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This study investigates the collision statistics of inertial particles in inverse-cascading
two-dimensional (2D) homogeneous isotropic turbulence by means of a direct
numerical simulation (DNS). A collision kernel model for particles with small
Stokes number (St) in 2D flows is proposed based on the model of Saffman &
Turner (J. Fluid Mech., vol. 1, 1956, pp. 16–30) (ST56 model). The DNS results
agree with this 2D version of the ST56 model for St . 0.1. It is then confirmed that
our DNS results satisfy the 2D version of the spherical formulation of the collision
kernel. The fact that the flatness factor stays around 3 in our 2D flow confirms
that the present 2D turbulent flow is nearly intermittency-free. Collision statistics
for St = 0.1, 0.4 and 0.6, i.e. for St < 1, are obtained from the present 2D DNS
and compared with those obtained from the three-dimensional (3D) DNS of Onishi
et al. (J. Comput. Phys., vol. 242, 2013, pp. 809–827). We have observed that the 3D
radial distribution function at contact (g(R), the so-called clustering effect) decreases
for St = 0.4 and 0.6 with increasing Reynolds number, while the 2D g(R) does not
show a significant dependence on Reynolds number. This observation supports the
view that the Reynolds-number dependence of g(R) observed in three dimensions is
due to internal intermittency of the 3D turbulence. We have further investigated the
local St, which is a function of the local flow strain rates, and proposed a plausible
mechanism that can explain the Reynolds-number dependence of g(R). Meanwhile,
2D stochastic simulations based on the Smoluchowski equations for St� 1 show that
the collision growth can be predicted by the 2D ST56 model and that rare but strong
events do not play a significant role in such a small-St particle system. However, the
probability density function of local St at the sites of colliding particle pairs supports
the view that powerful rare events can be important for particle growth even in the
absence of internal intermittency when St is not much smaller than unity.
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1. Introduction
Several mechanisms have been proposed in the literature to explain what causes the

fast size broadening of cloud droplets, which could result in quick rain initiation at
the early stage of cloud development. Examples are enhanced collision rates of cloud
droplets by turbulence (Falkovich & Pumir 2007; Grabowski & Wang 2009, 2013),
turbulent entrainment (Blyth 1993; Krueger, Su & McMurtry 1997), giant cloud
condensate nuclei (Yin et al. 2000; Van Den Heever & Cotton 2007) and turbulent
dispersions of condensing cloud droplets (Sidin, Ijzermans & Reeks 2009). The most
intensely discussed is the first mechanism: enhanced collision rate by turbulence.
This has initiated extensive research on particle collisions in turbulence (Sundaram
& Collins 1997; Wang, Wexler & Zhou 2000; Saw et al. 2008; Onishi, Takahashi &
Komori 2009; Dallas & Vassilicos 2011, and references therein). There are several
collision models that predict collision rates of particles in turbulence. Saffman &
Turner (1956) analytically derived a collision model for particles with zero or very
small Stokes number, St (St = τp/τη, where τp is the particle relaxation time and τη
is the Kolmogorov time), while Abrahamson (1975) derived a model for particles
with much larger τp than TI , the integral time scale of the turbulence. Water droplets
typically have St = O(10−2) to O(100), and St = O(100) to O(102) when they are
rain droplets. One difficulty arises from the preferential motion of inertial particles.
Inertial particles preferentially cluster and accumulate in regions of low vorticity and
high strain if St < 1 (Maxey 1987; Chun et al. 2005), and cluster in such a way as
to mimic the clustering of zero-acceleration points by the sweep–stick mechanism if
1. St. τp/TI (Coleman & Vassilicos 2009). This matters because clustering increases
the mean collision rate (Sundaram & Collins 1997). The clustering effect makes
the construction of a fully analytical model for finite-inertia particles very difficult,
and requires several empirical parameters in collision models (Wang et al. 2000;
Zhou, Wexler & Wang 2001; Zaichik, Simonin & Alipchenkov 2003; Onishi 2005;
Franklin, Vaillancourt & Yau 2007). Those parameters are usually determined by
direct numerical simulation (DNS) data. Data from laboratory experiments (Saw et al.
2008; Lu et al. 2010; Bordas et al. 2011) would, of course, help, but available data
are very limited.

One serious problem is that the Reynolds-number dependence of turbulent collisions
has not yet been clarified. The Taylor-microscale-based Reynolds number Rλ (Rλ =
u′lλ/ν, where u′ is the root mean square of the velocity fluctuations, lλ is the Taylor
microscale and ν is the kinematic viscosity) for collision statistics attained by DNS
is Rλ = O(102). This value is much smaller than those in cloud turbulence, where
Rλ ranges from 103 up to nearly 105. (It is often estimated as Rλ of 103 to 104

in the literature. However, Rλ is estimated to be up to (5–8) × 104 in MacPherson
& Isaac (1977), and Siebert, Lehmann & Wendisch (2006) observed Rλ of (3–4) ×
104.) Nevertheless, there are several studies where collision models are used in cloud
simulations to investigate the impact of enhanced collisions of cloud droplets (Onishi
et al. 2006; Xue, Wang & Grabowski 2008; Wang et al. 2009; Onishi, Takahashi
& Komori 2011). These studies simply extrapolate their collision models to high Rλ,
without justification. A simple solution would be to obtain collision statistics for high-
Rλ flows, which requires high-performance computing.

Onishi, Takahashi & Vassilicos (2013) recently extended the upper limit in Rλ
by DNS. They attained Rλ = 530 and reported a dependence of collision statistics
on Reynolds number for Rλ > 100. They observed that the clustering effect, and
consequently the collision kernel, decreases as Rλ increases for Rλ> 100 and St= 0.4,
while no significant Reynolds-number dependence was observed for St= 0.1. This is a
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relevant and significant observation, since many authors ignore this Reynolds-number
dependence and assume a constant collision kernel irrespective of Rλ (Saffman
& Turner 1956; Derevyanko, Falkovich & Turitsyn 2008; Zaichik & Alipchenkov
2009) or assume a convergence to a constant collision kernel with increasing Rλ
(Ayala, Rosa & Wang 2008). A similar Reynolds-number dependence for St < 1
has now been confirmed by Rosa et al. (2013). Onishi et al. (2013) anticipated
that this Reynolds-number dependence might be due to the intermittent nature of
high-Reynolds-number turbulence. However, no evidence for this has been obtained
so far.

The present study, therefore, aims to obtain evidence that the intermittent nature
of small-scale turbulence influences the collision statistics, leading to this Reynolds-
number dependence. To achieve this goal, the present study utilizes two-dimensional
(2D) isotropic turbulence with inverse cascade because such turbulent flows have little
internal intermittency (Tabeling 2002), thus allowing an assessment of the significance
of intermittency by comparing 2D and three-dimensional (3D) DNS turbulence results.
We therefore develop a DNS for colliding inertial droplets in 2D isotropic turbulence
with inverse cascade; the code is composed of the flow code by Goto & Vassilicos
(2004), the particle code by Dallas & Vassilicos (2011) and the collision statistics code
by Onishi et al. (2009). Then we compare the present results with the 3D results of
Onishi et al. (2013).

In order to investigate the role of intermittency, the present study employs
intermittency-free inverse-cascading 2D turbulence as a counterpart for comparisons
with 3D turbulence, where intermittency is strong. Another option would have
been to employ a synthetic flow simulation, such as a phase-shuffled simulation
(Yoshimatsu et al. 2009) or a kinematic simulation (Chen, Goto & Vassilicos 2006;
Goto et al. 2005, and references therein). The phase-shuffled flow can be obtained by
decomposing the DNS velocity field into Fourier modes and randomizing the phases
of the coefficients. This method preserves energy, but breaks the flow structure and
makes the flow intermittency-free. The phase-shuffled flow has a full set of flow
modes, while the kinematic flow has only a fraction of modes. Both flows can mimic
the −5/3 power-law energy spectrum and both have intermittency-free, i.e. Gaussian,
statistics of fluctuating velocity difference. Yoshimatsu et al. (2009) reported that
phase-shuffled turbulence does not preserve the acceleration’s scaling behaviour, which
implies that the acceleration physics, which are of central importance in particle
clustering and collisions, are different from Navier–Stokes turbulence. Chen et al.
(2006) reported that, in kinematic simulations of turbulence, particle clustering results
from the repelling action of velocity stagnation-point clusters, a clustering mechanism
that is very different from those in Navier–Stokes turbulence. These facts suggest
that synthetic simulations of turbulence are not the best option for a comparative
discussion of the effect of intermittency on particle clustering and resulting Reynolds
number dependences. This is why we chose DNS of inverse-cascading 2D turbulence
for this purpose.

In the following section, we briefly introduce theoretical results for turbulent
collision statistics including the presently derived 2D theoretical results. Our 2D DNS
code is presented in § 3. Numerical results and discussion are presented in § 4, which
consists of flow statistics in § 4.1 and mostly particle statistics in § 4.2. We conclude
in § 5.
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2. Collision statistics theories
2.1. Collision kernel for small-Stokes-number particles

The Stokes number is defined as

St= τp

τη
, (2.1)

where τp (τp = 2ρpr2/(9ρaν)) is the particle relaxation time, with r the droplet radius
and ρp/ρa the ratio of the density of liquid water to that of air, and τη (τη=√ν/ε) is
the Kolmogorov time, with ν the kinematic viscosity and ε the energy dissipation rate.
The Stokes number St is a non-dimensional parameter of particle inertia, and St = 0
corresponds to a tracer particle that follows the carrier flow perfectly.

The collision rate per unit area and unit time between a particle of radius r1 and a
particle of radius r2 is given by

Nc(r1, r2)=Kc(r1, r2)np1np2, (2.2)

where Kc is the collision kernel, and np1 and np2 are droplet number concentrations.
Saffman & Turner (1956) derived the collision kernel for St � 1 in 3D isotropic
turbulence as

〈Kc(r1, r2)〉ST,3D =
√

2π R2

[(
1− ρa

ρp

)2

(τp1 − τp2)
2

(
Du
Dt

)2

+ 1
3

(
1− ρa

ρp

)2

(τp1 − τp2)
2g2 + 1

15
λ2R2

]1/2

, (2.3)

where 〈· · ·〉 denotes an ensemble average, r1 and r2 are the radii of each particle,
λ = 1/τη, g is the gravitational acceleration and R = r1 + r2 is the collision radius.
Neglecting gravity and using ρa/ρp� 1, the above equation becomes

〈Kc(r1, r2)〉ST,3D =
√

2π R2

[
(τp1 − τp2)

2

(
Du
Dt

)2

+ 1
15
λ2R2

]1/2

. (2.4)

The first term in the square brackets is the acceleration contribution, and the second is
the shear contribution. When r1 = r2, i.e. for the monodisperse case, the acceleration
contribution disappears because τp1 = τp2 and we obtain

〈Kc(r1, r1)〉ST,3D =
√

2π

15
λR3. (2.5)

The 15 in the square root originates from the relation ε/ν = 15〈(∂u/∂x)2〉 for
3D isotropic turbulence (Taylor 1935). Two-dimensionality reduces the freedom in
dimension, leading to ε/ν= 8〈(∂u/∂x)2〉. This leads to collision kernels for bidisperse
droplets and monodisperse droplets with St� 1 in 2D isotropic turbulence as

〈Kc(r1, r2)〉ST,2D =
√

2π R

[
(τp1 − τp2)

2

(
Du
Dt

)2

+ 1
8
λ2R2

]1/2

(2.6)

and

〈Kc(r1, r1)〉ST,2D =
√

π

2
λR2, (2.7)

respectively.
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2.2. The spherical formulation
Wang, Wexler & Zhou (1998b) formulated the collision kernel in 3D flows based on
the spherical formulation as

〈Kc(r1, r2)〉3D = 2πR2〈|wr(x= R)|〉g(x= R), (2.8)

where wr(x = R) (wr hereafter) is the radial relative velocity at contact, and
g(x = R) (g(R) hereafter) is the radial distribution function (RDF) at contact. The
RDF g(R) represents the clustering effect and is equal to unity when particles are
uniformly distributed. One important assumption behind (2.8) is that the relative
velocity is incompressible, thus influx and outflux across the sphere surface are equal.
The collision kernel is then half the surface area multiplied by the average magnitude
of the radial relative velocity and by g(R).

Based on the same assumption, the 2D version of the spherical formulation can be
derived as

〈Kc(r1, r2)〉2D =πR〈|wr|〉g(R). (2.9)

3. Two-dimensional direct numerical simulation
3.1. Flow simulation

The code developed by Goto & Vassilicos (2004) was used to generate a 2D
statistically stationary homogeneous isotropic turbulent flow in a periodic box of
length 2π with an inverse energy cascade giving rise to an energy spectrum ∝ k−5/3.
The DNS scheme integrates in time the modified vorticity (ωωω) equation,

∂ωωω

∂t
=∇ × (u×ωωω)+ D̂ωωω+ f , (3.1)

in wavenumber space using a fourth-order Runge–Kutta scheme, with the nonlinear
term calculated in real space, i.e. a pseudo-spectral method is adopted. Here u is the
fluid velocity and f is the external forcing to maintain a statistically stationary state.
The forcing acts only on the Fourier components in the wavenumber range between kf

and βkf (β is a constant, slightly larger than 1). The dissipation operator D̂ is defined
as

D̂= [−ν∆8 + α∆−1], (3.2)

and allows for large-scale dissipation in 2D flows through hyper-drag (α term). The
high-order (specifically eighth-order) hyper-viscosity ensures that the small-scale
enstrophy dissipation does not contaminate inertial-range statistics. This choice (3.2)
of dissipation operator produces a well-defined k−5/3 energy spectrum. More details
on this 2D turbulence simulation can be found in Goto & Vassilicos (2004) and Faber
& Vassilicos (2010).

The numerical choices for the 2D flows are summarized in table 1. In order to
prevent the forcing from directly affecting particle motions, wave motions with k> kc,
where kc = kf /1.2 (Dallas & Vassilicos 2011), were filtered out from the fluid
velocity field used to calculate particle trajectories and statistics as well as related
flow statistics. In order to compare the present 2D results with the 3D results of
Onishi et al. (2013), we introduce the following Reynolds number:

ReT = TI

τη
. (3.3)
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Run N2 kf β ν LI u′ ReT

N64 642 13 1.08 9.0× 10−19 0.696 6.12 6.12
N128 1282 26 1.04 2.5× 10−23 0.606 5.20 8.32
N256 2562 51 1.02 8.0× 10−28 0.536 4.35 11.3
N512 5122 102 1.01 2.5× 10−32 0.467 3.38 16.4
N1024 10242 205 1.005 7.5× 10−37 0.406 2.55 23.4
N2048 20482 410 1.0025 2.0× 10−41 0.355 2.13 30.5
N4096 40962 819 1.00125 6.0× 10−46 0.281 1.35 41.1

TABLE 1. Parameters for the 2D isotropic turbulence with inverse cascade.

Here TI is the integral time (TI=LI/u′), with u′ the root mean square of the fluctuating
velocity and LI the integral length (LI = π/2u′2

∫∞
0 E(k)k−1dk, with E(k) the energy

spectrum), and τη is calculated as τη = 1/
√

2〈tr(s2)〉, with s the strain-rate tensor,
whose components sij = (∂iuj + ∂jui)/2 are obtained after low-pass filtering at k = kc.
This ReT is proportional to (LI/η)

2/3, where η = (ν3/ε)1/4 is the Kolmogorov scale,
for the 3D homogeneous isotropic turbulence, and to (LI/lc)

2/3, where lc= 2π/kc, for
the 2D one.

3.2. Particle simulation
Water droplets are considered as Stokes particles with inertia governed by the
equation

dv(x p)

dt
=− 1

τp
(v(x p)− u(x p)), (3.4)

where v is the particle velocity and x p is the particle position. Onishi et al. (2009)
showed that gravity is not a relevant factor for collisions of monodisperse small
water droplets in a 3D homogeneous isotropic turbulence, and Onishi et al. (2013)
simply neglected gravity. For the sake of comparisons with Onishi et al. (2013), this
study also neglects gravity. The fourth-order Runge–Kutta method was used for time
integration of particle positions and velocities. The flow velocity at a particle position
was interpolated using fifth-order Lagrangian interpolation. Turbulence modulation by
droplets was assumed negligible because of high particle dilution.

There are several ways to deal with collision events. One of the colliding droplets
may be removed immediately after collision (scheme 1), or droplets may be allowed to
overlap (ghost-particle condition) (scheme 2). Scheme 1 is more realistic because the
collision-coalesced droplet will form a particle of larger size and will disappear from
the original size group. Scheme 2 is suitable for discussing the so-called spherical
form (refer to (2.8) and (2.9)), where the effect of clustering is clear. In order to
include a discussion of the clustering effect, this study employs scheme 2.

After the 2D background airflow reached a statistically stationary state, water
droplets were introduced into the flow. Collision detection was then started after a
period exceeding 30 times the integral time TI . The collision rate between particles r1

and r2 at the nth time step Nn
c (r1, r2) is calculated from the number of collision pairs

Nn
col.pair(r1, r2) detected in the domain for a time interval 1t as Nn

c = Nn
col.pair/(Sd1t),

where Sd is the area of the computational domain. Thus, the collision kernel at the
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FIGURE 1. Energy spectra of the present 2D flow.

nth time step, Kn
c , is obtained as

Kn
c (r1, r2)=

Nn
col.pair(r1, r2)

np1np2Sd1t
, (3.5)

where npi = Npi/Sd, where Npi (i = 1, 2) is the total number of particles with radius
ri and Sd = (2π)2. The mean collision kernel, 〈Kc〉, is calculated by time averaging
the collision kernels over the duration of the collision simulation. The radial relative
velocity at contact 〈|wr|〉, and the RDF at contact g(R) are calculated based on the
algorithm of Wang et al. (2000). A method based on molecular-dynamic-simulation
strategies was employed for detecting neighbouring pairs (Allen & Tildesley 1987;
Sundaram & Collins 1996).

4. Results and discussion
4.1. Flow statistics

Figure 1 shows energy spectra for all the runs listed in table 1. As Goto & Vassilicos
(2004) reported, the constancy of the energy flux is achieved in the inertial range,
leading to a −5/3 power law. A vertical needle shape is observed at the forcing scale,
i.e. at klc = 1.2; it is filtered out by the low-pass filter at k= kc.

Figure 2 shows the flatness factor defined as

F= 〈(∂u1/∂x1)
4〉

〈(∂u1/∂x1)2〉2 . (4.1)

The flatness factor for the 3D flow increases as ReT increases, while that for the
present 2D flow stays around 3 and is at most 4, which suggests a near-Gaussian
distribution for ∂u1/∂x1. This confirms that the 3D turbulence becomes more
intermittent with increasing Reynolds number, while the 2D turbulence does not
(to be fully accurate, its flatness factor systematically increases but the rate is
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FIGURE 2. Flatness factor against ReT .

much less than that of 3D turbulence) (Tabeling 2002). The skewness S, defined as
S = 〈(∂u1/∂x1)

3〉/〈(∂u1/∂x1)
2〉3/2, was also investigated and confirmed to be O(10−2)

for all the runs in the present 2D flow (not shown).

4.2. Collision statistics
4.2.1. Spherical formulation

The radial relative velocity at contact, 〈|wr|〉, and the RDF at contact, g(R),
are calculated following the algorithm by Wang et al. (2000), where pairs with
interparticle distance d such that R− δ/2< d 6 R+ δ/2 are considered as contacting
pairs. Wang et al. (2000) investigated the δ dependence of 〈|wr|〉 and g(R), and
observed that the two statistics are insensitive to δ if δ/R < 0.2. They investigated
this dependence for 3D homogeneous isotropic turbulence, but no study has yet
investigated it for a 2D flow.

Figure 3 shows the dependence of 〈|wr|〉 and g(R) on δ for the N256 run. The
error bars were obtained from more than five runs, each run lasting for a time 33TI .
It can be seen that 〈|wr|〉 increases with increasing δ because slightly larger sizes
of eddies of larger velocity fluctuations will contribute to the relative velocity. On
the other hand, g(R) decreases with increasing δ because the level of preferential
concentration is reduced by a larger shell volume. It is also observed that 〈|wr|〉 and
g(R) are insensitive to δ for δ/R< 0.2. These observations agree well with those of
Wang et al. (2000). Following Wang et al. (2000), this study adopts δ = 0.02R from
here onwards.

The collision kernels directly obtained from (3.5) using our DNS were compared
with the collision kernels obtained from (2.9) and found to deviate by 0.8 % for
St = 0.4, consistent with the errors of nearly 1 % previously reported in 3D DNS of
homogeneous isotropic turbulence (Wang, Wexler & Zhou 1998a; Onishi et al. 2013).

4.2.2. Stokes-number dependence of collision statistics
Figures 4 and 5 show the Stokes-number dependence of collision statistics for

the N2048 run, where the flow contained 1 024 000 particles in total. Figure 4(a)
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(b)

FIGURE 3. Dependence of (a) the radial relative velocity at contact, 〈|wr|〉, and (b) the
radial distribution function at contact, g(R), on the thickness of the spherical shell, δ.

shows the collision kernel normalized by λR2. The collision kernels for small inertial
particles where St 6 0.04 are in good agreement with (2.7), while those for larger
inertial particles are significantly larger than (2.7) due to their inertia. This tendency
is very similar to that observed in 3D flows (e.g. Wang et al. (2000)). Figure 4(b)
shows the residual RDF defined as g(R) − 1. For St � 1, an analytical solution
predicts that g(R)− 1∝ St2 (Wang et al. 2000). This holds for St 6 0.04 in the figure.
Figure 4(c) shows the radial relative velocity at contact normalized by λR. From (2.7)
and (2.9), and assuming g(R) ∼ 1, we obtain 〈|wr|〉/λR = 1/2

√
π = 0.282. The 2D

DNS results agree with the line of 0.282 for St 6 0.1.
Figure 5 shows the Stokes-number dependence of calculated collision kernels for

bidisperse droplets. The same number of different-size droplets were introduced into
the fully developed 2D isotropic turbulence for calculating the collision kernel. The
Stokes number of one group of droplets was fixed at St1 = 0.04, whereas that of the
other group was varied between St2 = 0.04 and St2 = 1. The vertical axis in figure 5
is the collision kernel Kc(St1 = 0.04, St2) normalized by λR2. The present 2D DNS
results agree with (2.6) for St2 6 0.2 but not with (2.7) except for the case where
St1= St2. This confirms that the acceleration contribution is important if not dominant
when collisions are between different-size droplets.
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FIGURE 4. Stokes-number dependence of collision statistics of monodisperse droplets in
the 2D isotropic turbulence.

102

101

100

10–1 100

St2

Present 2D DNS
Eq. (2.7) (shear only)
Eq. (2.6) (shear + accel)

FIGURE 5. Stokes-number dependence of collision statistics of bidisperse droplets in the
2D isotropic turbulence. The horizontal axis shows St2, while St1 was fixed at 0.04.

All the figures in this subsection have shown that the present 2D DNS results agree
with theoretical predictions for St� 1, in fact, roughly speaking, for St < 0.1. This
confirms the reliability of the present code and statistical procedures used in this study.
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Type i= 1 2 3 4 5

Type j= 1 0.821 1.73 2.70 3.87 4.50
2 — 0.938 1.51 2.38 3.01
3 — — 1.06 1.51 3.16
4 — — — 1.20 1.51
5 — — — — 1.29

TABLE 2. Normalized turbulent collision kernels for bidisperse particles, Kc(i, j)/λR2,
from N2048.

4.2.3. Collision growth of small inertial particles
Dallas & Vassilicos (2011) showed a rapid growth of particles with initially very

small inertia, specifically St= 0.04, in DNS of 2D homogeneous isotropic turbulence
with −5/3 energy spectrum. They concluded that powerful rare events had led to the
rapid growth in their system. However, what we have observed so far in this study
is that collision frequencies for such small inertial particles in such flows follow
the Saffman & Turner (1956) theory. This subsection aims to clarify whether such
powerful rare events do indeed violate the stochastic framework (consistent with the
Saffman & Turner theory) at very small Stokes numbers. We perform two kinds of
collision growth simulations: one is based on a stochastic (kinematic) framework,
which requires collision kernels as inputs, and the other on Lagrangian integration
obtained from our DNS framework. We then compare results to check whether the
collision growth in the Lagrangian framework can be predicted by the stochastic
framework.

Let us suppose that initially we have monodisperse droplets of type 1. Larger
droplets will form by multiple collisions, and we denote by ns the number
concentration of droplets with s times the mass of a type 1 droplet. The radius
of type i droplets is ri = i1/3r1, and consequently their Stokes number is Sti = i2/3St1.
We also assume that when two droplets collide they coalesce without bouncing nor
breaking up. Then the following equation holds (called the Smoluchowski equation
or stochastic collision equation):

dni

dt
=
∑

l+m=i

K#
lmnlnm −

∞∑
j=1

Kijninj. (4.2)

Here Klm=Kc(rl, rm) and K#
lm is 1

2 Klm for l=m and Klm otherwise. Table 2 shows the
collision kernels K#

lm for bidisperse systems obtained from our 2D DNS as described
in § 3.2. Two more ways of calculating K#

lm are considered in this study: equations
(2.6) (i.e. shear plus acceleration terms) and (2.7) (i.e. shear term only).

Following Dallas & Vassilicos (2011), we calculated the collision growth of
droplets from a Lagrangian procedure applied to our DNS of 2D turbulence. The
computational settings were basically the same as those of Dallas & Vassilicos (2011),
with 20482 grid points and 1.5× 106 droplets. The one single difference was that the
initial droplet size distribution was purely monodisperse in this study while it had
small deviations in Dallas & Vassilicos (2011). We checked that the small deviations
have little influence. Figure 6 shows the distributions of droplet sizes at t/TI = 9.5.
There were initially only s= 1 particles, and, as the collision growth proceeds, larger
s particles were created. As the initial number of droplets was 1.5× 106∼O(106) for
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Droplet type s
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10–5

10–6

LAG(2D DNS)

FIGURE 6. Distribution of droplet sizes produced from an initially uniform population
at t/τL = 9.5. LAG(2D DNS) refers to the result obtained from a Lagrangian procedure
applied to our 2D DNS, STO(Kc = Eq. (2.7), i.e., shear only), STO(Kc = Eq. (2.6), i.e.,
shear + accel.) and STO(Kc=2D DNS) refer to results obtained by solving the stochastic
equation (4.2) with three different ways of obtaining collision kernels.

the Lagrangian DNS, there is no possibility for ns/nini (where nini is the initial number
concentration) to drop below 10−6 in the present Lagrangian DNS result. However,
the calculations based on the stochastic equation (4.2) give values of ns/nini smaller
than 10−6, as indeed seen in the figure. It is clear from figure 6 that the stochastic
result with the collision kernel of (2.7) underestimates the growth speed, while the
result with the collision kernel of (2.6) slightly overestimates it. This observation
corresponds to what we observed in figure 5 (which showed an underestimate by
(2.7) in the collision kernels and an overestimate by (2.6)) and also confirms the
relevance of the acceleration term in (2.6). The stochastic result with the collision
kernels pre-calculated from DNS (see table 2) agrees with the Lagrangian DNS result.
This indicates two relevant points: One is that the Lagrangian DNS and the stochastic
simulations are both reliable. The other is that the stochastic approach, without
considering a special treatment for powerful rare events, can predict the collision
growth in this turbulence. This shows that the rapid collision growth observed in
Dallas & Vassilicos (2011) can be explained by the classical stochastic framework.
It should be noted, however, that Dallas & Vassilicos (2011) focused on the droplets
in atmospheric clouds and adopted a system of small inertial particles with a dilute
volume fraction. The mechanism they proposed may nevertheless be valid for larger
St particles and/or with more dense volume fractions. This will be partly discussed
in § 4.2.6.

4.2.4. Reynolds-number dependence of collision statistics
Figure 7(a) shows the mean collision kernel obtained for St= 0.4 from the present

2D DNS together with that from the 3D DNS of Onishi et al. (2013). The 3D DNS
was performed for the flow with Rλ ranging from 49 to 527. The largest simulation,
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FIGURE 7. (a) Collision kernel, (b) radial distribution function and (c) radial relative
velocity at contact for St= 0.4 plotted against ReT .

i.e. Rλ = 527 simulation, was performed using 20003 grid points and one billion
particles. Please refer to Onishi et al. (2013) for more details on the numerical
schemes and procedures of the 3D DNS. The collision kernels are normalized by λR2

and λR3 for the 2D and 3D results, respectively. The error bars show ±1 standard
deviation. The standard deviation for two dimensions was obtained from more than
three runs, with each run lasting for a time ranging from 5TI to 8TI , except for
the N64 runs (ReT = 6.1) where the time duration was 44TI . The particle size, r,
was 0.00525lc, meaning that r was much smaller than the cut-off filter scale. The
total number of particles, Np, was larger for larger grid number simulations so as to
maintain the area fraction φA (φA = πr2Np/(2π)2) constant. Particle number Np was
1000 for N64 and up to 4096 000 for N4096. The area fraction φA was 3.78× 10−3,
which corresponds to a high dilution, thereby suggesting only binary collisions. The
normalized collision kernel from the 3D DNS decreases for ReT > 7 (corresponding
to Rλ > 100) as noted by Onishi et al. (2013). In contrast, that from the present 2D
DNS does not decrease in the Reynolds-number range 10< ReT < 40.

Figure 7(b,c) shows the RDF and radial relative velocity at contact, i.e. g(R) and
〈|wr|〉, respectively. In the present 2D DNS, g(R) decreases with increasing Reynolds
number at low values of ReT but then becomes constant for ReT > 16. By contrast, the
3D g(R) increases at low values of ReT but then decreases for ReT > 7. Furthermore,
the 3D data of Onishi et al. (2013) in figure 7 show, as indeed concluded by Onishi
et al. (2013), that the Reynolds-number dependence of the collision kernel reflects,
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in three dimensions, the Reynolds-number dependence of g(R). Indeed, as seen
in figure 7, the 3D g(R) shows a similar Reynolds-number dependence to the 3D
collision kernel, whereas the 3D 〈|wr|〉 does not. (Note, however, that the 3D 〈|wr|〉
slowly increases towards what appears to be a constant value, and this weak trend
cancels some of the decreasing trend of the 3D g(R), causing the collision kernel to
decrease with increasing ReT at a slightly slower rate than g(R).) In two dimensions,
the radial relative velocity at contact 〈|wr|〉, the RDF g(R) and the collision kernel
all remain approximately constant or very slowly varying with ReT . This observed
difference between two and three dimensions is consistent with the anticipation by
Onishi et al. (2013) that the intermittency may be the cause of the Reynolds-number
dependence of the collision statistics in 3D turbulence.

4.2.5. Local flow statistics
With the aim to gain some insight into the effect of internal intermittency on the

collision kernel, we investigate in this subsection the probability density functions
(PDFs) of s∗=√2 tr(s2) (for both three and two dimensions) and ε∗= νs∗2 (for three
dimensions). Note that St (the characteristic global Stokes number) can be written as
St= τp/τη = τp

√
2〈tr(s2)〉.

The non-dimensional local flow strain rate, σ ∗, is defined as

σ ∗ =
{

s∗τη for two dimensions,√
ε∗/ε for three dimensions,

(4.3)

where ε = ν〈s∗2〉. This definition leads to
∫
σ ∗2PDF(σ ∗) dσ ∗ = 1 as 〈s∗2〉τ 2

η = 1.
Figure 8 shows the PDFs of the local flow strain rate, σ ∗, and the mean values of
σ ∗, i.e. 〈σ ∗〉, against ReT . Figure 8(a) shows that the most likely σ ∗, i.e. σ ∗likely (where
the PDF reaches its maximum), is smaller than unity and the probability of σ ∗> 3 is
negligibly small. It also shows that σ ∗likely decreases with increasing ReT and that the
decrease rate is larger in three than in two dimensions. This trend is quantitatively
mirrored in figure 8(b), which shows that the 3D 〈σ ∗〉 decreases with increasing
ReT and that the 2D 〈σ ∗〉 also decreases but at a smaller rate. This difference in
the Reynolds-number dependence is in line with the fact that the 3D flows have a
stronger Reynolds-number dependence of the flatness factor (see figure 2).

The decrease of σ ∗likely indicates that, as ReT increases, an increasing part of space
is dominated by low local strain rates. Here, let us define the local Stokes number,
St∗, as St∗ = σ ∗St. Then the decreasing σ ∗likely with increasing ReT is interpreted as
a decreasing St∗likely (where the PDF reaches its maximum), as illustrated in figure 9,
where St∗likely is always smaller than unity, since we limit the discussion for St < 1
in this study. The schematic illustration can explain, under the assumption that the
clustering is strong for St∗ ∼ 1, the decreasing dependence of g(R) on ReT . As
ReT increases, an increasing part of space is dominated by low local strain rates,
i.e. small St∗(< 1), which would imply lower values of g(R), while the extreme
strain rates increase in an increasingly small area of space. As the area of St∗ > 1
cannot efficiently increase g(R), the extreme strain rates cannot tip the balance and
overcome the reduction in g(R) caused by the reduced values of local strain rates
in most of the space. This mechanism for decreasing g(R) could work as far as the
extreme strain rates of St∗ > 1, i.e. σ ∗ > 1/St, hold some influence on the statistics.
According to the PDFs in figure 8(a), the probability of σ ∗ > 3 is negligibly small.
Therefore, the mechanism would not work when St� 1/3, in which case the extreme
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FIGURE 8. (a) Probability density functions and (b) mean values of the local strain
rate, σ ∗.

strain rates may tip the balance and compensate the reduction in g(R) caused by the
reduced values of local strain rates in most of the space, making the g(R) insensitive
to the Reynolds number.

In order to support our argument on the Reynolds-number dependence of g(R), we
extend our discussion to two more Stokes numbers. Figure 10 shows g(R) against ReT
for three different Stokes numbers: St= 0.1, 0.4 and 0.6. The data for St= 0.4 are the
same as in figure 7(b), but the vertical axis is differently arranged. In figure 10(b,c),
the right axes are for 3D data and the left axes for 2D data. The ranges of the right
and left axes are in the same ratio, i.e. 9–21 for the right, and 6–14 for the left in
figure 10(b) in order to focus on the trend. The 3D DNS data for St=0.1 and 0.6 have
been obtained for the present study with almost the same numerical schemes and data
processing for St= 0.4 in Onishi et al. (2013). The sole difference from Onishi et al.
(2013) is in the run duration for the smallest ReT (corresponds to the 3D simulation
for Rλ = 49 with 643 grids and 323 particles): each run duration for the smallest ReT
for St = 0.1 and 0.6 was four times larger than the other 3D DNS data in order to
decrease the standard deviation.
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FIGURE 9. Schematic illustration of the mechanism of the decreasing clustering effect
with higher Reynolds number with stronger intermittency.
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FIGURE 10. Radial distribution function at contact, g(R), plotted against ReT for
(a) St= 0.1, (b) St= 0.4 and (c) St= 0.6.

Data for St = 0.1 (i.e. �1/3) are almost constant, or at least do not show any
clear Reynolds-number dependence, as predicted by our argument based on figure 9.
By contrast, for St= 0.4 and 0.6, 2D and 3D data show variations against ReT . The
Reynolds-number dependences for small Reynolds numbers are affected by the limited
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FIGURE 11. Probability density function of the non-dimensional local Stokes number of
colliding pairs of particles, σ ∗c .

computational domain sizes. Here we focus on the Reynolds-number dependence in
the range of larger Reynolds numbers where ReT is bigger than ReT,crit (ReT,crit
differs in different data sets). For St = 0.6, as in the case of St = 0.4, the 3D g(R)
decreases with Reynolds number in the range of ReT > ReT,crit, while the 2D g(R)
almost converges towards an approximately constant value. This further supports our
argument illustrated in figure 9. Note that ReT,crit has a dependence on St. For St= 0.4
it is 7 and 16 for three and two dimensions, respectively, and for St = 0.6 it is 10
and 23 for three and two dimensions, respectively. That is, ReT,crit becomes larger for
larger St. This may be caused by larger-St particles being influenced by larger flow
motions with larger time scales, which would require larger domain sizes (i.e. larger
ReT) for this artificial effect to be eliminated. The present study limits the discussion
to St< 1, thus targeting the cloud droplets. A discussion of the Reynolds dependence
of larger-St particles would require larger ReT data sets.

4.2.6. Local particle statistics
The non-dimensional local Stokes number of colliding pairs of particles can be

defined as

σ ∗c = St∗col/St, (4.4)

where St∗col is the local Stokes number at the location where the two particles collide.
(Since all the particles have the same size in the system and the separation between
the two colliding particles (i.e. R) is negligibly small compared to the grid size ∆, we
can safely assume that St∗col is the same for both particles. Therefore, only one of the
two possible St∗col is processed.) Figure 11 shows the PDFs of σ ∗c . For both three and
two dimensions, the right tails of the PDFs become thicker, i.e. the relative frequencies
of strong events become larger with increasing ReT . Interestingly, the ReT dependence
of the tail thickness in two dimensions looks comparable with its counterpart in three
dimensions. In order to quantify the ReT dependence of the relative frequency of
strong events, we define the probability of strong events as

P(σ ∗c > 2)=
∫ ∞

2
PDF(σ ∗c ) dσ ∗c . (4.5)
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FIGURE 12. Probability for the case that σ ∗c (= St∗col/St) exceeds 2.

Figure 12 shows P(σ ∗c > 2) against ReT . In two dimensions P(σ ∗c > 2) depends on ReT
and increases with increasing ReT . This suggests that, even with little intermittency
as is the case in two dimensions, the impact of rare but strong events increases with
increasing ReT . The argument by Dallas & Vassilicos (2011) that strong rare collision
events enhance collision growth in high-Reynolds-number turbulence irrespective of
internal intermittency (even if not supported for extremely small inertial particles in
§ 4.2.3) may nevertheless be valid for non-negligibly small inertial particles. This
mechanism, which distinguishes between powerful rare collision events and internal
intermittency, requires a future study of its own based on new simulations run for
larger values of St and ReT .

5. Conclusions
In this study, we have developed a direct numerical simulation (DNS) of colliding

inertial particles in two-dimensional (2D) isotropic turbulence. The 2D DNS code is
composed of the flow code by Goto & Vassilicos (2004), the particle code by Dallas
& Vassilicos (2011) and the collision statistics code by Onishi et al. (2009). Using
this combined code, we have investigated, for the first time, the detailed collision
statistics in 2D isotropic turbulence. Firstly, the 2D version of the collision kernel
model by Saffman & Turner (1956) for small-Stokes-number particles, St � 1, has
been formulated. It has then been confirmed that the DNS results agree with the
present 2D formulation. In turn, this confirmed the reliability of both the present 2D
DNS code and the present formulation. Secondly, we have modified the spherical
formulation for three-dimensional (3D) flows (Wang et al. 1998b) in order for it to
be applicable in two dimensions. The Lagrangian pair radial relative velocity, 〈|wr|〉,
and the radial distribution function at contact, g(R), depend on the thickness of the
contact shell, δ. We have observed a very similar dependence of 〈|wr|〉 and g(R) on δ
in two dimensions as previously observed in three dimensions by Wang et al. (2000).
As a result, the value of δ was fixed at δ = 0.02R, as in Wang et al. (2000), in this
study. It has been confirmed that g(R)− 1∝ St2 and 〈|wr|〉/λR= 1/2

√
π (= 0.282) for

St� 1 in the present 2D flow.
The 2D DNS results have been compared with the 3D DNS data of Onishi et al.

(2013) for St= 0.4 and with newly obtained 3D DNS data for St= 0.1 and 0.6. Onishi
et al. (2013) reported that, for St= 0.4, the collision kernel decreases with increasing
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Reynolds number, reflecting the decreasing trend of the clustering effect. This
study has investigated the role of turbulence intermittency in the Reynolds-number
dependence. The 3D turbulence has internal intermittency, while the 2D turbulence
has virtually none (Tabeling 2002). This has been confirmed in terms of the flatness
factor F= 〈(∂u1/∂x1)

4〉/〈(∂u1/∂x1)
2〉2. We have observed that the clustering effect for

the 3D flow decreases for St= 0.6 as well as for St= 0.4 in large-Reynolds-number
ranges with increasing Reynolds number, while that for the 2D flow does not show
a clear Reynolds-number dependence in the corresponding large-Reynolds-number
range. This observation supports the view that the Reynolds-number dependence of
the clustering effect observed in three dimensions is due to internal intermittency of
the 3D turbulence. We have further investigated the local flow strain rates (σ ∗) and
confirmed that an increasing part of space is dominated by low σ ∗ as the Reynolds
number increases, i.e. as the flow intermittency grows. This means that, as the
Reynolds number increases, an increasing part of space is dominated by small St∗,
where St∗ is the local Stokes number defined as St∗ = σ ∗St, which would decrease
g(R) when the most likely σ ∗ is smaller than unity. As the area of St∗ > 1 cannot
efficiently increase g(R), the extreme strain rates cannot overcome the reduction in
g(R) caused by the reduced values of local strain rates in most of the space. This
mechanism for decreasing g(R) could work as far as the extreme strain rates of
St∗ > 1, i.e. σ ∗ > 1/St, hold some influence on the statistics. The probability of
σ ∗> 3 is negligibly small. Therefore, the mechanism would not work when St� 1/3,
in which case the extreme strain rates may compensate the reduction in g(R) caused
by the reduced values of local strain rates in most of the space, making the g(R)
insensitive to the Reynolds number.

A comparison between the 2D Lagrangian DNS and a stochastic simulation has
revealed that the collision growth observed in Dallas & Vassilicos (2011) for initially
St= 0.04 particles can be predicted by the conventional stochastic approach. However,
for Stokes numbers not much smaller than unity (e.g. St = 0.4), the PDF of local
Stokes numbers sampled at the collision sites of particle pairs indicates that local
strong collision events become increasingly frequent with increasing Reynolds number
even in 2D inverse-cascading turbulence, i.e. irrespective of the internal intermittency
of the turbulence.
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