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We develop a method to estimate space–time flow statistics from a limited set of
known data. While previous work has focused on modelling spatial or temporal
statistics independently, space–time statistics carry fundamental information about
the physics and coherent motions of the flow and provide a starting point for
low-order modelling and flow control efforts. The method is derived using a statistical
interpretation of resolvent analysis. The central idea of our approach is to use known
data to infer the statistics of the nonlinear terms that constitute a forcing on the
linearized Navier–Stokes equations, which in turn imply values for the remaining
unknown flow statistics through application of the resolvent operator. Rather than
making an a priori assumption that the flow is dominated by the leading singular
mode of the resolvent operator, as in some previous approaches, our method allows
the known input data to select the most relevant portions of the resolvent operator
for describing the data, making it well suited for high-rank turbulent flows. We
demonstrate the predictive capabilities of the method, which we call resolvent-based
estimation, using two examples: the Ginzburg–Landau equation, which serves as a
convenient model for a convectively unstable flow, and a turbulent channel flow at
low Reynolds number.

Key words: low-dimensional models, computational methods

1. Introduction
Practical limitations in both experiments and simulations can lead to partial

knowledge of flow statistics. For example, an array of probes in an experiment
provides information at a limited number of spatial locations and for a single flow
quantity, e.g. velocity from hot-wires or pressure from microphones. Similarly, particle
image velocimetry might provide velocity data, but not thermodynamic quantities, in
a limited field of view. In simulations, one may wish to know flow statistics in a
region that is not adequately resolved by the computational grid, such as unresolved
near-wall regions. A Reynolds averaged Navier–Stokes simulation might provide mean
flow data but not temporal statistics.

† Email address for correspondence: towne@umich.edu
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The ability to use available data to estimate the statistics of flow quantities that
are not directly accessible would be useful in each of these situations. For example,
such a method could enable recovery of full-field statistics from a discrete set of
measurements, estimates of the statistics of one variable from measurement of another
or estimates for a region outside of the field of measurement or computational domain.

Several methods for estimating unknown flow statistics from a limited set of known
entries have recently been developed. Beneddine et al. (2016) proposed a method
for estimating unknown power spectral densities (PSDs) using knowledge of the
mean flow field and power spectra at a few locations. This is accomplished using a
least-squares fit at each frequency between the known power spectra and the leading
singular response mode obtained from the resolvent operator (McKeon & Sharma
2010), which is derived from the linearized Navier–Stokes equations. This strategy
explicitly assumes that the spectral content at frequencies of interest is dominated
by the leading resolvent mode, and the method performs well when the matching
points are located in regions where this hypothesis is valid. Specifically, excellent
PSD estimates were obtained for the flow over a backward-facing step (Beneddine
et al. 2016) and an initially laminar jet (Beneddine et al. 2017). A similar approach
was contemporaneously proposed by Gómez et al. (2016a), but their formulation
performed the least-squares fit in the time domain, with a focus on obtaining a
low-rank representation of time histories rather than statistics. This approach was
used by the authors to estimate oscillation in a cavity flow (Gómez et al. 2016a) and
aerodynamic forces on a bluff body (Gómez, Sharma & Blackburn 2016b).

Zare, Jovanović & Georgiou (2017) developed a method that uses arbitrary known
entries in the spatial covariance tensor to estimate the remaining unknown entries.
Their approach is also based on linearized flow equations and entails solving a convex
optimization problem that determines a matrix controlling the structure and statistics
of the associated nonlinear forcing terms. The optimization problem is subject to two
constraints on the estimated covariance tensor: it must reproduce the known entries
and obey a Lyapunov equation that relates the forcing and flow statistics. Solving
the constrained optimization problem requires a customized algorithm (Zare et al.
2017; Zare et al. 2017). The method provides estimates of the unknown entries of
the covariance tensor as well as a stochastic dynamical model for the forcing that
can be used for model-based estimation and control.

The objective of the present paper is to build on these previous methods to
estimate unknown two-point space–time flow statistics. Both the PSDs (one-point
temporal statistics) and spatial covariances (two-point spatial statistics) are subsets
of two-point space–time correlations, so our approach represents a generalization of
these previous methods in the sense that it directly targets the more general two-point
space–time flow statistics. This is an important step since two-point space–time
statistics contain additional, fundamental information about the flow. In particular,
they carry information about coherent motions within the flow, and can even be used
to define the concept of a coherent structure (Towne, Schmidt & Colonius 2018).
Moreover, space–time correlations can be used to obtain time-domain estimates of
the flow state via convolution with a time-varying input signal (Sasaki et al. 2017),
which enables the development of real-time modelling and flow-control strategies.

The method developed in this paper borrows ideas from each of the previously
mentioned methods. Like Beneddine et al. (2016) and Gómez et al. (2016a), our
method is built upon the resolvent formalism of McKeon & Sharma (2010). The
resolvent operator is derived from the Navier–Stokes equations linearized about the
turbulent mean flow and constitutes a transfer function in the frequency domain
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between terms that are nonlinear and linear with respect to fluctuations to the mean.
Resolvent analysis has proven to be a useful tool for understanding and modelling a
wide range of flows, including wall-bounded flows (Sharma & McKeon 2013; Morra
et al. 2019), free-shear flows (Jeun, Nichols & Jovanović 2016; Schmidt et al. 2018)
and aerodynamic wakes (Thomareis & Papadakis 2018; Symon, Sipp & McKeon
2019; Yeh & Taira 2019). Whereas Beneddine et al. (2016) constructed their model
using only the first singular mode of the resolvent operator (obtained via singular
value decomposition), our model relaxes this a priori assumption and allows the
known data to self-select the relevant portion of the resolvent operator. This makes
the method more applicable to turbulent flows, in which the leading resolvent mode
may account for only a modest fraction of the total flow energy (Schmidt et al.
2018), and allows us to extend the method to cross-spectra in addition to power
spectra. Due to its connection with the resolvent operator, we refer to our method as
resolvent-based estimation.

Our approach also follows the underlying strategy employed by Zare et al. (2017)
of using the known data to infer the statistics of the unknown nonlinear terms
that act as a forcing on the linearized equations. Both methods can be used to
estimate space–time flow statistics, but the two approaches use different types of
input data, which leads to substantial algorithmic differences. The method of Zare
et al. (2017) uses arbitrary entries of the spatial covariance tensor, which are spatial
(time-integrated) quantities and need not correspond to a fixed set of measurement
probes. For example, the authors developed a model for a channel flow using
the one-point velocity variance and covariance terms at all wall-normal positions
within the channel, but without using two-point correlations. The trade-off of these
benefits is the algorithmic complexity mentioned earlier. In contrast, our method
requires two-point space–time statistics as input. This could be challenging in some
applications, but in many cases the same data used to compute the simpler spatial
statistics can be used to obtain the two-point space–time statistics as well. This is
the case whenever measurements at multiple locations are obtained simultaneously,
e.g. by an array of probes or by sampling numerical data, and two-point space–time
statistics can always be obtained using just two concurrent measurements. A benefit
of using space–time data as input is that the resulting formulation is algorithmically
simple, requiring only basic linear algebra manipulations.

The objective of our method is fundamentally different from previous studies that
have used resolvent analysis to obtain low-rank reconstructions of known data. For
example, Moarref et al. (2014) solved a convex optimization problem to determine
expansion coefficients for a small set of leading resolvent modes that optimally
reproduced known power spectra for a turbulent channel flow. Alternatively, Jeun et al.
(2016) used data from a large-eddy simulation of a turbulent jet to directly compute
the expansion coefficients and obtained a low-rank reconstruction of the power spectra
in the acoustic field by retaining a limited number of terms in the expansion. Similarly,
Morra et al. (2019) obtained a low-rank reconstruction of cross-spectral densities in a
turbulent channel flow by computing the necessary expansion coefficients from direct
numerical simulation data. Rather than reconstructing known statistics, our objective
is to use limited known data to estimate unknown flow statistics.

The objective and capabilities of our method are also fundamentally different
from those of the classical method of linear stochastic estimation (Adrian 1994;
Bonnet et al. 1994) and related approaches that have recently been investigated (e.g.
Encinar, Lozano-Durén & Jiménez 2018). In these methods, cross-correlations between
input quantities (the measurements) and output quantities of interest (unknown flow
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quantities) must be known a priori and are used to estimate instantaneous values or
conditional averages for the quantities of interest. In contrast, our method assumes no
knowledge of the output statistics (or its cross-correlation with input quantities), and
instead uses input data (along with mean flow data) to estimate space–time statistics
of the output quantities of interest. Accordingly, our method could in fact be used to
obtain an estimate of the statistics required to perform linear stochastic estimation.

The remainder of this paper is organized as follows. The method is derived and
described in § 2 and demonstrated in § 3 using two examples: a simple model problem
given by the Ginzburg–Landau equation and a turbulent channel flow. Finally, § 4
summarizes the paper and discusses further improvements and applications of the
method.

2. Method
Our method for estimating space–time flow statistics from limited measurements

is developed in this section. After precisely defining the objective, we develop our
approach to the problem and provide some alternative interpretations of the method,
which help to elucidate its properties.

2.1. Objective
Consider a state vector of flow variables q(x, t) that describe a flow, e.g. velocities
and thermodynamic variables. The independent variables x and t represent the spatial
dimensions of the problem and time, respectively. Now suppose that the two-point
space–time statistics are known for a reduced set of variables

y= Cq, (2.1)

where the linear operator C(x) selects any desired subset or linear combination of q.
The problem objective can now be precisely stated in terms of two-point space–time
correlation tensors,

given Cyy(x, x′, τ ) = E{y(x, t)y∗(x′, t+ τ)}, (2.2a)
estimate Cqq(x, x′, τ ) = E{q(x, t)q∗(x′, t+ τ)}. (2.2b)

Here, E{·} is the expectation operator over time and the asterisk superscript indicates
a Hermitian transpose. By defining the correlation tensors in this manner, we have
restricted our attention to statistically stationary flows.

Using the relationship between space–time correlation tensors and the cross-spectral
density (CSD) tensors

S(x, x′, ω)=
∫
∞

−∞

C(x, x′, τ )e−iωτ dτ , (2.3)

this objective can be equivalently stated in the frequency domain for statistically
stationary flows,

given Syy(x, x′, ω) = E{ŷ(x, ω)ŷ∗(x′, ω)}, (2.4a)
estimate Sqq(x, x′, ω) = E{q̂(x, ω)q̂∗(x′, ω)}, (2.4b)

where ŷ(x, ω) and q̂(x, ω) are the temporal Fourier transforms of y and q, respectively,
and the expectation is now taken over realizations of the flow (Bendat & Piersol
1990).
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2.2. Approach
Our approach to this problem relies on the resolvent operator obtained from the
linearized flow equations and its connection with the remaining nonlinear terms
(McKeon & Sharma 2010). Accordingly, we call our method resolvent-based
estimation. Begin with nonlinear flow equations of the form

G
∂q
∂t
=F(q), (2.5)

where G and F are linear and nonlinear operators, respectively. Both compressible and
incompressible Navier–Stokes equations can be cast in this form, and G is singular
in the incompressible case to account for the algebraic divergence-free condition.
Alternatively, the incompressible equations can be written with a non-singular G by
projecting into a divergence-free basis to eliminate the continuity equation (Meseguer
& Trefethen 2003). Additional transport equations can also be included.

Applying the Reynolds decomposition

q(x, t)= q̄(x)+ q′(x, t), (2.6)

where q̄(x) is the mean (time-averaged) flow, to (2.5) and isolating the terms that are
linear in q′ yields an equation of the form

G
∂q′

∂t
−A(q̄)q′ = f (q̄, q′), (2.7)

where

A(q̄)=
∂F
∂q
(q̄) (2.8)

is the linearized Navier–Stokes operator and f contains the remaining nonlinear terms.
Similarly, equation (2.1) becomes

y′ = Cq′. (2.9)

In the frequency domain, equations (2.7) and (2.9) can be manipulated to give

ŷ=Ry f̂ , (2.10a)

q̂=Rq f̂ , (2.10b)

where

Ry(x, ω)= C(iωG −A)−1, (2.11a)

Rq(x, ω)= (iωG −A)−1 (2.11b)

are resolvent operators associated with ŷ and q̂, respectively. Strictly speaking, only
Rq is a formal resolvent operator, but for simplicity we will use this terminology for
both operators in (2.11). We note that Ry bears resemblance to the component-wise
input–output operators studied by Jovanović & Bamieh (2005) and Schmid (2007),
except that here we use C to select a sparse set of measurements rather than individual,
but globally defined, components of the velocity vector.
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Using (2.4) and (2.10), the CSD tensors can be written in terms of these resolvent
operators as

Syy = RySf fR∗y, (2.12a)
Sqq = RqSf fR∗q, (2.12b)

where Sf f (x, x′, ω) = E{ f̂ (x, ω)f̂
∗

(x′, ω)} is the CSD tensor of the nonlinear term f
(Semeraro et al. 2016; Towne, Brès & Lele 2016; Towne et al. 2018). We emphasize
that no approximation has been made to this point; equation (2.12) is an exact
expression of the Navier–Stokes equations for statistically stationary flows.

To obtain an approximation of the desired statistics Sqq, we use the known statistics
Syy to estimate Sf f . The salient question then becomes: how much can we learn about
Sf f from Syy? An answer is provided by examining the singular value decomposition
(SVD)

Ry = UyΣyV
∗

y (2.13a)

= Uy
[
Σ1 0

]
[V 1 V 2]

∗. (2.13b)

The columns of the matrices V y and Uy correspond to input and output modes that
form orthonormal bases for f̂ and ŷ, respectively. The rectangular matrix Σy contains
the singular values, which determine the gain of each of the input modes to the output.
Since the rank of Ry, and thus the number of non-zero singular values, can be no
greater than the number of entries in y, i.e. the number of measurements, many of
the input modes have no impact on the output. Accordingly, the SVD can be written
in the form of (2.13b), where the diagonal Σ1 contains the non-zero singular values
and the blocks V 1 and V 2 contain input modes that have non-zero and zero gain,
respectively. It is important to note that these resolvent modes are different from those
usually studied, which are given by the SVD of Rq (e.g. McKeon & Sharma 2010;
Schmidt et al. 2018).

The distinction between input modes that do or do not impact the output can be
used to isolate the part of Sf f that can be educed from knowledge of Syy. Since V y

provides a complete basis for f̂ , Sf f can be expanded as

Sf f = [V 1 V 2]
[

F 11 F 12
F 21 F 22

]
[V 1 V 2]

∗, (2.14)

where the matrices F ij represent correlations between expansion coefficients associated
with each input mode (see Towne et al. 2018). Inserting this expansion into (2.12a)
and using (2.13b) to simplify the expression gives rise to the equation

Syy = UyΣ1F 11Σ1U∗y . (2.15)

This means that only the part of Sf f associated with F 11 impacts the observed statistics
Syy; the remaining F ij terms have no impact and are thus unobservable from these
known data. Consequently, F 11 contains all of the information about Sf f that can be
inferred from Syy. Using the orthonormality of Uy, equation (2.15) gives

F 11 =Σ−1
1 U∗ySyyUyΣ

−1
1 . (2.16)
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The remaining terms F 22 and F 12 = F ∗21 (this equality is required to make Sf f
Hermitian) can be arbitrarily chosen without impacting Syy, but these terms will
impact Sqq and therefore must be modelled. The simplest choice, and the one used
in the remainder of this paper, is to set these unknown terms to zero, leading to the
approximation

Sf f ≈ S̃f f = [V 1 V 2]

[
F 11 0
0 0

]
[V 1 V 2]

∗
= V 1F 11V ∗1. (2.17)

We show in appendix A that this choice is identical to taking the least-squares
approximation of Sf f , which can be obtained by applying the pseudo-inverse of Ry
and its complex conjugate to the left and right sides of (2.12a), respectively. That is,

S̃f f =R+y Syy(R+y )∗, (2.18)

where the plus superscript indicates the pseudo-inverse. Therefore, this approximation
corresponds to choosing the smallest forcing (in an appropriate norm) that reproduces
the known flow statistics. In what follows, a tilde accent indicates an estimated
quantity.

Inserting (2.17) or (2.18) into (2.12b) gives the corresponding approximation of the
desired flow statistics

Sqq ≈ S̃qq =RqV 1F 11V ∗1R∗q =RqR+y Syy(R+y )∗R∗q. (2.19)

By construction, the known statistics used as input are exactly recovered, ensuring that
the approximation converges in the limit of full knowledge of the flow statistics. Other
approximations can be obtained by choosing the unknown F ij terms differently; a few
possibilities are discussed in § 4. The estimated space–time correlation tensor can be
recovered from the estimated CSD via the inverse Fourier transform

C(x, x′, τ )=
1

2π

∫
∞

−∞

S(x, x′, ω)eiωτdω. (2.20)

The method can also be understood in terms of a resolvent-mode expansion of Sqq.
The standard resolvent modes associated with the linearized flow equations are defined
by the SVD Rq = UqΣqV ∗q. Equation (2.19) can then be written as

S̃qq = UqΣqSββΣqU∗q, (2.21)

where
Sββ = V ∗qV 1F 11V ∗1V q (2.22)

is the CSD of the expansion coefficients in a resolvent-mode expansion of q̂ (Towne
et al. 2018). In general, Sββ can project onto any of the resolvent output modes in
Uq. Thus, the known statistics Syy, through their influence on F 11, determine which
resolvent modes participate in the estimate of Sqq. This can be contrasted with the
rank-1 model described earlier, in which only the leading resolvent mode is allowed
to contribute. Similarly, the multi-mode extension of the rank-1 method proposed (but
not implemented) by Beneddine et al. (2017) requires a priori selection of a limited
number of modes of Rq. Also note that since our method does not require the SVD of
Rq, but only of the low-rank matrix Ry, our method is less computationally expensive
than a typical resolvent analysis.
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3. Examples

In this section, our method is demonstrated and analysed using two example
problems: the complex Ginzburg–Landau equation and a turbulent channel flow.

3.1. Ginzburg–Landau equation
The Ginzburg–Landau equation has been used by several previous authors (e.g. Hunt
& Crighton 1991; Bagheri et al. 2009; Chen & Rowley 2011; Towne et al. 2018)
as a convenient one-dimensional model that mimics key properties of the linearized
Navier–Stokes operator for real flows, such as a turbulent jet (Schmidt et al. 2018).
The linearized equations can be written in the form of (2.7) with G equal to the
identity matrix and

A=−ν
∂

∂x
+ γ

∂2

∂x2
+µ(x). (3.1)

Several variants of the function µ(x) have been used in the literature; here the
quadratic form

µ(x)= (µ0 − c2
u)+

µ2

2
x2 (3.2)

is adopted (Hunt & Crighton 1991; Bagheri et al. 2009; Chen & Rowley 2011). The
parameters in (3.1) and (3.2) are set to similar values as those used by Bagheri et al.
(2009) and Towne et al. (2018): ν= 2+ 0.2i, γ = 1− i, µ0= 0.3, cu= 0.2, µ2=−0.01.
Following Bagheri et al. (2009), the equations are discretized with a pseudo-spectral
approach using N = 220 Hermite polynomials.

The discretized equations are stochastically excited in the time domain using forcing
terms with prescribed statistics identical to those used by (Towne et al. 2018). In
particular, the forcing is generated by convolving band-limited white noise with a
kernel of the form

g(x, x′)=
1

√
2πσf

exp

[
−

1
2

(
x− x′

σf

)2
]

exp
[

i2π
x− x′

λf

]
, (3.3)

where σf is the standard deviation of the envelope and λf is the wavelength of the
filter. This leads to a forcing that is white-in-time up to the cutoff frequency but that
has non-zero spatial correlation in the form of (3.3) but with σf replaced with

√
2σf .

This form of the forcing statistics is qualitatively similar to those of the nonlinear
forcing terms in real flows, such as a turbulent jet (Towne, Brès & Lele 2017). We
use σf = 4 and λf = 20.

Although these forcing statistics are prescribed in this model problem and therefore
known, this knowledge is not made available to the estimation procedure. The
equations are integrated using a fourth-order embedded Runge–Kutta method
(Shampine & Reichelt 1997), and a total of 10 000 snapshots of the solution are
collected with spacing 1t= 0.5, leading to a Nyquist frequency of ωNyquist = 2π. The
CSD of the solution is computed from these data using Welch’s (1967) method.

For the majority of the following analysis, y is defined to correspond to data
obtained from three probes located at x=−10, 0 and 10. Other choices are considered
in § 3.1.4.
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FIGURE 1. Power spectral density (PSD) as a function of ω and x for the
Ginzburg–Landau model problem: (a) true PSD; (b) estimated PSD using three probes
at the locations of the dashed lines; (c) difference between the true and estimated PSD.

3.1.1. Power spectra
The PSD is contained in the diagonal entries of Sqq, i.e. Eqq(x, ω) = Sqq(x, x, ω).

The true power spectral density for the Ginzburg–Landau model problem is shown as
a function of ω and x in figure 1(a). A single peak is observed at ω≈−0.2 and x≈ 5,
and the amplitude remains above 1 % of the peak over a range of about −0.75<ω< 1
and −5< x< 15. The dashed lines show the x locations where the data are taken as
known, and the estimation procedure will attempt to reconstruct the PSD elsewhere.

The approximation of the PSD obtained using these three probes is shown in
figure 1(b), and the difference between the true and estimated PSD in shown in
figure 1(c). By construction, the approximation is exact at the probe locations. The
peak is well captured and the agreement is good in high-energy regions. In the
lower-energy regions, the PSD is under-predicted away from the probe locations. This
is a consequence of neglecting the undetermined portions of the forcing. It is likely
that additional improvements could be obtained by modelling these undetermined
portions of the forcing, as discussed in § 4. The total error of the PSD estimate,
defined as ∫∫

|Ẽqq(x, ω)− Eqq(x, ω)| dω dx∫∫
Eqq(x, ω) dω dx

, (3.4)

is 4.9 %.

3.1.2. Cross-spectra
The CSD estimates are evaluated next. Figure 2 compares the real part of the true

and modelled CSD at eight frequencies, which are listed in the caption. The contour
levels are the same for the true and estimated data at each frequency and range from
−0.5 to 1 relative to the maximum value of the true CSD. The circles indicate the
locations where the CSD is known and the remaining values are to be estimated.
The first six frequencies (panels a–l) fall within the high-energy region observed in
figure 1. In these cases, the estimates accurately track the amplitudes, length scales
and overall shape of the CSD as a function of frequency. The final two frequencies
(panels m–p) fall in low-energy regions. The basic trends in the length scales and
shape are still captured, but clear errors can be observed.

Figure 3 provides a more quantitative assessment of the CSD estimates. Here, the
CSD relative to the reference point x′ = 0 is plotted as a function of x for the same
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FIGURE 2. Cross-spectral density (CSD) for the frequencies (a,b) ω= 0; (e,f ) ω=−0.2;
(i,j) ω=−0.6; (m,n) ω=−1; (c,d) ω= 0.4; (g,h) ω= 0.6; (k,l) ω= 1; (o,p) ω= 2. In each
case, the left-hand plot shows the true CSD and the right-hand plot shows the estimated
values using three probes, which lead to known CSD values at the locations indicated by
the small circles. The contour levels are the same for the true and estimated data at each
frequency and range from the minimum to maximum values of the true CSD.

eight frequencies shown in figure 2. Both the true CSD (solid lines) and estimated
CSD (dashed lines) are normalized by the maximum magnitude of the true CSD for
each frequency. These plots show that the CSD estimates are quantitatively accurate
for the six frequencies in the high-energy region.

3.1.3. Space–time correlations
The space–time correlation tensor Cqq can be recovered from the cross-spectral

density Sqq using the inverse Fourier transform of (2.3). As an example, figure 4
shows the true (solid lines) and estimated (dashed lines) correlations as a function of
time lag τ for three spatial locations, x=−5, 0 and 5. These locations correspond to
a low-energy region, a probe position and the energy peak, respectively. Each curve
has been scaled by the maximum value of the corresponding true correlation.

The one-point autocorrelation for each point is shown in figure 4(a–c). The
amplitude of the autocorrelation for the low-energy point at x = −5 (panel a) is
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FIGURE 3. Cross-spectral density (CSD) relative to the reference point x′ = 0 for the
frequencies (a) ω= 0; (c) ω=−0.2; (e) ω=−0.6; (g) ω=−1; (b) ω= 0.4; (d) ω= 0.6;
( f ) ω= 1; (h) ω= 2. The solid lines show the true values, and the dashed lines show the
estimates values using three probes at x=−10, 0 and 10.

significantly under-predicted, but the correlation length scale is well captured. The
estimated autocorrelation at x = 0 (panel b) is exact since this point corresponds
to one of the probe locations. The autocorrelation at x = 5 (panel c) is accurately
estimated apart from a small under-prediction of the peak, which corresponds to an
under-prediction of the variance.

The cross-correlations between these three points are shown in figure 4(d–f ). The
estimates are quite good in all cases, including those involving the low-energy point
(panels d and f ) and two unknown points (panel f ). It is interesting that the cross-
correlations involving the low-energy point are more accurate than the autocorrelation
at this point. The agreement for the cross-correlation between the known and high-
energy points (panel e) is almost perfect.

The spatial distribution of the true and estimated cross-correlation tensors at fixed
values of the time lag τ is shown in figure 5. The plotted time-lag values range from
τ = 0 to 10; negative values need not be considered due to the symmetry

Cqq(x1, x2,−τ)= C∗qq(x2, x1, τ ). (3.5)

The contour levels are the same in each panel and range from zero to the maximum
values of the true correlation at τ = 0. Again, the circles indicate the locations where
the correlations are known, and the remaining values are to be estimated.
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FIGURE 4. Cross-correlation as a function of time lag τ for (a) x1 = x2 =−5; (b) x1 =

x2 = 0; (c) x1 = x2 = 5; (d) x1 =−5, x2 = 0; (e) x1 = 0, x2 = 5; (d) x1 =−5, x2 = 5. The
solid lines show the true values, and the dashed lines show the estimates values using
three probes at x=−10, 0 and 10. Both the true and estimated curves in each plot have
been scaled by the maximum value of the true correlation.

The spatial correlation tensor is obtained for τ = 0 and is shown in figure 5(a). As
already observed in figure 4, the amplitudes of the correlations at zero time lag are
slightly under predicted, but the spatial shape and overall amplitude are well captured.
As the time lag τ is increased, the estimates faithfully track the changing amplitude
and shape of the true correlations up to at least τ = 10, by which point the amplitudes
of the correlations are small.

3.1.4. Impact of probe location and comparisons with the rank-1 model
In this section, comparisons are made between the new resolvent-based estimation

method described in this paper and the rank-1 method of Beneddine et al. (2016) that
was discussed in § 1. Particular attention is given to the impact of the probe location(s)
on the accuracy of the estimates provided by these two methods.

We focus on the PSD, which is the target quantity of the rank-1 model. Figure 6
compares the true PSD (a–c) to the estimates from the rank-1 method (d–f ) and the
new model (g–i) for three different sets of probe locations (columns). The integrated
error metric from (3.4) is also reported in the figure for each estimate.

First, a single probe is placed at x = 0. In this case, the two methods provide
similar estimates. Adding an additional probe in the low-energy region at x = −10
(second column) increases the error of the rank-1 method. This is an undesirable
property; it means that poorly placed probes (where the rank-1 assumption is invalid)
can obscure the information provided by well-placed probes (where the assumption
is valid). More generally, this is a manifestation of the fact that the rank-1 method
does not necessarily converge with increasing input information (Towne et al. 2018).
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FIGURE 5. Cross-correlation as a function of x and x′ for fixed time-lag values (a,b) τ =
0; (c,d) τ = 1; (e,f ) τ = 2; (g,h) τ = 4; (i,j) τ = 6; (k,l) τ = 10. In each case, the left-
hand plot shows the true correlations, and the right-hand plot shows the estimated values
using three probes, which lead to known cross-correlations at the locations indicated by
the small circles. The contour levels are the same in each panel and range from zero to
the maximum values of the true correlation at τ = 0.

In contrast, the new method is able to use this additional information to improve the
estimate near the second probe without degrading the estimate near the original probe,
leading to a small reduction in total error.

In the final case, the original probe at x = 0 is removed, leaving a single probe
in the low-energy location x=−10. At this point, the underlying assumption of the
rank-1 model – that the solution is dominated by the leading resolvent mode – is
false. This is representative of the situation that will be encountered in real turbulent
flows. Because of this, the rank-1 method leads to large over-predictions of the PSD
and an error in excess of 1000 %. In contrast, the new method is able to use the
information provided by this poorly placed probe to provide a reasonable estimate,
albeit with higher error than is achieved using a well-placed probe. The moderate
under-prediction of the PSD observed in this case can be attributed to neglecting the
unobservable portions of Sf f .

3.2. Turbulent channel flow
3.2.1. Flow parameters, simulation and data processing

Next, we apply the our resolvent-based estimation method to an incompressible
turbulent channel flow at friction Reynolds number Reτ = 187, defined in terms of
the friction velocity Uτ and the kinematic viscosity ν. Wall units, denoted by +
superscripts, are also defined in terms of Uτ and ν. This flow provides a convenient
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FIGURE 6. Power spectral density as a function of ω and x: (a–c) true values repeated
for ease of comparison; (d–f ) estimated values from the rank-1 model of Beneddine et al.
(2016); (g–i) estimated values from the new model presented in this paper. The estimates
are based on the following probe locations: (a,d,g) x = 0; (b,e,h) x = −10 and 0; (c,f,i)
x=−10. The contour levels are the same as figure 1.

test case for application of the method to a real, nonlinear, turbulent flow. However,
it is important to note that the results at this low Reynolds number may or may not
extend to higher Reynolds numbers.

The flow is computed via direct numerical simulation (DNS) of the incompressible
Navier–Stokes equations in a domain of size Lx/h= 2π, Ly/h= 2 and Lz =π, where
x, y, and z are the streamwise, wall-normal and spanwise dimensions and h is the
channel half-width. The flow is driven by imposing a constant mass flux in the
streamwise direction and is integrated in the form of evolution equations for the
wall-normal vorticity and for the Laplacian of the wall-normal velocity (Kim, Moin
& Moser 1987). The periodic directions x and z are discretized using 64 Fourier
modes in each direction with a 3/2 dealiasing rule, and the wall-normal direction y
is discretized using 129 Chebyshev polynomials. The equations are advanced in time
using a variable-time-step, third-order, semi-implicit Runge–Kutta integrator (Moser,
Kim & Mansour 1999) with a Courant–Friedrichs–Lewy (CFL) number of 0.5, and
the total simulation time is tuτ/h ≈ 80. To facilitate post processing, the data are
linearly interpolated in time to 10 000 evenly spaced time instances with 1t+ = 1.5.

The simulation data are used to compute the cross-spectral density tensor Sqq, where
q=[u, v,w]T and u, v, and w are the streamwise, wall-normal and spanwise velocities,
respectively. Since the flow is periodic in x and z, the cross-spectral density is a
function of wavenumber in these directions, i.e. Sqq = Sqq(y, y′; kx, kz, ω). The cross-
spectral density is estimated using Welch’s (1967) method. The flow data are divided
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FIGURE 7. (a) Mean and (b) root-mean-squared velocities. Solid lines: true values
calculated from the DNS data. Dashed lines: estimates obtained from the model using
measurements at y+ = 37 (y/h = 0.2). Dotted lines: estimates based on a white noise
assumption. The input location is demarcated in the figure by the vertical dashed line.

into overlapping blocks each containing Nfft instantaneous snapshots of the flow. A
discrete Fourier transform in x, z and t is applied to each block, leading to Fourier
modes of the form q̂j(y; kx, kz, ω) for j= 1, 2, . . . , Nb, where Nb is the total number
of blocks. Then, the cross-spectral density is estimated as

Sqq(y, y′; kx, kz, ω)=
1

Nb

Nb∑
j=1

q̂j(y; kx, kz, ω)q̂
∗

j (y
′
; kx, kz, ω). (3.6)

Finally, the estimated cross-spectra are further averaged according to the symmetries
described by Sirovich (1987), which ensures that the estimated cross-spectra are
symmetric with respect to reflection across the channel centre line and to 180◦
rotation about the x-axis. We use blocks containing Nfft= 256 instantaneous snapshots
with 75 % overlap, leading to Nb = 156 blocks, and a rectangular window function,
which has the advantage of maintaining a discrete equivalence between quantities
averaged over time or integrated over frequency. We have verified that our results are
insensitive to these choices.

3.2.2. Linearized Navier–Stokes equations
The resolvent operators required for the model are obtained from the incompressible

Navier–Stokes equations

∂u
∂t
+ ū · ∇u+ u · ∇ū+∇p−

1
Reτ
∇ ·

[νT

ν
(∇u+∇uT)

]
= f u, (3.7a)

∇ · u= 0, (3.7b)

where u = [u, v, w]T is a vector of velocity disturbances, ū = [ū, 0, 0] is the mean
velocity and p is the pressure disturbance. The mean streamwise velocity is computed
from the DNS data and is shown in figure 7(a).

Following previous work (Reynolds & Hussain 1972; del Álamo & Jiménez 2006;
Hwang & Cossu 2010; Moarref & Jovanović 2012; Illingworth, Monty & Marusic
2018), we have included an eddy viscosity model in the form of the total viscosity
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function νT(y). These references and others have shown that including an eddy
viscosity substantially improves the predictive capabilities of linearized models of
the Navier–Stokes equations for wall-bounded flows, and recent work has shown
similar benefits for free-shear flows (Pickering et al. 2019). Of particular relevance,
Morra et al. (2019) recently showed that improved predictions of the statistics of a
turbulent channel flow can be obtained by including an eddy viscosity for a resolvent
model forced by white noise. By including an eddy viscosity in our method, we
automatically inherit this improvement, while also using data to obtain an improved
estimate of the forcing compared to a white noise assumption. Details of our eddy
viscosity formulation are consistent with those of Illingworth et al. (2018) and can
be found there.

Since the linearized equations are homogeneous in x and z, we can apply Fourier
transforms in these directions and obtain an equation for each (kx, kz) wavenumber
pair in the form of equation (2.7) with

A= ikxAx + Ay
∂

∂y
+ ikzAz − k2

xAxx + Ayy
∂2

∂y2
− k2

z Azz, (3.8)

G = diag([1, 1, 1, 0]) and q = [u, v, w, p]T. The matrices in (3.8) are provided
in appendix B. The wall-normal direction y is discretized using 201 Chebyshev
polynomials, and no-slip boundary conditions are applied at the walls.

We choose the known quantity y to be the three velocity components at y/h= 0.2,
which in inner units corresponds to y+ = 37. This is the same y/h value considered
by Illingworth et al. (2018) in their recent Kalman filter study, although the y+ value
is different due to differing Reynolds numbers.

To visualize the results, we will focus on the velocity energy spectra, which are
obtained from the cross-spectral density tensor as

Eqq(y; kx, kz, ω)= Sqq(y, y; kx, kz, ω). (3.9)

3.2.3. Root-mean-squared velocities
We begin by examining the root-mean-squared (r.m.s.) velocity fluctuations, which

are obtained by integrating Eqq(y; kx, kz, ω) in kx, kz and ω and taking the square
root. The true r.m.s. velocity fluctuations computed from the DNS data and those
obtained from the model are compared in figure 7(b) as a function of y+. The r.m.s.
values are accurately estimated for all three velocity components in the near-wall
region, specifically for y+ . 45 (y/h . 0.25). The streamwise and spanwise velocity
estimates are especially accurate, while slightly larger discrepancies are observed for
the wall-normal velocity. Notably, the model accurately captures both the location
and magnitude of the urms peak. For larger values of y+, the r.m.s. values quickly
fall below the DNS values. Results in the following section show that this under
prediction is primarily due to missing energy at small scales, which do not have a
footprint at the probe location. This missing energy could potentially be recovered by
appropriate modelling of the Eij terms that have been set to zero, as discussed in § 4.

We also show in this figure results obtained by assuming a spatially uncorrelated
forcing of the form Sf f =p(ω)I , as in Morra et al. (2019). This is similar to a classical
white noise model (Farrell & Ioannou 1993; Jovanović & Bamieh 2001), except that
the amplitude of the forcing at each frequency is determined by matching the PSD
of the streamwise velocity. The estimated r.m.s. values are less accurate over most of
the channel, and still worse results (not shown) are obtained using a true white noise
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FIGURE 8. Premultiplied energy spectra as a function of streamwise wavenumber k+x and
wall-normal distance y+. (a–c) DNS. (d–f ) Estimates from the model. (g–i) Error metric
defined by (3.10). Columns from left to right: streamwise velocity, wall-normal velocity,
spanwise velocity. The horizontal dashed lines show the location of the known input data,
y+ = 37.

assumption (p(ω)= p0). These results demonstrate that the resolvent-based estimation
method leads to an improved estimate of the nonlinear forcing and resulting flow
statistics compared to models based on assumptions of white noise and spatially
uncorrelated forcing. Accordingly, we do not further consider these model in what
follows and focus solely on results from our resolvent-based estimation method.

3.2.4. Energy spectra
Figures 8–10 show the energy spectrum for each velocity component as a function

of y+ and k+x , k+z , and ω+, respectively. In each case, the energy has been integrated
over the other two Fourier variables. The energies have been premultiplied by the
appropriate wavenumber or frequency to account for the logarithmic axes in wave
space. The contour levels are logarithmically spaced and span five orders of magnitude,
with the highest level equal to the maximum value of the DNS streamwise velocity
spectrum. The same levels are used in all subplots so that magnitudes can be directly
compared. The true spectra computed from the DNS data appear in the top row of
each figure, and the corresponding model estimates appear in the second row. The
error of the estimate is quantified by the metric

|Ẽqq − Eqq|

Eqq
, (3.10)

which is shown in the third row of each figure.
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FIGURE 9. Premultiplied energy spectra as a function of spanwise wavenumber k+z and
wall-normal distance y+. Details are the same as figure 8.
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distance y+. Details are the same as figure 8.
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FIGURE 11. Premultiplied energy spectra of the uv Reynolds stresses. (a–c) DNS. (d–f )
Estimates from the model. (g–i) Error metric defined in (3.10). Columns from left to right:
kx wavenumber spectra, kz wavenumber spectra, frequency spectra. The horizontal dashed
lines show the location of the known input data, y+ = 37.

In all cases, the model captures the energy distribution of all three velocity
components with reasonable accuracy for y+. 45, except at the highest wavenumbers
and frequencies. As was the case for the r.m.s., the wall-normal velocity is the
least accurately predicted. The amplitudes and locations of the energy peaks in
(y+, k+x , k+z , ω

+) space are well captured by the model. On the other hand, the model
under-predicts the energy at all wavenumbers and frequencies for higher values of
y+. The highest wavenumbers and frequencies are correctly predicted only near the
position of the known input data at y+ = 37 (horizontal dashed lines in the figures).
This observation can be explained by the smaller wall-normal footprint of smaller
scale motions. A small scale eddy detected by the probe will impact the flow only
close to the probe location. Similarly, a small scale eddy away from the probe
location will not be detected at all. As a result, small scales can only be detected
near the probe, leading to accurate predictions near the probe, but significant under
predictions of small scale energy away from the probe.

The resolvent-based estimation method also provides estimates of cross-power-
spectral densities such as the uv Reynolds stress Euv, which is shown as a function
of kx, kz, and ω in figure 11. Again, accurate results are obtained for low and moderate
wavenumbers and frequencies, with a significant under prediction for smaller scales
except near the probe.

The ability of the resolvent-based estimation method to capture various scales can
be further assessed by examining the power spectra as a function of both streamwise
and spanwise length scales. Figure 12 shows power spectra as a function of the
wavelengths λ+x and λ+z at the fixed wall-normal position y+ = 9. These wavelengths
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Dashed lines: estimates from the model. Columns from left to right: kx wavenumber
spectra, kz wavenumber spectra, frequency spectra.

are related to the previous considered wavenumbers as λ+x,z = 2π/k+x,z. The estimates
are accurate for large scales as seen previously, with especially low errors near the
energy peak for each velocity component. McKeon & Sharma (2010) showed that
these high-energy wavelength pairs are well approximated by the leading few modes
of the resolvent operator, which partially explains the success of the resolvent-based
estimated method there. Figure 12 also highlights that the energy is most severely
under predicted for small spanwise length scales. These results also reinforce the
observation from previous works (Encinar et al. 2018) that detached fluid motions
far from the wall are not correctly captured by linear models, probably because their
limited wall-normal extent does not allow for their full reconstruction.

One key quantity for which estimates may be of interest is the wall shear stress,
especially for future developments in the context of wall-modelled large-eddy
simulation. Figure 13 shows premultiplied spectra of the streamwise wall shear
stress as a function of k+x , k+z , and ω+. The estimates are accurate for low and
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FIGURE 14. Cross-spectral density for the spectral parameters λ+x ≈ 700, λ+z ≈ 100 and
cp≈ 10. (a–c) DNS. (d–f ) Estimates obtained from the model. Columns from left to right:
streamwise, wall-normal and spanwise velocity, respectively. The black circle shows the
input location where the DNS data are provided to the model.

moderate wavenumbers and frequency, with the largest errors observed for high
spanwise wavenumbers. The error of the total (integrated) wall shear stress power
is 8 %.

3.2.5. Cross-spectra
In addition to the energy spectra considered so far, the model also provides

predictions for cross-spectra. An example is shown in figure 14. The CSD is plotted
as a function of y+ and (y+)′ for the streamwise and spanwise wavenumbers λ+x = 700
and λ+z = 100, respectively, and the phase speed cp = 10, which are typical values
at which coherent structures are expected to appear (Sharma & McKeon 2013). The
model uses the input data indicated by the black circles, and accurately reproduces
the CSD for all three velocity components. Since coherent structures are closely
related to the CSD tensor (Towne et al. 2018), the accuracy of the CSD estimates
suggests that the influence of the dominant coherent structures has been captured by
the resolvent-based estimation method.

3.2.6. Autocorrelations and convection velocity
Next, we consider the space–time correlations

Cqq(y, y′, δx, δz, δt)= E{q(x, y, z, t)q∗(x+ δx, y′, z+ δz, t+ δt)}, (3.11)
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FIGURE 15. Autocorrelation as a function of streamwise separation δx and temporal
separation δt at y+= 9 (y/h= 0.05). (a–c) DNS. (d–f ) Estimates obtained from the model.
Columns from left to right: streamwise, wall-normal and spanwise velocity, respectively.
The contour levels are linearly spaced between 90 % and −20 % of the maximum value
of the DNS autocorrelation of each velocity component. The slope of the dashed lines
gives the inverse of the dominant convection velocity.

where the expectation is taken over all x, z and t. These correlations can be recovered
from the cross-spectra discussed so far by taking inverse Fourier transforms,

Cqq(y, y′, δx, δz, δt)=
1

(2π)3

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

Sqq(y, y′, kx, kz, ω)eikxδxeikzδzeiωδt dkx dkz dω.

(3.12)
We will focus on the autocorrelations

Rqq(y; δx, δz, δt)= Cqq(y, y, δx, δz, δt). (3.13)

As an example, we examine the autocorrelations as a function of the streamwise
and temporal lag variables δx and δt, respectively, at a fixed wall-normal location
y/h= 0.05 (y+ = 9). Figure 15 shows the autocorrelation of each velocity component
as a function of δx and δt, i.e. the space–time autocorrelations along the streamwise
direction. The contour levels are logarithmically spaced between the maximum value
of the streamwise autocorrelation from DNS and span five orders of magnitude. The
same levels are used in all subplots. The inverse slope of the band of high correlation
in each plot provides a measure of the convection velocity of disturbances. At this
wall-normal location, the convection velocity is approximately 11Uτ and is accurately
approximated by the estimate for all three velocity components. The correlation
magnitudes are also well approximated aside from a moderate under prediction of
the peak wall-normal velocity correlations.

Figure 16 shows the convection velocity calculated from the DNS data and
resolvent-based estimates as a function of wall-normal position. Following previous
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FIGURE 16. Convection velocity as a function of y+. Solid lines: true values calculated
from the DNS data. Dashed lines: estimates obtained from the model using measurements
at y+ = 37 (y/h = 0.2). This input location is demarcated in the figure by the vertical
dashed line, and the mean velocity profile is shown as a dotted line for reference.

authors (Choi & Moin 1990; Park & Moin 2016), the convection velocity is defined
as

Uc(y)= arg max
U

∫
∞

−∞

Ruu(y,Ut, 0, t) dt, (3.14)

i.e. the direction in x–t space along which the integrated streamwise velocity
correlation is maximum.

Consistent with the observation of Kim & Hussain (1993) and del Álamo & Jiménez
(2009), the convection velocity computed from the DNS data is approximately equal to
the mean streamwise velocity for y+& 10 and asymptotes to a constant value of about
10Uτ near the wall. These trends are accurately captured by convection velocities
computed from the estimated autocorrelations. The near-wall asymptotic convection
velocity is under predicted by just 1.7 %, and the error in the outer region is less
than the difference between the true convection velocity and the mean velocity up to
y+ ≈ 100.

4. Conclusions
Building on the work of Beneddine et al. (2016), Gómez et al. (2016a) and

Zare et al. (2017), this paper introduces a method for estimating space–time flow
statistics from a limited set of known values. The method is based on the resolvent
methodology developed by McKeon & Sharma (2010) and the statistical interpretation
of this theory proposed by Towne et al. (2018). The central idea of our approach
is to (partially) infer the nonlinear term of the linearized Navier–Stokes equations
using limited flow data. This nonlinear term is then used as a forcing acting on the
resolvent operator to reconstruct unknown statistics of the flow.

The resolvent-based estimation method was demonstrated using two example
problems. First, it was applied to the complex Ginzburg–Landau equation, which
serves as a convenient model of a convectively unstable flow. Using input data from
three probe locations, the method provided good estimates of the unknown power
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spectra, cross-spectra and space–time correlations within the energetic regions of
ω-x or τ -x space. Comparisons were then made with the rank-1 model proposed by
Beneddine et al. (2016). The two methods gave similar results when the probes were
placed at locations dominated by a single resolvent mode, but the new method gave
superior results when the probes were placed at locations that violate this underlying
assumption of the rank-1 model. The improved behaviour in this case is important
for turbulent flows, which cannot in general be described by a single resolvent mode.
Furthermore, the estimates provided by the new method improve with the addition of
more known input data and converge in the limit of complete knowledge of the flow,
unlike the rank-1 method.

Second, we applied our method to a turbulent channel at friction Reynolds number
Reτ = 187. Using data exclusively from the wall-normal location y/h= 0.2 (y+ = 37),
the method provides good estimates of the velocity energy spectra and autocorrelations
for y . 0.25 (y+ . 45). The energies and autocorrelations are under-predicted further
away from the wall due to missing energy at small scales that requires additional
modelling to capture. If the success of the model in the near-wall region using
knowledge of the interior flow persists at higher Reynolds numbers, it could be
useful for designing new wall models for large-eddy simulation that are capable of
capturing fluctuations of wall quantities such as shear stress and heat transfer and
near-wall velocities that play an important role, for example, in particle laden flows.
More broadly, the method could be useful for flow estimation and control – the
statistical estimates obtained by our method can be used to obtain real-time flow
estimates using approaches such as linear stochastic estimation (Adrian 1994; Bonnet
et al. 1994) and H1 and H2 frequency response functions (Bendat & Piersol 1990;
Sasaki et al. 2017).

Additional work is required to understand the channel flow observations, further
assess the impact of the location of the known input data, and determine whether
the results described in this paper will extend to higher Reynolds numbers and other
types of turbulent flows. The properties and performance of the method should also
be directly compared to other approaches that use the linearized flow equations as the
basis for flow estimation, including the recent Kalman-filter-based approach described
by Illingworth et al. (2018).

The method itself could also be further improved by modelling the portions of the
forcing cross-spectral density that cannot be observed using the known data. In the
current formulation, these terms are simply set to zero, and there exist several possible
alternatives. One is to assume that the unobserved forcing is uncorrelated with the
observed part and with itself, leading to the approximation

Sf f = [V 1 V 2]

[
F 11 0
0 aI

]
[V 1 V 2]

∗. (4.1)

An appropriate value for the scalar amplitude a could be determined from the
amplitudes of the known F 11 terms.

Another possibility is to choose the unobservable terms by insisting that the
estimated Sf f projects exclusively onto the first n singular modes of Rq, where n
is the number of measurements. In other words, the forcing would be made unique
by limiting its influence to the leading modes of Rq. This possibility is similar to a
suggestion made by Beneddine et al. (2017), except here the expansion coefficients
are treated as statistical quantities rather than complex scalars. As shown by Towne
et al. (2018), this statistical treatment removes a fundamental accuracy restriction
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imposed by treating the expansion coefficients as deterministic scalars and allows
for a convergent approximation. While neither of these aforementioned modifications
are likely optimal, they highlight the potential for further improvements within the
framework of our resolvent-based estimation method.
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Appendix A. Least-squares approximation of forcing
Let us compute the approximation of Sf f obtained using the pseudo-inverse of Ry,

which can be written in terms of the SVD (2.13) as

R+y = V yΣ
+

y U∗y, (A 1)

where Σ+y = [Σ
−1
1 0]T. Applying the pseudo-inverse and its complex conjugate

to the left- and right-hand sides of (2.12a), respectively, gives the pseudo-inverse
approximation of Sf f ,

SLS
f f = R+y Syy(R+y )∗ (A 2a)

= V yΣ
−1
y U∗ySyyUyΣ

−1
y V ∗y (A 2b)

= [V 1 V 2]
[
Σ−1

1 0
]T

U∗ySyyUy
[
Σ−1

1 0
]
[V 1 V 2]

∗ (A 2c)

= V 1Σ
−1
1 U∗ySyyUyΣ

−1
1 V ∗1 (A 2d)

= V 1F 11V ∗1, (A 2e)

with F 11 given by (2.16). Equation (A 2e) is identical to (2.17), which shows that
setting the unknown F ij terms to zero is equivalent to a least-squares, pseudo-inverse
approximation of Sf f .

Appendix B. Linearized incompressible Navier–Stokes operators
The matrices defining the linearized incompressible Navier–Stokes equations in (2.7)

and (3.8) are,

Ax =

ū −ν ′T 0 1
0 ū 0 0
0 0 ū 0
1 0 0 ū

 , Ay =

−ν
′

T 0 0 0
0 −2ν ′T 0 1
0 0 −ν ′T 0
0 1 0 0

 , Az =

0 0 0 0
0 0 0 0
0 −ν ′T 0 1
0 0 1 0

 ,
(B 1a−c)

A0 =


0

∂ ū
∂y

0 0

0 0 0 0
0 0 0 0
0 0 0 0

 , G =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 , B=

 1 0 0
0 1 0
0 0 1
0 0 0

 , (B 2a−c)

and Axx = Ayy = Azz =−(1/Reτ )(νT/ν)G. We have defined ν ′T = (1/Reτ )(1/ν)(∂νT/∂y).
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