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A NOISE TRADER MODEL AS A
GENERATOR OF APPARENT
FINANCIAL POWER LAWS AND
LONG MEMORY

SIMONE ALFARANO AND THOMAS LUX
University of Kiel

In various agent-based models, the stylized facts of financial markets (unit roots, fat tails,
and volatility clustering) have been shown to emerge from the interactions of agents.
However, the complexity of these models often limits their analytical accessibility. In this
paper we show that even a very simple model of a financial market with heterogeneous
interacting agents is capable of reproducing these ubiquitous statistical properties. The
simplicity of our approach permits us to derive some analytical insights using concepts
from statistical mechanics. In our model, traders are divided into two groups,
fundamentalists and chartists, and their interactions are based on a variant of the herding
mechanism introduced by A. Kirman (Ants, rationality, and recruitment, Quarterly
Journal of Economics 108, 137–156, 1993). The statistical analysis of simulated data
points toward long-term dependence in the autocorrelations of squared and absolute
returns and hyperbolic decay in the tail of the distribution of raw returns, both with
estimated decay parameters in the same range as those of empirical data. Theoretical
analysis, however, excludes the possibility of “true” scaling behavior because of the
Markovian nature of the underlying process and the boundedness of returns. The model,
therefore, only mimics power law behavior. Similarly to the phenomenological volatility
models analyzed by LeBaron (Stochastic volatility as a simple generator of apparent
financial power laws and long memory, Quantitative Finance 1, 621–631, 2001), the usual
statistical tests are not able to distinguish between true and pseudo-scaling laws in the
dynamics of our artificial market.
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1. INTRODUCTION

Over the last couple of years, the study of behavioral models of dynamic interaction
in financial markets has brought about a better understanding of some of the key
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stylized facts of financial data, in particular of the fat tails of the distribution
of returns and the temporal dependence in volatility. Although these statistical
features have counted as almost universal findings for practically all financial
time series for a long time and appear to be extremely uniform across assets and
sampling horizons, economic explanations of their behavioral origins were nonex-
istent until very recently. However, the recent rush of interest in heterogeneous
agents models, the availability of fast computers for simulations of markets with a
large number of agents, and the introduction of new analytical and computational
tools (often adapted from statistical physics) in the analysis of multiagent systems
have brought about quite a number of models in which the above stylized facts
(one of them or both) have been shown to be emergent properties of interacting
agent dynamics. Some of these contributions show that besides reproducing key
statistical properties, the overall dynamics is also indistinguishable from a unit-
root process. Hence, despite having identifiable behavioral roots (in terms of the
assumed speculative behavior of the agents), no immediately recognizable traces
of predictability can be found in the simulated time series, and the dynamics
appears to be observationally equivalent to a martingale process.

Early papers in this area have often been the results of collaborations between
economists and physicists, e.g. Takayasu et al. (1992), Palmer et al. (1994), and
Baki et al. (1997). Although they made important contributions to getting this
literature started, in some of these early papers the proximity of the resulting time
paths to empirical data was quite limited. Later studies have merged this multiagent
approach with the type of noise trader–fundamentalist interaction introduced by
Beja and Goldman (1980) and Day and Huang (1990). Papers along this line
included the microscopic stock market models of Lux and Marchesi (1999, 2000),
Chen et al. (2001), Chen and Yeh (2002), Iori (2002), Farmer and Joshi (2002),
and LeBaron (2000) as well as the adaptive belief dynamics of Gaunersdorfer
and Hommes (2005) and Gaunersdorfer et al. (2000). A related approach can be
found in the artificial foreign exchange markets of Arifovic and Gencay (2000)
and Georges (2005), in which agents’ selection of strategies is formalized via
genetic algorithms.

Interestingly, some general conclusions seem to emerge from this literature.
First, volatility clustering and fat tails may result from adaptive behavior in the
presence of indeterminacy of the equilibrium of the dynamics [see Lux (2005)].
In particular, with different strategies performing equally well in some kind of
steady state, stochastic disturbances lead to continuously changing strategy con-
figurations, which every once in a while generate bursts of activity. This type
of dynamics can be found already in Youssefmir and Huberman (1997) in the
context of a resource exploitation model and can be identified in both the papers
by Lux and Marchesi (1999, 2000) and the otherwise quite different GA models
of Arifovic and Gencay (2000), Lux and Schornstein (2005), and Georges (2005).

Another more general avenue toward an explanation of these features can be
found in Gaunersdorfer and Hommes (2005), who show that volatility clustering
can emerge from stochastic dynamics with multiple attractors. Small amounts of
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noise added to a deterministic dynamics with two or more attractive states can lead
to recurrent switches between these attractors. As these different regimes often
have different levels of variability of the dynamic variables (e.g., a fixed point
vis-à-vis a chaotic attractor), some degree of volatility clustering is a somehow
natural result of such a process. Interestingly, both of these mechanisms are some-
times identified as examples of intermittent dynamics, which might, therefore, be
thought of as a general conceptual framework for the explanation of the particular
characteristics of financial markets.

Although the above models contain—due to their origin from the behavioral
finance literature—more or less complicated descriptions of agents expectations
and strategy choices, some authors with a physics background have rather tried to
reduce the dynamics to a few basic principles able to generate the required time
series characteristics. Recent models with only a few ingredients for activation
and frustration of agents leading to realistic simulated output include those of
Eguiluz and Zimmermann (2000), Bornholdt (2001), and variants of the so-called
minority game [Challet et al. (2001)].

Our aim in this paper is similar to that of these studies. We are interested in
whether an extremely simplified model of interaction of noise traders and fun-
damentalists is already sufficient to reproduce the key stylized facts: unit roots,
fat tails, and volatility clustering. The model we investigate in this paper is a
simple variation of the herding dynamics introduced by Kirman (1993) and Lux
(1995). We distinguish between two groups and allow for mimetic contagion
among agents by assuming that they will move from one group to the other with a
certain probability depending on group size. This leads to the natural emergence
of majority opinions, with all agents sharing one of two available opinions. How-
ever, the stochasticity of the dynamics also leads to recurrent switches between
majorities, so that the model generates a bimodal ergodic distribution of the
agents’ configuration. With a simple price adjustment rule added, this bimodality
carries over to prices as well. Simulations of this model show that it can mimic
in surprising quantitative accuracy the above stylized facts. The simplicity of the
model also makes it possible to derive some analytical insights into its dynamics.
In particular, it is straightforward to show that the model does not exhibit “true
scaling,” neither concerning the distribution of large returns, nor for the temporal
dependence structure of volatility. This apparent scaling, in fact, results from a
kind of “regime switching” between the two modes of its stationary distribution.
This is a phenomenon similar to the difficulty of distinguishing between apparent
and true scaling in certain stochastic processes (Anderson et al. 1999; Granger
and Teräsvirta 1999; Diebold and Inoue 2001; LeBaron 2001). Our analysis thus
demonstrates that “apparent” scaling is not confined to a particular class of ap-
propriately constructed stochastic models, but might also prevail in behavioral
approaches with interacting agents.

Closely related models have also been studied by Wagner (2003) and Alfarano
et al. (2005a, 2005b). Whereas Wagner (2003) investigates a more complicated
model in which agents are allowed to switch between three different groups,
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Alfarano et al. (2005a) elaborate on a model with two groups of traders sim-
ilar to the present one and estimate its parameters for selected financial time
series. Alfarano et al. (2005b) derive closed-form solutions for both conditional
and unconditional moments of a similar model, which provide insights into the
mechanisms generating the apparent power-law behavior.

The remainder of this paper is structured as follows: in Section 2 we introduce
a simple model of contagion. Section 3 provides the details of the artificial market
structure, in which we embed the contagion mechanism. Some analytical approx-
imations of the return dynamics are also derived that provide us with important
insights into the origin of leptokurtosis and temporal dependence in volatility.
Section 4 contains a statistical analysis of simulated data demonstrating their
close proximity to empirical records in the sense of scaling laws with “realistic”
exponents. The finite sample properties of some of these tests are analyzed in
Section 5 and compared to their known asymptotic behavior. As it turns out,
apparent scaling occurs over a well-defined time horizon beyond which the “true”
asymptotic behavior is recovered. Some final remarks conclude the paper.

2. A SIMPLE MODEL OF CONTAGION

2.1. Transition Rates

Our market is populated by N agents, each of them belonging either to group A

or to group B. The numbers of agents in the two groups are denoted by NA and
NB , respectively. The state of the system can be conventionally described by an
intensive variable x:

x = NA − NB

N
. (1)

The probability of observing a transition of the system during a time interval �t0
from a configuration {NA,NB} to {N ′

A,N
′
B} will be denoted by

ω(N
′
A,N

′
B, t + �t0 | NA,NB, t).

Because in the limit of continuous time, �t0 → 0, multiple switches during one
incremental time unit become increasingly unlikely, we can confine the analysis
to the cases NA ± 1 and NB ∓ 1 for sufficiently small �t0. The conditional
probabilities for changes of the configuration of agents are assumed to reflect
herding tendencies in the following way:

ω(NA + 1, NB − 1, t + �t0 | NA,NB, t) = ν�t0 NB
NA

N
,

ω(NA − 1, NB + 1, t + �t0 | NA,NB, t) = ν�t0 NA
NB

N
,

ω(NA,NB, t + �t0 | NA,NB, t) = 1 − 2ν�t0
NA NB

N
.

(2)

Equations (2) should be interpreted as follows: the probability of one agent switch-
ing from group A to group B per incremental time unit �t0 is given by the
probability of an A-agent being prone to a change of opinion (which we assume
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FIGURE 1. The upper panel shows the behavior of the fundamental (simply assumed to
be constant) and the market price from a typical simulation. The lower panel shows the
returns of the market price, computed as log increments over unit time intervals. Underlying
parameters of this run are N = 100, ν = 1, pF = 10. The simulation is performed using
the binomial updating method from equations (A.4) and (A.5).

depends on the relative size of the B group, NB/N ) times the number of A-agents
in the population, NA. Vice versa, the probabilities for changes in the opposite
direction are explained by analogous arguments. The constant ν is a parameter for
the strength of contagion. In order to guarantee that on average only one agent
will switch between groups, the elementary time step has to be constrained by the
inequality

1

2
ν�t0N ≤ 1.

This model, therefore, formalizes interactions between economic agents (traders)
based on imitative behavior. The contagion effect is modeled via the dependence
of the transition probabilities on the fraction of traders in the alternative state.
The perfect symmetry of equation (2) could suggest a similarly symmetric out-
come of this dynamics. However, this is only partially correct, as the outcome of
the process is a temporary polarization of opinion among the traders (see Figure 1),
although the equilibrium distribution of x turns out to be symmetric around 0.

Taking stock of equation (1), NA and NB could be expressed as

NA = 1 + x

2
N and NB = 1 − x

2
N.
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Expressing the probabilities (2) in terms of x, we end up with1

ω(x → x + �x) = N
(1 − x2)

4
ν�t0 and

ω(x → x − �x) = N
(1 − x2)

4
ν�t0, (3)

and obviously

ω(x → x) = 1 − ω(x → x + �x) − ω(x → x − �x),

with the elementary step of the variable x being �x = 2/N . In this setup, x = −1
and x = 1 are absorbing states in which no change of the population can occur any
more. To avoid the total extinction of one group, we introduce reflecting boundary
conditions (RBCs hereafter) at the edges:

ω(1 → 1 − 2/N) = 1, ω(−1 → −1 + 2/N) = 1,

ω(1 − 2/N → 1) = 0, ω(−1 + 2/N → −1) = 0.

The previous probabilities together with the RBCs for the realizations of x specify
a finite and homogeneous birth–death process [see Chapter 1 in Kelly (1979)].
The two states |x| = 1 are now transient rather than absorbing states, so that their
equilibrium probabilities are identically zero (Pe(|1|) = 0), because they could
not be reached from any other state and, if they happened to be chosen as initial
conditions, the system would never return to these states. If we exclude the states
|x| = 1, the resulting finite Markov chain is ergodic, because it is aperiodic and
irreducible.2 These properties guarantee the existence of a unique equilibrium
distribution Pe(x), to which the chain will converge for any initial distribution
P0(x).

2.2. Equilibrium Distribution

To derive the functional form of the equilibrium distribution Pe(x), we adopt the
following strategy: we assume that for our Markov chain the detailed balance
condition

ω(x → x + �x)w(x) = ω(x + �x → x)w(x + �x) (4)

holds for a particular weighting function w(x), which we assume to be strictly
positive in its domain and to sum up to one. If the detailed balance condition holds,
w(x) coincides with the equilibrium distribution Pe(x), given the ergodicity of
the chain. Therefore, if w(x) indeed can be shown to exist and if it can be derived
in closed form, we have proved that the detailed balance condition holds for our
model and we have at the same time recovered the functional form of Pe(x).
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Because we assume that w(x) is strictly positive, we can write w(x) as an
exponential function:

w(x) = exp(U(x)). (5)

By means of equations (4) and (5), we obtain

exp(U(x + �x) − U(x)) = (1 − x)(1 + x)

(1 − (x + �x))(1 + (x + �x))
. (6)

For large N , we can rewrite equation (6) in the limit �x → 0, which results in a
simple differential equation for U(x),

dU(x)

dx
= − d

dx
ln((1 − x)(1 + x)),

which we can easily solve for U(x):

U(x) = − ln(1 − x2) + c.

The equilibrium distribution is then given by

Pe(x) = 1

L

1

1 − x2
, (7)

where L is its normalization constant,

L =
∫ 1−δ

−1+δ

1

1 − x2
dx = ln

2 − δ

δ
, (8)

with δ = 1/N (we explain in detail in Section 3.2 below why the boundaries of
the integral are −1 + 1/N and 1 − 1/N ). Given that the weighting function w(x),
defined in (4), exists, the detailed balance condition holds and the Markov chain is,
therefore, time-reversible. Time-reversibility of the Markov chain implies that the
probability of a transition from a state x0 to any other state of the chain x depends
solely on x and x0, but not on the particular path. In other words, the equilibrium
properties of the chain are invariant under a reversal of time [see Chapter 1 in
Kelly (1979)].

It is easy to obtain the second and fourth moments of x, which are, respectively,
given by (see Appendix A.3 for details)

E[x2] = 1 − 2

L
(1 − δ) (9)

and

E[x4] = 1 − 4

L

(
2

3
− δ

)
+ o(δ). (10)

The previous mechanism is obviously inspired by Kirman’s analysis of opin-
ion formation (Kirman, 1993). The main difference from Kirman’s model is the
absence of a constant term in the transition probabilities (2), introduced by the
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author to prevent the existence of absorbing states at |x| = 1. We have replaced this
ingredient by imposing reflecting boundary conditions, which similarly prevent a
lock-in at one state with all agents following one of the two behavioral alterna-
tives. As a consequence, the only possible scenario in our case is a distribution
with mass concentrated in the extreme values (U-shaped distribution), whereas in
the original model a flat distribution and a distribution with a unique mode at zero
are also possible, depending on the particular values of the parameters. Alfarano
et al. (2005a) have investigated another variant of the Kirman model, allowing
asymmetric unconditional distributions. In their model the constant parameters in
the transition probabilities are allowed to assume different values for switches in
one or the other direction. This enhanced flexibility of their model allows a wide
spectrum of outcomes of stationary population distributions and the associated
return distributions derived from them.

3. THE FINANCIAL MARKET MODEL

3.1. Agents’ Behavior

We now use this two-state opinion dynamics as the main ingredient in a financial
market model with interacting heterogenous agents. Our market participants are
divided into two groups:

NF fundamentalists (F ), who buy (sell) a fixed amount of stocks TF when the price
is below (above) its fundamental value pF ;

NC noise traders (C), who are driven by herd instincts.

Depending on their expectations of future price movements, noise traders can be
either optimists (buyers or O) or pessimists (sellers or P). TC represents the fixed
transaction volume of each noise trader, and TF the sensitivity of fundamentalists
to deviations between fundamental value and market price. Although the numbers
of F and C are constant over time (i.e., there are no transition of agents between
their groups), switches from O to P and vice versa are allowed. The two-state
model, detailed in Section 2, governs the transition rates for this changes of noise
traders between these two sub-groups, so that the contagion process of Section 2
formalizes the switches of the noise traders population between optimistic and
pessimistic majorities. Without loss of generality, the fundamental price is assumed
to be constant over time.

Assuming sluggish price adjustment by a market maker in the presence of excess
demand, the price dynamics can be formalized by

dp

pdt
= β[NF TF (pF − p) + NCTCx], x = NO − NP

NC

, (11)

where β is the speed of price adjustment.
As an approximation to the resulting disequilibrium dynamics, we may consider

instantaneous market clearing (Walrasian scenario). We can, then, solve (11) for
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the equilibrium price:

p = pF + NCTC

NF TF

x. (12)

Without loss of generality, we simplify notation by choosing the following set of
parameter values:

NC = NF = N, TC = TF = 1.

Due to equation (12), the average price is pF because the mean of x is zero. We
can observe, however, phases in which the asset is undervalued (compared to the
fundamental price) alternating with episodes in which it is overvalued. In the first
case the majority of the noise traders is in the pessimistic group, whereas in the
second case most of them are in an optimistic mood.

We define the returns as the log-increment of prices over an arbitrary time
interval,3 �t ,

r(t,�t) = ln

[
p(t + �t)

p(t)

]
= ln

[
pF + x(t + �t)

pF + x(t)

]
≈ 1

pF

[x(t + �t) − x(t)],

where the last approximation holds as long as |x|/pF � 1.

3.2. Simulation Results and Analytical Approximations

As it turns out, our simple model is able to reproduce some of the salient charac-
teristics of financial markets. Figures 1 and 2 illustrate the results of the model.
Volatility clusters are visible in the time series of returns and the unconditional
distribution of returns is leptokurtic. The autocorrelations of absolute and squared
returns (as a measure of volatility) are positive over an extended time horizon, while
the raw returns show almost no correlation. All these features are in qualitative
agreement with empirical findings.

In addition to our Monte Carlo analysis of the simulated data, detailed in
Sections 4 and 5 below, we can provide some analytical results for the dynamics
of the opinion index x and the associated returns. In Appendix A.2, we show that
the dynamics of the discrete variable x can be approximatively characterized by
the recursive stochastic difference equation4

x(t + �t) − x(t) =
√

ν�t(2 − ν�t)

N
[1 − x2(t)] η(t + �t), (13)

where η(·) is a random variable drawn from a standard normal distribution. The
previous equation is called the Langevin equation in the pertinent literature. Note
that because of the Gaussian approximation of the noise term, we cannot exclude
values of the variable x outside its admissible domain |x| < 1 − δ. Therefore,
equation (13) has to be supplemented by reflecting boundary conditions, which
are conveniently formalized as (cf. Appendix A.1)

if x(t) > 1 − δ then
x(t + �t) + x(t)

2
= 1 − δ, (14)
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FIGURE 2. (a) Autocorrelation function of raw, squared, and absolute returns. (b) Distribu-
tion of normalized returns compared to a standard normal distribution; notice the leptokurtic
shape. (c) Inverse cumulative distribution. Parameters: N = 100, ν = 1, pF = 10, number
of observations 3 × 105.

if x(t) < −1 + δ then
x(t + �t) + x(t)

2
= δ − 1, (15)

which establish the behavior of x in the nonpermitted region. Moreover, note
that equations (14) and (15) are equivalent to a reflection around the points x =
−1 + 1/N and x = 1 − 1/N . The domain of the variable x in the continuous
approximation, therefore, extends to the interval [−1+ 1

N
, 1− 1

N
]. This determines

the value of δ = 1/N in equation (8).
Because r(t,�t) = 1

pF
(x(t +�t)− x(t)), the approximation (13) is extremely

useful in analyzing the dynamics of returns. First, equation (13) reveals that
heteroscedasticity in the returns series is due to the nonlinear state-dependent
diffusion term, which directly derives from the Markovian herding interaction
among traders. The diffusion term, in fact, vanishes at the edges (|x| ≈ 1) and
attains its maximum at x = 0. Moreover, by means of equation (13), we can
compute the variance and kurtosis of the return distribution,

E[r2] = 1

Np2
F

ν�t(2 − ν�t)

L
(1 − δ) (16)
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TABLE 1. Sample statistics of returns

Mean −2.29 × 10−7

Variance 3.758 × 10−5

Kurtosis 2.505
Skewness 0.057
Bera–Jarque test 59,571
(Probability) (0.000)

and

κ[r] = L

(1 − δ)2
− 3. (17)

All the odd moments are identically zero, given the symmetry of the system. It
can be verified that the resulting return distribution is leptokurtic (i.e., κ > 0) for
any number of noise traders.5 Interestingly, if we compare the theoretical values
of variance and kurtosis,6 as given by equations (16) and (17), with the simulated
values from Table 1, we notice a quite good accuracy of these approximations. It
therefore appears that the Gaussian approximation (13) of the underlying discrete
binomial process given by equations (A.4) and (A.5) in the Appendix is rather
satisfactory.

Note that autocorrelations for raw returns are identically zero for all time-lags,
due to the absence of a drift term in equation (13) and the independence of
the Gaussian noise. To compute the correlation of higher moments, for example
squared and absolute returns as a proxy for the volatility, is a more cumbersome
task. Note that equation (13) does not include the effect of the reflecting boundaries,
which play a crucial role in the dynamics of the model. It should, therefore, be
obvious that the reflecting boundaries would add some element of mean-reversion
to the approximate law of motion (13). To compute exact autocorrelation formulas
for both raw returns and absolute or squared returns, one would have to include the
effect of the RBCs in the dynamics. Unfortunately, we have not been able to derive
these autocorrelation functions analytically. We rely, therefore, on Monte Carlo
simulations of the process (13) together with equations (14) and (15). Figure 2
shows the slow decay of the autocorrelation of both absolute and squared returns,
together with the almost complete absence of autocorrelation in raw returns.
The approximatively exponential decay of these autocorrelation functions is not
surprising, given the Markovian nature of the underlying process.

It is also worthwhile pointing out that the analytical structure of the stochastic
equation governing the dynamics of returns falls into the wide class of stochas-
tic volatility models employed in financial econometrics. However, note that in
contrast to phenomenological models of volatility, our model has been derived
from a behavioral approach of interacting agents, albeit a very simple one. It could
therefore be viewed as a bridge between the econometric and agent-based models
of asset price dynamics.
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TABLE 2. Results of Box–Ljung test

8 12 16

Rt 58.59 96.17 116.74
R2

t 40,198 52,270 61,611
|Rt | 107,132 138,035 160,551

3.3. Mean first passage time

Under a proper choice of the time interval �t (see Appendix A.2), the dynamics
of the system can be modeled via the Langevin equation given by equation (13),
where the drift and diffusion functions are given by

A(x) = 0 and D(x) = ν(2 − ν�t)

N
(1 − x2). (18)

The equilibrium distribution (7) is bimodal, with two modes at |x| = 1 − δ due
to the reflecting boundary conditions. The system can be described as “bistable”
with two “equilibria” coincident with the modes. However, we might observe
transitions between them with finite probability. The average time needed for a
transition is denoted as the mean first passage time T0, which can be computed
using the textbook formula [see Gardiner (2003, p. 139)]

T0 = 2
∫ 1−δ

δ−1

dy

ψ(y)

∫ y

δ−1

ψ(z)

D(z)
dz, (19)

where ψ(x) = exp[
∫ x

a
2A(x ′)
D(x ′) dx ′]. The integral (19) can be computed explicitly,

leading to7:

T0 = 2

2 − ν�t

N(1 − δ)

ν
[ln(N) + ln(2 − δ)] = 2

N ln(2N)

ν
+ o(δ). (20)

4. STATISTICAL ANALYSIS OF SIMULATED DATA

To see how closely the statistical results from our simulated data match empir-
ical observations, we performed a series of experiments with a long data set of
1,000,000 integer time steps. Tables 1 and 2 give some elementary statistics for
the whole sample. As can be seen, the resulting distribution is characterized by
significant excess kurtosis and slight positive skewness. The Bera–Jarque test for
normality leads to a strong rejection of its null hypothesis.

To investigate the autocorrelation structure, we applied the Box–Ljung test
to auto-correlations of up to 8, 12, and 16 lags for the raw data as well as the
squares and absolute values of returns. In harmony with empirical records, there
is only slight autocorrelation in the returns themselves, but highly significant
autocorrelation in the squares and absolute values. Because, with samples of that
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TABLE 3. Estimated parameters of fractional differentia-
tion for 500 subsamples

Mean Minimum Maximum

Rt −0.09 −0.46 0.24
R2

t 0.33 0.01 0.63
|Rt | 0.35 0.08 0.61

TABLE 4. Hurst exponent from DFA for 500 subsamples

Mean Minimum Maximum

Rt 0.40 −0.13 0.71
R2

t 0.66 0.26 1.21
|Rt | 0.65 0.27 1.15

size, we are able to detect even very small degrees of autocorrelation with high
reliability, we would not expect the results of the Box–Ljung test to be insignificant
(in fact, they allow rejection of the null of no autocorrelation even for the raw
returns, presumably due to the influence of our reflecting boundaries). However,
what is interesting here is that the statistics are orders of magnitude larger for the
squares and absolute values of returns.

The highly significant entries for the latter transformations lead to the question
of whether these time series are able to mimic the empirical observations of long-
term dependence, defined as hyperbolic decay of the autocorrelation function,

ACF(τ ) ≈ τ−γ .

where γ is the decay parameter. To this end, we estimate the parameter of fractional
differentiation, denoted by d, from a regression in frequency space following
the approach of Geweke and Porter-Hudak (1983) (GPH), as well as the Hurst
exponent H from detrended fluctuation analysis (DFA) (Peng et al. 1994); see
Tables 3 and 4.

The GPH method is based on the linear regression of the log-periodogram
on transformations of low frequencies of the Fourier spectrum. The estimated
parameter d is related to the decay rate of the autocorrelation function by

γ = 1 − 2d.

A value of d = 0 would indicate the absence of long memory, whereas d

significantly above zero speaks in favor of long-term dependence. Table 3 gives
summary results from 500 sub-samples of 2,000 observations each. As it turns
out, we get results in the vicinity of zero for the raw data, but on average much
higher values for the squares and absolute returns. In fact, the latter are very close
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to typical empirical estimates obtained with returns of various financial markets
[cf. Lux and Ausloos (2002)].

Estimates from the alternative DFA approach (shown in Table 4) confirm these
results. Note that the theoretical relationship between the two coefficients is

H = 2d + 0.5.

We observe that for both methods we find satisfactory agreement for raw returns.
For absolute and squared returns, results from both methods are qualitatively
similar, albeit with a larger difference in the numerical values. The later might be
explained, however, by different small-sample biases of the two estimators.

The appearance of long-term dependence is particularly interesting because
simple inspection of the model, in fact, indicates that it does not exhibit this
feature: Figure 2 indicates that the absolute and squared returns are characterized
by approximately exponential decay of their autocorrelation function, which is, in
fact, the defining property of short-memory processes. This property does not come
as a surprise given the Markovian nature of the underlying stochastic process (3).
However, it is known that certain classes of regime-switching models can indeed
“erroneously” give the impression of long-term dependence [Lobato and Savin
(1998); Anderson et al. (1999); Granger and Teräsvirta (1999); Diebold and Inoue
(2001)]. Because switching between the two modes of the distribution in our
model is similar to changes of regime in Markov-switching models, we conjecture
that the source of apparent long-term memory should be closely related to these
findings in the statistical literature. Interestingly, a similar result can be found in
Kirman and Teyssière (2002), who study a more complicated foreign exchange
market model in which Kirman’s herding model is combined with a monetary
approach à la Frankel and Froot (1986).

We now turn to the unconditional distribution of the synthetic data. To com-
plement the results for kurtosis, we estimate the so-called tail index to get an
assessment of the heaviness of the tails of the simulated returns. Empirical re-
search indicates again a hyperbolic relationship for the decay of the probability in
the outer part of the return distribution, following

P(|rt | > X) ≈ X−α,

with α usually in the range of [2.5, 5] [cf. Lux and Ausloos (2002)]. Here we
applied the usual maximum likelihood estimator proposed by Hill (1975), using
the same 500 sub-samples and tail sizes of 10, 5 and 2.5%. Both the range of
the estimators and the tendency toward slightly increasing numbers are in good
harmony with empirical results (see Table 5).

The martingale behavior of financial data is another well-established stylized
fact, cf. de Vries (1994), usually interpreted as a consequence of informational
efficiency. In other words, one is typically not able to reject the null hypothesis that
the price follows a unit root process. To test for a unit root, we applied the standard
Dickey–Fuller test to subsamples of different lengths (from 500 to 10,000; see

https://doi.org/10.1017/S1365100506060299 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100506060299


94 SIMONE ALFARANO AND THOMAS LUX

TABLE 5. Tail index estimate for 500 subsamples

Mean Minimum Maximum

10% 3.27 2.45 4.17
5% 4.27 2.92 5.92
2.5% 5.33 3.66 7.90

TABLE 6. Results of a unit root test

Size of the
subsample Range of ρ One-sided testa Two-sided testa

500 0.99998279–1.00000171 0 (2,000) 615 (2,000)
2,000 0.99999562–1.00000042 0 (500) 114 (500)
5,000 0.99999824–1.00000016 0 (200) 28 (200

10,000 0.99999909–1.00000008 0 (100) 0 (100)

a Number of rejections at 95% level with the number of tested subsamples are given in parentheses.

Table 6), in order to check whether the simulated time series show the same
pattern as empirical data.

As can be seen from Table 6, we cannot reject the null hypothesis of a unit
root using a one-sided test for all the subsamples considered. In contrast, applying
a two-sided test, we observe several cases of rejections in favor of an explosive
root of the dynamics. Inspection shows that these cases are driven by switching
between the two modes of the distribution in the pertinent subsample. The fast
change of the majority of the noise traders creates the impression of an exponential
increase of the price (leading to an estimated autoregressive parameter ρ > 1) for
particular choices of the size of subsamples, even though the time series of the
price is bounded. However, with longer sample sizes we observe fewer rejections
also for the two-sided test, because the time series then runs over several transitions
between the two “equilibria.”

5. DISCOVERING THE ASYMPTOTIC BEHAVIOR

The incongruity between the theoretical properties of the model (absence of long
memory) and the results of the statistical investigation, described in the previous
section, in the end should be a “finite size” effect (even though one might recover
the “true” behavior only with immense amounts of data). To show the transition
toward its true behavior in the case of apparent long-term dependence of volatility,
it is necessary to study the asymptotic correlation properties of the time series.
To this end, Figure 3 shows the Hurst exponent, estimated via DFA, as a function
of different time windows (ranging from 10 to 5 × 105 time steps �t) for raw,
squared, and absolute returns.
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FIGURE 3. Estimated Hurst exponents for raw, squared and absolute returns for differ-
ent time windows calculated via detrended fluctuation analysis. The dashed line is the
benchmark value for a random walk. Note that for our numerical example, T0 ≈ 1,060 for
N = 100.

Concerning the raw returns, we observe a vanishing Hurst exponent, which
after its initial fluctuations around 0.5 eventually approaches zero for longer time
windows. This behavior can be explained by the boundedness of the time series
of the price, which leads to constant variance of returns. Since the Hurst exponent
measures the rate of increase of the variance, it therefore has to decline toward
zero for large time horizons. But if we restrict our time horizon to a few hundred
or thousand time steps (with the extent of the preasymptotic regime depending on
parameter values), the Hurst exponent stays close to 0.5, the value of a random
walk.

The estimate shows different properties for the time series of squared and
absolute returns. For moderate time horizons, both exhibit values above 0.5, which
would be characteristic of long-memory processes, whereas from about ∼104 time
steps, the Hurst exponent declines to the typical value of the random walk; and
at the end we observe a convergence to zero that is indicative of a bounded time
series.

The explanation of these results lies in the oscillatory pattern of the price.
These oscillations create a characteristic time scale T0 [see equation (20)], below
which the time series is indeed close to a random walk, with a linear increase of
the variance over time. This is exactly the time scale over which the difference
equation (13) provides a good approximation of the dynamics. The zero drift of
this equation is, in fact, in perfect harmony with the pseudo-empirical result of
nonrejection of a unit root and a Hurst coefficient of 0.5 for raw returns. However,
for longer time series (the size of the sample T several times greater than T0), the
switching between the two modes becomes important and the variance reaches a
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constant value because it then averages over numerous oscillations between the
two modes. These oscillations have the character of regime-switching dynamics
alternating between a calm period and a turbulent one, which is observationally
similar to a long-memory process, at least for time windows not too large compared
to T0. This effect seems to be responsible for the spurious estimates H > 0 for
squared and absolute returns, when the size of the sample is no too long.

The time scale T0 therefore determines the necessary number of data for re-
covering the true behavior of the model. Samples of smaller size, on the other
hand, give rise to different “spurious” characteristics, which are, in fact, in good
agreement with the empirical data; from (20) we can even calculate the scaling of
the necessary sample size depending on the parameters of the model.

6. CONCLUSIONS

This paper has analyzed an extremely simple variant of a noise trader/infection
model. In contrast to many other contributions to the literature on artificial fi-
nancial markets, it belongs to a class of models whose dynamical behavior is
well understood. In particular, we know that it amounts to a bounded Markovian
process with a bistable limiting distribution, and therefore, the model should lack
any true scaling properties. Nevertheless, applying the usual statistical tests to
simulated data, we find apparent scaling with quite close agreement with empiri-
cally observed exponents. This shows that the difficulty of distinguishing between
true and spurious scaling is not confined to particular stochastic processes, but
may also emerge in behavioral multiagent models. Our analytical approximations,
in fact, show that apparent temporal scaling laws would be the typical outcome
of simulations of pseudoempirical tests as long as the sample sizes are below a
critical threshold T0. We argue that such apparent scaling might also occur in other
models that have been proposed in the literature.

NOTES

1. We use now the more compact notation ω(x → x +�x) to indicate the conditional probabilities
from equation (2).

2. The chain is aperiodic because the conditional probability of remaining in the state is strictly
positive for all states. It is irreducible because every state can be reached from another arbitrary state
in a finite number of steps.

3. Note that the time increment �t is arbitrary and does not necessarily coincide with the time
unit �t0 used in the formalization of transition probabilities (2). We will see in the next section that a
careful choice of �t leads to a meaningful approximation of the dynamics of the variable x.

4. Equation (13) is a meaningful approximation of the dynamics of the discrete variable x if we
can treat it as a continuous variable. The approximation holds if both NO and NP are large, and
therefore not too close to the boundaries |x| = 1 − δ. Closer to the reflecting boundaries, in fact, the
discrete nature of the process remains important even for large N . Note that during the macroscopic
time increment �t multiple switches are allowed; cf. Appendix A.2.

5. From equation (17) we notice that for any number of agents N the distribution of returns is
leptokurtic. However, because equation (17) has been derived under the assumption of large N , this
conclusion has to be treated with caution.
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6. Plugging in the pertinent values pF = 10, ν = 1, and N = 100, we have E[r2] = 3.741×10−5,
and κ = 2.401.

7. With the chosen parameters N = 100 and ν = 1, we obtain T0 ≈ 1,060.
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APPENDIX

A.1. SIMULATION ALGORITHM

The contagion process formalized in Section 2 belongs to the class of continuous-time-
jump Markov processes. Simulating this process, one has to find an appropriate compromise
between the proximity of the discrete simulations to the underlying continuous time dy-
namics and the efficiency of the simulation algorithm. A convenient approach to the joint
dynamics of an ensemble of traders consists in simulating the agents’ transitions between
groups by binomial draws. To this end, we consider a macroscopic time scale �t � �t0,
which, however, should also not be too long, so that the main features of the dynamics are
preserved in this approximation.
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In line with the contagion process formalized in equation (2), we can also formalize
transition probabilities for individual agents. Each optimistic agent has a probability of
changing attitude over the unit time interval �t given by

p1(t) = ν�t
NP (t)

N
; (A.1)

conversely, every pessimist can switch to the group of optimists with probability

p2(t) = ν�t
NO(t)

N
. (A.2)

The probabilities (A.1) and (A.2) impose the condition

ν�t ≤ 1 (A.3)

for a feasible simulation algorithm that imposes an upper bound on the admissible time-
increment �t one could use in the simulations. Note that here during the time unit �t

in this discrete approximation of our continuous-time model, we might observe multiple
switches of agents between the two states. Although the time unit �t is constrained by the
previous inequality, its value is, in principle, arbitrary. The time evolution of the number
of traders in the two groups is, then, given by

NO(t + �t) = NO(t) − B(NO(t), p1) + B(NP (t), p2) (A.4)

and
NP (t + �t) = NP (t) − B(NP (t), p2) + B(NO(t), p1), (A.5)

where B(·, ·) represents a random variate drawn from a binomial distribution. The signs in
front of the random variables represent the agents’ movements in and out of each group.
The dynamics governed by equations (A.4) and (A.5) have to be complemented by the
RBCs to avoid absorbing states NO,P = 0; that is, at least one agent should remain in each
group. Moreover, given the independence of the two binomial draws in equations (A.4) and
(A.5), we have to take into account the possibility of negative values of NO(t) and NP (t)

resulting from the dynamics of equations (A.4) and (A.5). To reinitiate the dynamics after
a violation of the RBCs, we conventionally add the following rules to the above difference
equations:

if NP (t) < 1 NP (t + �t) + NP (t) = 1, (A.6)

and
if NO(t) < 1 NP (t + �t) + NP (t) = 1. (A.7)

Note that the previous conditions imply a reflection around the points NO,P = 0.5, which
is equivalent to δ = 1

N
in terms of the intensive variable x. This explains the boundaries

that have been imposed in equation (8).

A.2. DERIVATION OF THE LANGEVIN EQUATION (13)

The basic idea of the Langevin approximation is to find a time horizons for which the condi-
tional distribution of the discrete variables NA and NB is well approximated by a Gaussian.
To do so, we have to carefully define the time unit �t that we use in equations (A.4)
and (A.5). For notational convenience, let us define nt as the number of optimists in the
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market at time t , and N − nt as the corresponding number of pessimists. First, we may
approximate the two binomial distributions in equation (A.4) by two normal distributions.
One might recall that a binomial distribution B(M,p) can be well described by a Gaussian
with mean Mp and variance Mp(1 − p) in the case of a large number of “Bernoulli
trials” M [see for instance Feller (1971)], and, additionally, if Mp � 1. In our case, we
are allowed to use this approximation if N − nt and nt are large, and p1· nt � 1 and
p2 · (N − nt ) � 1. This means that the approximation should work reasonably well if nt is
far from its boundaries and ν�t ∼ O(1), according to equation (A.3). Hence, the Langevin
approximation should work well under the assumption of a large number of agents, if we
are not too close to the boundaries and if we fix the arbitrary time scale to be �t ∼ O(1).

We can, then, rewrite equation (A.4) as

nt+�t = nt − ntp1 +
√

ntp1(1 − p1)ηt+�t + (N − nt )p2 +
√

(N − nt )p2(1 − p2)ξt+�t ,

where η and ξ are independent random normal variables. Given equations (A.1) and (A.2),
we obtain ntp1 = (N − nt )p2. Note that, on average, the numbers of agents switching in
both directions are identical, so that the agents’ expected outflow from each state offsets
the corresponding inflow at every instant t . What remains is just the contribution given by
the fluctuation terms. We therefore arrive at

nt+�t = nt +
√

ntp1(1 − p1) ηt+�t +
√

(N − nt )p2(1 − p2) ξt+�t . (A.8)

Because the sum of two independent normal variables η and ξ with mean zero and variances
σ 2

1 and σ 2
2 , respectively, is still a Gaussian variable (ζ ) with variance σ 2 = σ 2

1 + σ 2
2 , we

can further simplify equation (A.8) and end up with

nt+�t = nt +
√

ntp1(2 − ν�t) ζt+�t . (A.9)

Expressing the numbers of agents nt+�t and nt in equation (A.9) in terms of the intensive
variables xt and xt+�t as

nt = N
1 + xt

2
and nt+�t = N

1 + xt+�t

2
,

we obtain the final result given by equation (13) in the main text.

A.3. MOMENTS OF x AND r

The computation of the second moment of Pe(x) yields the following result:

E[x2] = 1

L

∫ 1−δ

−1+δ

x2

1 − x2
dx = 1 − 2

L
(1 − δ).

The fourth moment can be computed via the integral decomposition

E[x4] = 2

L

∫ 1−δ

0

x4

1 − x2
dx = 2

L

∫ 1−δ

0

x4 − 1

1 − x2
dx + 2

L

∫ 1−δ

0

1

1 − x2
dx,

which leads to equation (10) in the main text.
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By means of the recursive equation (13) and the second moment of x from (9), we can
easily compute the second moment of the return distribution p(r):

E[r2] = 1

p2
F

ν�t(2 − ν�t)

N
E[1 − x2] · E[η2] = 1

p2
F

ν�t(2 − ν�t)

N

2

L
(1 − δ).

Plugging equations (9) and (10) into the previous expression, we have the fourth moment
given by

E[r4] = 1

p4
F

(ν�t(2 − ν�t))2

N 2
E[(1 − x2)2] · E[η4] = 1

p4
F

(ν�t(2 − ν�t))2

N 2

4

L
.

The computation of the kurtosis is, then, straightforward using the previous two results.

A.4. MEAN FIRST PASSAGE TIME

Plugging equation (18) into equation (19), we end up with equation

T0 = 2N

ν(2 − ν�t)

∫ 1−δ

δ−1
dy

∫ y

δ−1

1

1 − z2
dz. (A.10)

The second integral is given by
∫ y

δ−1

1

1 − z2
dz = 1

2
ln

(
1 + y

1 − y

)
− 1

2
ln

(
δ

2 − δ

)
.

The first term is vanishing altogether and the integral of the second term yields

∫ 1−δ

δ−1

1

2
ln

(
δ

2 − δ

)
dy = (1 − δ) ln

(
δ

2 − δ

)
.

Plugging the previous result into equation (A.10), we obtain equation (20) in the main text.

https://doi.org/10.1017/S1365100506060299 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100506060299

