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We present laboratory experiments that show that fingering patterns can emerge
when circular interfaces of strain-rate-softening fluids displace less viscous fluids
in extensionally dominated flows. The fingers were separated by regions in which
the fluid appeared to be torn apart. Initially, the interface had a large dominant
wavenumber, but some of the fingers progressively merged so that the number
of fingers gradually declined in time. We find that the transition rate to a lower
wavenumber during this cascade is faster the larger is the discharge flux of the
displacing fluid. At late times, depending on the discharge flux, the pattern either
converged into an integer wavenumber or varied stochastically within a finite range
of wavenumbers, implying convergence to a fractional wavenumber. In that stage of
the evolution we find that the average wavenumber declines with the discharge flux
of the displacing fluid.

Key words: complex fluids, instability, thin films

1. Introduction
The displacement of one fluid by another in a quasi-two-dimensional geometry is

common to a wide range of natural and industrial systems. In some systems, the
evolving interfaces between the two fluids can maintain a smooth circular or planar
shape, but in others they can develop fingering instabilities and consequently evolve
complex patterns.

A large class of interfacial-stability problems, known as viscous fingering, involves
flows that are dominated by shear, typically due to the traction imposed by confining
solid boundaries. In these shear-dominated flows in a uniform gap, it is established
that the interface is stable when the displacing fluid is more viscous, either in
a system of Newtonian fluids that obeys Darcy’s law and the pressure field is
Laplacian (Saffman & Taylor 1958; Wooding & Morelseytoux 1976; Paterson 1981;
Homsy 1987; Bhaskar et al. 1992; Cardoso & Woods 1995; Coumou et al. 2006;
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Jha, Cueto-Felgueroso & Juanes 2011; Zhao, MacMinn & Juanes 2016; Rabbani
et al. 2018), or when at least one of the fluids is complex and the pressure field
is no longer Laplacian (Lemaire et al. 1991; Zhao & Maher 1993; Kondic, Shelley
& Palffy-Muhoray 1998; Coussot 1999; Lindner, Bonn & Meunier 2000a; Lindner,
Coussot & Bonn 2000b; Azaiez & Singh 2002; Callan-Jones, Joanny & Prost 2008).
A more general statement is that the interface is stable when the displacing fluid
is less mobile than the displaced fluid, where mobility is the ratio of permeability
and viscosity. The physical requirement for instability in these systems is that the
magnitude of the driving pressure gradient is larger in the displaced fluid than
in the displacing fluid, which can be hydrostatic rather than dynamic (Kowal &
Worster 2019). Instability can be suppressed or triggered by specifying a non-uniform
gap between the confining boundaries (Al-Housseiny, Tsai & Stone 2012), which
affects the driving pressure gradients. In addition, non-monotonic mobility profiles
in confined miscible flows can lead to reverse fingering, in which the displaced
fluid fingers through the displacing fluid more readily than vice versa (Manickam &
Homsy 1994).

The flow geometry also affects the stability of confined shear-dominated flows.
Particularly, for a constant-flux source, Newtonian flows in a circular geometry
tend to be more stable than flows in a linear geometry (e.g. Paterson 1981)
because the velocity of circular interfaces declines with time and circumferential
stretching tends to push perturbation to lower wavenumbers. A priori, such flow
configurations may appear prone to Saffman–Taylor instability if a single fluid
phase of strain-rate-softening fluid propagates axisymmetrically. This is because
the radial decline of the dominant strain-rate component leads to monotonically
increasing viscosity, or declining mobility, with radius. This implies that any ring
of fluid within such flows is like an interface between an inner less-viscous fluid
and an outer more-viscous fluid. Although there is no viscosity jump across such
fluid rings and they behave as rather smeared interfaces, one might anticipate that
instability could still occur as it does in miscible Newtonian fluids (Paterson 1985;
Manickam & Homsy 1993; Holloway & de Bruyn 2005). However, viscous fingering
in radially spreading, strain-rate-softening fluids has not been observed thus far.
Similar axisymmetric flows of strain-rate-softening fluids were studied using viscous
gravity currents that propagate into low-viscosity fluids over a horizontal substrate.
Such flows have mixed boundary conditions of no slip along their base and no stress
along their free surface due to the absence of confinement. Here too, despite a radially
increasing viscosity within the strain-rate-softening displacing fluids, no fingering was
observed (Sayag & Worster 2013).

In another class of problems, which forms the focus of this paper, the fluids have
free top and bottom surfaces along which traction is negligible and the resulting
circular flow is dominated by extension rather than by shear. In this case, evidence
shows that unique finger-like patterns can arise with the fluid appearing to be torn
apart when the displacing fluid is strain-rate softening. For example, ice shelves
deform like strain-rate-softening fluids (Glen 1955) under negligible traction, as they
spread over the ocean. When ice shelves are free from lateral confinement, finger-like
patterns can emerge normal to the shelf front, separated by deep rifts, reminiscent of
tears (rips) that cut through the entire ice thickness (Hughes 1983; Doake & Vaughan
1991; Bassis et al. 2008; Borstad, McGrath & Pope 2017). Similarly, tear-like patterns
emerge when pastes squeezed by parallel disks emerge outside of the rim of the disks
into a region that is unconfined where no external stress is applied (Mascia et al.
2006; Roussel, Lanos & Toutou 2006). The formation of these patterns is potentially
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724 R. Sayag and M. G. Worster

related to the migration of the liquid phase within the pastes as they spread. In
contrast, the interface remains stable in similar flows of Newtonian displacing fluids,
such as viscous gravity currents that spread radially under no traction (Pegler &
Worster 2012).

In this Part 1 of the study we extend Sayag & Worster (2013) by allowing
a thin film of strain-rate-softening fluid to propagate with the absence of any
traction along its boundaries, thereby forming an extensionally dominated flow. We
trace the evolution of the fluid–fluid interface in time and analyse its wavenumber
decomposition. We then analyse the pattern in which the dominant wavenumber of
the interface evolves and how that pattern depends on the main experimental control
parameter, the source mass flux. In Part 2 of this study (Sayag & Worster 2019) we
focus on a theoretical investigation of the instability reported here.

2. Experimental observations
2.1. Experimental set-up

We generated extensional flows experimentally by discharging a thin layer of viscous
fluid into a bath filled with low-viscosity but denser fluid. This way traction on the
viscous fluid was reduced substantially, allowing extensional stresses to dominate. The
experimental apparatus (figure 1) consisted of a transparent bath of 1 × 1 m2 filled
with low-viscosity, transparent salt solution to a depth of 15 mm. At the centre of
the bath and attached to its bottom we placed a conical section made of transparent
polydimethylsiloxane (PDMS), which had a trapezoidal cross-section (figure 1b)
with dimensions 15 mm height, 10 cm top base diameter and 18 cm bottom base
diameter. The displacing complex fluid was driven from a container by a peristaltic
pump at constant flux (1 . Q . 14) g s−1, which was measured with an accuracy
of ±0.05 g s−1 using a computer connected to a digital balance that supported the
container. From the pump the fluid was discharged axisymmetrically through a tube,
10 mm in diameter, over the centre of the top base of the conical section. The fluid
continued to propagate under gravity over the conical section and beyond, displacing
the ambient salt solution. The propagation of the interface was imaged using a digital
SLR camera in plan view from the bottom of the bath through a 45◦ mirror at a rate
of one frame every 2–6 s, depending on the source flux.

To keep the level of the ambient fluid in the tank fixed as the complex fluid
was intruding, we used a secondary pump controlled by an optical feedback circuit.
Specifically, a red laser beam was emitted through the ambient fluid and underwent
total internal reflection from the ambient-fluid free surface towards an optical sensor.
A rise in the level of the ambient fluid shifted the beam trajectory from the sensor
and consequently operated the pump that drained excess fluid, until the beam resumed
intersection with the sensor, thereby turning the pump off. This way we managed to
keep the level of the ambient fluid fixed to within a 0.1 mm accuracy.

The complex fluid consisted of Xanthan gum (Jungbunzlauer) dissolved in distilled
water (1 % in weight), having density ≈1.02 g cm−3. Xanthan is a semirigid and high-
molecular-weight polysaccharide produced by the Xanthomonas campestris bacterium
(Lapasin 1995). To prepare the solution we used a laboratory mixer to form a smooth
vortex in the centre of a 3 l beaker containing the distilled water. The Xanthan powder
(from a single batch) was then spread into the centre of the vortex through a sieve
to disperse powder aggregates, thereby allowing faster polymer hydration. Next, we
added a couple of millilitres of blue dye and maintained the mixing for one hour at
the maximum speed possible so long as air bubbles did not intrude into the fluid. Then
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FIGURE 1. (Colour online) (a) Schematic diagram of the experimental apparatus to
generate extensional flows. The region where the flow evolves (dotted rectangular) is
expanded in (b). (b, top) Schematic side view of the flow region, showing the polymer
solution (blue) propagating radially over the conic plate and into a bath of salt solution
(cyan), resulting in a no-stress interface at the surface and the base of the displacing fluid.
(b, bottom) An image showing the camera plan view of the flow at a stage where the front
of the polymer solution developed four fingers. The vertical dashed lines mark the radius
rG, which is where the fluid–fluid interface intersects with the conical section.

the solution was left for the next 24 h in a closed container to allow full hydration
of the polymer. This way we obtained an agglomerate-free and bubble-free Xanthan
solution.

The rheology of Xanthan gum solutions of ∼1 % concentration has been studied
extensively in various flow configurations. Under steady-shear flow, such solutions
behave as a power-law, shear-thinning fluid with exponent ≈6 (Sayag & Worster
2013) for the solution we used, although other measurements find that it can vary
between ≈5 (Martin-Alfonso et al. 2018) and ≈7 (Song, Kim & Chang 2006a)
(we define shear thinning with exponents larger than 1). At low shear rates there are
indications of bounded shear viscosity at more dilute polymer concentrations than 1 %
(Wyatt & Liberatore 2009; Jaishankar & McKinley 2014; Allouche et al. 2015) with a
zero strain-rate viscosity of over 106 times that of water at 25 ◦C at shear rates lower
than 10−3 s−1 (Jaishankar & McKinley 2014), and possibly the presence of yield
stress (e.g. Herschel-Bulkley fluid, Song et al. 2006a). These solutions also exhibit
elastic properties such as primary normal-stress difference over a wide range of strain
rates (Jaishankar & McKinley 2014), and a relaxation time of λ ≈ 0.1 s−1 (Stokes
et al. 2011). In oscillatory-shear flow, the storage modulus of such suspensions is
2–4 times larger than the loss modulus in frequencies ranging between 0.01 and
100 rad s−1 (Song, Kuk & Chang 2006b). In uniaxial extensional flows, Xanthan
solutions exhibit strain hardening (Stelter & Brenn 2002; Stelter et al. 2002), as
well as strain-rate softening of the extensional viscosity (extensional thinning) with
an exponent of ≈3 (Jones, Walters & Williams 1987; Ferguson, Walters & Wolff
1990; Martin-Alfonso et al. 2018), while the behaviour at extensional rates lower
than approximately 0.5 s−1 is not known. The ratio of extensional to shear viscosity
(Trouton ratio) of such solutions grows with the strain rate, reaching approximately
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726 R. Sayag and M. G. Worster

Q (g s−1) 0.73 1.36 1.37 1.38 2.64 3.84 3.90 6.62 13.39
rG (cm) 5.79 5.87 5.82 5.95 6.1 6.2 6.23 6.35 6.61
hG (cm) 0.35 0.39 0.38 0.42 0.49 0.53 0.54 0.6 0.71

TABLE 1. The source flux Q (±0.05 g s−1 uncertainty) that was specified in each
experiment and the resulting measured grounding-line position rG and the fluid thickness
hG at the grounding line. In all the experiments the polymer solution consisted of 1 %
Xanthan gum and the density of the salt solution was ρ = 1.181 g cm−3.

30 at strain rate of 1 s−1 (Jones et al. 1987; Martin-Alfonso et al. 2018), but at
lower strain rates it drops and is expected to converge to the Newtonian value of
3, as typical of polymeric solutions (Bird, Armstrong & Hassager 1987). Therefore,
at the higher end of the strain rate, such Xanthan solutions have a more significant
elastic deformation, while viscous deformation becomes more significant at the lower
end.

The ambient fluid consisted of sodium chloride solution with density ≈1.181 g cm−3,
and therefore denser than the Xanthan gum solution. This combination of fluids
resulted in the formation of a region in the flow where the Xanthan solution was
propagating over the denser ambient fluid, which was significantly less viscous and
consequently applied negligible traction.

2.2. Evolution of the interface
We performed a range of experiments in which we varied the source flux Q of
the polymer solution, while keeping fixed the level and density of the ambient salt
solution, and the concentration of the polymer solution (table 1).

Once discharged from the tube, the gravity-driven polymer solution propagated
axisymmetrically over the truncated cone surrounded by a deep layer of denser and
low-viscosity salt solution. When the circular fluid front intruded into the ambient
salt solution, as it advanced along the sloping section of the cone, buoyancy forces
due to the surrounding denser fluid caused it to detach from the substrate and float
(figure 1b, top). This way, a circular contact line (grounding line) was formed at
radius rG > 5 cm over the slope of the cone, separating between an inner region
(r< rG) where no-slip basal conditions were applied to the polymer solution, and an
outer region (r > rG) where no-stress basal conditions were applied to the polymer
solution. Within a short transient the grounding line advanced down the slope of
the substrate and reached a steady position that was maintained for all t > 0. We
discovered that the leading front of the displacing polymer solution split into a number
of tongues in the vicinity of rG, which moved as solid blocks similar to the movement
of floating ice tongues (e.g. Holdsworth 1983) or of foam under wall slip (Lindner
et al. 2000b). The region between the tongues resembled fractures with sharp tips
near rG, reminiscent of fracture tips (figure 1b, bottom). As the tongues grew longer,
some of those tips were advected with the flow and, as they did, the space between
the tongues closed by the joining of adjacent tongues into wider ones. Consequently,
the number of tongues declined with time (figure 2 and supplementary movies are
available at https://doi.org/10.1017/jfm.2019.777). Such an inverse cascade of the
number of tongues also appears to characterise patterns in squeezed pastes (Mascia
et al. 2006), in fractured thin elastic plates (Vermorel, Vandenberghe & Villermaux
2010; Vandenberghe, Vermorel & Villermaux 2013) and in melt transport (Spiegelman,
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FIGURE 2. (Colour online) Snapshots (plan view) from two experiments with source flux
(a–d) Q= 3.90± 0.05 g s−1 and (e–h) Q= 2.64± 0.05 g s−1, showing the evolution of
the fluid–fluid interface. The injected complex fluid is coloured blue, and the ambient less
viscous, denser fluid as well as the conical substrate are transparent. Time is measured
with respect to the instant when the interface reached the grounding-line position. The
Fourier modes of each interface in (e–h) are shown in figure 5(b).

Kelemen & Aharonov 2001). However, the breakdown of the circular symmetry that
we report is in sharp contrast with similar flows that involved Newtonian displacing
fluids (Pegler & Worster 2012), in which the fluid–fluid interface remained circular.

2.3. Analysis of the results
Having image sequences of the experimental results, we first determine the grounding-
line steady position rG and the instant when the front crossed that position for each
experiment. We define the origin r = 0 at the centre of the feeding tube using
snapshots taken before the fluid was discharged. We also identify the rim of the
larger base of the PDMS substrate (figure 3a) and use its known diameter (18 cm)
to convert from pixels to dimensional length. Then we identify the position of
the grounding line using the intensity of the light transmitted through the polymer
solution (figure 3f ). Specifically, the part of the fluid that spreads along the higher
base of the conical section from the nozzle is relatively thick and appears as a dark
disk that becomes radially brighter towards the edge of that top base. Near that edge
and just before the fluid intrusion into the salt solution, the fluid thickness is minimal
and appears as a thin ring of brighter colour (figure 3e), with a corresponding local
maximum in the light intensity at radius 5 cm (figure 3f ). Across that ring, the
polymer solution intrudes into the ambient fluid along the substrate slope (figure 1b),
so it becomes thicker and consequently darker with radius, as also implied from the
corresponding decline in the light intensity. Further down along the substrate slope,
another sharp transition occurs into a brighter region, which implies that the fluid
layer has gone through a sudden thinning. Such abrupt thinning that coincides with
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FIGURE 3. (Colour online) Snapshots (plan view) from the experiment with source flux
Q = 2.64 ± 0.05 g s−1 tracing the evolution of the interface as it transits the steady
grounding-line position at t= 0. The injected polymer solution is coloured blue, and the
ambient denser fluid as well as the conical substrate are transparent. The origin is the
centre of the tube outlet ( ). The lower base of the conical substrate (18 cm in diameter)
is marked in (– – –, cyan) in (a). The steady position of the grounding line is marked at
all snapshots (– – –, grey). The inset in panel (e) shows the region in the flow (dashed
square) that is viewed in the five snapshots (a–e). Panel ( f ) shows the intensity of the
light (green channel) transmitted through the flow along the radius (· · · · · ·, green) in each
of the previous panels, normalised by the intensity of the background (ambient fluid). The
grounding-line position at each time is the local minimum of the intensity between 5 cm
(the top edge of the substrate slope, · · · · · ·) and ∼6 cm (q), where (- - -, red) marks the
grounding-line steady position.

a local minimum in the light intensity (figure 3f ) is due to the detachment of the
fluid layer from the slope of the substrate (figure 1b, top). Therefore, we identified
that local minimum in intensity, which varies with azimuth by less than ±2 mm,
with the position of the grounding line. We follow the propagation of the grounding
line along the slope from the time it is formed very close to the top base and until
it reaches a steady position within a short transient (figure 3f ). Upon detachment
of the polymer solution, the basal friction drops abruptly and substantially and the
fluid layer flows as a plug (no vertical shear), becoming a pure extensional flow
with principal axes along the radial and azimuthal directions resulting in horizontal
stretching, and perpendicular to the direction of flow resulting in vertical thinning
(e.g. Robison, Huppert & Worster 2010; Pegler & Worster 2013). Having the steady
grounding-line position and knowing the substrate geometry, we calculate the fluid
thickness at that position, hG, assuming that the fluid is floating (table 1). In addition
we define t= 0 at the instant when the fluid front reaches the steady position of the
grounding line (figure 3).
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Q = 2.64 g s-1 Q = 1.36 g s-1 Q = 1.37 g s-1

FIGURE 4. (Colour online) Fourier decomposition of the fluid–fluid interface: examples
from three different experiments (Q = 2.64, 1.36, 1.37 ± 0.05 g s−1), showing snapshots
of the traced interface (——) and the results of the regression (——, red) of part of the
interface (r 6 2.5 rG) to the Fourier series (2.1).

The sharp colour contrast between the polymer solution and the salt solution
allowed a straightforward tracing of the fluid–fluid interface rN(θ, t) as a function
of time (figure 4) using image-processing tools. Applying a fast Fourier transform
to the raw interface leads to inconsistent results, particularly when the interface
roughness is substantial, having sections with multiple fracture-like elements that
enhance the interface length in these parts disproportionally (e.g. figure 4c). To avoid
such complications we first truncate at each instant the part of the interface having
r> 2.5rG and then fit to the residual traced interface a Fourier series of the form

f (t)= a0(t)+
N∑

k=1

ak(t) sin(kθ + φk(t)), (2.1)

where the amplitudes a0...N and the phases φ1...N are the fitted parameters (figure 4).
We chose N= 30 noticing that a larger value does not affect the amplitude distribution
ak(t) in a measurable way. In addition, the value of the truncation radius was robust
and was used for all experiments. We applied this routine to each experimental
snapshot and got a time series of the wavenumber amplitude distribution (figure 5a,b).
Then, we normalised the amplitude distribution at each instant with the maximal
amplitude at that instant, obtaining the normalised amplitude distribution of the
different Fourier modes for the whole duration of the experiment (figure 5c). For
clarity, that distribution is a smoothed (interpolated) version of the original discrete
distribution (appendix A). This wavenumber–amplitude distribution, which is typical
for a wide range of experiments, shows that the initial circular front (t < 0) first
develops a high-wavenumber pattern (0 < t < 20 s) that then declines progressively
and monotonically through a descending set of dominating wavenumbers to a finite
k = 3 dominating wavenumber. This reduction of the dominating wavenumber is
reflected in the experiment through the repeated merging of adjacent fingers into
wider ones (figure 2).

We repeated the same analysis procedure for all of the experiments with varying
source flux Q (table 1), and generated the corresponding wavenumber–amplitude
distributions (figure 6, 7). The evolution of the interface is reflected in the evolution
of the dominant wavenumbers – those modes that have maximum amplitude at each
instant (figure 8). In these experiments we find that the wavenumber evolution at
early time has a different pattern compared to late time. At early time, the patterns
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FIGURE 5. (Colour online) (a) The traced fluid–fluid interface at times t = 20, 50, 80,
160 s (thick curves) in the experiment with Q = 2.64 ± 0.05 g s−1 (figure 2e–h), with
the grounding line marked in (——, green). (b) Amplitude distribution (lines) of the
dominating Fourier wavenumbers that compose each of the interfaces in (a) (colours
match) obtained by fitting a Fourier series of the front rN(θ, t) (6 marking the maximum
amplitude in each case). (c) Time evolution of the amplitude distributions (interpolated)
normalised by the maximum amplitude at each time, where darker colour represents modes
with higher amplitudes (discrete version is shown in appendix A). Vertical gridlines mark
the distributions at times that match (by colour) those shown in (b).

that emerged from the initial circular front had high dominating wavenumber, which
gradually cascaded into a lower dominating wavenumber at increasingly growing
transition times. This behaviour characterised all experiments, and quantitatively the
rate of the cascade (transition time to lower wavenumbers) and the lowest wavenumber
that the pattern converged to was strongly dependent on the source flux Q. At later
times, after the initial cascade to the lower wavenumber, the interface evolved in
two distinguished patterns depending on the input flux. In the higher-flux regime
(Q & 1.37 g s−1), the asymptotic pattern remained in the lowest wavenumber of the
initial cascade. That lowest wavenumber declined with the source flux (figure 8a). In
the lower-flux regime (Q . 1.37 g s−1), the dominating wavenumber did not settle
on a well-defined fixed value, rather, it changed stochastically within a finite band of
wavenumbers (figure 8b). This appears to imply that, while instantaneously the pattern
has an integer dominant wavenumber, on average the system can asymptotically settle
on a fractional wavenumber.
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FIGURE 6. (Colour online) Time evolution of the normalised amplitude of the Fourier
modes (dark, smoothed) that comprise the fluid–fluid interfaces for experiments with
source flux in the range 1.3 . Q . 13.4 ± 0.05 g s−1. The maximal amplitudes at each
instant are highlighted with colour patches. In each panel, the horizontal gridline marks
the average wavelength after the initial cascade of wavenumbers.

3. Discussion
The apparent stochastic evolution of the dominant wavenumber in the lower-flux

experiments (figure 8b) motivates us to evaluate a time-averaged asymptotic
wavenumber. To do this we identified in each experiment the time when the initial
wavenumber cascade terminated. This was done by first finding the instant when
the pattern had the maximal wavenumber. The instant that followed at which the
pattern had the minimal wavenumber was defined as the end of the wavenumber
cascade phase (e.g. figure 7). The time-average dominant wavenumber κ is defined
as the time average of the dominant wavenumbers in the interval from that latter
instant onwards. Those lower-flux experiments in which the dominant wavenumber
evolved stochastically after the initial cascade (figure 8b) had a fractional time-average
wavenumber and a standard deviation of about one wavenumber (figure 9a), whereas
the higher-flux experiments (figure 8a) had zero standard deviation. In addition, the
time-average wavenumbers decline monotonically with the source flux Q (figure 9a).

The dependence on Q of the time-averaged dominant wavenumber and of the
transition times to lower wavenumbers may be partially scaled away with an
appropriate Q-dependent time scale. One way to define a time scale using the
measured quantities is to consider the flow at r = rG. When the flow is quasi-steady,
the grounding-line position is steady and so is the thickness of the free surface
for r < rG. Therefore, conservation of mass implies that from that stage on, the
total volume flux across a circle of radius rG is equivalent to Q. Therefore, at the
grounding-line position, Q = 2πrGhGuG, where uG is the radial velocity at rG. In
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FIGURE 7. (Colour online) Time evolution of the normalised amplitude of the Fourier
modes (dark, smoothed) that comprise the experimental fronts for experiments with source
flux in the range Q= 0.73, 1.37, 1.38± 0.05 g s−1, in which the dominant wavenumber
varies stochastically after the initial wavenumber cascade. The maximal amplitudes at
each instant are highlighted with colour patches. In each panel the E, green marks the
instant when the pattern had a maximum dominant wavenumber. The E, cyan marks
the instant when the pattern had the lowest wavenumber at the termination of the
wavenumber cascade, beyond which the dominant wavenumber evolved stochastically. In
each panel, the horizontal gridline marks the average wavenumber after the initial cascade
of wavenumbers.

addition, the scale of uG can be written in terms of uG = rG/T , where T is a
characteristic time scale of the flow. Substituting this relation in the expression for
the flux we find that the characteristic time scale is

T =
2πr2

GhG

Q
. (3.1)

Using the measurements in table 1, we evaluated the characteristic time scale (3.1)
in each experiment and used it to normalise the time evolution of the dominant
wavenumber. We applied this to the experimental results that behaved regularly and
not stochastically in the long-time limit (figure 8a) and found that the measurements
collapse into a narrower region (figure 9b). This demonstrates that the patterns we
observe in experiments with different mass fluxes share common features when the
rate of the flow represented by the flux is scaled away. Particularly, it may imply
that in the non-stochastic cases the wavenumber cascade could end up at the lowest
possible wavenumber for any source flux Q, and that the associated time scale could
grow like 1/Q, as implied from (3.1). The lowest wavenumber may be k= 2, although
in the experiment with the highest Q = 13.39 g s−1 we found that one tongue was
approximately 30 % thicker than the other, and that the angle between their axes of
propagation was less than 180◦. This may represent an intermediate pattern before
a transition to k = 1 at higher flux. Experiments with Q > 3 g s−1 have all reached
k= 2 by the time t' T (figure 9b), and those experiments that terminated at higher
wavenumbers lasted no longer than t ' 3T . Therefore, it may be that T represents
a damping time scale and that within less than ≈10T any flows would converge to
wavenumber k= 2 and possibly less.

The Xanthan solution that we used has a viscoelastic deformation in principle. The
relative role of elastic compared to viscous deformation can be estimated by the
ratio of the fluid elastic-relaxation time λ and the characteristic rate of flow T , as
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FIGURE 8. (Colour online) The dominant wavenumbers (maximum instantaneous
amplitude) versus time and source flux Q in g s−1, corresponding to the experiments in
which (a) the late-time evolution of the dominant wavenumber converged to a fixed value
(figure 6), and in which (b) the dominant wavenumber changed stochastically (figure 7).

represented by the Deborah number De= λ/T . Having λ≈ 0.1 s (Stokes et al. 2011),
the maximal Debora number in the experiments we report (0.01 s−1< 1/T < 0.07 s−1)
that corresponds to the smallest T , is De≈ 0.007. This suggests that the characteristic
time scale of the flow in all of the experiments is much longer than the time scale of
the fluid elastic relaxation, implying that in the flow we consider elastic effects are
weaker than viscous deformation. As indicated in § 2.1, more direct measurements
of the relative strength of elasticity under extension at rates similar to those in the
experiments we report are absent. The known decline of the Trouton ratio with
the decline of the rate of deformation (Jones et al. 1987; Martin-Alfonso et al.
2018) implies that the relative strength of elasticity drops at smaller strain rates, but
measurements at extensional rates lower than 0.5 s−1 are absent in the literature.
Similarly, in other flow configurations the relative strength of elasticity drops as
the rate of deformation declines. For example, in simple-shear flow the ratio of the
normal-stress difference and shear stress (stress ratio, Bird et al. 1987) drops from 5
at a shear rate of 1 s−1 to 1 at a shear rates of 10−2 s−1 (Jaishankar & McKinley
2014). In oscillatory-shear flow the ratio of the storage to loss moduli drops from 3
at a shear rate of 1 s−1 to approximately 2 at a shear rate of 10−2 s−1 (Song et al.
2006b). Despite the decline of the elastic strength with the decline of rate in these
examples, as in extensional flows, at low shear rates (≈0.01 s−1) elasticity can be
comparable to the viscous deformation in simple shear or even larger in oscillatory
shear. However, these values may not necessarily indicate the specific Trouton ratio
in the extensional flow that we study, which differs substantially from both oscillatory
and simple shear flows.

The flow of the polymer solution from the inner, shear-dominated region across
rG to the free-slip region is associated with a Reynolds number. Considering the
grounding-line position, we find that Re = Qρ/2πrGµ. To estimate an upper bound
for Re we use Q∼ 10 and the viscosity associated with the largest strain rate (0.1 s−1)
µ∼ 102 Pa s, resulting in Re . 10−3.

Although the polymer solution is in contact with both the salt solution and air,
we expect that the impact of surface tension on the dynamics of the front is weak,
having a secondary or higher-order contribution owing to two major reasons. Firstly,
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FIGURE 9. (Colour online) (a) The dependence of the average dominant wavenumber on
the source flux. The time-averaged dominant wavenumber (coloured 6 corresponding to
the colours in figure 8) is computed for the time after the initial wavenumber cascade
to a minimal value. A ±1 standard deviation of the dominant wavenumber distribution
is marked by the error bars. Experiments with non-zero standard deviation (6, red) are
those shown in figure 8(b). Inset shows one example of the dominant wavenumber
distribution for the experiment with Q = 0.73 g s−1, and the fitted Gaussian distribution
used to compute the average and standard deviation. (b) Non-dimensional time evolution
of the dominant Fourier modes that the front is comprised of, for a range of source fluxes
1.3 & Q & 13.4 g s−1 corresponding to those in figure 8(a).

the density ratio of the two solutions implies that nearly 80 % of the displacing front
of the polymer solution is submerged in the salt solution, yet the two solutions are
nearly miscible as their surface tensions differ only by approximately 5 % (surface
tension of 1 % Xanthan gum solution ∼0.0825 N m−1 at ∼25 ◦C (Muthamizhi et al.
2014), and the corresponding value of our sodium chloride solution is ∼0.0785 N m−1

(Bzdek et al. 2016)). Secondly, deforming the highly viscous and possibly unyielded
polymer solution at the front requires larger external stresses than could be provided
by surface tension. The low traction applied to the floating tongues combined with
the strain-rate-softening property of the polymer solution leads to high fluid viscosity
(at least ∼100 Pa s, Sayag & Worster (2013)) in most of the tongues and particularly
along the front, such that the fluid in those regions appears unyielded throughout
the whole experiment. Such immobility of the polymer solution is reflected in the
vertically flat (figure 1b) and thick fluid front (similar to hG, table 1), in contrast to
the wedge-like front when the displacing fluid is Newtonian (Pegler & Worster 2013).

4. Conclusions

In this experimental study we have shown that the interface between a strain-
rate-softening fluid that displaces a lower-viscosity fluid can become unstable when
friction is nearly negligible along the path of the flow. Our experiments using polymer
solutions that deform under nearly free-slip conditions showed that the initially
circular interfaces become unstable, evolving rectangular-shaped fingers with rough
edges reminiscent of tears in solid material. Tracing the dominant wavenumber in the
instantaneous Fourier decomposition as a function of time, we find that the evolution
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of the interface consists of two primary stages: in the initial wavenumber cascade
stage the interface ruptured into multiple fingers that gradually grew and merged
into a smaller number of wider fingers; in the second stage, the pattern evolved
either regularly or stochastically depending on the discharge rate. At higher discharge
rates the pattern remained in the lowest-wavenumber form, which corresponds to a
constant number of fingers whose length continuously grow. At lower discharge rates
the pattern evolved within a small band of wavenumbers in a stochastic form, which
corresponds to the repeated emergence of new fingers followed by their merging
to existing longer fingers. In both cases, we found that the time-averaged dominant
wavenumber that the evolving pattern converged to in that stage declined with the
source flux. The transition time to lower wavenumbers in the initial cascade declined
with the source flux as well.

The instability that we find seems strongly reliant on both the free-slip conditions
and the strain-rate-softening property of the displacing fluid, and possibly of the
circular geometry of the flow. Such conditions characterise other natural and
man-made systems such as when non-Newtonian pastes are squeezed out of a
confining geometry (Mascia et al. 2006) and when glacier ice creeps over the ocean
(Walker et al. 2013). Therefore, this study may help to understand the evolution of
these systems.

In the second part of this study (Sayag & Worster 2019) we investigate theoretically
the early-time evolution of the circular interface into tongues and the wavenumber
cascade. Specifically, we analyse the linear stability of an axisymmetric base flow and
thereby identify that the instability relies on the divergent nature of the flow and is
allowed by the absence of boundary friction and by the strain-rate-softening property
of the fluid.
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Appendix. The discrete amplitude distribution

For the purpose of clearer graphical representation of the dominant wavenumbers,
diagrams that show the evolution of the amplitude distribution of wavenumbers
(figures 5c, 6, 7, 8 and 9b) are smoothed through a linear interpolation. At each
instant the amplitude distribution of wavenumbers is discrete (figure 10) and the
log scale representation of the wavenumber axis results in relatively stretched
patches of the lower wavenumbers in these diagrams. Whether discrete of smoothed,
the vertical thickness of such patches in these diagrams is a graphical artefact,
while the meaningful values of amplitude are only those that correspond to integer
wavenumbers.
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FIGURE 10. (Colour online) Comparison of the discrete and interpolated time evolution of
the normalised amplitude distributions. Panel (a) (identical to figure 5c) is the interpolated
version of panel (b) that shows a discrete distribution in which k is integer.
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