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SUMMARY
This paper presents a control architecture, which has the
potential to monitor the task and safety issues, to provide
assessment of the progress and alter the task parameters,
and to incorporate patient’s feedback in order to make
the necessary modifications to impart effective therapy
during the execution of the task in an automated manner.
Experimental results are presented to demonstrate the
efficacy of the proposed control architecture.
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1. Introduction
Stroke is a highly prevalent condition especially among
the elderly that results in high costs to the individual and
society.1–3 In the last few years, robot-assisted rehabilitation
for physical rehabilitation of the stroke patients has been
an active research area to assist, monitor, and quantify
rehabilitation therapies.4–11 Robot-assisted rehabilitation
has shown to provide repetitive movement exercise and
standardized delivery of therapy with the potential of
enhancing quantification of the therapeutic process for stroke
patients.4–11 Studies in this field suggest that robot-assisted
rehabilitation results in improved performance of functional
tasks.

There are two important issues that a robotic rehabilitation
system needs to address. First, robotic rehabilitation systems
need to monitor the task and safety issues comprehensively,
to provide assessment of the progress, and to alter the task
parameters to impart effective therapy. Generally, therapist
administers the therapy where he/she monitors the progress
of the tasks as well as patient’s safety, and assesses whether
the task needs to be updated based on the need of individual
patient. As a result, a robotic system will likely to reduce
the amount of time of the therapist as well as decrease
his/her workload, and consequently, decrease the cost of
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treatment. MIT-MANUS,4 MIME,5 and GENTLE/s6 are
among the first rehabilitation robotic systems to implement
safety. Second, robotic rehabilitation systems need to alter
the presentation of the rehabilitation therapy task based
on patients’ feedback. Altering the presentation of the
rehabilitation therapy is an important issue since patients or
therapists should be able to express how they feel about the
task, and necessary modifications need to be performed about
the therapy. Recently developed rehabilitation devices like
ARMin,7 ADLER,8 T-WREX,9 HenRiE,10 and HARMiS11

provide assistance to the patients as needed based on the
patients’ position, velocity, and force feedback. However,
these feedbacks only provide information about patient’s
motion capabilities, and it does not directly represent feelings
of the patient or the therapist about the task execution.
For example, if the patient does not feel comfortable to
move his/her arm at a specified speed, then the therapist
or the robot-assisted system may need to change the
task execution to slow down. Note that, when a therapist
manually administers rehabilitation therapy, he/she keeps
the patient in the loop and adjusts the therapy which is
time-consuming. Therefore, it is important for a robot-
assisted rehabilitation system to alter the presentation of the
rehabilitation therapy task automatically considering patients
and therapists feedback. To our knowledge, none of the
existing robot-assisted rehabilitation systems use feedback
of both patient’s and therapist’s to modify the presentation
of the task. Spoken words of stroke patients or therapists
can be one of the available options to incorporate their
verbal feedback into the robot-assisted rehabilitation system
so that the necessary modifications on the robot-assisted
rehabilitation can be made immediately.

In this work, we attempt to address how to augment the
capabilities of a robotic rehabilitation system by enabling it
to: (1) monitor the task and safety issues comprehensively,
provide assessment of the progress, and alter the task
parameters to impart effective therapy during the execution
of the task in an automated manner; and (2) recognize
patient’s verbal feedback such that it can address his/her
concern. This work is built upon our preliminary work on an
intelligent control framework for robotic rehabilitation12–16

to incorporate patient’s feedback within the overall control
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Fig. 1. Control architecture of a voice activated robotic rehabilitation system.

architecture. The paper is organized into the following
sections. It first presents the intelligent control architecture in
Section 2. A test-bed rehabilitation robotic system, a human
intention recognition system, and one of the rehabilitation
tasks that are used to demonstrate the versatility of the
presented control architecture are presented in Section 3.
Results of the experiments are presented in Section 4 to
demonstrate the efficacy of the control architecture. Section 5
discusses potential contributions of this work and possible
directions for future work.

2. Control Architecture
Let us first present the proposed framework in the context of
one of the rehabilitation tasks, called the reaching task. The
reaching task designed in this work requires a combination
of shoulder and elbow movements, which could increase
the active range of motion (AROM) in the shoulder and the
elbow in preparation for later functional reaching activities
in rehabilitation. In this task, the participants are asked to
move their arms in the forward direction to reach a desired
point in space and then bring it back to the starting position
repeatedly within a specified time.

Stroke patients, in general, may not be able to track the
desired motion trajectory in this reaching task because of
their motor impairment. A low-level assistive controller
will be used to provide robotic assistance to a patient’s
arm movement as and when needed to help him/her to
complete the reaching task. In this architecture, an intention
recognition system recognizes the patient’s spoken words
(e.g., fast, slow, continue, and stop) using a microphone
and a voice-recognition technique and then converts the
spoken words into control commands (Fig. 1). The control
commands, which represent his/her intention during the task
execution, are sent to the high-level supervisory controller.
Once the high-level supervisory controller receives the
commands, the decision-making module of the high-
level supervisory controller generates sequences of control
actions using its decision rules. Additionally, the high-level
supervisory controller monitors the safety events during
the execution of the reaching task to decide the necessary

modifications of the task. The high-level supervisory
controller presented in this work ideally plays the role
of a human supervisor (therapist) who would otherwise
monitor the patient’s verbal feedback and safety and then
assess whether the task needs to be updated. The high-
level supervisory controller is designed considering the
requirements of the therapy, and it can be easily modified
and extended for new task requirements. The decision of
the high-level supervisory controller is sent to the low-level
assistive controller to update the task. The updated task is
then executed by the low-level assistive controller. This cycle
continues to complete the therapy.

3. Methodology

3.1. Rehabilitation robotic system – a test-bed
In order to present the efficacy of the proposed control
architecture, we have used a PUMA 560 robotic manipulator
as the robotic assistive device (Fig. 2). The manipulator
is augmented with a hand attachment device (Fig. 2). The
microcontroller board of the PUMA is replaced to develop
an open architecture system to allow implementation of
the advanced controllers (e.g., low-level assistive and high-
level controllers). The technical specifications of the robotic
manipulator can be found in ref. [17]. We interface the robot
with MATLAB/Realtime Workshop to allow fast and easy
system development. A computer monitor is placed in front
of the subject to provide visual feedback about his/her motion
trajectory during the execution of the task. The detailed
discussion about the rehabilitation robotic system can be
found in our previous work.12–16,18

Since in this work we are primarily interested in effecting
assistance to the upper arm, we design a hand attachment
device where the subject’s arm is strapped into a splint. The
PUMA 560 is attached to that splint to provide assistance
to the upper arm movement using the assistive controller
(Fig. 2). We further design a steel plate with proper
grooves that hold two small flat-faced electromagnets (from
Magnetool Inc.) that are screwed on it (Fig. 2). We attach
a light-weight steel plate under the splint, which is then
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Fig. 2. Subject arm attached to robot.

attached to the electromagnets of the plate. An automatic
release (AU) rectifier controller (Magnetool Inc.) is used
to provide a quick release of these electromagnets. A push
button, which is connected to the AU Rectifier Controller,
is used to magnetize and demagnetize the electromagnets
when the subject wants to remove the hand attachment device
from the robotic manipulator in a safe and quick manner.
Ensuring safety of the subject is a very important issue
when designing a rehabilitation robotic system. Thus, in case
of emergency situations, therapists can press an emergency
button. The patient and/or the therapist can quickly release
the subject’s arm from the PUMA 560 by using the quick-
release hand attachment device (as described above) to
deal with any physical safety related events. This quick-
release mechanism is identical to the mechanism used in
GENTLE/s6 and ADLER.8 When the push button is pressed,
electromagnets are demagnetized instantaneously and the
subject is free to remove the splint from the robot. The safety
mechanism in MIME is similar although the implementation
is different in some cases (e.g., we introduce joint limits as a
hypersurface in our high-level controller whereas in MIME it
is implemented as a limit check since the control architecture
is different from ours).

In this work, a proportional-integral-derivative (PID)
position control is used as a low-level arm assistive controller
for providing robotic assistance to a subject to complete the
movement task. The subject receives visual feedback of both
their actual position and the desired position trajectories on
a computer screen, which is placed in front of them. Then

the subject is asked to pay attention to tracking the desired
position trajectory as accurately as possible, which keeps
them focused on the task. If the subject deviates from the
desired motion, then low-level assistive controller provides
robotic assistance to complement the subject’s effort to
complete the task as required.

3.2. Human intention recognition system
Stroke patients may have difficulties to complete the
rehabilitation tasks because of their limited upper extremity
movements. It is important to include patient’s feedback
into the robot-assisted rehabilitation system so that it can
immediately make the necessary modifications without
therapist’s intervention. Recognizing stroke patients’ spoken
words may be one of the available options to incorporate
their feedback into the robot-assisted system.

Various speech recognition techniques have been
developed over the years such as a grammar builder from the
Microsoft Speech SDK 5.1,19 fuzzy command interpreter,20

Adaptive Input Neural Network (AINN).21,22 MICROEAR
(voice activated hardware) is developed in ref. [23] to
recognize a word and then it returns a string which is then
converted to a numerical code. Later, the code is compared
with the listed words and sets the respective flags. Then the
relevant functions form the character strings to be passed
on to the robot controller to activate the robot motors
using ASCII string. Hidden Markov Model (HMM) based
automatic speech recognizers are developed to recognize the
human voice in ref. [24]. The spoken word from the human is
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translated in the form of a quantified desired action for a robot
system. New concepts of fuzzy coach-player system and
subcoach to control robots with natural language commands
are presented in ref. [25]. A probabilistic neural network
based learning method is used to acquire the knowledge from
such commands and then implemented in a Mitsubishi PA-10
redundant manipulator.

In our target application domain, we want to incorporate
feedback from stroke patients. It is likely that many of
the stroke patients may not have sufficient control over
their articulatory muscles to communicate long and clear
sentences. Moreover, the range of distortion of spoken words
could be an issue in stroke patients. Considering these issues,
we choose to develop a speech-recognition system that is
capable of robustly identifying a few short phrases or words
that have relevance with respect to the rehabilitation therapy.
We use a well-known voice recognition method, called Mel-
frequency cepstral coefficients (MFCCs) in this work.26,27

In this work, however, we have used a deterministic
approach to speech recognition. Since in this application
we have restricted the number of spoken words and since
we have employed an individual-specific approach, such
a deterministic approach is preferred to a more versatile
learning approach. The subject informs his/her intention
using simple words such as “fast,” “slow,” “stop,” and
“continue” during the rehabilitation task. However, these
words can not be used directly as commands for the high-
level controller in the control architecture. Initially, each
subject is asked to speak each of the selected words three
times. The signal is acquired using the data acquisition
toolbox of MATLAB R2007a28 with 8 kHz sampling
frequency. An arithmetic average is computed from these
three samples of the same word to account for within person
variation of spoken words. The resultant sample normalized
and is broken down in a series of frames each of which
contains 256 data points. We compute 12 mel-frequency
cepstral coefficients (MFCCs) for each frame. The frames
and their MFCCs for each word for each person are stored
in a set of two-dimensional arrays as reference. During the
execution of the rehabilitation task, as the subject speaks any
of the selected words, the start and end points of the sampled
speech signal are detected and only the speech portion of
the signal is sent to the feature extraction module. The end
point determination concept used here is originally proposed
in ref. [29] based on two features: short-term root-mean-
square energy and zero-crossing-rate measures of the signal.
The feature extraction module receives the speech portion of
the signal and computes the same 12 MFCCs of the speech
by splitting it into frames of 256 samples. The MFCCs are
then sent to the pattern matching module to compare the
MFCCs of the spoken word with those of the reference
MFCCs of all the stored words and finds the best match using
the least Euclidean distance measure among the MFCCs
between the spoken word and the reference words. Then the
pattern matching module generates a command signal for the
high-level controller. In order for the high-level controller to
receive the generated command, the command is initially
sent to the microcontroller (Adapt9S12D -Technological
Arts Company). The microcontroller transmits the command
signal to the computer of the robotic rehabilitation system

through a RS232 serial port. The command is used by the
high-level controller to decide the next plan of action during
the execution of the rehabilitation task.

3.3. Modeling of a rehabilitation task using
hybrid System modeling technique
The proposed control architecture as described in Section 2
consists of a low-level arm assistive controller that is used
to provide assistance to the subject’s arm movement and a
high-level supervisory controller to monitor the task and the
patient’s safety and to detect the patient’s verbal feedback
(intention) in order to make the necessary modifications
on the task. In this work, we use hybrid system modeling
technique to design the proposed control architecture. A
hybrid system model has three parts, a “Plant,” a “Controller”
(supervisor), and an Interface19,30,31 (Fig. 3). Similar hybrid
system model has previously designed for same rehabilitation
system and the details can be found in refs. [12–16]. First,
we present the theory of the hybrid control systems. Then
the design details of the hybrid control system used for one
of the rehabilitation task, reaching task, is given.

The hybrid control systems consist of a plant which is
generally a continuous system to be controlled by a discrete
event controller (DES) connected to the plant via an interface
in a feedback configuration.30,31 If the plant is taken together
with the interface, then it is called a DES plant model. The
DES controller, which is called the high-level supervisory
controller in this work, controls the DES plant. Let us first
present the DES plant and then describe the DES controller
(high-level supervisory controller).

3.3.1. DES plant model. The DES plant model is a
nondeterministic finite automaton, which is represented
mathematically by G = (P̃ , X̃, R̃, ψ, λ). Here, P̃ is the set of
discrete states; X̃ is the set of plant symbols generated based
on the events; and R̃ is the set of control symbols generated
by the high-level supervisory controller. The function ψ :
P̃ × R̃ → 2P̃ is the state transition function. The output
function, λ : P̃ × P̃ → 2x̃ , maps the previous and current
plant states to a set of plant symbols. The set of DES plant
model states P̃ is based upon the set of hypersurfaces that
separates different discrete states.

The hypersurfaces defined in this work can be classified
into two classes: (i) the hypersurfaces considering subject’s
capability to complete the task; (ii) the hypersurfaces
considering the capability of the rehabilitation robotic system
in order to ensure the execution of the rehabilitation task in
a safe manner. The hypersurfaces are defined as follows:
h1 = v − vhigh, h2 = vlow − v, h3 = e, h4 = δ − δlimit. Here,
v is the actual speed of the robotic device; vlow and vhigh

are the lower and upper limits of the subject’s desired speed
range; e is binary variable representing the subject’s intention
to stop or continue the task; δ is the actual robotic device
configuration vector; and δlimit is the limit vector of the
configurations. h1 detects if the current task is too fast for the
subject and he/she may want to decrease the speed; h2 detects
if the current task is too slow for the subject and he/she may
want to increase the speed; h3 detects whether the subject
wants to continue or to stop the task; h4 detects whether the
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Fig. 3. Control architecture.

robotic system configurations, joint angles, torque, etc. are
working in safe range.

The DES plant model is demonstrated in Fig. 4. Here,
x̃i is the plant symbol, r̃i is the control symbol and P̃i

is the plant state. Note that a temporary state P ′
0000 is

introduced to distinguish the current state from the initial
state. A plant event occurs when a hypersurface is crossed,
which means the plant enters a new state. These plant events
need not be distinct for each distinct hypersurface. A plant

event generates a plant symbol to be used by the high-level
supervisory controller. The plant symbol, x̃, is generated
as an output function of the current and the previous plant
state. We define the following plant symbols considering the
hypersurfaces discussed before: (i) x̃1, the subject wants to
continue the task execution with the current speed; (ii) x̃2,

the subject wants to slow down and says the word “slow;”
(iii) x̃3, the subject wants to speed up and says the word
“fast;” (iv) x̃4, the subject wants to stop and says the word

Fig. 4. DES plant for control architecture.
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Fig. 5. High-level supervisory controller for reaching task.

“stop;” (v) x̃5, the subject wants to continue the task and
says the word “continue;” and (vi) x̃6, safety-related issues
happened such as the robot configurations are out of limits.
Thus X̃ = {x̃1, x̃2, x̃3, x̃4, x̃5, x̃6} is the set of plant symbols.
However, the plant symbol x̃5 needs to be further subdivided
to uniquely identify the exact plant state where the task
execution is paused. If the subject says “continue” while
performing the task with the initial conditions in the last
state, then x̃51 is generated. If the subject says “stop” while
performing the task with slow speed, then x̃52 is generated.
Similarly, if the subject says “stop” while performing the task
with fast speed, then the plant symbol x̃53 is generated.

3.3.2. High-level supervisory control. The high-level
supervisory controller is a discrete event system that is
modeled as a deterministic finite automaton specified by
D = (S̃, X̃, R̃, δ, φ). Here, S̃ is the set of controller states,
X̃ is the set of plant symbols generated by the event in plant,
R̃ is the set of controller symbols generated by the high-level
supervisory controller, δ : S̃ × X̃ → S̃ is the state transition
function, and φ : S̃ → R̃ is the output function. The high-
level supervisory controller for the reaching task is shown in
Fig. 5.

In Fig. 5, the convention of labeling the arcs is to list the
plant symbols, which enable the transition; the convention
in the ellipse is to list the control states, followed by “/” and
then the control symbols, which can be generated once the
system enters the corresponding states. The control states
and control symbols are defined in Table I.

Table I. Control states and control symbols.

i s̃i r̃i

1 Active with initial speed Device on
2 Active with decreased speed Device speed down
3 Active with increased speed Device speed up
4 Idle Device off
5 Active with previous speed Device on

Table II. Human intention recognition system accuracy (%) for
healthy subjects.

Accuracy (%)

Subject Slow Fast Stop Continue

1 90 100 100 100
2 80 100 100 100
3 100 100 90 100
4 90 100 80 100
5 90 100 90 100
6 90 100 100 100
7 100 100 100 100
8 100 90 100 100
9 100 100 100 100

10 90 100 100 100

Interface in this application is designed to recognize the
above-mentioned plant symbols and control symbols. It is
clear from the above discussion that the design of the various
elements of the DES plant and the DES controller is not
unique and is dependent on the task, the sensory information
available from the robot-assisted rehabilitation system, and
the subject’s verbal feedback.

4. Results
The main focus of this paper is to present the control
architecture which was shown in Fig. 5. However, the human
intention recognition system is an important part of this
new control framework that is responsible for generating
the commands to the high-level controller based on patient’s
verbal feedback to modify the task requirements. Hence, we
first summarize the validation of the evaluation of human
intention recognition system.

4.1. Validation of human intention recognition system
Recognition accuracy of human intention recognition system
has been checked with both healthy subjects and stroke
patients. First, 10 healthy subjects were invited to our
laboratory to record the voice signals of the four words which
were “slow,” “fast”’ “stop,” and “continue.” Four females
and six males, 20–32 years old, right-handed, unimpaired
subjects participated in this study. Voice from each subject
was captured by a microphone and then it was sampled
by the data acquisition module in MATLAB R2007a at a
sampling rate of 8 kHz using a sound card installed in the
PC. Each single word was recorded three times and was then
normalized every sample to an equivalent level to find the
arithmetic average. Then the MFCCs of average signals of
each word for each subject were computed to be used as the
reference set for pattern matching.

Subsequently, each subject was asked to speak any of
these four words 10 times in a random order and the output
speech signal was recorded. We then analyzed how many
times the voice recognition system correctly identified the
spoken words for the healthy subjects (Table II). In general,
it can be seen that the human intention recognition system
successfully recognized the spoken words for all 10 subjects
with high accuracies.
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Table III. Human intention recognition system accuracy (%) for
stroke subjects.

Accuracy (%)

Subject Slow Fast Stop Continue

1 100 100 90 100
2 90 100 100 100
3 100 100 90 100
4 100 100 100 100

Additionally, we had evaluated the recognition accuracy
of the proposed human intention recognition system with
stroke patients. One female and three males subjects within
the age range of 65–78 years took part in the study. Each
patient was asked to speak any of these four words five
times in a random order. The experiments were conducted
at the Vanderbilt Stallworth Rehabilitation Hospital under
the supervision of an occupational therapist. The stroke
patients who participated in this study had no aphasia or
language deficits interfering output of the speech. However,
the quality and clarity of spoken words could be an issue. We
then analyzed how many times the voice recognition system
correctly identified the spoken words for the stroke patients
(Table III). As can be seen from Table III, the proposed
human intention recognition system successfully recognized
the spoken words of stroke patients with recognition accuracy
between 90% and 100%.

4.2. Evaluation of the proposed control architecture
4.2.1. Experiment procedure. Subject is seated in a height
adjusted chair as shown in Fig. 2. The height of the PUMA
560 robotic manipulator has been adjusted for the subject to
start the rehabilitation task in the same arm configuration.
The starting arm configuration is selected as shoulder at
neutral 0◦ position and elbow at 90◦ flexion position. The
task requires moving the arm in forward flexion to appro-
ximately 60◦ in conjunction with elbow extension to appro-
ximately 0◦. Subject is asked to place his/her forearm on the
hand attachment device as shown in Fig. 2 when the starting
arm configuration is fixed. The push button has been given to
the subject that can be used during the task execution in case
of emergency situations. The subject receives visual feedback
of their position on a computer monitor on top of the desired
position trajectory which is placed in front of him/her. Subject
is asked to practice the tracking rehabilitation task (described
in Section 2) 10 times to familiarize him/herself with the task.

4.2.2. Results. Since we experiment with unimpaired
subjects who could ideally do the reaching task by themselves
(unlike a real stroke patient), we instructed the subjects to be
passive so that we can demonstrate that the proposed control
architecture was solely responsible for the modification
of the task based on subject’s verbal feedback. Such an
experimental condition is not only helpful to unambiguously
demonstrate the efficacy of our proposed control architecture
but also could occur when a low functioning stroke survivor
participates in a rehabilitation therapy who will initially
need continuous robotic assistance to perform the required
rehabilitation task.

We had conducted two experiments to demonstrate the
feasibility and usefulness of the proposed control architecture
in enabling robotic assistance to a subject to complete the
tracking task based on subject’s verbal feedback (intention).
The subjects were asked to express their intention using one
of the following words: “fast,” “slow,” “stop,” and “continue”
during the execution of the task. We only presented one
of the subjects’ data to demonstrate the efficacy of the
proposed control architecture. Initial desired velocity was
selected as 0.02 m/s, which was chosen in consultation with
an occupational therapist who works with stroke patients at
the Vanderbilt Stallworth Rehabilitation Hospital.

In the first experiment (E1), the subject was instructed
to modify the tracking task only once. When the tracking
task started, s̃1 became active and the initially defined task
requirements were used to define the desired trajectory
for the subject to be followed (Fig. 6I-middle). If the
subject is comfortable with the initial task requirements
then the task execution will be completed with the initially
defined parameters (Fig. 6I-right). However if at point A,
the subject said “slow” (he might feel the required motion
is too fast for him) (Fig. 6II-left) and then the human
intention recognition system compared the spoken word with
the reference ones using the pattern matching module (as
described in Section 3.2) and detected hypersurface h2 was
crossed then x̃2 was generated. This event was recognized
by the high-level controller through microcontroller. When
x̃2 was generated while s̃1 was active, then s̃2 state became
active and r̃2 was generated and sent to low-level controller
to change the speed of the task (Fig. 6II-middle). Then the
subject was required to continue the tracking task with a
slower movement (Fig. 6II-right solid line). If the subject’s
intention to slow down the movement was not considered
then the desired motion trajectory that the subject was
required to follow would be the dashed line in Fig. 6II-right.
This could create an unsafe operating condition because
the subject could not continue the task execution with a
high speed. Later, the subject said “fast” (he thinks the
movement was too slow for him) (Fig. 6III-left) and then
human intention recognition system detected h3 was crossed
then x̃3 was generated. When x̃3 was generated while s̃1 was
active, then s̃3 state became active r̃3 was sent to low-level
controller (Fig. 6III-middle). Now the subject was required
to move faster to complete the tracking task (Fig. 6III-right
solid line). If the subject’s intention to move faster was
not considered then the desired motion trajectory that the
subject was required to follow would be the dashed line
in Fig. 6III-right. This could limit the subject’s movement
and affect the efficiency of the therapy because he/she was
able to move faster than initial speed. The increment and
decrement level of the desired motion trajectory was selected
as 25% more and less, respectively. The range could be
increased or decreased based on the subject’s movement
ability.

The corresponding actual motion trajectories of the subject
were shown in Fig. 7. It could be seen from Fig. 7 that
the subject was able to track the modified desired motion
trajectories. Thus, the actual motion trajectory was same as
the desired motion trajectory because the subject was passive
and the arm low-level assistive controller provided necessary
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Fig. 6. Experiment 1 results.

robotic assistance to follow the desired motion trajectory to
complete the task as required.

In the second experiment (E2), we asked the subjects
to perform the same task as in the first experiment E1;
however, in this case, the subjects were asked to modify

the task more than once. This was done to simulate the
movement of a stroke patient who may experience difficulty
in performing the task with initially defined requirements. In
this experiment, the subject started performing the execution
of the task. Then at point A, the subject said “fast” (Fig. 8I)

Fig. 7. Actual velocity trajectories for experiment 1.
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Fig. 8. Experiment 2 results.

then x̃3 was generated, s̃3 state became active, and r̃3 was
sent to low-level controller (Fig. 8II). Then the subject did
not feel comfortable and he said “slow” at point B (Fig. 8I).
When the subject said “slow” then x̃2 was generated, s̃2

state became active, and r̃2 was sent to low-level controller
(Fig. 8II). Additionally, we had assumed a safety event had
occurred when the subject was performing the task. In this
experiment, at some point of time during the task the subject
wanted to pause for a while by saying “stop” word and then
said “continue” word to restart the task execution where he
resumed for completion of the rest of the task (Fig. 8I). When
the subject said “stop” at point C, then x̃4 was generated, s̃4

state became active and r̃4 was generated (Fig. 8II). Later
when the subject said “continue” at point D, then x̃5 was
generated and s̃5 state became active and instantaneously x̃52

was generated to go back to state s̃2 so that subject could
continue the task execution where he resumed (Fig. 8II).
This scenario might represent when a stroke patient wanted to
pause for a while due to some discomfort. The corresponding
desired motion trajectories had been generated dynamically
as shown in Fig. 8III. On the other hand, if we did not use the
proposed high-level controller, the desired motion trajectory
would not have been automatically modified to register the
intention of the subject to pause task execution, to move
faster or slower. As a result, the motion trajectory would
have followed the dashed line in Fig. 8III. In such a case,
when subject wanted to move faster he would still move with

initially defined speed at point A′ (Fig. 8III-dashed line).
Furthermore, the desired motion trajectory would start at
point C′ with non-zero velocity (Fig. 8III, dashed line), which
could create an unsafe operating condition. In addition, since
the desired motion trajectory computation would not have
included the pause action, restarting the task at point C′ would
not allow the completion of the task as desired.

High-level controller monitored the progress of the task
and the subject’s verbal feedback to make decisions on
the modification of the task parameters. The corresponding
actual motion trajectories of the subject were shown in
Fig. 8IV. It could be seen from Fig. 8IV that the subject
was able to track the modified desired motion trajectory to
complete the task in a desired manner. The actual motion
trajectory given was same as the desired motion trajectory
because the subject was passive and the arm low-level
assistive controller provided necessary robotic assistance to
follow the desired motion trajectory to complete the task as
required.

5. Discussion and Conclusion
In this paper, we have designed an intelligent control
architecture: (1) to monitor the task and safety issues, to
provide assessment of the progress, and to alter the task
parameters, and (2) to incorporate patient’s feedback in
order to make the necessary modifications to impart effective
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therapy during the execution of the task in an automated
manner. The control architecture is based on hybrid control
that provides theoretical solidity to the existing rehabilitation
approach. This architecture provides flexibility so that new
safety features as well as new task requirements can be
incrementally added to the system by designing new events
either by adding new sensors or by further analyzing the
current sensory information and by adding new decision rules
in the high-level controller.

It is also important to include patient’s feedback inside
the control architecture because patients should be able to
express how they feel about the task, which will then be used
to make the necessary modifications about the presentation
of the task to accommodate any problem patients perceive
during the execution of the task. However, it is not possible
to integrate spoken words into the system directly. Thus,
we include patient’s feedback as words in terms of events
like other sensor events inside the control architecture.

As it could be seen from the above discussion hybrid
system based control architecture could be useful in robot-
assisted system in terms of monitoring safety, assisting
patient, and incorporating patient’s feelings, which are
actually actions of the therapists during the therapy. Thus,
the presented control architecture will be helpful to automate
some of the actions of the therapists. During the therapy, if
a task requirement changes or if the patient does not feel
comfortable to move his/her arm at a specified speed, then
he/she may speak out, and then a therapist/technician would
need to adjust the computer code to reflect these changes.
It is conceivable that one cannot anticipate all possible
events that might occur during a rehabilitation task. The
proposed hybrid system based control architecture provides
a systematic procedure to effect changes such that the task
execution could be automated. Instead of preprogramming
numerous static trees based on if-then-else rules, it provides
a dynamic mechanism of generating events that leads to
necessary high-level decisions.

We have conducted experiments with unimpaired subjects
to demonstrate the efficacy of the proposed control
architecture. The results have shown that the task parameters
can be determined dynamically based on subject’s spoken
words and safety-related events to generate the necessary
motion trajectories at the required time using the proposed
control architecture. The speed of motion is used as the
task parameter in this paper. However, note that sometimes
patients cannot move to the initially defined target positions
because of their limited movement ability. Thus, in the
case the proposed control architecture can be used to
determine other task parameters such as a desired reaching
position. Subjects can express their intention to move further
away from the initially defined target position or closer
to themselves using spoken words. In such a case, for
example, the high-level controller in the control architecture
can determine the target position based on the subject’s
verbal feedback while monitoring the safety-related events.
Thus, new spoken words such as “further,” “closer,” etc.
can be included inside the human intention recognition
system and then related events and their decision rules
can be defined inside the control architecture as new
events.

The proposed control architecture, although implemented
on a PUMA 560 robot, is independent of any particular robot
and thus can be easily integrated into other existing robot-
assisted rehabilitation systems.

As a future work, it is planned to investigate the efficacy
of human intention recognition included methodology with
severely impaired stroke patients and how it will influence
patients’ participation in the therapy regime.
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