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Abstract

When faced with the task of solving hyperbolic partial differential equations (PDEs),
high order, strong stability-preserving (SSP) time integration methods are often needed
to ensure preservation of the nonlinear strong stability properties of spatial discretiza-
tions. Among such methods, SSP second derivative time-stepping schemes have been
recently introduced and used for evolving hyperbolic PDEs. In previous works, coupling
of forward Euler and a second derivative formulation led to sufficient conditions for a
second derivative general linear method (SGLM), which preserve the strong stability
properties of spatial discretizations. However, for such methods, the types of spatial
discretizations that can be used are limited. In this paper, we use a formulation based
on forward Euler and Taylor series conditions to extend the SSP SGLM framework.
We investigate the construction of SSP second derivative diagonally implicit multistage
integration methods (SDIMSIMs) as a subclass of SGLMs with order p = r = s and
stage order q = p, p − 1 up to order eight, where r is the number of external stages and s
is the number of internal stages of the method. Proposed methods are examined on
some one-dimensional linear and nonlinear systems to verify their theoretical order, and
show potential of these schemes in preserving some nonlinear stability properties such
as positivity and total variation.
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1. Introduction

Construction of high order accurate methods for hyperbolic conservation laws

Ut + f (U)x = 0, (1.1)
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has attracted the interest of many researchers. One of the main challenges of such
research is the development of high order schemes that avoid spurious oscillations
and maintain numerical stability, especially in the presence of shocks. Consequently,
much effort has been spent to construct spatial discretizations that can preserve
certain nonlinear stability properties, such as total variation stability and positivity
[8, 14, 39, 42]. The most commonly used approach in developing these methods is
the methods of lines (MOL). One of the main appealing aspects of this approach
is decoupling the spatial and time discretizations that reduce the partial differential
equation (PDE) (1.1) to the semidiscrete form

ut = F(u),

where u is a vector of approximations to U. When the explicit forward Euler method
[10] is applied to this problem, a sequence of approximations un+1 is computed from

un+1 = un + ΔtF(un). (1.2)

This method is chosen to ensure that various properties of the PDE are preserved, and
the fully discrete method under a suitable restricted time step is strongly stable, that is,

‖un + ΔtF(un)‖ ≤ ‖un‖, 0 ≤ Δt ≤ ΔtFE, (1.3)

where ‖·‖ is any desired norm, semi-norm or convex functional. The order of accuracy
of this method in time is only one, even though a higher order spatial discretization is
used. Hence, during the last three decades, much effort has been spent on increasing
the possible order of accuracy of time discretizations for (1.1) which still aim to
preserve the property (1.3) under a modified restricted time step

Δt ≤ CΔtFE.

Such methods are known as strong stability preserving (SSP) methods, and the
maximal constant C is referred to as the SSP coefficient. The research on SSP schemes
has been aimed to maximize the SSP coefficient C of the method. The literature collect
an extensive amount of research on different classes of SSP methods, such as SSP
linear multistep methods (LMMs) and Runge–Kutta (RK) methods [18, 19–21, 24,
26, 31]. SSP general linear methods (GLMs) were investigated by Spijker [41] and
studied more in [12, 15, 27–29]. For multiderivative integration methods, preserving
the forward Euler condition (1.3) is not enough, and we need to consider another
condition including the second derivative. To do this, there are two approaches. One
of these is to consider a second derivative condition in the form

‖un + Δt2G(un)‖ ≤ ‖un‖ for Δt ≤ K̃ΔtFE, (1.4)

where K̃ is a positive constant that relates to the stability condition of the second
derivative term and forward Euler term. Using this type of condition, Christlieb et al.
[13] derived SSP two-derivative RK methods up to order six, which preserve the strong
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stability properties of the forward Euler condition (1.3) when coupled with the second
derivative condition (1.4). Moradi et al. [36], using the general order conditions for
second derivative general linear methods (SGLMs) derived in [37], extended this SSP
approach to characterize and design SSP SGLMs as a class of multistage second
derivative time discretization and investigated more in [34, 35, 38]. The main flaw
of this approach is that the types of spatial discretizations that can be used are limited.
Due to this limitation, Grant et al. [22] considered an alternative condition to the
SSP concept, which allows more flexibility in the choice of spatial discretizations. In
place of the second derivative condition (1.4), the second approach discussed in [22]
preserves the SSP properties of the forward Euler method (1.2) and the Taylor series
condition

‖un + ΔtF(un) + 1
2Δt2G(un)‖ ≤ ‖un‖ for Δt ≤ KΔtFE,

where K is a positive constant. Ditkowski et al. [16] have extended this alternative
approach to a special class of SGLMs, and defined sufficient conditions controlling
the growth of error, so that the scheme has one order higher than expected from
truncation error analysis. Indeed, the methods derived in [16] are a subset of those
in [36]. The proposed SSP methods in [16] have been constructed for K = 1, and
compared with those in [36] for K = 1/

√
2. Such methods have an advantage to those

methods in [36] in the sense that they are more flexible in the choice of spatial
discretization. In this paper, we will develop this approach to a more general class
of SGLMs, and determine sufficient conditions for such methods to preserve the
strong stability properties of spatial discretizations in a more natural Taylor series
formulation. This leads to methods with higher order and larger SSP coefficients than
those in [16, 22, 34–36]. Indeed, we focus on construction of SSP second derivative
diagonally implicit multistage integration methods (SDIMSIMs) as a subclass of
SGLMs with p = r = s ≤ 8, and stage orders q = p and q = p − 1.

In the following sections, after a short review of the SSP SGLMs in Section 2,
we formulate the SSP optimization problem for finding SSP SGLMs as a convex
combination of forward Euler and Taylor series (TS) steps with the biggest acceptable
time-step in Section 3. Such methods will be referred to as SSP-TS methods. In
Section 4, we use this optimization problem to find optimal SSP methods and present
the coefficients of such methods of order p = r = s and stage order q = p and q = p − 1
up to order eight. Moreover, in Section 4, the effective SSP coefficient Ceff = C/s of
the derived methods are also listed and compared with those studied in the literature
[16, 22, 34]. In Section 5, we provide some numerical experiments demonstrating the
efficiency of the derived methods as well as the verification of the theoretical order
of the methods and potential of these methods in preserving some nonlinear stability
properties. Finally, the paper is summarized by giving some concluding remarks in
Section 6. In the Appendix, we list all the coefficient matrices of the constructed
SSP-TS SDIMSIMs with p = q = r = s ≤ 7 and p = q + 1 = r = s = 8 that are used
in our numerical experiments in Section 5.
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2. A short review on the SSP SGLMs

In this section, we first review the structure of SGLMs for the numerical solution of
a system of ordinary differential equations (ODEs)

y′(t) = f (y(t)), y(t0) = y0 ∈ Rm, t ∈ [t0, T]. (2.1)

SGLMs were first introduced by Butcher and Hojjati [11], and were studied more by
Abdi et al. [1–7, 9, 17, 40]. Such methods are characterized by four integers: the order
of the method p, the stage order q, the number of external stages r and the number
of internal stages s, together with six matrices indicated by A, A ∈ Rs×s, U ∈ Rs×r,
B, B ∈ Rr×s and V ∈ Rr×r and the abscissa vector c = [c1 c2 . . . cs]T . Denoting the
components of A, A, U, B, B and V respectively by aij, aij, uij, bij, bij and vij, on
the uniform grid tn = t0 + nh, n = 0, 1, . . . , N, Nh = T − t0, an SGLM used for the
numerical solution of (2.1) is defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y [n]
i = h

s∑
j=1

aijf (Y [n]
j ) + h2

s∑
j=1

aijg(Y [n]
j ) +

r∑
j=1

uijy
[n−1]
j , i = 1, 2, . . . , s,

y[n]
i = h

s∑
j=1

bijf (Y [n]
j ) + h2

s∑
j=1

bijg(Y [n]
j ) +

r∑
j=1

vijy
[n−1]
j , i = 1, 2, . . . , r,

(2.2)

for n = 1, 2, . . . , N. Here, Y [n]
i and y[n]

i , i = 1, 2, . . . , s, are respectively approximations
of stage order q to y(tn−1 + cih), and of order p to the linear combinations of the solution
y and its derivatives at the point tn, that is,

Y [n]
i = y(tn−1 + cih) + O(hq+1), i = 1, 2, . . . , s,

and

y[n]
i =

p∑
k=0

αiky(k)(tn)hk + O(hp+1), i = 1, 2, . . . , r,

for some real parameters αik, i = 1, 2, . . . , r. Also, the vectors f (Y [n]) = [ f (Y [n]
i )]s

i=1 and
g(Y [n]) = [g(Y [n]

i )]s
i=1 denote the first and second derivative stage-values, respectively,

where g(·) = f ′(·)f (·).
By using the results from [13, 27, 41], sufficient conditions for an SGLM to preserve

the strong stability properties of spatial discretizations, when coupled with forward
Euler and a second derivative formulation, were determined by Moradi et al. [36].
To describe a numerical search for SSP SGLMs, the authors [36] considered the
constrained minimization problem with an objective function

min (−γ), (2.3)
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subject to the following nonlinear inequality constraints:

R =
(
I + γT +

γ2

K̃2
T
)−1

S ≥ 0,

P = γ
(
I + γT +

γ2

K̃2
T
)−1

T ≥ 0,

Q =
γ2

K̃2

(
I + γT +

γ2

K̃2
T
)−1

T ≥ 0,

where γ is some constant, K̃ can take any positive value and

T =
( A 0

B 0

)
, T =

( A 0
B 0

)
, S =

( U
V

)
.

These conditions are equivalent to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
I + γA +

γ2

K̃2
A
)−1

U ≥ 0,

γ
(
I + γA +

γ2

K̃2
A
)−1

A ≥ 0,

V −
(
γB +

γ2

K̃2
B
)(

I + γA +
γ2

K̃2
A
)−1

U ≥ 0,

γB − γ
(
γB +

γ2

K̃2
B
)(

I + γA +
γ2

K̃2
A
)−1

A ≥ 0,

γ2

K̃2

(
I + γA +

γ2

K̃2
A
)−1

A ≥ 0,

γ2

K̃2
B − γ

2

K̃2

(
γB +

γ2

K̃2
B
)(

I + γA +
γ2

K̃2
A
)−1

A ≥ 0.

(2.4)

For an SGLM with the coefficient matrices (A, A, U, B, B, V) and the abscissa vector c,
the SSP coefficient C was given by Moradi et al. [36] as

C = C(c, A, A, U, B, B, V) = sup {γ ∈ R | γ satisfies (2.4)}.

Considering these conditions leads to a wide variety of SSP SGLMs [34–36, 38],
where the main drawback of these conditions is that the types of spatial discretizations
that can be used are limited. Due to this reason, in this paper, we will consider a
different approach to the SSP concept, so that there will be more flexibility in the
choice of spatial discretizations. The main goal of this paper is to reformulate the
SSP conditions for SGLMs as a convex combination of forward Euler and Taylor
series steps. Using these conditions as nonlinear inequality constraints to the opti-
mization problem (2.3), we derive new SSP schemes with abscissa vector c such that
−1 ≤ ci ≤ 1 and i = 1, 2, . . . , s. Here, we consider SDIMSIMs as a subclass of SGLMs
which were introduced by Abdi et al. [3]. These methods have the feature that p = r = s
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and q = p or q = p − 1 with U = Is and V as a rank one matrix of the form V = evT ,
e = [1 1 . . . 1]T ∈ Rs, v = [v1 v2 . . . vs]T ∈ Rs, with vTe = 1.

3. Monotonicity theory for SGLMs based on Taylor series conditions

Reformulating the explicit SGLMs (2.2) as

Y [n]
i =

l∑
j=1

sijy
[n−1]
j + h

m∑
j=1

tijF(tn−1 + cjh, Y [n]
j )

+ h2
m∑

j=1

tijG(tn−1 + cjh, Y [n]
j ), i = 1, 2, . . . , m,

y[n]
i = Y [n]

m−l+i, i = 1, 2, . . . , l,

(3.1)

n = 1, 2, . . . , N, 1 ≤ l ≤ m, sufficient conditions for SGLMs to preserve the strong
stability properties of spatial discretizations are derived, provided that the forward
Euler condition

‖Y [n] + ΔtF(Y [n])‖ ≤ ‖Y [n]‖, 0 ≤ Δt ≤ ΔtFE, (3.2)

for any Δt ≤ ΔtFE, and the second derivative condition

‖Y [n] + Δt2G(Y [n])‖ ≤ ‖Y [n]‖, Δt ≤ K̃ΔtFE, (3.3)

to approximate the second derivative in time utt, are satisfied. Here, K̃ is a scaling
factor comparing the stability condition of the second derivative term to that of the
forward Euler term. The main drawback of using this pair of base conditions is that
many common spatial discretization do not satisfy the condition (3.3), so that the
schemes in [34–36], satisfying this pair of conditions, are not effective. Due to this
reason, following the ideas of Ditkowski et al. [16] and Grant et al. [22], we extend the
alternative approach described in [22] for SGLMs that allows the development of such
methods which are SSP in the sense that they preserve the forward Euler condition
(3.2) and Taylor series condition

‖Y [n] + ΔtF(Y [n]) + 1
2Δt2G(Y [n])‖ ≤ ‖Y [n]‖, Δt ≤ KΔtFE. (3.4)

Note that, as in [22], any spatial discretization that satisfies the forward Euler and
second derivative conditions (3.2) and (3.3) will also satisfy the Taylor series condition
(3.4). Our goal in this paper is to develop explicit SGLMs of the form (3.1) that
preserve the strong stability properties of forward Euler and Taylor series terms,
perhaps under a different time-step condition Δt ≤ CTSΔtFE. To do this, we need
different SSP conditions from those proposed by Moradi et al. [36]. Such conditions
for a given time-step are determined in the following theorem.

THEOREM 1. Given spatial discretizations F and G that satisfy (3.2) and (3.4),
an SGLM of the form (3.1) preserves the SSP property ‖Y [n+1]‖ ≤ ‖Y [n]‖ under the
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time-step condition Δt ≤ γΔtFE if the following conditions hold:(
I + γT + 2

γ2

K2 (1 − K)T
)−1

S ≥ 0, (3.5)

γ
(
I + γT + 2

γ2

K2 (1 − K)T
)−1(

T − 2
γ

K
T
)
≥ 0, (3.6)

2
γ2

K2

(
I + γT + 2

γ2

K2 (1 − K)T
)−1

T ≥ 0, (3.7)

for some γ > 0. In the above conditions, the inequalities are understood component-
wise.

PROOF. Adding the term (γT + 2̂γ( γ̂ − γ)T)Y [n] to both sides of method (3.1) leads to

(I + γT + 2̂γ( γ̂ − γ)T)Y [n] = Sy[n−1] + γ(T − 2̂γ T)
(
Y [n] +

Δt
γ

F
)

+ 2̂γ2T
(
Y [n] +

Δt
γ̂

F +
Δt2

2̂γ2 G
)
.

Assuming that the matrix (I + γT + 2̂γ( γ̂ − γ)T) is invertible, we obtain

Y [n] = Ry[n−1] + P
(
Y [n] +

Δt
γ

F
)
+Q
(
Y [n] +

Δt
γ̂

F +
Δt2

2̂γ2 G
)
, (3.8)

with

R = (I + γT + 2̂γ( γ̂ − γ)T)−1S, P = γ(I + γT + 2̂γ( γ̂ − γ)T)−1(T − 2̂γ T),

Q = γ̂(I + γT + 2̂γ( γ̂ − γ)T)−1T .

The relation (3.8) determines a convex combination of terms which are SSP, if
R + P +Q = I and the elements of R, P and Q are all nonnegative. Therefore, the
resulting value is SSP as well, that is,

‖Y [n]‖ ≤ R‖y[n−1]‖ + P
∥∥∥∥∥Y [n] +

Δt
γ

F
∥∥∥∥∥ +Q

∥∥∥∥∥Y [n] +
Δt
γ̂

F +
Δt2

2̂γ
G
∥∥∥∥∥,

under the time-step restrictions Δt ≤ γΔtFE and Δt ≤ K γ̂ΔtFE. To obtain the optimal
time-step, these two time-step restrictions must be set equal, and so we require
γ = K γ̂. Therefore, for γ̂ = γ/K, conditions (3.5)–(3.7) ensure that R ≥ 0, P ≥ 0 and
Q ≥ 0 component-wise, and the method (3.1) preserves the strong stability condition
‖Y [n+1]‖ ≤ ‖Y [n]‖ under the time-step restriction Δt ≤ γΔtFE. This completes the proof
of the theorem. �

This theorem allows us to formulate the search for optimal SSP SGLMs as an
optimization problem which maximize the value of the SSP coefficient CTS subject
to the SSP conditions (3.5)–(3.7).
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In a similar way to [36], the SSP conditions (3.5)–(3.7) can be reformulated in terms
of the coefficient matrices A, A, U, B, B and V of SGLMs (2.2). Using the same process
discussed in [36], these conditions are equivalent to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
I + γA + 2

γ2

K2 (1 − K)A
)−1

U ≥ 0,

γ
(
I + γA + 2

γ2

K2 (1 − K)A
)−1(

A − 2
γ

K
A
)
≥ 0,

V −
(
γB + 2

γ2

K2 (1 − K)B
)(

I + γA + 2
γ2

K2 (1 − K)A
)−1

U ≥ 0,

γ
(
B − 2

γ

K
B
)
− γ
(
γB + 2

γ2

K2 (1 − K)B
)(

I + γA + 2
γ2

K2 (1 − K)A
)−1(

A − 2
γ

K
A
)
≥ 0,

2
γ2

K2

(
I + γA + 2

γ2

K2 (1 − K)A
)−1

A ≥ 0,

2
γ2

K2 B − 2
γ2

K2

(
γB + 2

γ2

K2 (1 − K)B
)(

I + γA + 2
γ2

K2 (1 − K)A
)−1

A ≥ 0,

(3.9)

where K can be any positive constant, and the SSP coefficient CTS for SGLMs (2.2)
can be obtained by

CTS = CTS(c, A, A, U, B, B, V) = sup {γ ∈ R | γ satisfies (3.9)}.

The results obtained in the following section indicate that considering these new
SSP conditions leads to the methods that not only increase our flexibility in the
choice of spatial discretizations but also have larger SSP coefficients than those of
the methods studied in [16, 22, 34–36]. In this paper, we refer to SSP-TS SGLMs as
the SGLMs preserving strong stability properties of (3.2) and (3.4), and to SSP-SD
SGLMs as the SGLMs preserving strong stability properties of (3.2) and (3.3).

4. Derivation of SSP SDIMSIMs based on Taylor series conditions

In this section, we search for SSP SDIMSIMs that preserve the SSP properties (3.9).
The SSP coefficient of the obtained methods of order p = r = s and stage order q = p
and q = p − 1 up to order eight are presented. The structure of order conditions for
such methods were discussed by Abdi et al. [2, 3]. Define Z = [1 z · · · zp]T ∈ Cp+1 and
the matrix

W = [α0 α1 · · · αp]

with the vectors αk, k = 0, 1, . . . , p, defined by αk = [α1k α2k · · · αrk]T .
In the case of methods with p = q, Abdi et al. [3] determined that the stage order

and order conditions are given by
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ecz = zAecz + z2Aecz + UWZ + O(zp+1), (4.1)

ezWZ = zBecz + z2Becz + VWZ + O(zp+1). (4.2)

Moreover, an SGLM has order p and stage order q = p − 1 if and only if [2]

ecz = zAecz + z2Aecz + UWZ

+

(cp

p!
− A

cp−1

(p − 1)!
− A

cp−2

(p − 2)!
− Uαp

)
zp + O(zp+1), (4.3)

ezWZ = zBecz + z2Becz + VWZ + O(zp+1). (4.4)

Here, the exponential function is applied componentwise to a vector. If we choose
U = Is, the stage order conditions (4.1) and (4.3) are given by

W = C − ACK − ACK2, Ŵ = Ĉ − ACK̂ − ACKK̂, (4.5)

respectively, where C = (Cij) ∈ Rs×( p+1) is the Vandermonde matrix [25] with elements

Cij =
c j−1

i

( j − 1)!
, 1 ≤ i ≤ s, 1 ≤ j ≤ p + 1,

K ∈ R( p+1)×( p+1) is the shifting matrix defined by K = [0 e1 · · · ep] with ej as the jth
unit vector in Rp+1 and the matrix X̂ refers to the matrix obtained by the p first columns
of a given matrix X.

For such methods, the order conditions lead to a formula for the coefficient matrix
B in terms of c, A, A, B and V as

B = B0 − AB1 − AB2 − VB3 − (B − VA)B4 + VA,

for the case with p = q = r = s [3], and

B = B0 − AB1 − AB2 − VB3 − (B − VA)B4 + VA

−
(cp

p!
− A

cp−1

(p − 1)!
− A

cp−2

(p − 2)!
− αp

)
eTB5

+ V
(cp

p!
− A

cp−1

(p − 1)!
− A

cp−2

(p − 2)!
− αp

)
eTB6, (4.6)

for methods with p = q + 1 = r = s [38], where the (i, j) elements of B0, B1, B2, B3, B4,
B5 and B6 are respectively given by∫ 1+ci

0 φj(x)dx

φj(cj)
,
φj(1 + ci)

φj(cj)
,
φ′j(1 + ci)

φj(cj)
,

∫ ci

0 φj(x)dx

φj(cj)
,

φ′j(ci)

φj(cj)
,

(p − 1)!
φj(cj)

,
(p − 1)!
φj(cj)

,
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and φi(x) is defined by

φi(x) =
s∏

j=1,j�i

(x − cj), i = 1, 2, . . . , s.

After an extensive search to obtain SSP SDIMSIMs, we observed that for such
methods, the matrices A and A are identically equal to the zero matrix. Although
these methods have SSP properties, their SSP coefficients are too small and are
not optimal. So, as in [34], to obtain methods with large SSP coefficients CTS, we
will consider a more general class of transformed SDIMSIMs. Introducing T as a
nonsingular transformed matrix and multiplying the relation for y[n] by T ⊗ Im, where
⊗ is the Kronecker product of two matrices, lead to the class of transformed methods
defined by

Y [n] = h(A ⊗ Im)f (Y [n]) + h2(A ⊗ Im)g(Y [n]) + (UT−1 ⊗ Im)(T ⊗ Im)y[n−1],

(T ⊗ Im)y[n] = h(TB ⊗ Im)f (Y [n]) + h2(TB ⊗ Im)g(Y [n])

+ (TVT−1 ⊗ Im)(T ⊗ Im)y[n−1].

(4.7)

Now, introducing

ỹ [n] = (T ⊗ Im)y[n], ỹ [n−1] = (T ⊗ Im)y[n−1],

results in the following form of (4.7):

Y [n] = h(A ⊗ Im)f (Y [n]) + h2(A ⊗ Im)g(Y [n]) + (Ũ ⊗ Im)̃y [n−1],

ỹ [n] = h(B̃ ⊗ Im)f (Y [n]) + h2(B̃ ⊗ Im)g(Y [n]) + (Ṽ ⊗ Im)̃y [n−1],
(4.8)

where the transformed coefficient matrices Ũ, B̃, B̃ and Ṽ are given by

Ũ = UT−1, B̃ = TB, B̃ = TB, Ṽ = TVT−1.

With respect to the transformed starting procedure

ỹ[0] =

p∑
k=0

(α̃k ⊗ I)hky(k)(t0) + O(hp+1),

where α̃k = Tαk, k = 0, 1, . . . , p, the transformed SDIMSIMs (4.8) preserves the order
p, the stage order q = p and q = p − 1 of the original methods (2.2). Now to obtain SSP
SDIMSIMs based on Taylor series conditions, we search for such methods by solving
the minimization problem (2.3) subject to the nonlinear components inequality
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(
I + γA + 2

γ2

K2 (1 − K)A
)−1

Ũ ≥ 0,

γ
(
I + γA + 2

γ2

K2 (1 − K)A
)−1(

A − 2
γ

K
A
)
≥ 0,

Ṽ −
(
γB̃ + 2

γ2

K2 (1 − K)B̃
)(

I + γA + 2
γ2

K2 (1 − K)A
)−1

Ũ ≥ 0,

γ
(
B̃ − 2

γ

K
B̃
)
− γ
(
γB̃ + 2

γ2

K2 (1 − K)B̃
)(

I + γA + 2
γ2

K2 (1 − K)A
)−1(

A − 2
γ

K
A
)
≥ 0,

2
γ2

K2

(
I + γA + 2

γ2

K2 (1 − K)A
)−1

A ≥ 0,

2
γ2

K2 B̃ − 2
γ2

K2

(
γB̃ + 2

γ2

K2 (1 − K)B̃
)(

I + γA + 2
γ2

K2 (1 − K)A
)−1

A ≥ 0,

(4.9)

where γ is some constant and K can take any positive value. For these methods, the
SSP coefficient CTS is given by

CTS = CTS(c, A, A, Ũ, B̃, B̃, Ṽ) = sup {γ ∈ R | γ satisfies (4.9)}. (4.10)

In the rest of this section, we will consider the base conditions (3.2) and (3.4),
and use the characterization (4.10) of the SSP coefficient CTS to search for new
SSP schemes with larger SSP coefficient than those for other existing SSP methods.
Furthermore, to compare the overall efficiency of methods for a given order and
different number of stages s, we also report the effective SSP coefficient defined by
Cff = C/s. In what follows, we refer to SSP-TS SDIMSIMspq as the SSP SDIMSIMs
based on Taylor series conditions and to SSP-SD SDIMSIMspq as the SSP SDIMSIMs
based on second derivative conditions, where p is the order of the method and q is the
stage order. The aim of this paper is to obtain high order SSP schemes based on
Taylor series conditions up to order eight. Solving the stage order and order conditions
(4.5)–(4.6) leads to the SDIMSIMs of order p and stage order q = p or q = p − 1 with
entries of A, A, B and V, together with ci, i = 1, 2, . . . , s, as free parameters. Now, to
obtain SSP-TS SDIMSIMs, we consider all of these free parameters, in addition to
the unknown parameters of nonsingular transformation matrix T, to the minimization
problem (2.3) subject to the nonlinear inequality constraints (4.9), and solve this
optimization problem using the fmincon command with the sequential quadratic
programming (SQP) algorithm from MATLAB and with many random starting
points.

As a simple example that provides optimal formulations with simple formulae, we
consider the strong stability properties of second order methods with p = q = r = s
and abscissa vector c = [1/2 1]T . The coefficient matrices of the original SDIMSIMs
are in the form
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TABLE 1. SSP-TS coefficients of SDIMSIMs with p = r = s = 3 and q = 3, 2.

K 0.1 0.2 0.3 0.5 1.0 1.5 1.6 1.8 2.0

TS-SDIMSIM33 0.51 0.76 1.18 1.42 2.32 2.66 2.69 2.72 2.73
TS-SDIMSIM32 0.89 1.22 1.49 1.62 2.38 2.73 2.77 2.79 2.79

TABLE 2. SSP-TS coefficients of SDIMSIMs with p = r = s = 4 and q = 4, 3 together with those for
SSP-TS TDRK methods with p = s = 4 and q = 2.

K 0.1 0.2 0.3 0.5 1.0 1.5 1.6 1.8 2.0

TS-SDIMSIM44 0.62 0.91 1.12 1.67 2.64 3.11 3.17 3.23 3.03
TS-SDIMSIM43 1.08 1.50 1.52 1.72 2.74 3.21 3.26 3.29 3.33

TS-TDRK42 0.35 0.66 0.96 1.56 2.66 3.47 3.53 3.58 3.63

[
A A U
B B V

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 0 0 1 0

a21 0 a21 0 0 1
b11 b12 b11 b12 1 − v v
b21 b22 b21 b22 1 − v v

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
Solving the order and stage order conditions and a straightforward SSP analysis with
the nonzero entries of A, A, the entries of B and v, together with four unknown
parameters of nonsingular transformation matrix T, [tij]r

i,j=1, as free parameters enable
us to formulate the optimal methods without the use of optimization code. The
coefficients of the method are given by

a21 =
(K − 1)t22 − t21

γt22
, a21 =

K2

2γ2 , b11 = b12 = b21 = b22 =
1
8

,

v =
2K(γ + 1) + 3γ2 + γ

K(γ + 2) + γ(2γ + 3)
, t11 =

8
3γ

, t12 = 0,

t21 =
t22(−3γ3 + (3K − 6)γ2 + 2γ(K2 + 2K − 2))

γ(γ2 + 3γ + 4)
, t22 =

t11(3K − 2)
(5K + 4)

,

with γ = 2K.
The SSP coefficients of the proposed methods depending on the value of K are

listed in Tables 1–5, using the notation TS-SDIMSIMpq. In these tables, to compare
our methods with the SSP two-derivative RK (TDRK) methods studied in [22], the
SSP coefficients of these methods, using the notation TS-TDRKpq, are also listed with
the same number of internal stages s. It is obvious that the SSP coefficient of SSP
SGLMs is dependent on the value of K which comes from the SSP conditions. Indeed,
increasing the value of K results in the increase of the SSP coefficients. However, there
is a trade-off between the SSP coefficient and stage order of the methods. In other
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TABLE 3. SSP-TS coefficients of SDIMSIMs with p = r = s = 5 and q = 5, 4 together with those for
SSP-TS TDRK methods with p = s = 5 and q = 2.

K 0.1 0.2 0.3 0.5 1.0 1.5 1.6 1.8 2.0

TS-SDIMSIM55 0.46 0.83 1.19 1.88 2.81 3.29 3.32 3.34 3.35
TS-SDIMSIM54 0.51 0.92 1.23 1.94 2.87 3.36 3.41 3.46 3.47

TS-TDRK52 0.38 0.74 1.09 1.69 2.93 3.81 3.85 3.89 3.90

TABLE 4. SSP-TS coefficients of SDIMSIMs with p = r = s = 6 and q = 6, 5 together with those for
SSP-TS TDRK methods with p = s = 6 and q = 2.

K 0.1 0.2 0.3 0.5 1.0 1.5 1.6 1.8 2.0

TS-SDIMSIM66 0.64 0.81 1.21 1.43 2.87 3.21 3.28 3.35 3.36
TS-SDIMSIM65 0.87 1.07 1.34 1.58 2.92 3.32 3.38 3.40 3.42

TS-TDRK62 0.294 0.516 0.673 0.904 1.52 2.00 − − 2.19

TABLE 5. SSP-TS coefficients of SDIMSIMs with p = r = s = 7, 8 and q = 7, 6.

K 0.1 0.2 0.3 0.5 1.0 1.5 1.6 1.8 2.0

TS-SDIMSIM77 0.69 0.98 1.28 1.63 2.90 3.15 3.17 3.19 3.22
TS-SDIMSIM76 0.74 1.02 1.31 1.76 3.10 3.34 3.45 3.48 3.48
TS-SDIMSIM87 0.42 0.79 1.07 1.25 1.59 1.74 1.82 1.83 1.85

words, for a given order p, the SSP coefficient of the method decreases as the stage
order increases. In the case of order four, from Table 2, one can see that for K < 1, the
SSP coefficients are greater than those of the SSP-TS TDRK methods with stage order
q = 2, for K = 1, the SSP coefficient of SSP-TS SDIMSIMs with q = p is close to
that of the SSP-TS TDRK method but those for SSP-TS SDIMSIMs with q = p − 1 are
greater; but for K > 1, SSP-TS SDIMSIMs have smaller SSP coefficients than those for
the SSP-TS TDRK method. In the case of order five, the SSP coefficients of the optimal
SSP-TS SDIMSIMs for K ≥ 1 are smaller than those of the SSP-TS TDRK with the
same order and stage order q = 2. For p = 6, the optimal SSP-TS SDIMSIMs for q = p
and q = p − 1, we found that the all SSP-TS SDIMSIMs have larger SSP coefficients
than those of the corresponding SSP-TS TDRK methods for each K. As a matter of
fact, for a given order p, SSP coefficients for low stage order methods have larger SSP
coefficients than those of the corresponding high stage order methods. Along with this
fact, we expect that SSP-TS SDIMSIMs with low stage order, q ≤ p − 2, provide even
larger SSP coefficients than those reported here. Although it is possible to find such
methods, these require different order and stage order conditions stated in this paper,
and so we only focus on constructing SSP-TS SDIMSIMs with stage order q = p and
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TABLE 6. Effective SSP coefficients of the SSP-TS SDIMSIMs up to p = 8 and q = p and q = p − 1,
compared with the SD-SDIMSIMs in [34] and TS-SGLMs in [16]. The used value for K is

√
2/2 for the

methods from [34] and K = 1 for the proposed methods in this work and the methods from [16].

p = q = TS-SDIMSIMpq SD-SDIMSIMpq Improvement TS-SGLMpq Improvement

3 3 0.773 0.637 21% − −
3 2 0.793 − − 0.75 6%
4 4 0.66 0.421 57% − −
4 3 0.685 − − 0.603 0.14%
5 5 0.562 − − − −
5 4 0.574 − − 0.546 5%
6 6 0.478 − − − −
6 5 0.485 − − 0.182 167%
7 7 0.415 − − − −
7 6 0.443 − − − −
8 7 0.197 − − − −

q = p − 1. In the case of the methods with p = q = r = s, after an extensive search,
we were not able to find SSP-TS SDIMSIMs with p = 8. For a single value of K,
chosen by K = 1, the effective SSP coefficient Ceff for the proposed methods are listed
in Table 6, using the notation TS-SDIMSIMpq. For the sake of comparison, we have
also listed the effective SSP coefficient Ceff for SSP methods investigated in [34], and
[16] using the notation SD-SDIMSIMpq (SSP SDIMSIM based on second derivative
conditions) and TS-SGLMpq, respectively. By Table 6, we see that the improvement in
the SSP-TS SDIMSIMs compared with the SSP-SD SDIMSIMs studied in [34] ranges
from 21% to 57%. Moreover, this table shows improvement in the range of 5% to 167%
compared with the SSP-TS SGLMs investigated in [16]. Note that in this table, dashes
indicate that such methods are not provided in [16, 34], so that there is no percentage
improvement available in the SSP coefficients.

The coefficient matrices of the constructed SSP-TS SDIMSIMs with
p = q = r = s ≤ 7 and p = q + 1 = r = s = 8 for K = 1, used in our numerical
experiments in Section 5, have been reported in the Appendix.

5. Numerical experiments

To illustrate the verification of the convergence order and the stability properties of
the proposed methods in this work, we test our methods on several one-dimensional
numerical experiments. In what follows, we first preview our results and then present
them in more detail throughout the following subsections.

First, in Section 5.1, we are going to test our methods to verify the order of
convergence. To accomplish this study, usually an appropriate starting procedure is
required to obtain the expected order of convergence. In this paper, similar to the work
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in [34–36], to approximate the temporal derivatives, we adopt a Lax–Wendroff type
approach which uses the PDEs (1.1) to replace the temporal derivatives by the spatial
derivatives, and discretize them in space. The purpose of the tests in Section 5.2 is to
focus on the verification of the SSP properties of the proposed methods in the presence
of the shock. We consider two nonlinear scaler PDEs, inviscid Burgers equation [32]
and the Buckley–Leverett equation [33], using fifth-order finite difference WENO
method (WENO5) [30], which is not provably total variation diminishing (TVD),
for the spatial discretization. Our tests indicate that the proposed methods in this
work perform significantly better than other existing methods in the presence of the
shock, and preserve the SSP property with larger allowable time-step. In the rest of
this subsection, we turn our attention to how the SSP properties of these methods are
practically preserved, by considering the total variation of the numerical solutions.
To accomplish this, we consider two scaler PDEs: the linear advection equation and
Burger’s equation, using simple first-order spatial discretizations, which are provably
TVD over time for the first derivative. Numerical results indicate that our methods
preserve these properties as expected by the theory.

5.1. Convergence studies To show the verification of the order of convergence,
we consider a linear advection problem ut + ux = 0 with periodic boundary conditions
and initial condition u0(x) = 0.5 + 0.5 sin(x) on the spatial domain x ∈ [0, 2π]. Using
the Fourier pseudospectral differential matrix D [23] to discretize the spatial grids,
we can approximate the first derivative F ≈ −ux ≈ −Du and the second derivative
Ft = utt = −DF = −D2u = G without raising discretization errors. For one single value
of K = 1, in Figure 1, we have plotted the norm of global error at the final time Tf = 2.0
in double logarithmic scale. These numerical results verify that the errors decrease
with the expected theoretical orders. This illustrates that using the Lax–Wendroff type
approach to approximate the temporal derivative does not influence the accuracy of
the methods.

5.2. Monotonicity studies In this subsection, we are going to verify the SSP
properties of the constructed methods in the presence of the shock. To do this, we
present some numerical experiments in conjunction with the WENO5 to discretize
the spatial grids, along with the results obtained using the fourth-order SSP-SD
SDIMSIM investigated by Moradi et al. [34] and the SSP-TS TDRK method of order
p = s = 4 and stage order q = 2 studied by Grant et al. [22]. Here, after computing
the approximation of un

t , that is, un
t = −f (un)x by a WENO5 finite difference, to

approximate utt at the point (xj, tn), we use the following fourth-order central difference
formula

uj,tt ≈ −
1

12Δx
(gn

j−2 − 8gn
j−1 + 8gn

j+1 − gn
j+2),

so that the calculation of second derivative functions does not lead to additional cost.
Here gn

j = f ′(un
j )un

j,t, and un
j and un

j,t are the approximation of u at the points (xj, tn).
We consider the following problems.
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FIGURE 1. Order verification for SSP-TS SDIMSIMpq of order p = r = s and stage order q = p and
q= p − 1 with K = 1 and grid refinement in time.

PROBLEM 1 (One-dimensional inviscid Burgers equation [32]). We consider the
following one-dimensional inviscid Burgers equation

∂u(x, t)
∂t

+
∂

∂x

(1
2

u2(x, t)
)
= 0, 0 ≤ x ≤ X, 0 ≤ t ≤ Tf .

(1) Smooth initial data.
We consider the initial condition u(x, 0) = 1/2 − (1/4) sin(πx), and periodic
boundary conditions u(0, t) = u(X, t) with X = 2.0 and 0 ≤ t ≤ Tf . Taking a
variable time-step Δt = CFL(Δx/maxi|u(xi)|) with CFL=1.75 (Nt = 26), we run
the simulation up to Tf = 2.0.

(2) Discontinuous initial data.
In this problem, we set the initial condition as

u(x, 0) =

{
1 if 0.18 ≤ x ≤ 0.44
0 otherwise,

and periodic boundary conditions u(0, t) = u(X, t), with X = 1.0 and 0 ≤ t ≤ Tf .
Using a variable time-step Δt = CFL(Δx/maxi|u(xi)|) with CFL=2.2 (Nt = 10),
and a resolution of N = 100 points, we run the simulation up to Tf = 0.23.

https://doi.org/10.1017/S1446181122000128 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181122000128


280 A. Moradi, A. Abdi and G. Hojjati [17]

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Initial Data
Ref. Sol.
SSP-TS SDIMSIM

44
SSP-SD SDIMSIM

44

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Initial Data
Ref. Sol.
SSP-TS SDIMSIM

44
SSP-TS TDRK

42

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

FIGURE 2. Numerical results of different SSP methods for Problem 1 with smooth solution at Tf = 2.0
and N = 80.

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

Initial Data
Ref. Sol
SSP-TS SDIMSIM

44
SSP-SD SDIMSIM

44

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

Initial Data
Ref. Sol
SSP-TS SDIMSIM

44
SSP-SD TDRK

42

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIGURE 3. Numerical results of different SSP methods for Problem 1 with discontinuous solution at
Tf = 0.23.

PROBLEM 2 (Buckley–Leverett equation [33]). The flux for the Buckley–Leverett
equation

∂u(x, t)
∂t

+
∂

∂x
(Φ(u(x, t))) = 0, −1 ≤ x ≤ 1, 0 ≤ t ≤ Tf ,

is given by

Φ(u) =
4u2

4u2 + (1 − u)2 ,

with discontinuous initial condition u(x, 0) = 1 in [−0.5, 0] and u(x, 0) = 0 elsewhere,
and periodic boundary conditions u(−1, t) = u(1, t), 0 ≤ t ≤ Tf . We run this simulation
using a constant time-step Δt = CFL(Δx/maxi|u(xi)|) with CFL=0.9 (Nt = 18) and a
resolution of N = 80 points.

In Figures 2, 3 and 4, we have plotted the obtained results by the SSP-TS SDIMSIM
of order p = 4. Moreover, to show the efficiency of the proposed methods, we have
also plotted the numerical results of the SSP-TS SDIMSIMpq with p = q = 4, and
the SSP-TS TDRKpq method with order p = 4 and stage order q = 2, using the same
temporal stepsize Δt for all the methods. From the numerical results presented in
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FIGURE 4. Numerical results of different SSP methods for Problem 2 with discontinuous solution at
Tf = 0.4.

Figures 2, 3 and 4, we observe that the SSP-TS SDIMSIM44 in the presence of shock,
performs better and does not generate the spurious oscillations.

PROBLEM 3 (Euler systems). In this test, we assess the performance of SSP-TS
SDIMSIM44 used in conjunction with the approximate Riemann problem. We consider
four Riemann initial conditions for the one-dimensional Euler equations for ideal gases
with γ = 1.4. These cases are considered to show some typical wave behaviours from
the solution of the Riemann problem [43]. The one-dimensional Euler equations [39]
are a nonlinear system of hyperbolic conservation laws defined by

Ut + F(U)x = 0,

with

UT = ( ρ, ρv, E)T ,

F(U) = ( ρv, ρv2 + p, v(E + p))T .

Here ρ, E, v and p stand for the density, the total energy, the velocity and the pressure,
respectively, related to the total energy

E =
p
γ − 1

+
1
2
ρ(v2).

Table 7 gives the data for all four tests. In all cases, data consist of two constant states
UL = [ ρL, vL, pL]T and UR = [ ρR, vR, pR]T , separated by a discontinuity. We run this
simulation using a variable time-step Δt = CFL(Δx/maxi|u(xi)|) and a resolution of
N = 100 points.

In Figures 5, 6, 7 and 8, we have plotted the numerical results for the density
obtained by the SSP-TS SDIMSIM of order p = 4, together with that for SSP-SD
SDIMSIMpq with p = q = 4, and the SSP-TS TDRKpq method with order p = 4 and
stage order q = 2, using the same temporal stepsize Δt for all the methods. These
figures show that there are no shocks, and capture the profile of the wave interaction
without spurious oscillations.
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TABLE 7. Data for four Riemann problem tests.

Test ρL vL pL ρR vR pR CFL Tf

1 1.0 0.0 1.0 0.125 0.0 0.1 1.5 0.25
2 0.445 0.698 3.528 0.5 0.0 0.571 2.3 0.15
3 1.0 0.0 1000.0 1.0 0.0 0.01 1.75 0.012
4 5.99924 19.5975 460.894 5.99242 -6.19633 46.0950 1.5 0.035
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FIGURE 5. Numerical results for Problem 3, test 1 (Sod’s problem), obtained by SSP-TS SDIMSIM44,
SSP-SD SDIMSIM44 and SSP-TS TDRK42.

x

0.2

0.4

0.6

0.8

1

1.2

1.4

D
en

si
ty

Exact Solution
SSP-TS SDIMSIM44

SSP-SD SDIMSIM44

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

0.2

0.4

0.6

0.8

1

1.2

1.4

D
en

si
ty

Exact Solution

SSP-TS SDIMSIM44

SSP-TS TDRK42

FIGURE 6. Numerical results for Problem 3, test 2 (Lax’s problem), obtained by SSP-TS SDIMSIM44,
SSP-SD SDIMSIM44 and SSP-TS TDRK42.

PROBLEM 4 (The interacting blast waves problem). The considered problem is the
Euler equation with the initial conditions

(ρ, v, p) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1, 0, 1000) if 0 ≤ x ≤ 0.1
(1, 0, 0.01) if 0.1 ≤ x ≤ 1,
(1, 0, 100) otherwise.
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FIGURE 7. Numerical results for Problem 3, test 3, obtained by SSP-TS SDIMSIM44, SSP-SD
SDIMSIM44 and SSP-TS TDRK42.
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FIGURE 8. Numerical results for Problem 3, test 4, obtained by SSP-TS SDIMSIM44, SSP-SD
SDIMSIM44 and SSP-TS TDRK42.

As in the previous problems, we run this simulation using a variable time-step
Δt = CFL(Δx/maxi |u(xi)|) with CFL=0.6 and a resolution of N = 400 points until
t = 0.038. In Figure 9, the numerical results for the density obtained by the SSP-TS
SDIMSIM of order p = 4 together with that for SSP-SD SDIMSIMpq with p = q = 4,
and the SSP-TS TDRKpq method with order p = 4 and stage order q = 2 have been
plotted, using the same temporal stepsize Δt for all the methods. From this figure, we
observe that the proposed method in this work outperforms the two other methods. �

To verify the SSP properties of the proposed schemes in the presence of the shock,
we consider the maximal observed rise in total variation over each step defined by

max
1≤n≤Nt

(‖u(tn, x)‖TV − ‖u(tn−1, x)‖TV ). (5.1)

We are looking for the time-step Δtobs, or the SSP coefficient Cobs = Δtobs/ΔtFE, at
which this rise becomes evident and exceeds 10−10.
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FIGURE 9. Numerical results for Problem 4 obtained by SSP-TS SDIMSIM44, SSP-SD SDIMSIM44 and
SSP-TS TDRK42.

To show the sharpness of the SSP time-step, we monitor the maximal rise in the
total variation. For this, we consider a linear advection problem

ut − ux = 0,

and the nonlinear Burgers equation

ut + ( 1
2 u2)x = 0,

with x ∈ [0, 1], periodic boundary conditions and the initial condition

u0(x) =

⎧⎪⎪⎨⎪⎪⎩1 if 1
4 ≤ x ≤ 1

2

0 otherwise.
(5.2)

As in [22], using a first-order spatial discretization results in approximations for the
first and second derivatives of the solution which, in the case of the linear advection
equation, are given by

F(un)j =
un

j+1 − un
j

Δx
≈ ux(xj),

G(un)j =
un

j+2 − 2un
j+1 + un

j

Δx2 ≈ uxx(xj),

and for Burgers equation, are given by

F(un)j =
f n
j − f n

j−1

Δx
≈ f (u)x(xj),

G(un)j =
f ′(un

j )F(un)j − f ′(un
j−1)F(un)j−1

Δx
≈ ( f ′(u)f (u)x)x(xj).

To compare the efficiency of the derived time-stepping methods, we use a time-step
Δt = λΔx where λ varies from λ = 0.05 until beyond breaching the TVD property (that
is, 0.05 ≤ λ ≤ 3.5). For a grid size Δx = 1/600, the maximal rise in total variation
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FIGURE 10. Maximal rise in total variation (5.1) as a function of the CFL number for linear advection on
the left and for Burgers equation on the right.

TABLE 8. Comparison of the observed and theoretical value of SSP coefficients for linear advection and
Burgers equation.

Method Predicted C Observed C
Linear advection Burgers equation

SSP-TS SDIMSIM33 2.32 2.32 2.41
SSP-TS SDIMSIM32 2.38 2.51 2.61
SSP-TS SDIMSIM44 2.64 2.64 2.95
SSP-TS SDIMSIM43 2.74 2.98 3.06
SSP-TS SDIMSIM55 2.81 2.81 2.92
SSP-TS SDIMSIM54 2.87 3.12 3.38
SSP-TS SDIMSIM66 2.87 2.87 3.05
SSP-TS SDIMSIM65 2.92 3.24 3.37
SSP-TS SDIMSIM77 2.90 2.90 3.21
SSP-TS SDIMSIM76 3.10 3.34 3.44
SSP-TS SDIMSIM87 1.59 1.84 1.93

(5.1) is plotted in Figure 10 for a selection of time-stepping methods. The point where
the maximal rise in total variation exceeds 10−10 is defined as the observed SSP
coefficient Cobs. The expected and observed values of the SSP coefficients are listed
in Table 8. The results from the linear advection problem show how well the observed
SSP coefficient Cobs

TS matches the predicted SSP coefficient Cpred
TS for the methods with

p = q = r = s up to order p = 7.

6. Conclusions

In this paper, we introduced a formulation based on the forward Euler and Taylor
series conditions to extend the SSP framework to SSP SGLMs, which not only
increases our flexibility in the choice of spatial discretizations, but also leads to larger
SSP coefficients than those of the methods studied by Moradi et al. [34] and Ditkowski
et al. [16]. Within this new pair of base conditions, SSP methods in the class of
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SDIMSIMs, called “SSP-TS transformed SDIMSIMs,” were studied, and examples of
such methods with the abscissa vector −1 ≤ c ≤ 1 up to order p = 8 were determined.
Finally, the proposed methods were examined on some one-dimensional linear and
nonlinear problems conforming the capability of derived methods, the verification of
theoretical order and potential of such schemes in solving PDEs and sharpness of the
SSP time-steps.

Appendix

The coefficient matrices of the constructed SSP-TS SDIMSIMs

1. SSP-TS SDIMSIM33

c =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.3379637032
0.6709575126

1.0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 0

0.3427226266 0 0
0.2998325752 0.3766826971 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 0

0.0714204330 0 0
0.0624825171 0.0550098602 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

B̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.5078023394 0.5171810460 0.5911620724

0 0 0
0.0623845271 0.0783743124 0.0484364010

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

B̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.0857877831 0.0755279105 0.1058772476

0 0 0
0.0130003962 0.0061883201 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

Ũ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.6264620098 0.0000018173 0
0.4986523646 2.0452837246 1.0403547143
0.4362484732 2.2049623004 1.5483146767

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

Ṽ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.7388389843 3.4896393266 2.1258183881

0 0 0
0.0907678382 0.4287091297 0.2611610157

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

W̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1.5962659897 0.5394799651 0.0911623234 0.0102698521

0 0 0 0
0.1961044507 0.0569247439 −0.0073191934 0.0014523797

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

.

2. SSP-TS SDIMSIM44

c =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.2563967241
0.5101578748
0.7511999445

1.0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 0 0

0.2525178632 0 0 0
0.2668995454 0.2338475193 0 0
0.2857735400 0.2000149977 0.2679177278 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 0 0

0.0477878826 0 0 0
0.0295253379 0.0442546031 0 0
0.0252536799 0.0313259480 0.0425708749 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

B̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1.4300266680 1.2412670239 1.0586073420 1.4955093362
0.0103995939 0.0155876251 0 0
0.5867713460 0.4740495193 0.5887015350 0.5024992503

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

B̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.1567210483 0.1237763504 0.1682077594 0.2180758207
0.0019680769 0.0029498887 0 0
0.0598529858 0.0810475954 0.0565187197 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

Ũ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.1935050934 0 0 0
0.1291007688 0 0.1569604623 0
0.1364534614 0.2418353488 0.1328470450 0
0.1461028667 0.1711849399 0.1083374215 0.1737668973

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

Ṽ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.7311068606 0.9167153648 0.6150804163 1.0393232593
0.0076835780 0.0096342332 0.0064641964 0.0109227826
0.2999892004 0.3761484457 0.2523810023 0.4264571573
0.0048382278 0.0060665247 0.0040704025 0.0068779039

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

W̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
5.1678226268 1.3250127924 0.1698644697 0.0145175645 0.0009305640
0.0543113057 −0.0150040650 0.0046605540 −0.0017732724 0.0005376505
2.1204711117 0.5516028698 −0.0275976540 −0.0018986858 0.0026888288
0.0341989724 −0.0258115649 0.0095153069 −0.0022732350 0.0004141086

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
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3. SSP-TS SDIMSIM55

c =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.2071288276
0.4062917712
0.6050674218
0.8001048024

1.0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0
0.1883799083 0 0 0 0
0.1972261019 0.1876095038 0 0 0
0.2333299954 0.1725184495 0.1847897127 0 0
0.2222809919 0.1871616858 0.1938982318 0.1887666939 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0
0.0334265160 0 0 0 0
0.0176709306 0.0332898139 0 0 0
0.0237493850 0.0173341532 0.0327894644 0 0
0.0253846153 0.0181885755 0.0174410716 0.0334951481 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0199882896 0.0168116150 0.0174202548 0.0170613030 0.0316862914
0.9938940819 0.8651768450 0.9441555283 0.8605573282 0.9098418499
0.4106824934 0.3264938007 0.3421115086 0.4446615367 0.4104430174
0.0084589996 0.0073634915 0.0080356764 0 0
0.0013320898 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0022803529 0.0016341027 0.0015763766 0.0030273925 0
0.1093340995 0.1009158758 0.0795110707 0.0858739190 0.1614441979
0.0445058894 0.0320916852 0.0410844388 0.0387389857 0
0.0006935669 0.0007537846 0 0 0

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Ũ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.2187058469 0 0 0
0 0.1160936449 0.2481490615 0 0.0564414191

1.9405426326 0.1215453242 0.1311840225 0 2.9308526650
1.0104491208 0.1437952162 0.1206317575 0.1846489453 2.3667973789
1.0602554386 0.1369860022 0.1308708903 0.3837857224 2.2786380119

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Ṽ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1038282964 0.0123182637 0.0121665242 0.0465426658 0.2099011718
5.1627393621 0.6125111093 0.6049660406 2.3142790627 10.4370877592
2.1332722598 0.2530929545 0.2499752906 0.9562728194 4.3126619859
0.0439399038 0.0052130618 0.0051488459 0.0196967525 0.0888297083
0.0069194822 0.0008209323 0.0008108199 0.0031017667 0.0139885511

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

W̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0919549546 0.0300336963 0.0007068533 −0.0001754669 0.0000241295 0.0000011638
4.5723514669 0.9470657989 0.0980823143 0.0067718916 0.0003506635 0.0000145265
1.8893207389 0.4358779150 −0.0054101573 −0.0022955672 0.0004031667 0.0001048145
0.0389151319 −0.0070073631 −0.0008248687 0.0005749511 −0.0001476518 0.0000309087
0.0061282011 −0.0035284919 0.0008303862 −0.0000554406 −0.0000250663 0.0000107950

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

4. SSP-TS SDIMSIM66

c =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1758227027
0.3489954910
0.5056750884
0.6663037517
0.8309580239

1.0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0.1592079838 0 0 0 0 0
0.2084081661 0.1340733423 0 0 0 0
0.2509084613 0.1034469341 0.1432983441 0 0 0
0.2158757433 0.1523459345 0.1518063268 0.1455326667 0 0
0.2118839745 0.1379137715 0.2392257619 0.0915280170 0.1552925550 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0.0276520711 0 0 0 0 0
0.0106727733 0.0232865558 0 0 0 0
0.0245531489 0.0096062440 0.0248888021 0 0 0
0.0227801279 0.0136484077 0.0104272951 0.0252768708 0 0
0.0169841860 0.0175889806 0.0219388943 0.0113000698 0.0269720190 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0253287298 0.0208649616 0.0092156832 0.0223397949 0 0
0.0015900854 0.0015111152 0 0 0 0

0 0 0 0 0 0
0.0708493417 0.0461330727 0.0609357918 0.0368303909 0.0780142252 0.0544130018
0.5303165780 0.3244119948 0.5161928905 0.3269585521 0.3770303108 0.4248714447
0.0099525856 0.0070236513 0.0069987736 0.0067095371 0.0160149244 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0031756454 0.0006177887 0.0016006278 0 0 0
0.0002761743 0.0002624584 0 0 0 0

0 0 0 0 0 0
0.0062595955 0.0048646511 0.0050481848 0.0056768091 0.0135499166 0
0.0453259218 0.0383721079 0.0570838733 0.0274351133 0.0329896861 0.0737938834
0.0010502392 0.0006292368 0.0004807328 0.0011653473 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Ũ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0.3433475631 0 0.3767676119 1.4929992899
0 0 1.4884820475 1.1059395619 0.1726814104 4.4947525319

0.5220851455 0.3232476256 1.2088204677 0.8115763837 0.2260452975 2.3664551849
0.3062804078 0.1333471376 0.9281505742 0.4880551153 0.2721423006 2.7928048845
0.4174497978 0.2898936624 1.4672402894 0.6531599584 0.2341448396 3.3342131647
0.4510968767 0.4180592956 1.3398043652 0.7040306450 0.2298152560 3.0966732050

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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Ṽ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0489794405 0.0656246453 0.1809629881 0.0766353452 0.0274722453 0.4004228929
0.0030748282 0.0041197799 0.0113604831 0.0048110089 0.0017246509 0.0251377232

0 0 0 0 0 0
0.1370049405 0.1835647882 0.5061883752 0.2143638390 0.0768451680 1.1200600502
1.0254998773 1.3740064196 3.7888861129 1.6045413382 0.5751961206 8.3837957924
0.0192458160 0.0257863266 0.0711069857 0.0301128339 0.0107948513 0.1573408199

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

W̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1179917209 −0.0208608047 −0.0004845339 0.0006754460 −0.0001064733 −0.0000006808 0.0000048639
0.0074072768 −0.0030893301 0.0007925466 −0.0002229686 0.0000656030 −0.0000161301 0.0000032006

0 0 0 0 0 0 0
0.3300455972 0.0713447101 0.0049125944 −0.0010676069 0.0000059684 0.0000264151 −0.0000044759
2.4704344098 0.4351498499 0.0485776109 0.0018560110 0.0000831963 0.0000225399 −0.0000062521
0.0463632685 0.0079520017 −0.0019060016 0.0001383800 0.0000056752 −0.0000047502 0.0000016052

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

5. SSP-TS SDIMSIM77

c =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1515413917
0.3001733973
0.4407591855
0.5793400232
0.7165512545
0.8569705290

1.0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
0.1301340685 0 0 0 0 0 0
0.1030782912 0.1181748638 0 0 0 0 0
0.2107058095 0.0746962299 0.1165405952 0 0 0 0
0.1674186626 0.1106597053 0.1441631890 0.1111538975 0 0 0
0.1498499141 0.1005976520 0.1658168192 0.1427112759 0.1148778197 0 0
0.1664059921 0.1002871522 0.1450512108 0.1765674393 0.1097236911 0.1198084819 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
0.0223925474 0 0 0 0 0 0
0.0076892879 0.0203346923 0 0 0 0 0
0.0258115660 0.0068860843 0.0200534789 0 0 0 0
0.0223245458 0.0135846477 0.0064769707 0.0191265742 0 0 0
0.0180234432 0.0136574714 0.0092710458 0.0063845587 0.0197673603 0 0
0.0199392106 0.0109409792 0.0145398574 0.0150938539 0.0068816686 0.0206157937 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0016808588 0.0009633972 0.0028055808 0 0 0 0
0.9547389339 0.6449471638 0.9755230081 0.9547556799 0.6499302492 1.8501845350 0.1595505247
0.4645330948 0.2815074221 0.3667369941 0.2827645985 0.8754731480 0 0
0.4492585157 0.2801464628 0.3906618309 0.4531760282 0.3637148863 0.3001903692 0.8032351738
0.0216469592 0.0118916309 0.0171995657 0.0209366282 0.0130105762 0.0142063885 0.0408073705
0.0702636996 0.0459940643 0.0766932256 0.0642605071 0.0517275660 0.1549631189 0
0.0001908713 0.0000221049 0.0000643733 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0000626854 0.0001657746 0.0004827644 0 0 0 0
0.1158725224 0.0788678955 0.0625860535 0.0402916863 0.1062725827 0.2129554731 0
0.0567914519 0.0345580097 0.0164767773 0.0486561263 0.0838836601 0 0
0.0546497809 0.0303293144 0.0363860961 0.0412102044 0.0172426076 0.0481171934 0.1382150108
0.0023643082 0.0012973355 0.0017240755 0.0017897660 0.0008159995 0.0024445346 0
0.0081609828 0.0062696009 0.0045236778 0.0028748603 0.0089009126 0 0
0.0000014383 0.0000038037 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Ũ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0.2035629971 0.1668794884 0 0 0
0 0.1004101687 0.0769745847 0.0631032138 0 0 0
0 0.0362873794 0.0609710336 0.1952183393 0 0.1746634164 0

0.0550884948 0.0224060792 0.1246329449 0.1513550849 0 0.2442797764 0
0.2097640029 0.0330441233 0.0990285032 0.1420218979 0 0.2993334461 0.1980273583
0.2071785413 0.0302221096 0.1012240870 0.1426408077 0.0958024529 0.2933574084 0.0661026528
0.1979697114 0.0303936303 0.1028116422 0.1419056033 0.1040177729 0.2835063842 0.3534698372

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Ṽ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0028070189 0.0004421897 0.0014453966 0.0019990614 0.0012980075 0.0040056188 0.0099541767
1.2281519380 0.1934707746 0.6324028261 0.8746471611 0.5679158053 1.7525740687 4.3552401738
0.5336190219 0.0840610044 0.2747723364 0.3800249368 0.2467534083 0.7614748888 1.8923057725
0.5373960345 0.0846559972 0.2767172045 0.3827147940 0.2484999553 0.7668646896 1.9056997155
0.0266729970 0.0042017972 0.0137345211 0.0189955822 0.0123339923 0.0380623939 0.0945870819
0.0932890413 0.0146958227 0.0480366081 0.0664372157 0.0431382465 0.1331235572 0.3308191503
0.0002192579 0.0000345397 0.0001129008 0.0001561479 0.0001013881 0.0003128812 0.0007775266

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

W̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0141550255 −0.0061308267 0.0016738474 −0.0003561799 0.0000520541 −0.0000030001 −0.0000007566 0.0000002843
6.1932330112 1.1227548920 −0.0139739183 −0.0059672033 −0.0000261796 0.0000419185 0.0000042917 0.0000002622
2.6908942124 0.0695115947 −0.0424262678 0.0003622426 0.0003394668 −0.0000000600 −0.0000025912 −0.0000000346
2.7099406499 0.8232971254 0.1205589442 0.0030338077 −0.0002824113 0.0000040641 0.0000032616 0.0000000444
0.1345046001 0.0296567518 0.0036158510 −0.0006691561 0.0000572187 0.0000066989 −0.0000036626 0.0000008602
0.4704310212 0.0790280340 −0.0138820999 0.0005516865 0.0000629185 −0.0000117776 0.0000001838 0.0000004879
0.0011056574 −0.0006272230 0.0001536316 −0.0000131713 −0.0000038323 0.0000018639 −0.0000004523 0.0000000805

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

6. SSP-TS SDIMSIM87

c =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.2311609775
−0.1464553791
0.4861919221
−0.8479793337
0.7360212915
0.7035168041
0.3386114110

1.0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0.0002812522 0 0 0 0 0 0 0
0.2153483369 0.2395600879 0 0 0 0 0 0
0.0000021930 0.0000024396 0.0000064453 0 0 0 0 0
0.2660875910 0.2450226058 0.2028620170 0.0257466856 0 0 0 0
0.3228294275 0.2416355368 0.0779653887 0.0078930145 0.0210518147 0 0 0
0.1778073516 0.1582203440 0.0003948087 0.0979412549 0.0012286718 0 0 0
0.2609726524 0.1532765453 0.0727791374 0.0753707410 0.2270648817 0 0.2622939542 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0.0000890049 0 0 0 0 0 0 0
0.0681489787 0 0 0 0 0 0 0
0.0000006940 0 0.0000020397 0 0 0 0 0
0.0218666578 0.0438643230 0.0641975669 0 0 0 0 0
0.1000888710 0.0014589928 0.0145440149 0.0018955680 0.0066620420 0 0 0
0.0000647396 0.0458496693 0.0001249409 0.0228418607 0.0003888246 0 0 0
0.0369805761 0.0347024167 0.0230316331 0.0127438942 0.0718567880 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0779083031 0.0912873356 0.0275723752 0.0076540512 0.0600247478 0 0 0
0 0 0 0 0 0 0 0

0.6165809624 0.7303530449 0.2182129629 0.0340897896 0.4750471427 0.5861161339 0 0
2.2258588756 2.1225710982 0.7877493630 0.3001599573 0.6795001122 2.6900132377 0.9839905195 1.6429936281
0.0620841130 0.0103342292 0.0049071024 0.0265015170 0.0153090727 0 0.0176842724 0.0426723676
0.0030518919 0.0000000057 0.0000000150 0.0014688078 0 0 0 0
1.5645493937 1.3226762697 0.5537066172 0.3206052718 1.1952363050 1.1830434130 1.6424119796 0.0161482825
0.0005973276 1.3405598827 0.0000047591 0.4673341037 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0029802024 0.0246968519 0.0060883875 0 0 0 0 0
0 0 0 0 0 0 0 0

0.1084728837 0.0329230693 0.0596756589 0.0043658374 0.1503330746 0.1854818871 0 0
0.5502748346 0.1182421696 0.2062412058 0.0596895774 0.2150341132 0 0.0959192792 0.5199405732
0.0165722218 0.0023396917 0.0015528981 0.0068010081 0.0048446981 0 0 0
0.0009657995 0 0.0000000047 0 0 0 0 0
0.2318571018 0.2015937455 0.1444290593 0.0637296896 0.0152908407 0.0188214018 0 0
0.0001890299 0.1818670655 0.0000015061 0.0935808935 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Ũ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.0091736086 0 0.1104479186 0 0 0 0
0 0.0004744032 0 0.0000490801 0 0 0.1056970619 0.03318154915
0 0.1147325272 0.1122074193 0.0375795204 0 0 0.0400064074 0.0125592382
0 0.0017139035 0.0000011427 0.0000003827 0 0 0.0000004074 0.1015048077

0.1948458836 0.3369733217 0.0359645382 0.0464338113 0 0 0.0409186450 0.0169747572
0.0064808646 0.3640663649 0.0138221499 0.0563355874 0.2254137439 0.1779184837 0.0403530063 0.0139338929
0.0003782503 1.4015034834 0.0000699939 0.0310284031 0.3529749718 0.8403921765 0.0601405205 0.0240022856
0.1926952813 1.0272027602 0.0129027016 0.0455412252 0.1462798032 0.5818706839 0.0395704272 0.0201233415

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Ṽ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0184787995 0.2705727866 0.0048881883 0.0135954459 0.0665923957 0.1254523185 0.0154113814 0.0060133760
0 0 0 0 0 0 0 0

0.1462446947 2.1413639183 0.0386860417 0.1075969157 0.5270247436 0.9928532416 0.1219685706 0.0475909886
0.5279437278 7.7303293068 0.1396567108 0.3884251450 1.9025606930 3.5842027811 0.4403068566 0.1718035924
0.0147255149 0.2156159331 0.0038953337 0.0108340339 0.0530666137 0.0999713203 0.0122811293 0.0047919811
0.0007238676 0.0105991129 0.0001914844 0.0005325726 0.0026086153 0.0049143275 0.0006037081 0.0002355612
0.3710900310 5.4336248191 0.0981642748 0.2730228461 1.3373040903 2.5193251691 0.3094903424 0.1207602195
0.5744532388 8.4113371806 0.1519598503 0.4226436849 2.0701678881 3.8999552178 0.4790959463 0.1869387302

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

W̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.3169046293 −0.0624631453 0.0073573488 −0.0058606830 0.0047136483 −0.0019803415 0.0004655098 −0.0000319171 0.1045502478
0 0 0 0 0 0 0 0 0

2.5080428352 0.0731731474 0.1983823136 −0.0482405607 0.0012735643 0.0004839542 0.0000812276 0.0000075604 0.8275668281
9.0540411491 2.0929410020 0.2419031439 0.0186395224 0.0010771826 0.0000498005 0.0000019187 0.0000000634 2.9876705936
0.2525371757 −0.0810176178 0.0505730911 −0.0135538343 0.0017501218 0.0001143595 −0.0000216526 −0.0000581930 0.0833743771
0.0124140642 −0.0082852813 0.0030464367 −0.0002292075 −0.0005315179 0.0004135018 −0.0001903133 0.0000662444 0.0040774981
6.3640578232 1.2333933570 −1.0120420107 0.3090839217 −0.0664770940 0.0112931616 −0.0015970467 0.0001934641 2.1000264167
9.8516621905 −8.3542032894 3.5419854417 −1.0012137725 0.2122442526 −0.0359969521 0.0050873037 −0.0006162890 3.2509682925

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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