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Abstract

The Schur Theorem says that if G is a group whose center Z(G) has finite index n, then
the order of the derived group G ′ is finite and bounded by a number depending only on n. In
this paper we show that if G is a finite group such that G/Z(G) has rank r , then the rank of
G ′ is r -bounded. We also show that a similar result holds for a large class of infinite groups.

1. Introduction

The famous Schur Theorem says that if G is a group whose center Z(G) has finite index
n, then the order of the derived group G ′ is finite and bounded by a number depending
only on n. Throughout the paper we say that a quantity is {a, b, c, . . .}-bounded if it is
bounded by a number that depends only on the parameters a, b, c, . . .. The theorem provides
a very useful tool for group theorists. Quite naturally, ever since the theorem was proved the
relation between G/Z(G) and G ′ has been the focus of considerable attention. One rather
straightforward generalization of the Schur theorem is that if G/Z(G) is locally finite, then
G ′ is locally finite as well (see [11, p. 102] for example). On the other hand, there is a well-
known example, due to Adian, of a torsion-free group G such that G/Z(G) is periodic and
even has prime exponent [1]. Thus, periodicity of G/Z(G) in general does not imply that of
G ′. Using the positive solution to the restricted Burnside problem [14, 15] A. Mann showed
that if G/Z(G) is locally finite and has finite exponent n, then G ′ is locally finite and has
finite n-bounded exponent [8]. A number of other results in the spirit of the Schur theorem
can be found in [4, 7, 10]. In this paper we examine the situation where G/Z(G) has finite
rank. Recall that a group K has finite rank r if every finitely generated subgroup of K can
be generated by at most r elements. According to Olshanskii [9] there exists a group G with
the property that Z(G) is a free abelian group of infinite rank while G is a perfect group
such that all proper subgroups of G = Z(G) are of prime order. The proof of this fact goes
as follows. In [9, section 27] one finds the construction of the group G(∞) as a limit of the
sequence {G(i)}. All proper subgroups of G(∞) have prime order [9, theorem 28·1]. The
combination of Lemma 27·2, lemma 25·1 and theorem 31·1(2) of [9] guarantees that for
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the aspherical corepresentation G(∞) = F/N the group N/[N , F] is a free abelian group
of infinite rank. Now arguing as in the proof of corollary 31·2 we deduce that the Schur
multiplier of G(∞) is a free abelian group of infinite rank. The proof also uses the fact that
the group G(∞) does not coincide with G(i) for any i = 1, 2, . . . . This can be shown by
arguing as in the proof of theorem 19·3 and replacing the reference to theorem 19·1 by that
to theorem 26·2.

Thus, finiteness of the rank of G/Z(G) in general does not imply that of G ′. We will
show however that under some reasonable additional hypothesis on the group G we do have
a rank version of the Schur theorem.

Our first result provides a rank version of the Schur theorem for finite groups.

THEOREM 1·1. Let G be a finite group such that G/Z(G) has rank r. Then the rank of
G ′ is r-bounded.

The proof of the above theorem depends on the classification of finite simple groups. The
Lubotzky–Mann theory of powerful p-groups [2] plays an important role in the proof as
well. From Theorem 1·1 we deduce a rank version of the Schur theorem for a large class of
infinite groups.

A group G is called generalized radical if it has an ascending series whose quotients are
either locally nilpotent or locally finite. Accordingly, a group G is locally generalized radical
if every finitely generated subgroup of G is generalized radical.

THEOREM 1·2. Let G be a locally generalized radical group such that G/Z(G) has finite
rank r. Then the rank of G ′ is finite and r-bounded.

In this paper we make no attempts to write down explicit bounds for the rank of G ′ in
Theorems 1·1 and 1·2. Throughout the paper we use without explicit references the facts
that if r(G) = r , then every subgroup and every quotient of G has rank at most r and that if
G has a normal subgroup N such that r(N ) = r1 and r(G/N ) = r2, then r(G) � r1 + r2.

2. Proof of Theorem 1·1
The next lemma is well–known and so the proof is omitted.

LEMMA 2·1. Let G be a group having a subset X and a normal abelian subgroup N such
that G = 〈N , X〉. Then [N , G] = ∏

x∈X [N , x].
LEMMA 2·2. Let G be a group such that G/Z(G) has finite rank r. Let M be a normal

abelian subgroup of G. Then [M, G] has rank at most r 2.

Proof. Set N = M Z(G) and suppose first that G is finitely generated. Then N is a normal
abelian subgroup of G such that G/N can be generated by at most r elements. Therefore
we can choose elements x1, . . . , xr ∈ G such that G = 〈N , x1, . . . , xr 〉. By Lemma 2·1
[N , G] = ∏[N , xi ]. We note that for any x ∈ G the map that takes every element y ∈ N to
y−1 yx is a homomorphism of N in [N , x] whose kernel is CN (x). Since G/Z(G) has rank r ,
it follows that the rank of N/CN (x) is at most r for all x ∈ G and hence the rank of [N , x] is
at most r as well. The equality [N , G] = ∏[N , xi ] now guarantees that the rank of [N , G]
is bounded by r 2. Finally, we remark that [N , G] = [M, G] and so in the case where G is
finitely generated the lemma follows.

Let us now drop the assumption that G is finitely generated. Suppose that [M, G] has rank
at least r 2 +1. Thus, we can choose elements y1, . . . , yr2+1 ∈ [M, G] such that the subgroup
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〈y1, . . . , yr2+1〉 cannot be generated by r 2 elements. We can also choose a finitely generated
subgroup K in G such that y1, . . . , yr2+1 ∈ [M, K ] � K . This yields a contradiction since
we know that for finitely generated groups the lemma holds. The proof is now complete.

LEMMA 2·3. Let d and r be positive integers and G a group such that G/Z(G) is sol-
uble with derived length d and r(G/Z(G)) = r . Then G ′ has finite rank and r(G ′) �
(1/2)dr(r − 1) + (d − 1)r 2.

Proof. Denote the expression (1/2)dr(r − 1) + (d − 1)r 2 by N (d, r). If the result is
false, then G ′ contains elements y1, . . . , yN (d,r)+1 such that the subgroup 〈y1, . . . , yN (d,r)+1〉
cannot be generated by less than N (d, r) + 1 elements. We can choose a finitely generated
subgroup K of G such that y1, . . . , yN (d,r)+1 ∈ K ′ and so K provides a counter-example to
the lemma. Thus, it is sufficient to prove the lemma for finitely generated groups and so we
assume that G is finitely generated. It follows that G/Z(G) can be generated by r elements.
In particular we deduce that G = 〈Z(G), x1, . . . , xr 〉 for suitable x1, . . . , xr ∈ G.

The lemma will be proved by induction on d. Suppose first that d = 1. Then G is nilpotent
of class at most two and, since G = 〈Z(G), x1, . . . , xr 〉, it is clear that G ′ is generated by
the commutators [xi , x j ], where 1 � i < j � r . There are at most (1/2)r(r − 1) such
commutators and so in the case where d = 1 the lemma holds.

Now we assume that d � 2 and that the rank of the derived group of G ′ Z(G) is at
most N (d − 1, r). Of course, the derived group of G ′ Z(G) is precisely G ′′, the second
derived group of G. We pass to the quotient G/G ′′ and assume that G is metabelian. Then,
by Lemma 2·2, the rank of [G ′, G] is at most r 2. The quotient G/[G ′, G] is nilpotent of
class at most two and so by what we have established above the rank of G ′/[G ′, G] is at
most (1/2)r(r − 1). Hence, in the case where G is metabelian the rank of G ′ is at most
(1/2)r(r − 1) + r 2. By the induction hypothesis the rank of G ′′ is at most N (d − 1, r) and
so we deduce that the rank of G ′ is at most (1/2)r(r − 1) + r 2 + N (d − 1, r) = N (d, r), as
required.

LEMMA 2·4. There exists an integer s = s(n, r) depending only on n and r such that if
G is a finite p-group of exponent dividing pn and rank at most r , then the order of G is at
most ps.

Proof. By [2, theorem 2·13] G has a powerful characteristic subgroup N of index at most
pμ(r), where μ(r) is a number depending only on r . [2, corollary 2·8] shows that N is a
product of at most r cyclic subgroups. Therefore N is of order at most pnr and the lemma
follows.

PROPOSITION 2·5. If G is a finite nilpotent group, then the rank of G ′ is bounded in
terms of r(G/Z(G)) only.

Proof. It is clear that without loss of generality we can assume that G is a p-group for
some prime p. Let r = r(G/Z(G)) and n be the least number such that 2n � r + 2. Then
obviously G does not involve the wreath product Cp � Cpn . Let K = G ′ and H = K pn

if p
is odd and H = K pn+1

if p = 2. By [12] H is powerful. Let G = G/H p and K = K/H p.
Obviously K has exponent dividing pn+2. By the hypothesis G/Z(G) has rank at most r
and therefore, by Lemma 2·4, K/Z(K ) has order at most ps for some r -bounded number
s. Let d denote the derived length of G. It is clear that d � s + 1 and in particular d is
r -bounded. Lemma 2·3 now tells us that the rank, say t , of K is r -bounded. Since H p is the
Frattini subgroup of H and since H/H p can be generated by t elements, it follows that H
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can be generated by t elements. Taking into account that H is powerful, we deduce that H
is of rank at most t . In particular H p is of rank at most t . Combining this with the fact that
K has rank at most t we now conclude that the rank of K is at most 2t , as required.

A well-known theorem of Zassenhaus says that whenever F is a field, the derived length
of any soluble subgroup of GLn(F) is bounded by a function of n only [13]. This will be
used in the following lemma. Given a group G, we denote by F(G) the Fitting subgroup
of G.

LEMMA 2·6. Let G be a finite soluble group of rank r. Then the derived length of
G/F(G) is r-bounded.

Proof. Consider an unrefinable normal series

G = N1 > N2 > · · · > Nk > Nk+1 = 1

in G. The factors Ni/Ni+1 are elementary abelian of rank at most r and so every factor
Ni/Ni+1 can be viewed as a linear space of dimension at most r over some field with p
elements. By Zassenhaus’ Theorem there is an integer d depending only on r such that
every soluble group of automorphisms of Ni/Ni+1 has derived length at most d. Let K be
the dth derived group of G. Then K centralizes every factor of the series

G = N1 > N2 > · · · > Nk > Nk+1 = 1

and hence K is nilpotent. Thus, K � F(G) and G/F(G) has derived length at most d.

In the proof of the next lemma we use the well-known corollary of the classification
of finite simple groups that Aut S/I nn S, the outer automorphism group of S, is soluble
for every finite simple group S (this fact is also known under the name of the Schreier
Conjecture).

LEMMA 2·7. Let G be a finite group of rank r and assume that G has no nontrivial
normal soluble subgroups. Then G has a normal series

M � T � G

such that M is isomorphic to a direct product of at most r non-abelian simple groups, T/M
is soluble and G/T has order at most r !

Proof. Let M be the product of all minimal normal subgroups of G. Of course, M =
S1 × S2 × · · · × Sk , where the subgroups S1, S2, . . . , Sk are isomorphic with non-abelian
simple groups. Since r(M) � r and since all subgroups S1, S2, . . . , Sk have even order, it
follows that k � r .

Our group G acts by conjugation on M and this action induces a natural homomorphism
of G in the symmetric group on k symbols. Let T be the kernel of the homomorphism. In
other words, T is the intersection of the normalizers NG(Si) for i = 1, 2, . . . , k. Let U be
the last term of the derived series of T . Thus, U is the intersection of all normal subgroups
N of T such that T/N is soluble. For every i = 1, 2, . . . , k put Ti = Si CT (Si ). Then T/Ti

embeds into Aut Si/I nn Si , which is soluble. Therefore U � Ti for all i = 1, 2, . . . , k.
Hence, any element in U induces an inner automorphism of Si for all i � k. It follows that
for every x ∈ U there exist elements xi ∈ Si such that

x1x2 . . . xk x−1 ∈ CT (Si) for all i = 1, 2, . . . , k. (2·1)
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Thus, x1x2 · · · xk x−1 ∈ CT (M). Since G has no nontrivial normal soluble subgroups, it
follows that CT (M) = 1 and therefore x ∈ M . Thus, U = M and T/M is soluble.

Since G/T embeds in the symmetric group on k symbols, it follows that the index of T
in G is at most r !. The proof is complete.

Proof of Theorem 1·1. Recall that G is a finite group such that G/Z(G) has rank r . Let
R be the maximal normal soluble subgroup of G and F = F(R). Since R/Z(R) has rank
at most r and since F(R/Z(R)) = F/Z(R), Lemma 2·6 shows that the derived length of
R/F is r -bounded. By Proposition 2·5 F ′ has r -bounded rank and therefore we can pass to
the quotient G/F ′. Hence, without loss of generality we can assume that the derived length
of R is r -bounded. Now Lemma 2·3 guarantees that the rank of R′ is r -bounded and we pass
to the quotient G/R′. Thus, we will assume that R is abelian. Since G/R has rank r , we can
choose r elements a1, . . . , ar such that G = 〈R, a1, . . . , ar 〉. Then, by Lemma 2·2, the rank
of [R, G] is at most r 2. Passing to the quotient G/[R, G] assume that R = Z(G).

The structure of G/R is described in Lemma 2·7. We assume that G � R and let M/R
be the the product of all minimal normal subgroups of G/R. Then M/R is a direct product
of k � r simple non-abelian groups. For i = 1, . . . , k let Si denote the subgroup of G such
that Si/R is a simple factor of M/R. Of course, M = S1S2 · · · Sk . Let Di be the derived
group of Si for i = 1, 2, . . . , k. Then Di is a perfect group and Di/Z(Di) is a simple group
of rank at most r . Thus, Di is a so-called quasisimple group. The Schur multipliers of all
simple groups are well-known and can be found in [5, p. 302–303]. All of them are abelian
groups of rank at most three. Thus, the rank of Di is at most r + 3. From this we deduce
that the product D = D1 D2 · · · Dk has rank at most r(r + 3). Thus, we pass to the quotient
G = G/D. Lemma 2·7 tells us that G has a normal soluble subgroup T = T/D of index
at most r !. Precisely in the same way as we have shown above that the rank of [R, G] is
r -bounded we can now show that the rank of [T , G] is r -bounded as well. Passing to the
quotient G/[T , G], assume that T is central. Then the index of Z(G) in G is at most r !
and by Schur’s theorem the order of the derived group of G is r -bounded. The proof is now
complete.

3. Proof of Theorem 1·2
A routine inverse limit argument along the lines of [6] now shows that if G is a locally

finite group such that G/Z(G) has rank r , then the rank of G ′ is r -bounded. The following
corollary is a little stronger.

COROLLARY 3·1. Let G be a group such that G/Z(G) is locally finite and has finite rank
r. Then G ′ is locally finite and the rank of G ′ is r-bounded.

Proof. By [11, p. 102] G ′ is locally finite and so the above comment shows that G ′′

has finite r -bounded rank. Thus, we can pass to the quotient G/G ′′ and assume that G is
metabelian. Now Lemma 2·3 tells us that r(G ′) � r(r − 1) + r 2.

We will now proceed to establish Theorem 1·2. First of all we note that subgroups and
quotients of a generalized radical group are generalized radical as well. We also notice that
periodic generalized radical groups are locally finite.

Let G be a group having an ascending series whose factors are either cyclic or periodic. If
the number of infinite cyclic factors in the series is finite, we call it 0-rank of G and denote
it by r0(G). If the number of infinite cyclic factors in the series is infinite, we say that G has
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infinite 0-rank. It is not difficult to see that the 0-rank of G does not depend on the choice of
the ascending series whose factors are either cyclic or periodic.

LEMMA 3·2. Suppose that G is a finitely generated generalized radical group of finite
rank r and assume that G has no nontrivial normal periodic subgroups. Then G has a
subgroup L of r-bounded index which is soluble with r-bounded derived length.

Proof. It is clear that r0(A) � r for every abelian subgroup A of G. By [3, theorem 1]
r0(G) is bounded in terms of r only. Moreover [3, Theorem A] implies that G has a normal
series

K � L � G

such that K is torsion-free nilpotent, L/K is torsion-free abelian and G/L is finite of r -
bounded order. Since r0(G) is bounded in terms of r only, it follows that the nilpotency
class of K is r -bounded and hence the derived length of L is r -bounded, too.

We are now ready to prove Theorem 1·2.

Proof of Theorem 1·2. Recall that G is a locally generalized radical group such that
G/Z(G) has finite rank r . Assume first that G is finitely generated and let T/Z(G) be the
product of all periodic subgroups of G/Z(G). Thus T/Z(G) is the maximal normal periodic
subgroup of G/Z(G) and so G/T has no nontrivial normal periodic subgroups. By Lemma
3·2, G has a subgroup L of r -bounded index such that L/T is soluble with r -bounded de-
rived length. Since G is a generalized radical group, it follows that all periodic sections of
G are locally finite and therefore so is T/Z(G). Corollary 3·1 tells us now that r(T ′) is
r -bounded and passing to G/T ′ we can assume that T ′ = 1. In this case T is abelian and so
L is soluble with r -bounded derived length. Lemma 2·3 can now be applied to deduce that
r(L ′) is r -bounded and we can pass to the quotient G/L ′. Now L is a normal abelian sub-
group and so, by Lemma 2·2, [L , G] has rank at most r 2. Passing to the quotient G/[L , G],
assume that L is central. Then the index of Z(G) in G is r -bounded and by Schur’s theorem
the order of the derived group of G is r -bounded as well. This proves the theorem in the
case where G is finitely generated. In other words, there exists an r -bounded number, say
R0, such that r(K ′) � R0 whenever a group K satisfies the hypothesis of the theorem and
is finitely generated. Suppose now that our group G is not necessarily finitely generated. If
r(G ′) � R0 + 1, we can choose y1, . . . , yR0+1 ∈ G ′ such that the subgroup 〈y1, . . . , yR0+1〉
cannot be generated by R0 elements. We can also choose a finitely generated subgroup K in
G such that y1, . . . , yR0+1 ∈ K ′. This yields a contradiction since we know that r(K ′) � R0.
The proof is now complete.
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