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Abstract

Leaf-cutting ants are dominant herbivores inNeotropical rain forests, and their colony densities
increase in disturbed habitats such as forest edges. However, while it is well-established that
leaf-cutting ants profit from changes to the food-plant community, the phylogenetic dimension
of this ant–plant interaction remains poorly understood in fragmented forests. We studied
diet composition of Atta cephalotes in the edge and interior of Atlantic forest in north-east
Brazil (8°30 0S, 35°50 0W). We applied phylogenetic signal analysis to investigate the diet across
plant lineages and performed phylogenetic generalized linear models to analyse the diet in both
habitats. We found a phylogenetic signal in diet and in leaf mechanical resistance, which means
that A. cephalotes selects closely related food plants with less resistant leaves. Most preferred
species belong to Malpighiales, Rubiaceae and Melastomataceae. We also found that irrespec-
tive of phylogeny, ants select food plants with less resistant leaves, both in edge and interior.
However, ants choose more abundant plants only in edges. High abundance of optimal
diet facilitates foraging in forest edges and explains why colony densities increase in disturbed
habitats. Finally, by favouring or disfavouring specific clades, leaf-cutting ants contribute to
changes in the phylogenetic structure of tropical rain forests, e.g. phylogenetic impoverishment.

Leaf-cutting ants (LCA) are dominant herbivores in the Neotropical rain and dry forests and
savannas, removing up to 30% of green biomass in the foraging area of a colony (Siqueira et al.
2018, Urbas et al. 2007,Wirth et al. 2003). In human-modified landscapes their impact is ampli-
fied by the fact that LCA colonies proliferate in disturbed habitats such as early-successional
forests (Vasconcelos & Cherrett 1995), forest remnants (Terborgh et al. 2001) and forest edges
(Wirth et al. 2007). Understanding LCA diet in disturbed forests could help us to predict their
success and impacts on the ecosystem.

Although LCA are largely polyphagous and able to harvest up to 50% of local plant species
(Wirth et al. 2003), they do exhibit a pronounced food-plant selection. Laboratory experiments
have demonstrated that LCA prefer younger and softer leaves over harder and older ones
(Howard 1988, Nichols-Orians & Schultz 1989). In field studies, LCA were shown to prefer par-
ticular plant groups such as the light-demanding pioneer species, presumably due to softer
leaves (i.e. reduced morphological defences) and fewer chemical defences associated with a
fast-growth strategy (Falcão et al. 2011, Farji-Brener 2001, Wirth et al. 2003).

In this perspective, research in human-modified tropical landscapes, particularly in frag-
mented forests, can provide insights into the patterns of LCA diet because pioneer plant species
become more abundant in edge-affected habitats (Laurance et al. 2006, Santos et al. 2008), lead-
ing to reduced species diversity (Tabarelli et al. 2008). Although not all fragmented forests lose
tree phylogenetic diversity (Arroyo-Rodríguez et al. 2012, Matos et al. 2017), pioneer species
tend to be more related than late-successional species and drive the phylogenetic impoverish-
ment of the forest (Norden et al. 2012, Santos et al. 2010, 2014). While phylogenetic distance
between neighbouring plant species is likely to interfere with the ability of herbivores to exploit
their food plants (Yguel et al. 2011), the effect of such human-induced floristic shifts on LCAdiet
remains entirely unstudied.

Here we examine LCA diet composition in a fragmented Atlantic forest. We hypothesize
that: (1) There is a phylogenetic signal in LCA diet following the preference for pioneer species;
(2) LCA diet consists of more abundant plant species; (3) LCA diet consists of species with less
physical resistance such as softer leaves; and (4) LCA diet depends on the forest habitat (interior
vs. edge).

We conducted the study in the Coimbra forest (8°30 0S, 35°50 0W), the largest (3500 ha) and
best-preserved fragment of Atlantic rain forest in north-east Brazil (Santos et al. 2008). Coimbra
is located on a low-altitude plateau (300–400 m asl). Annual rainfall is ∼2000 mm, with a 3-mo
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dry season (< 60 mmmo−1) from November to January. The most
species-rich families in the region are Fabaceae, Lauraceae,
Sapotaceae, Chrysobalanaceae and Lecythidaceae (Santos et al.
2008, 2010).

We studied food plant selection, i.e. presence/absence of plant
species in the diet (hereafter: diet) of five adult colonies of Atta
cephalotes (L.) at the edge (<100 m from forest border, sensu
Laurance et al. 1998) and five in the interior (>200 m from forest
border) of Coimbra forest. The inter-colony distances were 2.0 ±
1.4 km (mean ± SD) in forest edge and 1.1 ± 0.4 km in the interior.
The colonies were studied in every second month over a period of

1 y, and lists of plant species attacked by each colony were compiled
(Falcão et al. 2011). The data from individual colonies were used as
independent data points in each habitat.

We used full woody-plant species lists of the edge and interior
habitats of Coimbra forest (Santos et al. 2010) as a reference species
pool to infer the diet of A. cephalotes, and to obtain data on the
relative abundance of plant species in the two habitats. To test if
ant diet consists of softer leaves, we gathered data from the TRY
Plant Trait database on leaf mechanical resistance, reflected by leaf
tensile strength in N/m (Kattge et al. 2011). When species-level
data were not available, we used the genus-level means. When

Figure 1. Phylogenetic tree of plant species that occur at the edge and in the interior of Atlantic forest in north-east Brazil (8°30 0S, 35°50 0W). Coloured names indicate species
present in leaf-cutting ant (Atta cephalotes) diet, with phylogenetic signal (D= 0.52; P(random) < 0.0001, P(Brownian) < 0.0001). Orange = species in ant diet in forest interior,
green = species in ant diet at forest edge, red= species in ant diet in the two habitats.
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genus-level data were not available (N= 48 of 175 species) we used
the mean value of our species list (the results remained highly sig-
nificant when species with missing data were excluded).

We constructed a time-calibrated phylogeny for the full plant
species list of Coimbra forest. For every species we searched for
four DNA regions (matK, 5.8S, rbcL, trnL-trnF) from GenBank
(http://www.ncbi.nlm.nih.gov/genbank/). For most species not
all sequences were available, or individual species were identified
to the genus level only (N = 50), thus we used sequences of conge-
neric species. We aligned the sequences separately and concat-
enated them in a supermatrix in Geneious 9.1.3 (www.geneious.
com). We used the program BEAST v1.8.0 (Drummond et al.
2012) for the Bayesian analysis and to include time calibration
for the tree. To time calibrate the tree we adopted four calibration
points (Myrtales, Malpighiales, Sapindales and Eudicotyledoneae;
Magallón et al. 2015).

We analysed phylogenetic signal in the diet of A. cephalotes with
D-value for discrete traits (Fritz & Purvis 2010). We also tested for
phylogenetic signal in leaf mechanical resistance and in plant species
abundance in forest habitats with Pagel’s λ-value for continuous
traits (Pagel 1999). These analyses were done using the R packages
‘caper’ and ‘phytools’.We performed phylogenetic generalized linear
models (phyloglm) to test the effect of leafmechanical resistance and
plant species abundance at forest edge and interior on ant diet in
these habitats, taking into account plant phylogeny to control for
the effect of species’ relatedness on trait values. These analyses were
conducted in R using the packages ‘car’ and ‘phylolm’.

There was a phylogenetic signal in the diet of A. cephalotes
(D= 0.52, P(random) < 0.0001, P(Brownian) < 0.0001; Figure 1).
The ants selected both ancient (e.g. Piperaceae, Lauraceae) and
recent (e.g. Malpighiaceae, Euphorbiaceae) plant groups, with most
species belonging to Malpighiales, Rubiaceae and Melastomataceae
(Figure 1). We also found a phylogenetic signal in leaf mechanical
resistance (λ= 0.25, P(random)= 0.0006, P(Brownian) < 0.0001),
but species abundance in the habitats did not show a phylogenetic
signal. The results of the phylogenetic models show that irrespective
of phylogeny, ant food species have less resistant leaves at both forest
edges and interior (edge: z=−3.2, P= 0.0342; interior: z=−3.6,
P= 0.0004). Moreover, more abundant species in the forest were
only part of the diet of A. cephalotes at the forest edge (edge: z= 2.1,
P= 00342; interior: z= 1.2, P= ns).

Our study confirms that LCA diet is clearly not random. Firstly,
our results suggest that the diet is concentrated on some phyloge-
netic groups, i.e. there is indeed a phylogenetic signal in the diet.
Secondly, we found that irrespective of phylogeny, A. cephalotes
strongly select food plants with mechanically less resistant leaves
both at forest edge and interior. Additionally, our results revealed
phylogenetic signal in leaf resistance, which means that less resist-
ant leaves are more frequent across particular plant clades. Thus,
leaf mechanical resistance represents an explanation for why the
ants are specialized to specific clades. However, while not
addressed in this study, this does not exclude the potential influ-
ence of other leaf traits, such as plant secondary compounds for
LCA diet selection (Wirth et al. 2003). Moreover, using abundance
data on LCA food plant selection (rather than the presence/
absence data available to us) may provide additional insights into
the nature of LCA diet preference.

The phylogenetic signal in the diet of A. cephalotes could be
caused by their selection of pioneer species as food plants.
Although it is not uniformly established whether pioneer species
belong to phylogenetically closely related clades in neotropical

forests (Norden et al. 2012, Santos et al. 2010, 2014), our results
suggest this relationship due to the phylogenetic signal in ant diet,
and because in the studied forest pioneer species account for more
than a half of both tree species and individuals in edge-affected
habitats (Oliveira et al. 2004, Santos et al. 2008). We also found
that A. cephalotes uses plant species that are more abundant in for-
est edges but not in forest interiors. The ability of herbivores to
exploit their food plants has been found to increase with the phylo-
genetic proximity between neighbouring plant species (Yguel et al.
2011). Our results confirm these findings because of the phyloge-
netic signal in ant diet and because of the abundance of pioneer
species in forest edges. In order to understand the possible recip-
rocal influence of diet abundance and LCA colony establishment,
we encourage future studies to investigate the abundance of plant
species inside the foraging territories of LCA.

Phylogenetic signal in LCA diet has multifarious implications
for biodiversity persistence in human-modified forests. The exist-
ence or lack of phylogenetic signal in pioneer species results in vari-
ous effects on vegetation. When pioneer species are more related
than late-successional species, their proliferation drives phyloge-
netic impoverishment of the forest (Norden et al. 2012, Santos
et al. 2010, 2014). However, this is not always the case because
not all fragmented forests lose tree phylogenetic diversity
(Santo-Silva et al. 2018). We conclude that by favouring or
disfavouring specific phylogenetic clades via herbivory, LCA are
key ecological players in the conversion of Neotropical old-growth
forests into human-modified secondary forests.
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