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Abstract. We investigate natural variations of behaviourally correct learn-
ing and explanatory learning—two learning paradigms studied in algorith-
mic learning theory—that allow us to “learn” equivalence relations on Polish
spaces. We give a characterization of the learnable equivalence relations in
terms of their Borel complexity and show that the behaviourally correct and
explanatory learnable equivalence relations coincide both in uniform and non-
uniform versions of learnability and provide a characterization of the learnable
equivalence relations in terms of their Borel complexity. We also show that the
set of uniformly learnable equivalence relations is Π1

1-complete in the codes
and study the learnability of several equivalence relations arising naturally in
logic as a case study.

1. Introduction

A common scenario in algorithmic learning theory can be viewed in terms of the
following game played in infinitely many stages:

Fix a countable sequence of languages (li)i∈ω, li ⊆ ω (possibly with
repetitions) and an index i0. At each stage s, an informant presents
a learner with a word ws ∈ li0 such that {ws : s ∈ ω} = li0 and the
learner has to make a hypothesis hs ∈ ω, guessing which language
they are presented with.

This way of presenting the language li0 is often referred to as learning from text.
There are several ways to define winning conditions for this learning game. The
first one, giving the learning paradigm often referred to as explanatory learning or
learning in the limit is due to Gold [Gol67]:

The learner wins the game if after finitely many stages they stabilize
on a correct hypothesis, i.e. if there exists h = lims hs and lh = li0 .

Another learning paradigm, behaviourally correct (BC) learning, is due to Feld-
man [Fel72]:

The learner wins the game if there is a finite stage s such that at
all stages t > s, lht

= li0 .
Notice that we do not require that the learner guesses the correct index, they just
need to identify the language up to equality.
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2 ROSSEGGER, SLAMAN, AND STEIFER

Recently, Fokina, Kötzing, and San Mauro [FKS19] adapted the explanatory
paradigm to learning of the isomorphism relation on countable structures. As
above, we can view this as a game where a sequence of countable structures (Ai)i∈ω

is fixed, and the learner, presented with finite fragments of a structure B, needs
to hypothesize to which of the Ai B is isomorphic. The difference to classical
explanatory learning is that the informant may play an isomorphic copy of one
of the structures Ai, or a structure not isomorphic to any of the structures in
the sequence. Bazhenov, Fokina, and San Mauro [BFS20] characterized learnable
sequences of structures as those that have Σin

2 quasi Scott sentences in the infinitary
logic Lω1ω. That is, sentences φi of the form

∨∨
i∈ω ∃x̄

∧∧
j∈ω ∀ȳψi,j(x̄, ȳ) where the

ψi,j are quantifier-free such that Ai |= φi and if Aj ̸∼= Ai, then Aj ̸|= φi. A result
connecting this paradigm with descriptive set theory is due to Bazhenov, Cipriani
and San Mauro [BCS23]. They showed that a sequence of structures is learnable
if and only if the isomorphism problem on the associated class is continuously
reducible to E0, the eventual equality relation on infinite binary strings.

Motivated by the above work, we take a different approach to connecting al-
gorithmic learning theory with descriptive set theory. Our aim is to study the
following question:

What does it mean for an equivalence relation on a Polish space to
be learnable?

Fokina, Kötzing, and San Mauro’s learning paradigm already gives some insight
into an equivalence relation on a Polish space. After all, the space of countable
structures in a relational vocabulary can be viewed as a closed subspace of 2ω and
thus admits a natural Polish topology. However, learnability in their paradigm is a
local property, only giving information on the countable set of isomorphism classes
obtained from the sequence (Ai)i∈ω.

Our approach is global, aiming to give information into an equivalence relation
on the whole space. We introduce and study both uniform and non-uniform versions
of explanatory learning and behaviourally correct learning of equivalence relations
on Polish spaces. Our main results show that both the uniform and non-uniform
versions of these learning paradigms are equivalent (Theorem 2, Theorem 11). The
proof of this result for the non-uniform version is relatively simple, while the proof
of the uniform result is quite involved, using recent results of Lecomte [Lec20] on
Borel equivalence relations and one of our other main theorems, that an equivalence
relation is uniformly (explanatory) learnable if and only if it is Σ0

2. All of the above
results are covered in Section 2.

In Section 3 we show that the complexity of the set of learnable Π0
2 equivalence

relations on 2ω is Π1
1-complete in the codes. In Section 4 we analyse the learnability

of various equivalence relations that arise naturally in computability and model
theory. At last, we give an example of a natural Π1

1 subset of the natural numbers
that is neither Σ1

1 nor Π1
1-complete.

The proofs of our results use techniques from several areas of mathematical logic.
Our results in Section 2 rely on Cohen forcing and results in the theory of Borel
equivalence relations, in Section 3 we use techniques from higher recursion theory
and effective descriptive set theory, and most proofs in Section 4

will seem familiar to computability theorists. We assume that the reader has
some familiarity with these subjects.
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LEARNING EQUIVALENCE RELATIONS ON POLISH SPACES 3

All our proofs are written assuming that the underlying Polish space is Cantor
space 2ω—the space of infinite binary strings (or sequences) under the product
topology. However, the theorems are stated for general (effective) Polish spaces.
Our proofs can be easily modified to hold in this setting.

2. Notions of learnability

2.1. Non-uniform learnability. The following definition presents our attempt
to obtain a non-uniform generalization of the explanatory learning framework. We
adopt the following notational convention: if x⃗ is used to denote a sequence, then
xi denotes its i-th column, i.e., x⃗ = (xi)i∈ω.If x is used to denote a sequence, then
x(i) means its i-th element. If y⃗ is a sequence of infinite strings and x is an infinite
string, we write x⌢y⃗ to denote (y, x0, x1, . . .)

Definition 1. Let E be an equivalence relation on a Polish space X and assume ω
is equipped with the discrete topology. We say that E is non-uniformly learnable if
for every x⃗ ∈ Xω, there are continuous functions ln(x⃗) : X → ω such that for every
x ∈ X, if xExi for some i ∈ ω, then L(x, x⃗) = lim ln(x⃗, x) exists and xExL(x,x⃗).
We call the partial function L a learner, and write L(x, x⃗, n) for ln(x⃗, x).

If x ̸E xi for any xi ∈ x⃗, then the behavior of a potential learner L is not specified.
It might not be defined, or its value might be any index. We say that a learner L
which is defined in this case gives false positives. The following result is reminiscent
of a characterization of explanatory learning of structures given in [BFS20].

Proposition 1. Let E be an equivalence relation on a Polish space X. Then the
following are equivalent.

(1) E is non-uniformly learnable.
(2) For every x⃗ ∈ Xω, there are sets Si ∈ Σ0

2(X) such that for every i ∈ ω,
[xi]E ⊆ Si and Si ∩ Sj = ∅ if xi ̸E xj.

Furthermore, E is non-uniformly learnable by learners not giving false positives if
and only if [x]E is Σ0

2 for every x ∈ X.

Proof. (2) =⇒ (1). Given x⃗, let (Si)i∈ω be a countable sequence of Σ0
2(pi) sets

covering [xi]E such that if xi ̸E xj , then Si ∩ Sj = ∅ and let (Ri)i∈ω be recursive
relations such that

x ∈ Si ⇐⇒ ∃n∀m Ri(x, pi, n,m).
Then, for any x ∈ X and s ∈ ω define L(x, x⃗, s) to be the minimal i < s such
that for some n < s and all m < s, Ri(x, pi, n,m) holds, if such i exists and
L(x, x⃗, s) = s, otherwise. From the disjointness of the Si we get that if j is least
such that x E xj , then L(x, x⃗) = j. Also, for every s, the function L(−, x⃗, s) is
recursive in

⊕
pi and hence continuous. Thus, L is a learner learning x⃗ with respect

to E. Furthermore, if [x]E is Σ0
2 for every x ∈ X, then we may assume in the above

proof that Si = [xi]E . In that case, for fixed x such that for every i, x ̸∈ [xi]E ,
L(x, x⃗) ↑ and thus L does not give false positives.

(1) =⇒ (2). Let L be a learner for x⃗ and note that for all i the sets L(x, x⃗, n)−1(i)
are clopen. Then let Cn,i = {x : (∀m > n)L(x, x⃗,m) = i}, define Di =

⋃
n Cn,i

and Si =
⋃

xiExj
Dj . Then the Si are Σ0

2 and by the definition of non-uniform
learnability [xi]E ⊆ Si. If L learns x⃗ without giving false positives, then clearly
Si = [xi]E . □
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4 ROSSEGGER, SLAMAN, AND STEIFER

We now turn our attention to a non-uniform adaptation of behaviorally correct
learning.

Definition 2. Let E be an equivalence relation on a Polish space X and assume ω is
equipped with the discrete topology. We say that E is non-uniformly BC-learnable
if for every x⃗ = (xi)i∈ω ∈ Xω there are continuous functions ln : Xω ×X → ω such
that for x ∈ X, if x E xi for some i ∈ ω, then for almost every n, x E xln(x⃗,x).

The observant reader might immediately notice that non-uniform BC-learnability
and non-uniform learnability coincide. In order to obtain a learner for x⃗ from a
BC-learner, we just have to fix some more information.

Theorem 2. An equivalence relation E is non-uniformly learnable if and only if it
is non-uniformly BC-learnable.

Proof. Clearly, any non-uniformly learnable equivalence relation is non-uniformly
BC-learnable. On the other hand, say that (ln)n∈ω gives a BC learner for the
sequence x⃗ and associate with every i, the set ei = {j : xj E xi}. Now, define a
function L by L(x, x⃗, n) = min j[j ∈ eln(x,x⃗)]. We claim that L is a learner for E
on x⃗. Clearly, L is continuous on every n. Say that x E xi, then for almost every
n, ln(x⃗, x) ∈ ei. So, for almost every n, L(x, x⃗, n) = min j[j ∈ ei] and thus L learns
E on x⃗. □

Recall that an equivalence relation is countable if all its equivalence classes are
countable. Countable Borel equivalence relations play an important role in descrip-
tive set theory and have seen much attention in the past decades, see [Kec19] for a
summary of these developments. Unfortunately, non-uniform learnability does not
provide information when it comes to countable equivalence relations.

Proposition 3. Every countable equivalence relation on a Polish space is non-
uniformly learnable by learners not giving false positives.

Proof. Let E be a countable equivalence relation. Given x⃗, let yi,j be the j-th
element in the enumeration of the equivalence class for xi and for every n, define
the continuous function

ln(x, x⃗) =
{

(min i < n)[(∃j < n) yi,j ↾n = x ↾n] if such i exists
n otherwise

.

It is not hard to see that the so-defined sequence of functions defines a learner
giving no false positives. □

2.2. Uniform learnability.

Definition 3. Let E be an equivalence relation on a Polish space X and assume
ω is equipped with the discrete topology. We say that E is uniformly learnable, or
just learnable, if there are continuous functions ln : Xω ×X → ω such that for every
x ∈ X and x⃗ = (xi)i∈ω ∈ Xω, if x E xi for some i ∈ ω, then L(x, x⃗) = lim ln(x⃗, x)
exists and x E xL(x,x⃗). We call the partial function L a learner for E and write
L(x, x⃗, n) for ln(x⃗, x).

Definition 4. A learner L = lim ln is a-computable for a ∈ 2ω if there is an a-
recursive function f : ω → ω such that Φa

f(n) = ln where (Φi)i∈ω is a standard
enumeration of Turing operators.
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LEARNING EQUIVALENCE RELATIONS ON POLISH SPACES 5

Clearly, every learner is a-computable for some a ∈ 2ω. The main result of this
section is a characterization of the uniformly learnable equivalence relations in terms
of their Borel complexity. Our proof will rely on an analysis of the Cohen forcing
relation. For a concise overview of forcing both in the computability theory and
set theory setting we suggest [CY15]. Let us quickly summarize the main points.
The forcing partial orders we will use are P given by the set of finite binary strings
ordered by extension and its products Pn and P<ω =

⋃
n∈ω Pn. The ordering on

the latter sets is defined as the lexicographic ordering induced by the ordering on
P. Given p ∈ P we let JpK denote the basic open set of all infinite extensions of
p, and likewise for P<ω and Pn. The definition of our forcing relation is standard,
where p ⊩ φ(ġ) if for every generic x ∈ JpK, φ(x). The syntactic definition of our
forcing relations are standard and can be found in any textbook on the topic. The
only thing of note is that we use the strong forcing relation, i.e., for a property of
the type ∃nφ(ġ, n) we have that p ⊩ ∃nφ(ġ, n) if and only if ∃n0 ≤ |p| such that
p ⊩ φ(ġ, n0). Furthermore, recall that an element y is n-generic relative to x if
it decides every Σ0

n statement about x and that a property holds for sufficiently
generic elements y relative to x, if it holds for all n-generics relative to x for some
n ∈ ω.

Proposition 4. Let E be an equivalence relation learnable by an a-computable
learner. If for every x ∈ 2ω there exists z ∈ 2ω, 1-generic relative to x ⊕ a, such
that x E z, then there exists p ∈ 2<ω such that for all y ∈ JpK we have x E y.

Proof. Suppose that E is learnable by an a-computable learner L. Fix a real x and
g⃗, a sequence of mutually 1-generics relative to x

⊕
a. By learnability, if there is

g ∈ g⃗ such that x E g, then L(x, g⃗) converges. Suppose that there exists k and
n0 such that for all m > n0 we have L(x, g⃗,m) = k and fix such k and n0. We
will argue that then there exists a finite p⃗ with pi ∈ 2<ω that already forces the
convergence. Consider a set C consisting of finite h⃗ with hi ∈ 2<ω such that for
some n > n0 the learner diverges from k, i.e., L(x, h⃗, n) ̸= k. This set is recursively
enumerable in x and a and g⃗ has to either meet or avoid it. If no finite p⃗ forces the
convergence, then every initial segment of g⃗ can be extended to an element of C.
But then g⃗ cannot avoid C, contradicting the definition of n0.

So take p⃗ such that p⃗ ⊩ (∀m > n0)L(x, ˙⃗g,m) = k and assume without loss
of generality that k < |p⃗|. Then for any y ∈ JpkK, L(x, p1, . . . , y, . . . , p|p⃗|) = k,
since by the use principle for continuous functions if there exists q ⪰ pk such that
L(x, p1, . . . , q, . . . , p|p⃗|,m) = k for any m, then L(x, p1, . . . r, . . . , p|p⃗|,m) = k for all
r ⪰ q. □

Corollary 5. If E is an equivalence relation learnable by an a-computable learner
and the E-equivalence class of x is countable, then x is not E-equivalent to any y
which is 1-generic relative to x⊕ a.

Theorem 6. Let E be an equivalence relation. Then E is learnable by an a-
computable learner if and only if E is Σ0

2(a).

Proof. (⇒) Suppose that E is learnable by an a-computable learner L. Take arbi-
trary x and y such that x E y and let g⃗ be a countable sequence of reals mutually
sufficiently generic relative to x⊕ y⊕ a. We analyze the behavior of L(x, y⌢g⃗) and
L(y, x⌢g⃗). Since x E y, in both cases, the learner has to converge to either 0 or, if
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6 ROSSEGGER, SLAMAN, AND STEIFER

g⃗ contains a gi such that gi E x, some other index. Hence, we have two possibilities
to consider:

Case 1: L(x, y⌢g⃗) or L(y, x⌢g⃗) converges to 0. Suppose without loss of generality
that the latter is the case. Fix n0 such that for all m > n0 the value of L(y, x⌢g⃗,m)
doesn’t change. Then, by the mutual genericity of g⃗ relative to x⊕y⊕a there exists
a finite p⃗ ∈ 2<ω<ω such that

p⃗ ⊩ (∀m > n0)(L(y, x⌢ ˙⃗g,m) ↓ =⇒ L(y, x⌢ ˙⃗g,m) = 0)

By the definability of forcing we get that x and y satisfy

(∗) ∃p⃗, n0(∀q⃗ ≤ p⃗)(∀m > n0)(L(y, x⌢q⃗,m) ↓ =⇒ L(y, x⌢q⃗,m) = 0).

By the same reasoning, if L(x, y⌢g⃗) converges to 0, then the following is satisfied
by x and y

(†) ∃p⃗, n0(∀q⃗ ≤ p⃗)(∀m > n0)(L(x, y⌢q⃗,m) ↓ =⇒ L(x, y⌢q⃗,m) = 0).

Case 2: L(x, y⌢g⃗) = j1 and L(y, x⌢g⃗) = j2 for some indices j1, j2 ̸= 0. Again,
by similar genericity arguments as in Case 1, this is forced by some finite p⃗1 =
p1,0, p1,1, . . ., respectively, p⃗2 = p2,0, p2,1, . . .. Note that then for any h1 ≻ p1,j1 ,
h2 ≻ p2,j2 ,

L(x, y⌢(g0, . . . , gj1−1, h1, gj1+1, . . . )) = j1

and
L(y, x⌢(g0, . . . , gj2−1, h2, gj2+1, . . . )) = j2.

Now, fix h ≻ p1,j1 and h⃗ ≻ p2,j2 (i.e., every element of h⃗ extends p2,j2) mutually
sufficiently generic relative to a and look at L(h, h⃗). By transitivity of E it will
stabilize to some k, and as h, h⃗ are mutually generic, this is forced. Hence, x and
y satisfy

∃n0∃p⃗1, p⃗2∃j1, j2(∀n > n0)(∀q⃗ ≤ p⃗1)
(
L(x, y⌢q⃗, n) ↓ =⇒ L(x, y⌢q⃗, n) = j1

)
∧(∀q⃗ ≤ p⃗2)

(
L(y, x⌢q⃗, n) ↓ =⇒ L(y, x⌢q⃗, n) = j2

)
∧∃k(∃r ≤ p1,j1)(∃r⃗ ≤ p2,j2)(∀n > n0)

(∀q ≤ r)(∀q⃗ ≤ r⃗) (L(q, q⃗, n) ↓ =⇒ L(q, q⃗, n) = k)

(‡)

We claim that the disjunction of Eq. (∗), Eq. (†), and Eq. (‡) defines E. As argued
above, if x E y, then one of the disjuncts is satisfied. On the other hand, if x ̸E y,
then the only way Eq. (∗), Eq. (†) and Eq. (‡) can be satisfied is if L produces false
positives. The following claim disposes of this possibility in case the learner gives
false positives in the third conjunct of Eq. (‡). The other cases follow by a similar
proof.

Claim 6.1. If g, g⃗ is a sequence of mutually sufficiently generics relative to a and
L(g, g⃗) = k is forced by p, p⃗, then L(g, g⃗) does not produce false positives for any
h, h⃗ ≻ p, p⃗.

Proof. Towards a contradiction assume that L(h, h⃗) = k is a false positive
where without loss of generality k < |p⃗|. By definition, this is only possi-
ble if h ̸E hi for all i ∈ ω. As L(h, h⃗) = k is forced by p, p⃗ we have that
L(h, (h0, . . . h|p⃗|, h, h|p⃗|+1, . . . )) = k. But, by reflexivity, h E h and thus h E hk,
contradicting our assumption. □
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(⇐) Suppose that there is an X ∈ 2ω and an X-computable formula φ such that
for all x, y we have x E y if and only if ∃n∀m φ(x, y, n,m). The construction of an
X-computable learner for E given input x, y⃗ is now straightforward. The learner
works with an enumeration (a1, b1), (a2, b2) . . . of all pairs of natural numbers. Given
(ai, bi), the learner outputs ai until it finds a witness for a failure of the universal
formula, i.e., until it finds m such that ¬φ(x, y⃗(ai), bi,m). If this happens, the
learner proceeds to the next pair. Now, if x E y, then for some ai and bi we have
∀m φ(x, y⃗(ai), bi,m) and the learner converges on ai. □

Recall that an equivalence relation E ⊆ X2 is reducible to an equivalence relation
F ⊆ Y 2, if there is a function f : X → Y such that for all x1, x2 ∈ X, x1 E x2 if
and only if f(x1) F f(x2). The relation E is Borel (continuously) reducible to F if
f is Borel (continuous).

Theorem 6 is in stark contrast to the result by Bazhenov, Cipriani, and San
Mauro [BCS23] that a countable class of structures is explanatory learnable if and
only if it is continuously reducible to E0, the eventual equality relation on 2ω. While
E0 is Σ0

2 by its standard definition
x E0 y ⇐⇒ ∃n(∀m > n)x(m) = y(m),

there are many Σ0
2 equivalence relations that are not Borel reducible to E0. An

important example is the equivalence relation E∞, the shift action of F2—the free
group on 2 generators—on 2F2 , which is a Borel-complete countable equivalence
relation and thus vastly more complicated than E0 from the point of view of Borel
reducibility [DJK94].

Notice that the definition of the learner from a Σ0
2 description of E in the proof

of Theorem 6 produces a learner that does not give false positives, and that we
can get Σ0

2 definitions of learnable equivalence relations regardless if their learners
produce false positives or not. Thus, we obtain the following.

Corollary 7. An equivalence relation E is learnable if and only if it is learnable
without false positives.

Let Γ be a class of equivalence relations and say that an equivalence relation
E ∈ Γ is Borel (continuous) Γ-complete if every F ∈ Γ Borel (continuously) reduces
to E. One of the most tantalizing questions about a class of equivalence relations
Γ is whether there is a Borel (continuous) Γ-complete object. We thus ask the
following.

Question 1. Does there exist a Borel (continuous) learnable complete equivalence
relation?

By Theorem 6 one could equivalently ask whether there is a Σ0
2-complete equiv-

alence relation. It turns out that this is a difficult and long-standing open problem
in descriptive set theory [Lec20].

On the other hand, given a Polish space X, recall that A ⊆ X is Kσ if A is a
union of compact subsets of X. Rosendal [Ros05] showed that there exists a Borel
complete Kσ equivalence relation. One example of a complete Kσ equivalence
relation is the oscillation relation O [Ros05] which can be defined on 2ω by
x O y ⇐⇒

∃N∀n,m ((∀j ∈ (n, n+m))x(j) = 0 =⇒ |{j ∈ (n, n+m) : y(j) = 1}| < N)
∧ ((∀j ∈ (n, n+m))y(j) = 0 =⇒ |{j ∈ (n, n+m) : x(j) = 1}| < N)

.
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8 ROSSEGGER, SLAMAN, AND STEIFER

Remark. The oscillation equivalence relation is usually defined on the space of
infinite increasing sequences of natural numbers [ω]ω. Our definition of O above is
not equivalent, as we have one additional equivalence class consisting of all finite
strings. However, the function mapping (a0, . . . ) to the characteristic function of the
associated set {ai : i ∈ ω} is a continuous embedding of the oscillation equivalence
relation on [ω]ω into O.

Since every Σ0
2 relation on a compact space is Kσ we get the following.

Proposition 8. The oscillation equivalence relation O is Borel complete among
learnable equivalence relations on 2ω.

2.3. Uniform BC-learnability.

Definition 5. Let E be an equivalence relation on a Polish space X and assume ω
is equipped with the discrete topology. We say that E is (uniformly) BC-learnable,
or just BC -learnable, if there are continuous functions ln : Xω ×X → ω such that
for every x ∈ X and x⃗ = (xi)i∈ω ∈ Xω, if xExi for some i ∈ ω, then for almost all
n, xExln(x⃗,x). We call the function L(x, x⃗, n) = ln(x⃗, x) a BC-learner for E.

The rest of this section is devoted to showing that the BC learnable and learnable
equivalence relations coincide. This will follow from a series of lemmas.

Lemma 9. If E is BC-learnable, then every equivalence class is Σ0
2.

Proof. Suppose that E is BC-learnable and that [x]E is not open. Pick y ∈ [x]E \
int([x]E), where int([x]E) denotes the interior of [x]E . Then for every n, there is
bn ∈ Jy ↾nK \ [x]E . Fix such a sequence (bn)n∈ω. Now, given a BC-learner L and
z ∈ 2ω run the following procedure defined in stages.

At each stage s we will run L(y, (z, as−1
1 , as−1

2 , . . . ), s). Here, the as
j are either

prefixes of y or they are equal to some element bn ∈ 2ω from the sequence defined
above. To start, let a−1

j = ∅ for all j and i−1 = 0.
Assume we have defined as−1

j for all j and is−1 = L(y, (z, as−1
1 , as−1

2 , . . . ), s− 1),
and suppose that k is largest such that for all j < k, as−1

j is equal to some bn. For
all j < k, set as

j = as−1
j . Then let (ck, . . . ) be the lexicographical minimal sequence

such that as−1
j ⪯ cj ≺ y for all j ≥ k and for some is,

L(y, (z, as
0, . . . , a

s
k−1, ck, . . . ), s) ↓= is.

Now, if is = is−1 = 0 or s = 0, then let as
j = cj for all j > k. Otherwise, for

all j > k, with cj ̸= ∅ or j ≤ i0, let as
j be bnj

where nj is such that cj = y ↾nj .
Notice that there are only finitely many cj ̸= ∅ as L(−,−, s) is continuous and the
sequence (ck, . . . ) was lexicographical minimal. This finishes the description.

Say that ai = lims a
s
i for all i, and consider L(y, (z, a0, . . . )). We claim that

lims L(y, (z, a0, . . . ), s) = 0 if and only if z ∈ [y]E = [x]E . Suppose z ∈ [y]E , then
there is a least stage s0 such that for all s > s0, L(y, (z, a0, . . . ), s) = i implies
ai E y. Suppose that at stage s1 > s0, the learner outputs i ̸= 0. Then at stage
s1 + 1, we declare ai = bn ̸∈ [y]E contradicting the learnability of E. On the other
hand, if lims L(y, (z, a0, . . . ), s) = 0, then there is a least s0 such that for all s > s0,
L(y, (z, a0, . . . ), s) = 0. Hence, for some large enough t, at = y and thus z ∈ [y]E .

To see that [x]E is Σ0
2, let R be the binary predicate recursive in y ⊕

⊕
bn such

that R(z, s) = i if and only if L(y, (z, a0
s, . . . ), s) = i. Then z ∈ [x]E if and only if

∃m(∀n > m)R(z, n) = 0. □
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LEARNING EQUIVALENCE RELATIONS ON POLISH SPACES 9

The definition of the E-classes in Lemma 9 is inherently non-uniform. We pro-
ceed by showing that for all but countably many classes we can obtain a uniform
definition, thus obtaining that E is Borel.

Lemma 10. Let E be BC-learnable, then E is Borel.

Proof. Suppose that E is an equivalence relation on 2ω. Then there are only count-
ably many classes that have non-empty interior and only countably many classes
that contain elements with only finitely many non-zero bits. We call these classes
exceptional as those are the classes for which we will need non-uniform definitions.

Let [x]E be a non-exceptional class, then the procedure given in Lemma 9 can
be turned uniform by choosing y = x and bn = (x ↾n) ⌢ 0∞. Hence, we can modify
the recursive binary predicate given in the proof of Lemma 9 to obtain a recursive
ternary predicate R′ so that for x, y in a non-exceptional class, x E y if and only if
the procedure from Lemma 9 returns 0 in the limit on x and y, i.e.,

x E y ⇐⇒ ∃m(∀n > m)R′(x, y, n) = 0.
To see that E is Borel note that x E y if and only if x and y are in the same
exceptional class or neither are exceptional and x E y via the procedure R′. This
gives a Borel definition as required. □

While the definition given in Lemma 10 is Borel it is not Σ0
2, as saying that

neither class is exceptional is Π0
2. However, combining Lemma 10 with recent

results of Lecomte [Lec20] we are now ready to show that the BC-learnable and
learnable equivalence relations are the same.

Theorem 11. An equivalence relation E is BC-learnable if and only if E is learn-
able if and only if E is Σ0

2.

Lecomte [Lec20] exhibited a finite set of non Σ0
2 equivalence relations that are

minimal and form an antichain under continuous reducibility. Furthermore, every
Borel equivalence relation that is not Σ0

2 continuously embeds one of these rela-
tions. Our proof of Theorem 11 will show that none of Lecomte’s relations are
BC-learnable. Before we proceed with the proof let us recall Lecomte’s result in
more detail.

The five equivalence relations can be defined as follows. Let INF refer to the
class of characteristic functions of all infinite subsets of ω. That is, INF = {x ∈
2ω : ∀n(∃m > n)x(m) = 1}. All the relations below are defined on 2ω.

• x∼0 y ⇐⇒ (x, y ∈ INF) ∨ (x = y)
• x∼1 y ⇐⇒ (x, y ∈ INF) ∨ (x, y /∈ INF)
• x∼3 y ⇐⇒ (x = y) ∨ (x, y ∈ INF ∧ (∀n > 0)x(n) = y(n))
• x∼4 y ⇐⇒ x∼3 y ∨ (x(0) = y(0) = 1 ∧ x, y /∈ INF)
• x∼5 y ⇐⇒ x∼3 y ∨ (x(0) = y(0) ∧ x, y /∈ INF)

Theorem 12 (Lecomte [Lec20]). Let E be a Borel equivalence relation. Then
exactly one of the following holds:

• E is Σ0
2.

• there is i ∈ {0, 1, 3, 4, 5} and an injective continuous reduction from ∼i to
E.

Proof of Theorem 11. Since by definition every learnable equivalence relation is also
BC-learnable, we only have to deal with the other implication. Our proof proceeds
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10 ROSSEGGER, SLAMAN, AND STEIFER

by showing that each of Lecomte’s equivalence relations is not BC-learnable. Since
BC-learnability is preserved by continuous reductions, this implies that the BC-
learnable Borel equivalence relations are precisely the learnable Borel equivalence
relations. Using Lemma 10 we can then infer Theorem 11 in its full generality.

It remains to show that none of the ∼i, i ∈ {0, 1, 3, 4, 5} are BC-learnable. In
all five cases, we achieve that by exploiting the fact that INF has no Σ0

2 definition.
The argument are analogous. We assume that ∼i is BC-learnable and use this
assumption to obtain a Σ0

2 definition of INF, which gives a contradiction.
Suppose that ∼0 is BC-learnable by L. We claim that the following is a Σ0

2
definition of INF:

x ∈ INF ⇐⇒ ∃m(∀n > m)L(x, (1∞, f1, f2, . . .), n) = 0.
where f1, f2, . . . is an enumeration of all elements of 2ω with finitely many ones.
Note that x is either finite and identical to some fi, or infinite and ∼0-equivalent
to 1∞. Hence, if L is a BC-learner for ∼0, then L converges on 0 if x is infinite and
to some k ̸= 0 otherwise. A similar argument shows that the above formula gives
a Σ0

2 definition for ∼1 if we assume that L is a BC-learner for ∼1.
Similarly, if we assume that L is a BC-learner for ∼i, 3 ≤ i ≤ 5, then the following

formula gives a Σ0
2 definition of INF:

x ∈ INF ⇐⇒ ∃m(∀n > m)L(0x, (1x, 0f1, 0f2, . . .), n) = 0.
□

2.4. Borel learnability. In modern descriptive set theory Borel functions ar-
guably play a more prominent role than continuous functions. The reason for this
is the following classical change of topology theorem. If f : (X,σ) → Y is Borel,
then there is a Polish topology τ ⊃ σ such that the Borel sets generated by τ and σ
are the same and f : (X, τ) → Y is continuous; see [Kec12, Chapter 13] for a proof.

The following modification of uniform learnability might thus look more natural
to a descriptive set theorist.

Definition 6. Let E be an equivalence relation on a Polish space X and assume
ω is equipped with the discrete topology. We say that E is Borel learnable, if there
are Borel functions ln : Xω ×X → ω such that for x ∈ X and x⃗ = (xi)i∈ω ∈ Xω, if
x E xi for some i ∈ ω, then L(x⃗, x) = lim ln(x⃗, x) exists and x E xL(x⃗,x). We refer
to the partial function L as a Borel learner for E.

Combining the above change of topology theorem with the boldface version of
Theorem 6 we immediately obtain that an equivalence relation E on a Polish space
(X,σ) is Borel learnable if and only if there is τ ⊇ σ such that E is Σ0

2 in (X, τ)2.
Following Louveau [Lou95], we say that such an equivalence relation is potentially
Σ0

2 and thus get the following.

Theorem 13. An equivalence relation E is Borel learnable if and only if E is
potentially Σ0

2.

One can also consider the notion of non-uniform Borel learnability by adapt-
ing Definition 1 in the obvious way. We then get the following from another classical
change of topology theorem.

Proposition 14. Let E be an equivalence relation on a Polish space X. Then the
following are equivalent.
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(1) E is non-uniformly Borel learnable.
(2) For every x⃗ ∈ Xω, there are sets Si, Si ∈ Borel(X) such that for every

i ∈ ω, [xi]E ⊆ Si and Si ∩ Sj = ∅ if xi ̸E xj.
Furthermore, E is non-uniformly learnable by learners not giving false positives if
and only if [x] is Borel for every x ∈ X.
Proof. Suppose we have a learner L learning x⃗ ∈ Xω. Using the change of topology
theorem mentioned above, we get a topology τ on X such that the learner L is
continuous. Hence, by Proposition 1, there are (Si)i∈ω separating the equivalence
classes [xi]E such that every Si is Σ0

2 in τ . But then as the Borel sets in τ and the
original topology are the same, the Si are Borel in the original topology on X.

On the other hand, recall another classical change of topology theorem: If
(Ai)i∈ω is a countable sequence of Borel sets on X, then there is a refinement τ of
X generating the same Borel sets, such that every Ai is clopen, see again [Kec12,
Chapter 13]. Hence, given Si as in Item 2 we get a topology τ with all Si clopen
and a learner L for x⃗ that is τ -continuous, and hence Borel. □

3. Complexity of learnability

For the proofs of the following results, we rely on Louveau’s separation theorem
and the Spector-Gandy theorem. Recall that HYP denotes the hyperarithmetic,
or equivalently ∆1

1, subsets of the natural numbers. We say that Y is a Σ0
α(HYP)

subset of a recursive Polish space X if there is x ∈ HYP such that Y ∈ Σ0
α(x).

Louveau’s separation theorem says that if X is a recursive Polish space and A0, A1
are two disjoint Σ1

1 sets that are Σ0
α separated for a recursive ordinal α, then there

is a Σ0
α(HYP) set separating A0 from A1 [Lou80]. In particular, if X is ∆1

1 and
Σ0

α, then X is Σ0
α(HYP). To see this, just take A0 = X and A1 = X̄.

We will combine this with the classic Spector-Gandy theorem. The version most
suitable for our purpose says that a set X ⊆ 2ω is Π1

1 if and only if there is a
recursive predicate R such that

x ∈ X ⇐⇒ (∃z ∈ ∆1
1(x))R(x, z).

We suggest [CY15] for a detailed discussion of this theorem. The following result
is a consequence of Louveau’s separation theorem and Theorem 6.
Lemma 15. Let E be a learnable ∆1

1 equivalence relation. Then there is a hyper-
arithmetical learner learning E.
Proof. Recall from Theorem 6 that an equivalence relation is learnable by an x-
computable learner if and only if it is Σ0

2(x). Now by Louveau’s separation theorem
∆1

1 ∩ Σ0
2 = Σ0

2(HYP). Thus E being learnable and ∆1
1 implies that E is Σ0

2(HYP)
and so it is learnable by a hyperarithmetical learner. □

We can represent Borel equivalence relations on a Polish space X using their
Borel codes. Recall that a Borel code is a labeled tree T ∈ ω<ω where the leaf
nodes are labeled by (the codes) for elements of a fixed subbase of X and internal
nodes are labeled by ∪ or ∩, indicating that we take unions or intersections of the
sets described by the subtree rooted at that node. We can view labeled trees as
elements of 2ω and thus can talk about the complexity of the set of Borel equivalence
relations with some property P . As every learnable equivalence relation is Borel by
Theorem 6 we can talk about the complexity of learnable equivalence relations in
the codes.
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Theorem 16. The set of learnable equivalence relations on Cantor space is Π1
1 in

the codes.

Proof. Note that T is a code for a learnable equivalence relation if and only if (1)
T is well-founded, (2) its labeling is correct, and (3) there is a learner learning E,
the equivalence relation represented by T . The first statement is Π1

1, the second
arithmetical, and by the relativization of Lemma 15, we have that E is learnable
if and only if there exists a learner hyperarithmetic in T . By the Spector-Gandy
theorem this is a Π1

1 statement. □

We will establish that the set of learnable Borel equivalence relations on Cantor
space is Π1

1-complete in the codes. Let us quickly recall the definitions. Let X and
Y be Polish spaces, and A ⊆ X, B ⊆ Y . Then A is Wadge reducible to B, A ≤W B
if there exists a continuous function f : X → Y such that for all x ∈ X, x ∈ A if
and only f(x) ∈ B. For a pointclass class ΓΓΓ, and A ∈ ΓΓΓ, A is ΓΓΓ-complete if for every
B ∈ ΓΓΓ, B ≤W A. We are now ready to pin down the complexity of the learnable
Borel equivalence relations.

Theorem 17. The set of learnable Π0
2 equivalence relations on Cantor space is

Π1
1-complete in the codes.

Proof. Recall that the set of well-founded trees in ω<ω is Π1
1-complete. We reduce

it to the set of codes of learnable Π0
2 equivalence relations as follows. Given x ∈

2ω we might view it as a disjoint union x = x1 ⊕ x2 where x1(n) = x(2n) and
x2(n) = x(2n+ 1). We furthermore write px for the principal function of x, that is
the function enumerating the set of natural numbers defined by x in order. Notice
that px ∈ ωω if and only if x is infinite, and thus this is already a Π0

2 statement.
Also recall that the set INF = {χX : X ⊆ ω, |X| = ∞} is Π0

2-complete. We are
now ready to define our reduction. Given a tree T ⊆ ω<ω define a Π0

2 equivalence
relation ET by

x ET y ⇐⇒ x = y ∨ (px1 , py1 ∈ [T ] ∧ x2, y2 ∈ INF) .
Notice that if T is well-founded, then ET = id2ω . On the other hand, if T is
ill-founded, then we claim that ET is not learnable. Fix x ∈ [T ], and consider
[⟨x, 1∞⟩]ET

, the equivalence class of ⟨x, 1∞⟩. If ET were learnable, then by Theo-
rem 13, [⟨x, 1∞⟩]ET

would be Σ0
2(x). But then as

y ∈ INF ⇐⇒ ⟨x, y⟩ ∈ [⟨x, 1∞⟩]ET

we would get that INF is Σ0
2(x), a contradiction. Thus, the function T 7→ ET is a

continuous reduction from the set of well-founded trees to the set of codes of Π0
2

equivalence relations that are learnable. □

Since the equivalence relation ET produced in the above proof is id2ω if T is
well-founded, and this equivalence relation is learnable by a computable learner,
we obtain the following effective analog to Theorem 17.

Corollary 18. The set of Π0
2 equivalence relations that are learnable by a com-

putable learner is Π1
1-complete in the codes.

Theorems 16 and 17 directly imply the following result.

Corollary 19. The set of learnable equivalence relations is Π1
1-complete in the

codes.
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Using the recursion theorem to identify computable codes for Borel equivalence
relations with their indices and noticing that given a computable tree T we produce
a computable Borel code for ET we get similar results for the index sets of codes
for learnable equivalence relations.

Corollary 20.
(1) The set of indices of codes for learnable equivalence relations is Π1

1-complete.
(2) The set of indices of codes for equivalence relations learnable by a com-

putable learner is Π1
1-complete.

4. Case study

In this section, we study whether various equivalence relations arising in logic
are learnable, and, since learnability is closely tied to the Borel hierarchy, place
these equivalence relations in this hierarchy.

4.1. Equivalence relations arising in computability theory.

Theorem 21. Turing equivalence is not learnable. In fact, it is not Π0
3.1

Proof. Assume towards a contradiction that ≡T is Π0
3(a) for a ∈ 2ω. That is,

suppose that there is a Π0
3 formula

ψ(x, y, z) = ∀k∃m∀nR(z, x, y, k,m, n)

where R is a recursive relation and ψ(x, y, a) holds if and only if x ≡T y. It is
not hard to see that it is dense in the product forcing P2 that a ⊕ ġi ̸≥T a ⊕ ġ1−i

for i < 2. Thus, if we consider a sufficiently mutual generic pair g1, g2 relative to
a, then a ⊕ g1, a ⊕ g2 are not Turing equivalent and so there is (p1, p2) such that
(p1, p2) ⊩ ∃k∀m∃n¬R(a⊕ ġ1, a⊕ ġ2, a, k,m, n). In particular, there is k1 such that
the set

Q = {(q1, q2) : (q1, q2) ⊩ ∀m∃n¬R(a⊕ ġ1, a⊕ ġ2, a, k1,m, n)}

is dense below (p1, p2). Using this fact we can build two a-recursive reals (h1, h2) ≻
(p1, p2) such that ¬ψ(a⊕h1, a⊕h2, a). However, since they are a-recursive, clearly
h1⊕a ≡T h2⊕a ≡T a, contradicting that ψ(a) defines ≡T . Thus, Turing equivalence
cannot be Π0

3-definable and so, by Theorem 6, it cannot be learnable.
It remains to build h1 and h2. We do this in stages; say at stage s we have built

the finite strings hs
1 and hs

2. Let hs+1
1 and hs+1

2 be the lexicographical minimal pair
(q1, q2) that extends (hs

1, h
s
2) and so that (q1, q2) ⊩ ∃n¬R(a⊕ ġ1, a⊕ ġ2, a, s, n). We

can always find such a pair as Q is dense below (p1, p2) and the search is a-recursive
since by the definition of the strong forcing relation the existential quantifier must
be witnessed by n < min{|q1|, |q2|}. □

By Wadge’s lemma [Wad83] any set that is not Π0
3 is Σ0

3-hard. Hence, we obtain
the following corollary.

Corollary 22. Turing equivalence is Σ0
3-complete.

1We thank Uri Andrews for pointing out that our proof that Turing equivalence is not learnable
can be modified to show that it is not Π0

3.
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Turing equivalence was a good candidate for being learnable, as it is naturally
Σ0

3. Coarser equivalence relations such as arithmetic equivalence or hyperarithmetic
equivalence are quite far from being learnable. The former is not arithmetical and
the latter is not even Borel. We assume that these results are well-known but let
us quickly summarize the overall ideas needed to show this, which are quite similar
to the ones used in Theorem 21.

For arithmetic equivalence, assume it was Σ0
n(x) for some n ∈ ω and a real

x. Then, in the product forcing, there is (p1, p2) such that every n-generic pair
extending (p1, p2) is not arithmetic equivalent. However, one can show that there
are arithmetically equivalent n-generics, contradicting the above. The proof for
hyperarithmetic equivalence is similar.

Let us now consider the equivalence relations of m and 1-equivalence. Recall
that two reals x and y are m-equivalent, x ≡m y, if there exists a total computable
function φe such that x(n) = 1 if and only if y(φe(n)) = 1. The two reals x, y
are 1-equivalent, x ≡1 y, if x ≡m y via a 1-1 function. Both of these relations are
naturally Σ0

3, m-equivalence being defined by

(*) x ≡m y ⇐⇒ ∃e φe total ∧ ∀n(x(n) ↔ y(φe(n)))

and 1-equivalence being defined analogously.

Theorem 23. If E is an equivalence relation so that ≡1⊆E⊆≡T , then E is not Π0
3.

Proof. Suppose towards a contradiction that E is given by the Π0
3 formula

φ(x, y) ⇐⇒ ∃l∀m∃nR(x, y, l,m, n)

where R is a recursive relation. Then φ(ġ1, ġ2) cannot be forced by any (p1, p2)
because any two mutually generic g1 ≻ p1, g2 ≻ p2 are Turing incomparable and
thus also g1 ̸E g2. Similar to the proof of Theorem 21, we can find (p1, p2) such
that (p1, p2) ⊩ ¬φ(ġ1, ġ2). We again build recursive h1 ≻ p1 and h2 ≻ p2 in stages
with the added condition that h1 and h2 are infinite, coinfinite. Towards this let
h0

1 = p1 and h0
2 = p2. Now suppose that we have defined hs

1 and hs
2. If s is even,

let hs+1
i = hs

i
⌢ 01. If s is odd, let hs+1

i be the lexicographical minimal extension qi

of hs
i so that (q1, q2) ⊩ ∃n¬R(ġ1, ġ2, s, n). By the same argument as in the proof of

Theorem 21 we can find such (q1, q2) recursively.
Odd stages ensure that the hi are characteristic functions of infinite, coinfinite

sets and even stages ensure that ¬φ(h1, h2). However, as our construction is recur-
sive, so are h1 and h2 and as two recursive infinite coinfinite sets are 1-equivalent,
h1 E h2, contradicting that φ defines E. □

Theorem 23 immediately implies that m-equivalence is not Π0
3 as it is a sube-

quivalence relation of Turing equivalence that contains 1-equivalence.
The fact that we could assume that the relation R in the proof of Theorem 23

was recursive, allowed us to build recursive and infinite coinfinite reals, ensuring
that they are 1-equivalent. Without this assumption, we cannot guarantee anymore
that the elements built are both recursive, and thus our proof fails. In fact, if we
allowed TOT = {e : φe total} as an oracle, then the definition of m-equivalence in
Eq. (*) becomes Σ0

2.

Theorem 24. Both ≡m and ≡1 are Σ0
2(TOT). Hence, they are learnable by a

TOT-computable learner.
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4.2. Jump hierarchies. Let us recall the notion of a jump hierarchy. Roughly
speaking, the Turing jump assigns to a set X its corresponding halting set X ′.
This operation can be iterated to obtain "halting sets relative to halting sets" X(n)

and so on—first, via finite iterations and then, via transfinite recursion. A jump
hierarchy is a set that encodes in its columns a countable number of iterations of the
Turing jump. In this way, any computable well-order gives rise to a jump hierarchy.

Definition 7. Given an infinite computable linear order ≺ on natural numbers let
[≺n] = {m : m ≺ n}. A set H ⊆ ω is a jump hierarchy supported on ≺ if

∀n ∈ ω H [n] = (H [≺n])′

where H [n] = {m : ⟨m,n⟩ ∈ H}.

We can immediately observe that this definition is Π0
2. If α = (ω,≺) is isomorphic

to a computable ordinal, then the corresponding jump hierarchy is uniquely defined.
In such cases, we abuse the notation and use ∅(α) to denote the unique jump
hierarchy supported on ≺. It is a well-known fact that if α is an infinite computable
ordinal, then the corresponding jump hierarchy ∅(α+1) is a Σ0

α-complete set (see for
example [Mon23, Theorem V.16] or [AK00, p75]).

Jump hierarchies allow us to exemplify relatively simple, i.e., defined by a Π0
2

formula, equivalence relations, which are uniformly learnable but which require
learners with computational power at arbitrarily high levels of the hyperarithmetic
hierarchy. To this end, given a computable linear order ≺ and the corresponding
Π0

2 class H consisting of jump hierarchies supported on ≺ we define ≡≺ as follows.
x ≡≺ y ⇐⇒ x = y or x[1] = y[1] = z ∈ H.

Proposition 25. Given a presentation (ω,≺) of an ordinal α, the equivalence
relation ≡≺ is uniformly learnable and for every z, if ≡≺ is z-learnable, then z ≥T

0(α).

Proof. First, since the jump hierarchy supported on ≺ is unique, it is straight-
forward to see that ≡≺ is learnable. Now, using the definition of ≡≺ and our
characterization of learnability (Theorem 6), we notice that x = ∅(α) if and only if
∅ ⊕ x ≡≺ ω ⊕ x if and only if ∃n∀mφ(∅ ⊕ x, ω ⊕ x, n,m) where φ is ∆0

1(z) and z
computes a learner for ≡≺. Fixing a witness n for φ we obtain a Π0

1(z) definition
of ∅(α) and therefore, ∅(α) is the unique path in a z-computable binary tree. Each
isolated path in a z-computable binary tree is z-computable, hence z computes
∅(α). □

While the notion of jump hierarchy was originally defined with well-founded
linear orders in mind—we start with the degree of computable functions and iterate
the jump from there—a surprising consequence of the Gandy basis theorem is that
there exist nonstandard jump hierarchies, supported on ill-founded linear orders.
However, these are no longer unique. Indeed, Harrison [Har68] noted that when an
ill-founded linear order supports a jump hierarchy, then it supports a continuum
many of them. Moreover, none of these non-standard jump hierarchies can be
hyperarithmetic. Indeed, one can show that if a jump hierarchy contains an infinite
descending sequence, then it must compute all hyperarithmetic reals. In fact, one
can go further, and observe that if ≺ is ill-founded and supports a jump hierarchy,
then no infinite ≺-descending sequence is hyperarithmetic. Thus, we can make the
following observation.
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Proposition 26. Given an ill-founded computable order ≺, which supports a jump
hierarchy, the equivalence relation ≡≺ is not uniformly learnable.

Proof. As in the proof of Proposition 25 we assume that z learns ≡≺ and apply
Theorem 6 to argue that there is a Π0

1(z) definition of some non-empty subset of
the class of jump hierarchies supported on ≺. Therefore, there exists a member
of this class which is arithmetic in z—in fact, even z′-computable. However, by
Louveau’s separation theorem, z may be assumed to be hyperarithmetic, as ≡≺ is
hyperarithmetic, in fact even Π0

2. This contradicts the fact that no jump hierarchy
supported on an ill-founded order is hyperarithmetic. □

One consequence of Proposition 26 is that for equivalence relations of the form
≡≺ learnability identifies exactly the well-founded part of ≺. More formally, ≡≺n

is learnable if and only if ≺n is well-founded. This observation is closely connected
to the following result, which is interesting in its own right.

Theorem 27. Let ≺ be an ill-founded computable order that supports a jump hi-
erarchy. The well-founded part O≺ of ≺ is Π1

1 but not Σ1
1 and not Π1

1-complete.

Proof. The well-founded part of any computable linear order ≺ is clearly Π1
1 as it

is defined by
n ∈ O≺ ⇐⇒ (∀ā ∈ [≺n]ω)∃i ai ≺ ai+1

and [≺n] = {m : m ≺ n} is uniformly computable. Since ≺ supports a jump hi-
erarchy, it contains no infinite descending hyperarithmetic sequence. In particular,
O≺ cannot be hyperarithmetic, i.e., ∆1

1, and hence, O≺ is not ∆1
1, which together

with it being Π1
1 implies that it is not Σ1

1.
To see that O≺ is not Π1

1-complete suppose towards a contradiction that the
Π1

1-complete set WO = {e : φe computes a diagram of a well-ordered set} reduces
to O≺ via a computable function computed by g. For simplicity, we assume that ≺
is a strict ordering. We use g to define a computable linear ordering ≤a,b uniformly
for each pair of natural numbers a and b. The ordering is defined by induction—
at each stage s, ≤a,b is a finite linear ordering of size s, starting from an empty
ordering at s = 0. Suppose we have defined the ordering on the first s natural
numbers and we are at stage s + 1 of the construction. If gs(a) ≺ gs(b), then we
add s+ 1 as the smallest element so far in ≤a,b. Otherwise, i.e., if gs(b) ≺ gs(a) or
one of the two computations did not halt after s steps, then we add s as the largest
element so far in ≤a,b. This finishes the construction.

Now, we use Smullyan’s double recursion theorem to argue that there exists e0
and e1 such that φe0 computes the diagram of ≤e0,e1 and φe1 computes the diagram
of ≤e1,e0 . Note that ≤e0,e1 is ill-founded if and only if ≤e1,e0 is well-founded.
Suppose that g(e0) ≺ g(e1). This means that ≤e0,e1 is ill-founded. However, by
our assumption g is an appropriate reduction, and hence, g maps e0 outside of
O≺. But since ≤e1,e0 is well-founded, g(e1) ∈ O≺. This is a contradiction, as the
well-founded part of ≺ is closed downwards. Similarly, we obtain a contradiction
for the case when g(e1) ≺ g(e0). □

4.3. Model theory. As mentioned in the introduction, the work in this paper was
inspired by the work of Fokina, Kötzing, and San Mauro [FKS19] and others on
learning the isomorphism relation on countably many isomorphism types. One of
the first questions that arises is whether it is possible to learn the isomorphism
relation on the whole space of structures. This should of course be impossible, as,
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in general, the isomorphism relation is not even Borel. The following proposition
makes this observation precise in terms of non-uniform learnability.
Proposition 28. Let τ be a countable vocabulary containing at least one relation
symbol. Then Mod(τ) is not non-uniformly learnable.
Proof. We will assume without loss of generality that τ contains exactly one unary
relation symbol R.

Consider structures An such that RAn(m) if and only if m ≤ n, and a structure
A∞ where {m : RA∞(m)} is an infinite, coinfinite subset of A. Given x ∈ 2ω, let
Bx be such that RBx(2n) ⇐⇒ x(n) = 1 and ¬RBx(2n+ 1) for all n. Clearly, the
map x 7→ Bx is continuous and Bx

∼= A∞ if and only if x ∈ INF.
Now, assume there was a learner L for the sequence (A∞,A1, . . . ), i.e., there are

Σ0
2 sets separating the isomorphism classes. Then, we would get that x ∈ INF if

and only if Bx ∈ S where S is the Σ0
2 set containing Iso(A∞). But then INF would

be Σ0
2, contradicting that INF is Π0

2-complete. □

Remark. Various examples of countable classes of structures C that are explana-
tory learnable are known [BFS20]. Thus, Proposition 28 fails if we restrict our
attention to τ -structures satisfying a fixed Lω1ω sentence φ.

The following is an immediate corollary of Proposition 28 and Proposition 1. It
generalizes the result by Miller that no structure in relational language has a Σin

2
Scott sentence [Mil83].
Corollary 29. There is no vocabulary τ such that for all A0, · · · ∈ Mod(τ) there
are Σ0

2 sets (Si)i∈ω such that Ai ⊆ Si and Si ∩ Sj = ∅ if and only if Ai ̸∼= Aj.
If we consider Borel learnability, then the picture becomes a bit more interesting.

Hjorth and Kechris [HK96] showed that an equivalence relation induced by the Borel
action of a closed subgroup of S∞, the permutation group of the natural numbers,
is potentially Σ0

2 if and only if it is essentially countable, i.e., Borel reducible to
a countable equivalence relation. Since the isomorphism relation on any class of
structures is an orbit equivalence relation induced by S∞ we get the following as a
corollary of Theorem 13.
Corollary 30. Given an Lω1ω sentence φ we have that ∼=φ is Borel learnable if
and only if ∼=φ is essentially countable.
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