optimise queries and to pinpoint that some parts of a query are not compatible with some

constraint, or that some constraints are not mutually compatible, or that some constraints

are not compatible with some schemas.

If we restrict ourselves to the TQL version of families of constraints that have already

been studied, we can reuse known algorithms for deciding constraint implication; for

example, we can rephrase the study on the manipulation of key constraint of Buneman

et al. (2001b), or the work about consistency between DTDs and constraints of Fan and

Libkin (2001), in terms of the TQL logic. Of course, the real issue is the generalisation of

those results to encompass a greater, or more natural, subset of TQL logic. To this end,

we plan to exploit the emerging results on algorithms for checking the validity of ambient

logic formulas (Calcagno et al. 2003).

Although TQL is best suited to deal with constraints that are described in term of

paths, we can also express and compute constraints that are defined at the type level, such

as the UCM constraints defined in Fan et al. (2001). In this case, however, a different

syntax for describing mutually recursive formulas would be useful.

7. Query evaluation

In this section we define a query evaluation procedure. This procedure is really a refined

semantics of queries, which is intermediate in abstraction between the semantics of

Section 5.2 and an implementation algorithm, and constitutes a high level specification of

such an implementation.

The core of query evaluation is the binder evaluation procedure, which is used to

execute the from Q �A part of a query. It takes the value I of Q and a context valuation

https://doi.org/10.1017/S0960129504004141 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004141

G. Ghelli and L. Cardelli 312

ρ, and returns the set of all the valuations ρ′ such that I �ρ;ρ′ A. The basic feature

of this procedure is the fact that it does not compute ‘one valuation at a time’, in the

style, for example, of a Prolog interpreter, but it is based on set manipulation: the set of

all valuations associated with a pair I-A is obtained by combining, with set operations,

the sets of valuations extracted by the immediate subformulas of A. We chose set-based

evaluation because it is the only approach that guarantees reasonable performance in the

presence of large amounts of data, and thus is the forced choice for database applications.

For this reason, our procedure is based on an algebra of tables (sets of valuations) and

trees, and is a precise, although abstract, specification of the actual TQL implementation.

The TQL implementation is described in Conforti et al. (2002) and Conforti et al. (2003),

and can be seen as the kernel of a realistic database-like implementation.

The procedure we describe here is abstract because it is based on the manipulation

of sets of valuations that may be infinite. In the implementation, we adopt one specific

finite representation of these infinite tables in terms of a finite disjunction of a set of

conjunctive constraints over the valuations in the style of Kanellakis (1995) and Kuper

et al. (2000). We are not going to describe it here, but more information can be found in

Conforti et al. (2002) and Conforti et al. (2003). Moreover, the implementation directly

supports the dualised logical operators indicated in the first table of Section 4.2. For the

sake of simplicity, we assume here instead that all derived operators are rewritten in terms

of the basic operators (which include, of course, negation) before execution.

Our query evaluation procedure shows how to evaluate a query directly to the resulting

tree. In our actual implementation, instead of this, we translate the query into an expression

over algebraic operators (which also include operators such as if-then-else, iteration

and fixpoint). These expressions are first syntactically manipulated to enhance their

performance. Then, they are evaluated. Here we will ignore issues of the translation and

manipulation of intermediate representations.

Any practical implementation of a query language is based on the use of efficiently

implementable operators, such as relational join and union. We write our query evaluation

procedure in this style as much as possible, at least for the basic operators that we consider

here.

To describe the procedure, we first introduce an algebra over tables. Tables are sets of

valuations (here called rows). We then use this algebra to define the evaluation procedure.

7.1. The table algebra

As in the previous sections, V = V1, . . . ,Vn is a finite set of variables, and a row ρV

with schema V is a function that maps each Vi to an element of U (Vi). A table with

schema V is a set of rows over V. We use 1V to denote the largest table with schema V,

that is, the set of all rows with schema V, and TV for the set P(1V) of all the tables with

schema V. We use RV as a meta-variable to range over TV , that is, RV∈TV . We omit the

superscript V when it is irrelevant or it is clear from the context.

When V is the empty set, we have only one row over V, which we denote with ε; hence

we have only two tables with schema �, the empty one, �, and the singleton, {ε} = 1�.

https://doi.org/10.1017/S0960129504004141 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004141

TQL: a query language for semistructured data 313

Table 7.1. The operators of table algebra.

RV ∪V R′V =def RV ∪ R′V ⊆ 1V

CoV(RV) =def 1V \ RV ⊆ 1V

V′ ∩ V = � : RV ×V,V′ R′V
′

=def {ρ; ρ′ | ρ ∈ RV , ρ′ ∈ R′V
′ } ⊆ 1V∪V′

V′ ⊆ V :
∏V

V′R
V =def {ρ′ | ρ′ ∈1V′ , ∃ρ ∈ RV . ρ ⊇ ρ′} ⊆ 1V′

FV(η, η′) ⊆ V : σV
η∼η′R

V =def {ρ | ρ ∈ RV , ρ+(η) ∼ ρ+(η′)} ⊆ 1V

Table 7.2. Table algebra, derived operators.

V ⊆ V′ : ExtV
V′(R

V) =def RV ×V,V′\V 1V′\V ⊆ 1V′

RV ∩V R′V =def CoV(CoV(RV) ∪VCoV(R′V)) ⊆ 1V

RV �V,V′ R′V
′
=def ExtV

V∪V′(R
V) ∩V∪V′ ExtV′

V∪V′(R
′V′) ⊆ 1V∪V′

The table algebra is based on five primitive operators: union, complement, product,

projection and restriction, each carrying schema information. They correspond to the

standard operations of relational algebra. Union, complement, product and projection are

completely standard. Since 1V is infinite, the complement of a finite table is always infinite.

The function ρV
+, which is used to define restriction (Table 7.1), denotes the function that

coincides with ρV over V, and maps every η �∈ V to η. Hence, for example:

— σV
x=nR

V returns all rows ρ in RV such that ρ(x) = n.

— σV
x=yR

V returns all rows in RV such that ρ(x) = ρ(y).

— σV
n=nR

V returns RV , while σV
n=mR

V returns �, if n �= m.

We will also use some derived operators, which are defined in Table 7.2. Extension

ExtV
V′(R

V) is a right-inverse of projection: it adds some new columns, and fills them

with every possible value. Extending a table always produces an infinite table (unless

V = V′). Intersection is standard, and is defined here by dualising union. The operator

RV �V,V′ R′V
′
is well known in the database field. It is called ‘natural join’, and can be

also defined as follows: a row ρV∪V′ belongs to RV �V,V′ R′V
′
iff its restriction to V is

in RV and its restriction to V′ is in R′V
′
. One important property of natural join is that

it always yields finite tables when applied to finite tables, even if its definition uses the

extension operator. Moreover, the optimisation of join has been extensively studied; for

this reason we use this operator, rather than extension plus intersection, in the definition

of our query evaluation procedure.

7.2. Query evaluation

We specify here the query evaluation procedure Q(Q)ρ and the binder evaluation procedure

B(I,A)ρ,γ .

B(I,A)ρ,γ takes an information tree I and a formula A and yields a table R that

contains all the valuations ρ′ with schema FV(A) \ V such that I �(ρ;ρ′) A.

https://doi.org/10.1017/S0960129504004141 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004141

G. Ghelli and L. Cardelli 314

Q(Q)ρ takes a query Q and a row ρ that specifies a value for each free variable of Q,

and evaluates the corresponding information tree. A closed query ‘from Q � A select Q′’

is evaluated by first evaluating Q to an information tree I . Then, the set of valuations

R = B(I,A)ρ,ε is computed. Finally, Q′ is evaluated once for each row ρ of R; all the

resulting information trees are combined using |, to obtain the query result. This process

is expressed in the last case of Table 7.3.

The binder evaluation procedure B(I,A)ρ,γ exploits a γ parameter to deal with recursive

formulas. Since a formula specifies a function from trees to tables, γ maps each recursion

variable ξ to a recursive function from information trees to tables. For any value of γ, γ̂

specifies its type, as follows:

∀ξ∈dom(γ). γ(ξ) : IT→Tγ̂(ξ).

γ is only used in the rules for ξ and µξ.A.

When A contains no free recursion variable, the schema of the table returned by

B(I,A)ρV,γ is FV(A) \ V. The situation is more complicated when A contains free

recursion variables. For example, the schema of B(I, ξ)ρV,γ is γ̂(ξ). In general, the schema

of the table returned by B(I,A)ρV,γ is given by S(A,V, γ̂), where the schema function S
is specified in Table 7.4, and enjoys the expected property that S(A,V, ε̂) = FV(A) \ V.

The notation {(x �→ n)} represents a table that contains only the row (x �→ n), and

similarly for {(X�→I)}. Most definitions in Table 7.3 are easier to read if one ignores the

schema information.

We will now explain the evaluation procedure.

The 0 formula is evaluated by testing whether the subject is the empty tree, and returning

either the trivial singleton 1� or the empty set. Hence, in a query from Q � 0 select isZero,

the select isZero branch will be executed once if, and only if, Q evaluates to 0. More

generally, if ρV is the context valuation and V′ = FV (A) \ V, then 1V′ is the set of

valuations that corresponds to truth, that is, to the case when �Q�ρV �ρV;ρ′V′ A holds for

any ρ′V
′
. Similarly, � is the table that corresponds to the case when �Q�ρV �ρV;ρ′V′ A does

not hold, for any ρ′V
′
.

The formula n[A] tests whether I is an edge with label n. If it is not, the empty set of

binders is returned. Otherwise, the contents of I are matched against A. A formula x[A]

is evaluated in the same way if x is already bound by the context valuation. Otherwise,

if I is not an edge, no binder is returned, as in the previous case. If I = n[I ′], the result

is built by joining {(x �→ n)} with the result R′V
′

of matching I ′ with A. By definition

of natural join, if x is not bound by R′V
′
, that is, x /∈ V′, then {(x �→n)} � R′V

′
is just a

cartesian product; otherwise, it is equivalent to σx=nR
′V′ .

Truth and negation need no explanation. Set complement of a finite table produces

an infinite table, and is, in general, quite expensive to compute. For this reason, in our

implementation we actually minimise the use of this operator, by operating extensive

query rewritings.

Conjunction corresponds to natural join: a valuation satisfies I � A∧B if, and only

if, its restriction to the free variables of A satisfies I � A and its restriction to the free

variables of B satisfies I � B.

https://doi.org/10.1017/S0960129504004141 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004141

TQL: a query language for semistructured data 315

Table 7.3. Binder and query evaluation.

B(I, 0)ρV,γ = if I = 0 then {ε} else �

B(I, n[A])ρV,γ = if I = n[I ′] then B(I ′,A)ρV,γ else �

B(I, x[A])ρV,γ = B(I, ρV(x)[A])ρV,γ if x ∈ V

B(I, x[A])ρV,γ = if I = n[I ′] then {(x �→n)} �{x},S(A,V,γ̂) B(I ′,A)ρV,γ else � if x �∈ V

B(I,A∧B)ρV,γ = B(I,A)ρV,γ �S(A,V,γ̂),S(B,V,γ̂) B(I,B)ρV,γ

B(I,A | B)ρV,γ =
⋃S(A|B,V,γ̂)

I ′ ,I ′′∈{I ′ ,I ′′ | I ′ |I ′′=I} (B(I ′,A)ρV,γ �S(A,V,γ̂),S(B,V,γ̂) B(I ′′,B)ρV,γ)

B(I,T)ρV,γ = {ε}
B(I,¬A)ρV,γ = CoS(A,V,γ̂)(B(I,A)ρV,γ)

B(I,X)ρV,γ = if I = ρV(X) then {ε} else � if X ∈ V

B(I,X)ρV,γ = {(X�→I)} if X �∈ V

B(I, ∃X. A)ρV,γ =
∏S(A,V,γ̂)
S(A,V,γ̂)\{X}B(I,A)ρV,γ

B(I, ∃x. A)ρV,γ =
∏S(A,V,γ̂)
S(A,V,γ̂)\{x}B(I,A)ρV,γ

B(I, η ∼ η′)ρV,γ = σ
S(η∼η′ ,V,γ̂)
ρ+(η)∼ρ+(η′)1

S(η∼η′ ,V,γ̂)

B(I, µξ.A)ρV,γ = Fix (λM∈IT→TS(µξ.A,V,γ̂).λY.B(Y,A)ρV,γ[ξ �→M])(I)

B(I, ξ)ρV,γ = γ(ξ)(I)

Q(X)ρV = ρV(X)

Q(0)ρV = 0

Q(Q | Q′)ρV = Q(Q)ρV | Q(Q′)ρV

Q(m[Q])ρV = m[Q(Q)ρV]

Q(x[Q])ρV = ρV(x)[Q(Q)ρV]

Q(f(Q))ρV = f(Q(Q)ρV)

Q(from Q � A select Q′)ρV = let I = Q(Q)ρV and RFV(A)\V = B(I,A)ρV, ε

in Parρ′∈RFV(A)\V Q(Q′)(ρV;ρ′)

A valuation satisfies I � A | B if there exists a decomposition I ′ | I ′′ of I such that

I ′ � A and I ′′ � A. For this reason, we try all possible decompositions of the subject I ,

and, for each of them, we compute the natural join of the sets of valuations for I ′ � A
and I ′′ � A. Any time a decomposition contributes some valuations, we put them in

the result (this is the aim of the big union outside). Since an information tree with n

top-level branches admits 2n different decompositions, this operation is horribly expensive.

However, if A ⇒ ∃x. x[T], then A can only be satisfied by a one-edge subtree, hence

only the n different decompositions with shape n[I ′] | I ′′ have to be tried. The actual

implementation systematically exploits this observation; as a result, every decomposition

that appears in the queries presented in Section 2 is actually executed in linear time. This

optimisation is based on a simple algorithm that tries to verify whether A ⇒ ∃x. x[T];

the simplicity and effectiveness of this algorithm is a consequence of the fact that all the

operators that appear in a TQL binder have a simple logic-based interpretation.

https://doi.org/10.1017/S0960129504004141 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004141

G. Ghelli and L. Cardelli 316

Table 7.4. The schema function S.

S(0,V,Γ) = �

S(n[A],V,Γ) = S(A,V,Γ)

S(x[A],V,Γ) = S(A,V,Γ) ∪ ({x} \ V)

S(T,V,Γ) = �

S(¬A,V,Γ) = S(A,V,Γ)

S(A∧B,V,Γ)= S(A,V,Γ) ∪S(B,V,Γ)

S(A | B,V,Γ) = S(A,V,Γ) ∪S(B,V,Γ)

S(X,V,Γ) = {X} \ V

S(∃X. A,V,Γ)= S(A,V,Γ) \ {X}
S(∃x. A,V,Γ) = S(A,V,Γ) \ {x}
S(η ∼ η′,V,Γ) = FV(η, η′) \ V

S(µξ.A,V,Γ) = S(A,V,Γ[ξ �→�])

S(ξ,V,Γ) = Γ(ξ)

Table 7.5. Some special cases of comparison evaluation.

1. B(I, x ∼ x′)ρV,γ = σ
{x,x′}
x∼x′ 1

{x,x′} if x �∈ V, x′ �∈ V

2. B(I, x ∼ x′)ρV,γ = σ
{x}
x∼ρV(x′)

1{x} if x �∈ V, x′ ∈ V

3. B(I, x ∼ x′)ρV,γ = σ
�
ρV(x)∼ρV(x′)

1� if x ∈ V, x′ ∈ V

4. B(I, x ∼ n)ρV,γ = σ
{x}
x∼n1{x} if x �∈ V

5. B(I, n ∼ n′)ρV,γ = σ
�
n∼n′1

� (that is, if n ∼ n′ then {ε} else �)

If X is bound by the context valuation, then Q � X checks whether �Q�ρ = ρ(X). If X
is not bound, the valuation (X�→�Q�ρV) is returned.

Projection is used to evaluate existential quantification, since, by definition,

ρ ∈
∏V

V\{x}R
V ⇔ ∃n ∈ Λ. (ρ; (x �→n))∈RV

ρ ∈
∏V

V\{X}R
V ⇔ ∃I ∈ IT. (ρ; (X�→I))∈RV .

Since the rule for comparisons η ∼ η′ is subtle, we expand some special cases in

Table 7.5. The evaluation of η ∼ η′ always returns a table whose schema corresponds to

FV ({η, η′} \ V). Hence, if both η and η′ are either constant or bound by ρV , it returns a

table with an empty schema, that is, either 1� or � (Cases 3 and 5). If both η and η′ are

unbound variables, it returns the infinite table that defines the ∼ operator; for example,

when ∼ is equality, it returns the diagonal table that maps η, η′ to n, n (Case 1).

Finally, we have the recursive case. Fix (λM.λY.RV) denotes the minimal fixpoint of a

function mapping M to λY.RV; in a programming language, we would express this as

letrec M = fun(Y).RV in M.

https://doi.org/10.1017/S0960129504004141 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004141

TQL: a query language for semistructured data 317

So, we first transform the recursive formula into a recursive function from information

trees to tables, and then we apply this recursive function to the subject I . The correctness

of this evaluation technique is far from obvious, and is proved in detail in Appendix A.

To prove the correctness of the evaluation procedure we first need a couple of lemmas

to state that the types are correct.

Lemma 4. If A contains no free recursive variable, then

S(A,V, ε) = FV (A) \ V.

Proof. The thesis follows immediately from the following property:

dom(Γ) contains every free recursive variable in A
∧ ∀ξ∈dom(Γ). Γ(ξ) = �
⇒ S(A,V,Γ) = FV (A) \ V \ dom(Γ)

This property can be proved by induction on the definition of S(A,V,Γ) and by case

inspection.

Lemma 5.

S(µξ.A,V,Γ) =S(A,V,Γ[ξ �→ S(µξ.A,V,Γ)]).

Proof. The proof is by induction on A. When A = µζ.B, we commute the binding for

ξ and ζ in Γ[ξ �→ . . .][ζ �→�]. When A = ξ, we have

S(ξ,V,Γ[ξ �→ S(µξ.ξ,V,Γ)]) = (Γ[ξ �→ S(µξ.ξ,V,Γ)])(ξ) (by definition)

= S(µξ.ξ,V,Γ).

All other cases are immediate by induction.

Lemma 6.

B(I,A)ρV,γ ∈ TS(A,V,γ̂).

Proof. The proof is by induction on A and by cases. The only non-trivial case is

recursion, where we resort to Lemma 5.

We can now state the main lemma, which specifies the correctness of the binder

evaluation procedure.

Lemma 7. Let A be a formula, V be a set of variables, Ξ be a set {ξi} i∈I of recursion

variables that includes those that are free in A, and γ be a function defined over Ξ such

that, for every ξi, γ(ξi)∈IT→Tγ̂(ξi), where γ̂(ξi) is disjoint from V. Then

∀ρ ∈ 1V , I ∈ IT. B(I,A)ρ,γ = {ρ′ | ρ′ ∈ 1S(A,V,γ̂), I �(ρ;ρ′),d(γ,ρ′) A}

where d(γ, ρ) = λξ :Ξ.{I | ρ ∈ γ(ξ)(I)} .

Proof. See Appendix A.

Finally, the following theorem states that the query evaluation procedure is equivalent

to the query semantics of Section 5.2.

https://doi.org/10.1017/S0960129504004141 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004141

G. Ghelli and L. Cardelli 318

Theorem 1. ∀Q, V ⊇ FV (Q), ρV . Q(Q)ρV = �Q�ρV

Proof. The proof is by induction on Q and by cases.

Assume Q = from Q′ � A select Q′′. By definition:

Q(from Q′ � A select Q′′)ρV

= let I = Q(Q′)ρV and RFV(A)\V = B(I,A)ρV, ε in Parρ′∈RFV(A)\V Q(Q′′)(ρV;ρ′).

By induction, Q(Q′)ρV = �Q′�ρV . Hence, by Lemma 7, and using Ξ = � (A contains no

free recursion variables) we have

RFV(A)\V = B(�Q′�ρV ,A)ρV, ε = {ρ′ | ρ′ ∈ 1S(A,V,ε̂), �Q′�ρV �(ρV;ρ′) A}. (a)

By induction, we also have that, for any ρ, Q(Q′′)ρ = �Q′′�ρ. Hence:

Q(from Q′ � A select Q′′)ρV

by definition = Parρ′′∈RFV(A)\V Q(Q′′)(ρV;ρ′′)

by (a) = Parρ′′∈{ρ′′ | ρ′′∈1S(A,V,ε̂) , �Q′�
ρV �

(ρV ;ρ′′)A} �Q′′�(ρV;ρ′′)

let ρ′V
′
= ρV; ρ′′: = Parρ′V′ ∈{ρV;ρ′′ | ρ′′∈1FV (A)\V , �Q′�

ρV �
(ρV ;ρ′′)A}

�Q′′�(ρ′V′)

by ρ′V
′
= ρV; ρ′′: = Parρ′V′ ∈{ρ′V′ | V′=V∪FV (A), ρ′V′⊇ρV , �Q′�

ρV �
ρ′V′ A}

�Q′′�(ρ′V′)

by definition = �from Q′ � A select Q′′�ρV

The other cases are immediate.

8. Comparisons with related proposals

In this paper we have described a logic, a query language and an abstract evaluation

mechanism.

The tree logic can be compared with standard first-order formalisations of labelled

trees. Using the terminology of Abiteboul et al. (1999), we can encode a labelled tree with

a relation Ref(source:OID, label:Λ, destination:OID). The nodes of the tree are the OIDs

(Object IDentifiers) that appear in the source and destination columns, and any tuple in

the relation represents an edge, with label label. Of course, such a relation can represent

a graph as well as a tree. It represents a forest if destination is a key for the relation, and

if there exists an order relation on the OIDs such that, in any tuple, the source strictly

precedes the destination.

First-order formulas defined over this relation already constitute a logical language for

describing tree properties. Trees are represented here by the OID of their root. We can

say that, for example, ‘the tree x is t[]’ by saying

∃y. Ref (x, t, y) ∧ (∀y′, y′′. ¬Ref (y, y′, y′′)) ∧ (∀x′, x′′. x′′ �= y ⇒ ¬Ref (x, x′, x′′)).

There are some differences with our approach. First, our logic is ‘modal’, a term which

we use to mean that a formula A is always about one specific ‘subject’, which is the part

of the database currently being matched against A. First-order logic, however, does not

have an implicit subject: one can, and must, name a subject. For example, our modal

formula t[] implicitly describes the ‘current tree’, while its translation into first-order logic,

given above, gives a name x to the tree it describes.

https://doi.org/10.1017/S0960129504004141 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004141

TQL: a query language for semistructured data 319

Being ‘modal’ is neither a merit nor a fault, in itself; it is merely a difference. Modality

makes it easier to describe just one tree and its structure, whereas it makes it more

difficult to describe a relationship between two different trees. Many modal logics have

been defined whose validity is decidable. This is not the case for TQL logic, but these

logics may provide hints for the definition of a decidable but expressive sublogic.

Apart from modality, another feature of the ambient logic is that its fundamental op-

erators deal with simple branches (t[A]) and with tree composition (A | A′), whereas the

first-order approach describes everything in terms of the existence of edges (Ref (o1, t, o2),

that is, .t[. . .]). Composition is a powerful operator, at least for the following purposes:

— It makes it easy to say that two properties are satisfied by two disjoint subtrees,

without using node or edge identity. For example, the following formula specifies that

title is not a key: ∃X. .title[X] | .title[X].

— It makes it easy to describe record-like structures both partially (b[] | c[] | T, meaning:

contains b[], c[], and possibly more fields) and completely (b[] | c[], meaning: contains

b[], c[] and only b[], c[]). Complete descriptions are difficult in the path-based approach.

— It makes it possible to bind a variable to ‘the rest of the record’, as in ‘X is everything

but the title’: paper[title[T] | X].

This operator is what sets this logic apart from the other modal logics that have been

proposed for querying semistructured data, or for reasoning about schemas and types for

SSD, such as the logics proposed in Alechina (1999), Alechina et al. (2001) and Calvanese

et al. (2002). Another essential difference is the fact that these modal logics are better

suited to dealing with graph structures, while our logic only deals with trees.

Composition is very similar to the ∗ operator of bunched logic and separation logic

(O’Hearn and Pym 1999; O’Hearn et al. 2001). These different logics have been defined

independently of the ambient logic, with different motivations, but exhibit deep similarities.

The most important technical difference between these logics and the one we have

presented here is that they only describe a flat horizontal structure, while the TQL

logic adds a second dimension, using the m[A] operator, that allows one to describe a

tree-shaped space.

TQL derives its essential from-select structure from set-theoretic comprehension, in the

SQL tradition, and this makes it similar to other query languages for semistructured

data, such as StruQL (Fernandez et al. 1997; Fernandez et al. 1998), Lorel (Abiteboul et

al. 1997; Goldman et al. 1999), XML-QL(Deutsch et al. 1999), Quilt (Chamberlin et al.

2000), XQuery (Boag et al. 2002) and, to some extent, YATL (Cluet et al. 1998). An

in-depth comparison between the XML-QL, YATL and Lorel languages is carried out in

Fernandez et al. (1999), based on the analysis of thirteen typical queries. In Ghelli (2001)

we write those same queries in TQL. For the thirteen queries in Fernandez et al. (1999), the

TQL description is quite similar to the corresponding XML-QL description, with a couple

of exceptions. First, those XML-QL queries that are expressed using Skolem functions in

Fernandez et al. (1999) have to be expressed in a different way in TQL, since we do not

have Skolem functions in the current version of TQL. However, our Skolem-free version

of these queries is not complex. Second, XML-QL does not seem to have a general way

of expressing universal quantification, and this problem shows up in the query that asks

https://doi.org/10.1017/S0960129504004141 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004141

G. Ghelli and L. Cardelli 320

for pairs of books with the same set of authors. We express this query using the universal

quantifier foreach: a pair $X,$Y matches the formula only if every author for $X is an

author for $Y too. We separate the two .book formulas using | because, if we used ∧,

every book would appear in the result, paired with itself (the Lorel query appearing in

Fernandez et al. (1999) seems to exhibit this problem).

from $Bib |= foreach $Z. bib[.book[$X And .author[$Z]]

|

.book[$Y And .author[$Z]]

]

select pair[original[$X] | copy[$Y]]

The authors of Fernandez et al. (1999) do not write the XML-QL version of this query,

but they say that ‘XML-QL can express this with a rather complex, nested query, which

uses negation and the isEmpty predicate’.

TQL is also better than XML-QL-like languages at expressing queries dealing with the

non-existence of paths, such as ‘find all the papers with no title’ or ‘find all papers whose

only author, if any, is Buneman’. Lorel scores well in this case, thanks to the presence of

universal quantification.

Quilt, XQuery and XDuce (Hosoya 2000) are Turing complete, hence are more

expressive than the other languages we have cited here. However, the binding mechanisms

of Quilt and XQuery share the limitations of the path-based approaches of the other

languages of the StruQL–Lorel–UnQL–XML-QL family.

The presence of universal quantification in the binding mechanism is not the most

important difference between languages in this family and TQL. The most distinctive

feature of TQL is the declarative, rather than procedural, nature of its binding mechanism.

As an example, consider the following query, which collects every work where Suciu

plays a role, and inverts the name with the role:

bib[from $Bib |= .%*.$B[$A[Suciu] | $Rest]

select $B[Suciu[$A] | $Rest]

]

In XQuery it would be expressed as follows,

<bib>

for $b in $Bib//*,

let $xx := $b/*,

for $y in $xx

where $y/data() = "Suciu"

return <xf:name($b)>

<Suciu>

xf:local-name($y)

</Suciu>,

{ op:except($xx,$y)}

</xf:name($b)>

<bib>

While the binding mechanism of XQuery requires the programmer to write a nested
loop to specify how the bindings are extracted from the data, in TQL one only specifies

https://doi.org/10.1017/S0960129504004141 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004141

TQL: a query language for semistructured data 321

the conditions that the variables $B, $A, and $Rest, should satisfy. This is even more
evident if one considers the query that verifies whether title is a key:

from $Bib |=

bib[!book[.title[T]]

And foreach $X. Not (.book.title[$X] |

.book.title[$X])

]

select each_title_is_key

In TQL, once the property is specified, the query is ready. In XQuery one has to do one

more step: a specific algorithm to check whether the property is true has to be designed,

for example an algorithm that loops over all books, collects all titles in a multiset, and

finally checks whether this multiset contains repeated elements. Moreover, as we have

shown, the TQL program can be transformed in a program that finds every key, just by

changing a constant into a variable. The XQuery program would have to be rewritten,

since a different algorithm is needed.

Finally, a last essential feature of TQL is that it has a clean semantic interpretation,

which pays off in several ways. First, the semantics makes it possible to prove the

correctness and completeness of a specific implementation. Moreover, it simplifies the

task of proving equivalences between different logic formulas or queries. As far as we

are aware, no such formal semantics has been defined for YATL. The semantics of Lorel

has been defined, but looks quite involved, because of their extensive use of coercions.

The semantics of XQuery has been defined too, but is intermediate, in spirit, between our

notions of semantics (Section 5.2) and of abstract implementation specification (Section 7).

Other logic-based languages for semistructured data have been defined with a precise

semantics, but most of them focus on graphs rather than trees. For example, the language

defined in Bidoit and Ykhlef (1999) is based on a first-order logic enriched with a fixpoint

operator and with variables ranging over paths and graphs. The resulting language is

very different from ours, both in its non-modal character and in being focused on graphs,

although it may be interesting to try and import the idea of path variables into our

logics.

9. Conclusions and future directions

We have defined a query language based on a logic that can also express types and

constraints. Many important optimisation problems are based on the analysis of the

relationship between a query and a schema; a typical example is the removal of parts

of a query that are incompatible with the schema. The use of the same logical language

for queries, types, and constraints, should allow us to rephrase such problems in terms

of implications or equivalences of logical formulas. Other schema and query analysis

problems, like satisfiability of constraints (Arenas et al. 2002) or query path correctness

(Colazzo et al. 2002), can be similarly expressed. We may then be able to use ambient

logic techniques to approach these problems.

Our query language operates on information represented as unordered trees. One can

take different views of how information should be represented. For example, as ordered

https://doi.org/10.1017/S0960129504004141 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004141

G. Ghelli and L. Cardelli 322

trees, as in XML, or as unordered graphs, as in semistructured data. We believe that each

choice of representation would lead to a (slightly different) logic and a query language

along the lines described here. We are currently looking at some of these options.

There are currently many proposals for languages for semistructured data that enrich

the regular-path-expression approach with mechanisms to describe tree shapes, instead

of linear paths only. Given the expressive power of general recursive formulas µξ.A, we

believe we can capture many such proposals, even though an important part of those

proposals is to describe efficient matching techniques.

In this study we have exploited a subset of the ambient logic. The ambient logic, and

the calculus, also offer operators to specify and perform tree updates (Cardelli 1999).

Possible connections with semistructured data updates should be explored.

An implementation of TQL, based on the implementation model we described, is

available from http://tql.di.unipi.it/tql. The current prototype can be used to

query XML documents accessible through files or through web servers.

Appendix A. Proof of Lemma 7

Lemma. Let A be a formula, V be a set of variables, Ξ be a set {ξi} i∈I of recursion

variables that includes those that are free in A, and γ be a function defined over Ξ such

that, for every ξi, we have γ(ξi)∈IT→Tγ̂(ξi) and γ̂(ξi) is disjoint from V. Then,

∀ρ ∈ 1V , I ∈ IT. B(I,A)ρ,γ =
{
ρ′ | ρ′ ∈ 1S(A,V,γ̂), I∈�A�(ρ;ρ′), d(γ,ρ′)

}
where

d(γ, ρ) = λξ :Ξ.{I | ρ ∈ γ(ξ)(I)}.

Proof. First observe that, even if d(γ, ρ) is defined for every ρ, we only care about

the result of its application to a ρ that belongs to 1S(A,V,γ̂). We prove the theorem by

induction on the size of A. For simplicity, we focus on the case when V = �, hence we

prove that

∀I. B(I,A)ε,γ =
{
ρ | ρ∈1S(A,�,γ̂), I∈�A�ρ, d(γ,ρ)

}
.

We first observe that for all A, γ, the following statements are logically equivalent; the

same is true if we reverse both ⊆ and ⇒, or if we consider set equality and ⇔.

∀I B(I,A)ε,γ ⊆
{
ρ | ρ∈1S(A,�,γ̂), I ∈ �A�ρ, d(γ,ρ)

}
∀ρ∈1S(A,�,γ̂), I ρ ∈ B(I,A)ε,γ ⇒ I ∈ �A�ρ, d(γ,ρ)

∀ρ∈1S(A,�,γ̂) {I | ρ ∈ B(I,A)ε,γ} ⊆ �A�ρ, d(γ,ρ).

We only consider the case when A = µξ.C; the other cases are far easier.

We prove the equality by considering the two inclusions

B(I, µξ.C)ε,γ ⊆
{
ρ | ρ∈1S(µξ.C,�,γ̂), I∈�µξ.C�ρ, d(γ,ρ)

}
{
ρ | ρ∈1S(µξ.C,�,γ̂), I∈�µξ.C�ρ, d(γ,ρ)

}
⊆ B(I, µξ.C)ε,γ .

We first prove that

∀γ, I. B(I, µξ.C)ε,γ ⊆
{
ρ | ρ∈1S(µξ.C,�,γ̂), I∈�µξ.C�ρ, d(γ,ρ)

}
.

https://doi.org/10.1017/S0960129504004141 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004141

TQL: a query language for semistructured data 323

By the definition of B(I, µξ.C)ε,γ , this means

∀γ, I. Fix
(
λM : IT→ P

(
1S(µξ.C,�,γ̂)

)
.λY.B(Y,C)ε,γ[ξ �→M]

)
(I)

⊆
{
ρ | ρ∈1S(µξ.C,�,γ̂), I∈�µξ.C�ρ, d(γ,ρ)

}
.

This is equivalent to

∀γ. Fix
(
λM : IT→ P

(
1S(µξ.C,�,γ̂)

)
.λY.B(Y,C)ε,γ[ξ �→M]

)
⊆ λI.

{
ρ | ρ∈1S(µξ.C,�,γ̂), I∈�µξ.C�ρ, d(γ,ρ)

}
.

We prove this by showing that the right-hand side is a fixpoint of the function λM.λY. . . .:

∀γ.
(
λM.λY.B(Y,C)ε,γ[ξ �→M]

)(
λI.

{
ρ | ρ∈1S(µξ.C,�,γ̂), I∈�µξ.C�ρ, d(γ,ρ)

})
= λI.

{
ρ | ρ∈1S(µξ.C,�,γ̂), I∈�µξ.C�ρ, d(γ,ρ)

}
.

We then apply β reduction (we abbreviate �µξ.C�ρ, d(γ,ρ) to Fρ):

∀γ. λY.B(Y,C)ε,γ[ξ �→λI. {ρ | ρ∈1S(µξ.C,�,γ̂) ,I∈Fρ}] = λI.
{
ρ | ρ∈1S(µξ.C,�,γ̂), I∈Fρ

}
.

We now reduce function comparison to pointwise comparison:

∀γ, I. B(I,C)ε,γ[ξ �→λI. {ρ | ρ∈1S(µξ.C,�,γ̂) ,I∈Fρ}] =
{
ρ | ρ∈1S(µξ.C,�,γ̂), I∈Fρ

}
.

The definition of Fρ (that is, �µξ.C�ρ, d(γ,ρ)) implies that Fρ = �C�ρ, d(γ,ρ)[ξ �→Fρ]:

∀γ, I. B(I,C)ε,γ[ξ �→λI. {ρ | ρ∈1S(µξ.C,�,γ̂) ,I∈Fρ}] =
{
ρ | ρ∈1S(µξ.C,�,γ̂), I∈�C�ρ, d(γ,ρ)[ξ �→Fρ]

}
.

The proof follows immediately by induction, if we are able to prove that

d
(
γ
[
ξ �→ λI.

{
ρ | ρ∈1S(µξ.C,�,γ̂), I ∈ Fρ

}]
, ρ

)
= d(γ, ρ)[ξ �→ Fρ].

The two functions coincide for ξ′ �= ξ; when applied to ξ they yield:

d
(
γ
[
ξ �→ λI.

{
ρ | ρ∈1S(µξ.C,�,γ̂), I ∈ Fρ

}]
, ρ

)
(ξ)

=
{
I | ρ ∈

{
ρ | ρ∈1S(µξ.C,�,γ̂), I ∈ Fρ

}}
= {I | I ∈ Fρ}
= Fρ

= (d(γ, ρ)[ξ �→ Fρ])(ξ)

We now prove the opposite inclusion:

∀γ, I.
{
ρ | ρ∈1S(µξ.C,�,γ̂), I∈�µξ.C�ρ, d(γ,ρ)

}
⊆ B(I, µξ.C)ε,γ .

This is equivalent to

∀γ, ρ∈1S(µξ.C,�,γ̂). �µξ.C�ρ, d(γ,ρ) ⊆ {I | ρ∈B(I, µξ.C)ε,γ}.

By the definition of �µξ.C�ρ, d(γ,ρ), it is sufficient to prove that

∀γ, ρ∈1S(µξ.C,�,γ̂). �C�ρ, d(γ,ρ)[ξ �→{I | ρ∈B(I,µξ.C)ε,γ}] ⊆ {I | ρ∈B(I, µξ.C)ε,γ}.

Let γ′C,γ = γ[ξ �→ λY.B(Y, µξ.C)ε,γ].

Since d(γ′C,γ , ρ) = d(γ, ρ)[ξ �→ {I | ρ∈B(I, µξ.C)ε,γ}], the statement above can be rewritten

as

∀γ, ρ∈1S(µξ.C,�,γ̂). �C�ρ, d(γ′C,γ ,ρ) ⊆ {I | ρ∈B(I, µξ.C)ε,γ},

https://doi.org/10.1017/S0960129504004141 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004141

G. Ghelli and L. Cardelli 324

and this, by induction, is equivalent to

∀γ, ρ∈1S(µξ.C,�,γ̂).
{
I | ρ∈B(I,C)ε,γ′C,γ

}
⊆ {I | ρ∈B(I, µξ.C)ε,γ}.

This can be deduced from

∀γ, I. B(I,C)ε,γ′C,γ ⊆ B(I, µξ.C)ε,γ .

We expand B(I, µξ.C)ε,γ:

∀γ, I. B(I,C)ε,γ′C,γ ⊆ Fix
(
λM : IT→ P

(
1S(µξ.C,�,γ̂)

)
.λY.B(Y,C)ε,γ[ξ �→M]

)
(I).

We unfold the fix point and apply it to I , and expand γ′C,γ:

∀γ, I. B(I,C)ε,γ[ξ �→λY.B(Y,µξ.C)ε,γ] ⊆ B(I,C)ε,γ[ξ �→Fix (λM.λY.B(Y,C)ε,γ[ξ �→M])].

We now replace B(I, µξ.C)ε,γ on the left-hand side by its definition:

∀γ, I. B(I,C)ε,γ[ξ �→λY.Fix (λM. λY′ .B(Y′ ,C)ε,γ[ξ �→M])(Y)]

⊆ B(I,C)ε,γ[ξ �→Fix (λM.λY.B(Y,C)ε,γ[ξ �→M])]

The two sides are equal.

Appendix B. Table of equivalences

Many logical equivalences have been derived for the ambient logic, and are inherited by

the tree logic. We list some of them in Table B.1. These equivalences can be exploited by

a logical optimiser for queries.

Table B.1. Some equations.

η[A] ∧ 0 ⇔ F η[⇒A] ∨ ¬0 ⇔ T

η[A] ∧ η′[A′]⇔ η[A∧A′] ∧ η = η′ η[⇒A] ∨ η′[⇒A′] ⇔ η[⇒A∨A′] ∨ η �= η′

η[A] ∧ (η′[A′] | η′′[A′′] |A′′′) ⇔ F η[⇒A] ∨ (η′[⇒A′] || η′[⇒A′] ||A′′′) ⇔ T

η[A] ⇔ η[T] ∧ η[⇒A] η[⇒A] ⇔ η[T] ⇒ η[A]

η[F] ⇔ F η[⇒T] ⇔ T

η[A∧A′] ⇔ η[A] ∧ η[A′] η[⇒A∨A′] ⇔ η[⇒A] ∨ η[⇒A′]
η[A∨A′] ⇔ η[A] ∨ η[A′] η[⇒A∧A′] ⇔ η[⇒A] ∧ η[⇒A′]
η[∃x.A] ⇔ ∃x.η[A] (x �= η) η[⇒∀x.A] ⇔ ∀x.η[⇒A] (x �= η)

η[∀x.A] ⇔ ∀x.η[A] (x �= η) η[⇒∃x.A] ⇔ ∃x.η[⇒A] (x �= η)

η[∃X.A] ⇔ ∃X.η[A] η[⇒∀X.A] ⇔ ∀X.η[⇒A]

η[∀X.A] ⇔ ∀X.η[A] η[⇒∃X.A] ⇔ ∃X.η[⇒A]

A| 0 ⇔ A A|| ¬0 ⇔ A
A|A′ ⇔ A′ |A A ||A′ ⇔ A′ ||A
(A|A′) |A′′ ⇔ A | (A′ |A′′) (A||A′) ||A′′ ⇔ A || (A′ ||A′′)
T |T ⇔ T F ||F ⇔ F

A|F ⇔ F A||T ⇔ T

A| (A′ ∨A′′)⇔ (A|A′) ∨ (A|A′′) A|| (A′ ∧A′′) ⇔ (A||A′) ∧ (A||A′′)
A| ∃x.A′ ⇔ ∃x.A | A′ (x /∈FV(A)) A|| ∀x.A′ ⇔ ∀x.A || A′ (x /∈FV(A))

A| ∃X.A′ ⇔ ∃X.A | A′ (X /∈FV(A)) A|| ∀X.A′ ⇔ ∀X.A || A′ (X /∈FV(A))

https://doi.org/10.1017/S0960129504004141 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004141

TQL: a query language for semistructured data 325

Acknowledgments

Andrew D. Gordon contributed to this work with many useful suggestions. Giorgio Ghelli

was partially supported by Microsoft Research, and by the E. U. workgroup APPSEM.

The implementation of TQL is mainly due to Francesco Pantaleo, Giovanni Conforti

and Orlando Ferrara. Also, Antonio Albano, Dario Colazzo and Paolo Manghi have

contributed to the TQL project in many ways.

References

Abiteboul, S., Buneman, P. and Suciu, D. (1999) Data on the WEB: From Relations to Semistructured

Data and XML, Morgan Kaufmann.

Abiteboul, S., Hull, R. and Vianu, V. (1995) Foundations of Databases, Addison-Wesley.

Abiteboul, S., Quass, D., McHugh, J., Widom, J. and Wiener, J. L. (1997) The Lorel query language

for semistructured data. International Journal on Digital Libraries 1 (1) 68–88.

Alechina, N. (1999) (Modal) logics for semistructed data. In: Lambrix, P., Borgida, A., Lenzerini, M.,

Möller, R. and Patel-Schneider, P. F. (eds.) Proc. of the Int. Workshop on Description Logics

(DL’99), Linköping, Sweden.

Alechina, N., Demri, S. and de Rijke, M. (2001) Path constraints from a modal logic point of view

(extended abstract). In: Lenzerini, M., Nardi, D., Nutt, W. and Suciu, D. (eds.) Proc. of the 8th

Int. Workshop on Knowledge Representation meets Databases (KRDB’01), Roma, Italy.

Arenas, M., Fan, W. and Libkin, L. (2002) On verifying consistency of XML specifications. In:

Proc. of the 21st Symposium on Principles of Database Systems (PODS), ACM Press 259–270.

Bidoit, N. and Ykhlef, M. (1999) Fixpoint calculus for querying semistructured data. In: Atzeni, P.,

Mendelzon, A.O. and Mecca, G. (eds.) Proc. of The World Wide Web and Databases (selected

papers of the Int. Workshop WebDB’98). Springer-Verlag Lecture Notes in Computer Science 1590

78–97.

Boag, S., Chamberlin, D., Fernandez, M. F., Florescu, D., Robie, J., Simon, J. and Stefanescu, M.

(2002) XQuery 1.0: An XML query language. (Available from http://www.w3c.org/TR/

xquery.)

Buneman, P., Davidson, S. B., Fan, W., Hara, C. S. and Tan, W.C. (2001a) Keys for XML. In: Proc.

of the 10th International World Wide Web Conference (WWW), Hong Kong, China 201–210.

Buneman, P., Davidson, S. B., Fan, W., Hara, C. S. and Tan, W.C. (2001b) Reasoning about keys

for XML. In: Proc. of the 8th Intl. Workshop on Data Base Programming Languages (DBPL),

Frascati, Italy. Springer-Verlag Lecture Notes in Computer Science 2397.

Buneman, P., Davidson, S. B., Hillebrand, G.G. and Suciu, D. (1996) A query language and

optimization techniques for unstructured data. In: Proc. of the 1996 ACM SIGMOD International

Conference on Management of Data (SIGMOD), Montreal, Quebec, Canada. SIGMOD Record

25 (2) 505–516.

Buneman, P., Fan, W., Siméon, J. and Weinstein, S. (2001c) Constraints for semi-structured data

and XML. SIGMOD Record 30 47–54.

Caires, L. and Cardelli, L. (2003) A spatial logic for concurrency (part I). (To appear in Information

and Computation.)

Calcagno, C., Cardelli, L. and Gordon, A.D. (2003) Deciding validity in a spatial logic for trees. In:

Proc. of ACM SIGPLAN Workshop on Types in Language Design and Implementation (TLDI),

New Orleans, U.S.A.

https://doi.org/10.1017/S0960129504004141 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004141

G. Ghelli and L. Cardelli 326

Calvanese, D., Giacomo, G.D. and Lenzerini, M. (2002) Description logics for information

integration. In: Computational Logic: Logic Programming and Beyond, Essays in Honour

of Robert A. Kowalski, Part II. Springer-Verlag Lecture Notes in Computer Science 2408 41–60.

Cardelli, L. (1999) Semistructured computation. In: Proc. of the Seventh Intl. Workshop on Data

Base Programming Languages (DBPL).

Cardelli, L., Gardner, P. and Ghelli, G. (2002) A spatial logic for querying graphs. In: Proc. of the

29th International Colloquium on Automata, Languages, and Programming (ICALP), Malaga,

Spain. Springer-Verlag Lecture Notes in Computer Science 2380 597–610.

Cardelli, L., Gardner, P. and Ghelli, G. (2003) Manipulating trees with hidden labels. In: Proc. of

Foundations of Software Science and Computation Structures (FOSSACS), Warsaw, Poland.

Cardelli, L. and Gordon, A.D. (1998) Mobile ambients. In: Proc. of Foundations of Software

Science and Computation Structures (FOSSACS). Springer-Verlag Lecture Notes in Computer

Science 1378 140–155. (Accepted for publication in Theoretical Computer Science.)

Cardelli, L. and Gordon, A.D. (2000) Anytime, anywhere: Modal logics for mobile ambients. In:

Proc. of Principles of Programming Languages (POPL), ACM Press.

Chamberlin, D., Robie, J. and Florescu, D. (2000) Quilt: An XML query language for heterogeneous

data sources. In: Proc. of Workshop on the Web and Data Bases (WebDB).

Charatonik, W. and Talbot, J.-M. (2001) The decidability of model checking mobile ambients. In:

Proc. of the 15th Annual Conference of the European Association for Computer Science Logic

(EACSL). Springer-Verlag Lecture Notes in Computer Science 2142 339–354.

Cluet, S., Delobel, C., Siméon, J. and Smaga, K. (1998) Your mediators need data conversion. In:

Proc. of ACM SIGMOD International Conference on Management of Data (SIGMOD).

Cohen, E. (2002) Validity and model checking for logics of finite multisets (draft). Unpublished

note.

Colazzo, D., Ghelli, G., Manghi, P. and Sartiani, C. (2002) Types for correctness of queries over

semistructured data. In: Proc. of the 5th Workshop on the Web and Data Bases (WebDB), Madison,

Wisconsin, U.S.A. 13–18.

Conforti, G., Ferrara, O. and Ghelli, G. (2002) TQL algebra and its implementation (extended

abstract). In: Proc. of IFIP International Conference on Theoretical Computer Science (IFIP

TCS), Montreal, Canada.

Conforti, G., Ferrara, O. and Ghelli, G. (2003) TQL algebra and its implementation (full paper).

(To appear.)

Deutsch, A. M., Fernandez, D. F., Levy, A. and Suciu, D. (1999) A query language for XML. In:

Proc. of the Eighth International World Wide Web Conference.

Fan, W., Kuper, G.M. and Siméon, J. (2001) A unified constraint model for XML. In: World Wide

Web 179–190.

Fan, W. and Libkin, L. (2001) On XML integrity constraints in the presence of DTDs. In: Proc.

of the 20th Symposium on Principles of Database Systems (PODS), Santa Barbara, California.

SIGMOD Record, ACM Press 114–125.

Fernandez, M., Florescu, D., Kang, J., Levy, A. and Suciu, D. (1998) Catching the boat with Strudel:

experiences with a web-site management system. In: Proc. of ACM SIGMOD International

Conference on Management of Data (SIGMOD) 414–425.

Fernandez, M., Florescu, D., Levy, A. and Suciu, D. (1997) A query language and processor for

a web-site management system. In: Proc. of Workshop on Management of Semistructured Data,

Tucson.

Fernandez, M., Siméon, J., Wadler, P., Cluet, S., Deutsch, A., Florescu, D., Levy, A., Maier, D.,

McHugh, J., Robie, J., Suciu, D. and Widom, J. (1999) XML query languages: Experiences and

https://doi.org/10.1017/S0960129504004141 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004141

TQL: a query language for semistructured data 327

exemplars. (Available from http://www-db.research.bell-labs.com/user/simeon/xquery.

ps.)

Gelder, A. V. and Topor, R.W. (1991) Safety and translation of relational calculus queries. ACM

Transactions on Database Systems 16 (2) 235–278.

Ghelli, G. (2001) TQL as an XML query language. (Available from http://www.di.unipi.it/

∼ghelli/papers.html.)
Goldman, R., McHugh, J. and Widom, J. (1999) From semistructured data to XML: Migrating

the Lore data model and query language. In: Proc. of Workshop on the Web and Data Bases

(WebDB) 25–30.

Hosoya, H. and Pierce, B. C. (2000) XDuce: A typed XML processing language (preliminary report).

In: Proceedings of Third International Workshop on the Web and Databases (WebDB2000).

Springer-Verlag Lecture Notes in Computer Science 1997 226–244.

Hosoya, H., Vouillon, J. and Pierce, B. C. (2000) Regular expression types for XML. ACM SIGPLAN

Notices 35 (9) 11–22.

Kanellakis, P. (1995) Tutorial: Constraint programming and database languages. In: Proc. of the

14th Symposium on Principles of Database Systems (PODS), San Jose, California, ACM Press

46–53.

Kuper, G., Libkin, L. and Paredaens, J. (2000) Constraint Databases, Springer-Verlag.

O’Hearn, P.W., Reynolds, J. C. and Yang, H. (2001) Local reasoning about programs that alter data

structures. In: Proc. of the 15th Annual Conference of the European Association for Computer

Science Logic (EACSL). Springer-Verlag Lecture Notes in Computer Science 2142 1–19.

O’Hearn, P. and Pym, D. (1999) The logic of bunched implications. Bulletin of Symbolic Logic 5 (2)

215–244.

Papakonstantinou, Y., Molina, H. and Widom, J. (1996) Object exchange across heterogeneous

information sources. Proc. of the eleventh IEEE Int. Conference on Data Engineering, Birmingham,

England 251–260.

Ullman, J.D. (1982) Principles of Database Systems, 2nd Edition, Computer Science Press.

Ullman, J.D. (1988) Principles of Database and Knowledge Base Systems, Volume I, Computer

Science Press.

W3C (2002a) XML Query use cases. (Available at http://www.w3.org/TR/xmlquery-use-cases.)

W3C (2002b) XML Schema. (Available at http://www.w3.org/XML/Schema.)

W3C (2002c) XQuery 1.0 and XPath 2.0 data model. (Available at http://www.w3.org/TR/

query-datamodel.)

https://doi.org/10.1017/S0960129504004141 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004141

