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Underwater sand bed erosion and internal jump
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Theory and experiments are used to investigate the water and sediment motion
induced along a sea bed by travelling plane jets. Steadily moving jets are considered,
and represent an idealization of the tools mounted on ships and remotely operated
vehicles (ROVs) for injection dredging and trenching. The jet-induced turbulent
currents simultaneously suspend sand from the bed and entrain water from the
ambient. To describe these processes, a shallow-flow theory is proposed in which
the turbulent current is assumed stratified into sediment-laden and sediment-free
sublayers. The equations are written in curvilinear coordinates attached to the
co-evolving bed profile. A sharp interface description is then adopted to account
rigorously for mass and momentum exchanges between the bed, current and ambient,
including their effects on the balance of mechanical energy. Travelling-wave solutions
are obtained, in which the jet-induced current scours a trench of permanent form
in a frame of reference moving with the jetting tool. Depending on the operating
parameters, it is found that the sediment-laden current may remain supercritical
throughout the trench, or be forced to undergo an internal hydraulic jump. These
predictions are confirmed by laboratory experiments. For flows with or without jump
in which the current remains attached to the bed, bottom profiles computed by the
theory compare favourably with imaging measurements.

1. Introduction
In estuarine, coastal and marine engineering, various underwater operations involve

hydrodynamic action by tools that are moved steadily along the sea bed. Three
examples are depicted in figure 1. Figure 1(a) shows a suction dredge, trailed behind
a ship, used to extract sand from the bottom. For dense sands, jets may be mounted
onto the suction head to loosen the soil prior to extraction (Zanker & Bonnington
1967). Another dredging technique which is entirely dependent on jetting action, called
water injection dredging, involves trailing a multiport diffuser which discharges high-
speed water onto the bed to entrain sediment into suspension (figure 1b). Provided
that the sea bed is inclined, the suspended sand may then travel down the slope on
its own in the form of a turbid plume (Knox, Krumholz & Clausner 1994).

A third task (figure 1c) has recently gained increasing importance owing to the
development of offshore oil extraction and submarine transmission of power and data.
The objective of this operation is to bury cables and pipelines under a protective layer
of sand, of thickness of 1 or 2m, in order to prevent damage by trailing anchors and
fishing nets. Instead of performing the burial in two separate phases of excavation and
backfilling, the operation is now often performed in a single pass using jet trencher
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Figure 1. Erosion of underwater sand beds by steadily advancing tools, moved along the sea
bottom using ships or remotely operated vehicles (ROVs): (a) suction dredging, in which sand
is mined from the bed; (b) water injection dredging (after Knox et al. 1994), in which jetting
is used to induce a turbid plume; (c) cable burial by jet trenching (based on information from
Fugro Engineers), allowing the sand bed to be scoured and backfilled in a single pass.

ROVs (remotely operated vehicles). The ‘product’, cable or pipeline, is first simply laid
onto the sea bottom. The vehicle then uses two upright or oblique swords lowered on
both sides of the product to inject high-speed water into the sand bed. The jets scour
a temporary trench, travelling with the vehicle, which allows the cable or pipeline to
descend into the sea bed before being buried under the re-depositing sand further
downstream of the trencher. Similar tasks have also been carried out using the suction
hoppers of dredging ships (figure 1a), with the pumps operated in reverse to produce
jets instead of suction (van Melkebeek 2002).

Although extensive testing and operational experience has been accumulated for
jet trenching vehicles (see for instance Machin 2001), the flow processes involved are
not yet well understood. Practical difficulties hindering such understanding include
operation in difficult and turbid environments, as well as complicated patterns of
water and sand motions.
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Underwater sand bed erosion by travelling plane jets 3

Motivated by these practical applications and complications, an idealized variant
of the jet trenching problem is examined in the present study. We consider the action
of a travelling plane jet, moving steadily along an initially horizontal sediment bed
composed of uniform sand. By neglecting transverse variations and assuming that
the flow pattern has attained a steady state in a frame of reference attached to the
jetting tool, the general unsteady three-dimensional flow will be reduced to a two-
dimensional steady flow that is more readily amenable to theoretical and experimental
study. Because actual jet trenching operations involve powerful jets acting on beds
of relatively fine material (fine to medium sand), turbulent suspension will be the
only sediment pick-up and transport mechanism considered. To document such flows,
we will first present laboratory experiments conducted with carriage-mounted jets
in a tank of constant width. With guidance from the experimental observations, a
shallow-flow theory of the jet trenching process will then be proposed. The predictions
of the theory will finally be checked against the laboratory measurements.

The erosional action of water jets impinging on submerged sediment beds has
been examined in a number of previous studies. Pioneering work was conducted by
Rouse (1940), who carried out flume experiments with downwards plane jets and
examined how the style and pace of scour-hole development varied with jet strength
and sediment characteristics. Over recent decades, extensive experimental work on
erosion by fixed jets has been performed by Rajaratnam and co-workers (Rajaratnam
1981; Aderibigbe & Rajaratnam 1996; Mazurek, Rajaratnam & Sego 2003), who
examined plane and circular jets impinging at various angles of attack onto beds
composed of different sediment materials. For jet-induced scour limited by threshold-
of-motion effects, theories have been proposed by Hogg, Huppert & Dade (1997),
Gioia & Bombardelli (2005) and Bombardelli & Gioia (2006), and tested against
laboratory experiments. Other related experiments include those of Mohamed &
McCorquodale (1992), Stein, Julien & Alonso (1993) and Hopfinger et al. (2004). In
all these works, the eroding jets were kept at a fixed position relative to the sand bed.
In the present work, by contrast, we document the special phenomena arising when
the jets travel along the bed. First, it becomes possible for the scour hole to attain a
steady shape (in a frame of reference moving with the jetting tool) despite ongoing
net erosion and deposition of sand across the loose bed interface. Secondly, different
speeds of advance yield distinct patterns of flow and scour, including shooting flows
with and without separation, as well as flows featuring an internal hydraulic jump.
Finally, provided that the speed of advance is not too slow, the jet-induced water
and sediment motions become sufficiently well-behaved to permit development of a
hydraulic theory.

To describe theoretically the jet-induced current and the resulting sand erosion,
suspension and deposition, we will rely both on shallow-water theory (see e.g. Abbott
1979) and work on turbulent entrainment (see e.g. Ellison & Turner 1959). To merge
these avenues together, we will follow the roadmap laid out in a seminal paper by
Parker, Fukushima & Pantin (1986). Based on the energy approach inaugurated by
Bagnold (1966), Parker et al. showed that the influence of turbulence and erosion on
the dynamics of gravity-driven turbidity currents could be described by shallow-flow
equations, provided that one keeps track of the energy budget in addition to mass
and momentum balance. A similar approach has been adopted by Kobayashi and co-
workers (Kobayashi & Johnson, 2001; Kobayashi & Tega, 2002) to model suspended
sediment transport in the coastal surf zone.

To describe the geomorphic turbidity currents induced by travelling jets, we must
make various refinements to this basic theoretical approach. First, we will introduce a
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4 A. T. H. Perng and H. Capart

sublayered description in which the turbulent bottom current is assumed stratified into
sediment-laden and sediment-free sublayers. A generalization of the sharp interface
view adopted by Fraccarollo & Capart (2002) will then be used to treat erosion
and entrainment across the interfaces bounding these sublayers. Secondly, the steep
trenching fronts obtained near the point of impingement will motivate the adoption
of curvilinear coordinates. In similar contexts, such curvilinear coordinates have been
used in two recent works to describe turbulent entrainment by curved jets (Jirka 2006)
and basal erosion by shallow subaerial landslides (Chen, Crosta & Lee 2006). Finally,
we will transform the governing equations to moving coordinates in order to describe
the steady flows observed after long travel times in a frame of reference attached to
the moving jets.

The paper is structured as follows. Section 2 describes the laboratory experiments
performed to characterize jet trenching flows. In § 3, we derive our proposed sublayered
shallow-flow equations. Section 4 is devoted to the construction of special travelling-
wave solutions to these equations. The flow and solution details that must be addressed
in order to compute long profiles of the bed and current are treated in § 5. Comparisons
between computations and measurements are presented in § 6. Finally, conclusions
are proposed in § 7.

2. Laboratory experiments
2.1. Experimental apparatus

To characterize the sand-bed response to the action of moving jets, small-scale
experiments were performed at the Hydrotech Research Institute of National
Taiwan University. The laboratory apparatus and procedure are shown in figure 2.
Experiments take place in a rectangular tank having the following dimensions:
length =180 cm; height = 50 cm; inner width B = 12.6 cm. To obtain an unobstructed
view, each sidewall is formed of a single glass panel of area 180 cm × 50 cm, with
a thickness of 12 mm chosen to minimize deformation. The bottom of the tank is
composed of an 18 cm thick layer of sand, submerged under a 29 cm deep clear-water
ambient. Before each experiment, a scraping plate is used to give the sand surface a
flat horizontal profile (dashed line in figure 2a). The level of the free surface of the
water is kept constant during jetting by way of a siphon overflow. Photographs of
the set-up are provided in Perng (2006).

The jetting device used to produce a plane jet is formed of three cylindrical jetting
heads of width =4.1 cm, placed side by side. Made of machined and welded copper,
each head is supplied with high-pressure water (through a flexible polyurethane tube),
and discharges the water at high speeds into the tank through a row of 19 nozzles
of internal radius R =0.25 mm. The resulting individual round turbulent jets can be
expected to merge into a single uniform plane jet within distances of around 5 to
10 times the nozzle separation distance of 2 mm (Jirka 2006). The specific momentum
flux per unit width of the corresponding equivalent plane jet is given by

Σ =hv2 =
Q2

BNπR2
, (1)

where N = 3 × 19 = 57 is the number of nozzles, R their radius, B the channel width,
and Q the total discharge fed to the jetting heads. The choice of three aligned but
separate jetting heads is made to attain a more uniform spanwise distribution of
jetting strength. In earlier tests, we found that we could not achieve the desired degree
of uniformity with a single head spanning the entire tank width. The high-pressure
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α

Figure 2. Experimental set-up: (a) side view of flume and moving jetting arm; (b) top view of
flume and wide-angle camera used for time-lapse photography; (c) close-up of the travelling
jetting heads and induced flow pattern.

water for the three heads comes from a three-way flow splitter, fed by a twin-piston
irrigation pump. The pump is equipped with an air chamber to make the water supply
very nearly steady, and its discharge can be adjusted to values up to Q =125 ml s−1.

To move the jetting device along the bed, a motor-driven traverse is placed above the
tank, and travels at a constant speed U that can be set in the range U = 1−10 cm s−1.
The jetting device can also be held stationary (U = 0) to observe the sand-bed
response to a fixed plane jet. An articulated arm mounted rigidly on the carriage
is used to position the jets above the sand surface. The connection between the
arm and the jetting tool is a three-degree-of-freedom wrist used to adjust the jetting
orientation. Precise adjustment is required to achieve a laterally symmetric erosion
pattern. A slight spanwise asymmetry of the impinging jets can be amplified by the
eroding flow into a tilted sand surface of up to 30 ◦ sideways inclination. For all
the experiments presented below, the jet orientation was set to α =60 ◦, and the
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Figure 3. Sedimentation column tests: (a) measured settling rates w(n) (filled circles) for
various sediment concentrations n, compared with the fall speed W = w(0) of individual sand
grains (open symbol, mean of 20 measurements); (b) definition sketch. Tests performed in
water near 30 ◦C.

standoff distance of the nozzles above the undisturbed bed was set to Z = 5 mm.
Three jetting discharges Q =90, 107 and 122 ml s−1 were examined. This corresponds
to water velocities at the nozzles of 8.0, 9.6 and 10.9 m s−1, respectively, and to
jetting strengths Σ1 = 5.8 l s−2, Σ2 = 8.1 l s−2, and Σ3 = 10.6 l s−2. For each discharge,
tests were performed at various speeds of advance U . Further tests conducted with
another standoff distance Z = 10 mm are described in Perng (2006).

2.2. Sand properties

The sand material used for the tests is a medium quartz sand of density
ρS = 2670 kg m−3, median diameter d50 = 0.33 mm, and coefficient of uniformity
d60/d10 = 2.0. The volumetric sand concentration in the static sedimented bed is
estimated to be in the range 0.58 <n0 < 0.62. The settling of sand grains is known
to depend on the concentration of the suspension (Richardson & Zaki 1954; van
Rijn 1984). Measurements of fall speed and settling rates were therefore conducted
at various concentrations (figure 3). Fall speeds are measured by timing the fall
of individual sand grains between two horizontal lines, whereas settling rates are
measured using sedimentation column experiments (figure 3b). For each concentration
n, a known volume of sand is thoroughly mixed with water in a closed column, then
left to settle under the action of gravity. Assuming that both the bed surface and
turbid interface behave like kinematic shocks (see Ungarish 1993), their elevations z(0)

and z(1) will change at rates governed by

dz(0)

dt
=

nw

n0 − n
, (2)

dz(1)

dt
= −w, (3)

where w =w(n) is the settling rate at the given concentration. The settling process
leaves both the suspended sediment concentration n and the total sediment volume
n0z

(0) + nh1 unchanged. In the actual sedimentation column tests, only the bed
interface z(0) is sufficiently sharp to be identified precisely. We therefore estimate
the settling rate w(n) from the formula

w(n) =
n0 − n

n

dz(0)

dt
, (4)
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Underwater sand bed erosion by travelling plane jets 7

Figure 4. Time-lapse images of a jet trenching experiment from start-up (top panel) until
approximate convergence to a moving trench of permanent shape (bottom panel). Successive
panels are separated by intervals of 2 s. Each black or white segment of the scale bar is 5 cm
long. Conditions for this test are Σ = 8.1 l s−2 (medium jetting strength) and U = 6.8 cm s−1

(high speed of advance, leading to a shooting-flow pattern).

and time the rise of the sedimentation front dz(0)/dt either with a chronometer
(for slower settling rates) or from time-lapse photographs (for higher sedimentation
speeds). The resulting measurements are plotted in figure 3(a), with the mean fall speed
of individual grains interpreted as the settling rate w(0) in the dilute limit n → 0. The
deduced settling speed decreases with concentration as a result of hindered settling
effects. The observed settling speeds range from w(0) ≈ 6 cm s−1 in the dilute limit to
w ≈ 2 cm s−1 at concentration n= n0/2 ≈ 0.3.

2.3. Experimental procedure and observations

With reference to figures 2 and 4, moving jet experiments proceed as follows. The
jetting tool is first positioned at one end of the tank, at the desired inclination and
standoff distance above the horizontal bed. Carriage motion is then initiated, and
shortly thereafter the pump is started. The ensuing bed erosion and sand suspension
are observed through the tank sidewall. After travelling some distance along the bed, a
stable flow pattern and scour-hole shape are established, and translate to the left with
the jetting tool without significant further deformation. As required by conservation
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8 A. T. H. Perng and H. Capart

(a)

(c)

(b)

(d )

Figure 5. Qualitatively different flow patterns observed when varying the speed of advance
of the plane jet relative to the sediment bed: (a) fixed jet; (b) very slowly moving jet; (c) slowly
moving jet; (d) rapidly moving jet. The direction of the jet-induced current is from left to right
in all cases, and the jetting tool translates from right to left in (b)–(d).

of sediment mass (neglecting variations in sedimented sand concentration before and
after trenching), the scour hole travelling to the left leaves behind a sand heap in
the start-up region, with equivalent positive and negative volumes on either side of
the initial horizontal bed profile. The experiment ends as the jetting tool reaches the
opposite end of the tank, when both the carriage and pump are stopped.

The different flow patterns produced when varying the speed of advance of the
jetting tool relative to the sand bed are shown in figure 5. Our discussion here is
qualitative, but a phase diagram will be presented in § 6.3 to delineate these various
regimes in a more quantitative manner. To provide a point of reference, the flow
observed when the jetting tool is held stationary is first presented in figure 5(a). In
that case, sand eroded from the bed forms two triangular heaps on both sides of a
stationary scour hole, attaining a steady shape in less than 1 min. Within this leveed
scour hole, a mixture of sand and water circulates counterclockwise around a spanwise
vortical axis. Clear water injected at high speed by the jetting head churns around then
discharges to the ambient by detraining at low speed across a boiling turbid interface
separating the turbulent suspension below from the clear water above. The observed
pattern is similar to that documented by Rajaratnam (1981) in his early stationary
plane-jet experiments. Unlike the threshold-of-motion conditions considered by Hogg
et al. (1997) and Gioia & Bombardelli (2005), here the bottom of the scour hole
attains a dynamic equilibrium in which turbulent entrainment of sand from the bed
is balanced by gravitational settling of sand grains out of suspension.
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Underwater sand bed erosion by travelling plane jets 9

When the jetting device is moved along the bed (figure 5b–d), the stationary
sand heaps formed upon start-up are destroyed or left behind by the device and its
associated travelling scour hole. Upon reaching steady state (in a frame of reference
moving with the jetting head), qualitatively different flow and scour patterns are then
obtained depending on the speed of advance. For very slow advance speed (figure 5b),
the jet-induced turbulent current separates from the bed after deflection by the scoured
profile. After flowing along the curved bed in the form of a thin bottom layer, the
sediment-laden jet fountains upwards, then rains down its suspended sediment. This
pattern is similar to the strongly deflected regime observed by Rouse (1940) in his
experiments on unsteady scour by fixed jets. For the present case in which the jetting
device is moving, another interesting feature can be observed ahead of the point of
impingement of the jet with the bed (figure 5b). Significant deformation of the bed
occurs owing to the formation of a breaching front. The jet-steepened sand slope
relaxes back towards the angle of repose, through shallow avalanching that extends
for some distance in front of the jet. Breaching processes of this kind have been
described by Van den Berg, Van Gelder & Mastbergen (2002) and Mastbergen & Van
den Berg (2003). Even though the angle of repose is exceeded at the trenching front,
this breaching response is not observed for faster speeds of advance (figures 5c, d),
possibly because it is delayed by granular dilatancy and its required water infiltration
from the ambient.

Figure 5(c) shows the pattern observed when the jetting head is moved slowly
instead of very slowly along the bed. Close to jet impingement, the thin current flows
along a steep trenching front where sand material is being continuously eroded from
the bed. As it reaches the deepest portion of the travelling trench, the bottom current
then thickens dramatically, undergoing an internal hydraulic jump. Upon expanding,
the suspended sand layer adopts a thickness that exceeds the scour depth, and
experiences a corresponding sudden slowdown of the longitudinal flow velocity. At
the sudden expansion, a strong counterclockwise circulation is observed in the upper
portion of the current, with a smaller clockwise circulation bubble observed near the
bed. These are the hallmark features associated with a strong internal hydraulic jump.
Downstream of this jump, the flow gradually quietens down, with the suspended sand
settling back to the bed in a manner reminiscent of settling column observations, with
distance from the jump replacing time elapsed as the independent variable governing
the pace of re-sedimentation.

Finally, as shown in figure 5(d), a fast speed of advance produces a more elongated
scour hole, in which the turbulent current forms a shooting flow that simultaneously
entrains water from the ambient and interacts with the underlying sand bed. The
current is erosional along about a quarter of the trench length, then depositional for
the remaining three-quarters, until the suspended sand has settled out and the bed
has recovered its original elevation. All along this course, the suspended sand current
remains confined to a thin layer flowing rapidly along the bed. For the experiments
shown in figures 5(b) and 5(d), in which bed visibility is good, it can be checked
that the bottom elevation of the trench is close to uniform in the spanwise direction.
The same is true for the flows of figures 5(a) and 5(c) when the jets are stopped
and visibility is regained. Whereas this may not be the case in other scour problems
(Bombardelli & Gioia, 2006), three-dimensional wall effects do not appear to influence
the bed shape significantly in the present experiments.

For stationary jet conditions such as those of figure 5(a), it is clear that a prediction
of the jet-induced vortical flow, entrainment and detrainment would require some
rather elaborate computational modelling. As in the approach of Gioia & Bombardelli
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10 A. T. H. Perng and H. Capart

(2005), probably the best that could be expected from a simplified theory would be to
obtain basic scaling relations between the jetting strength and the dimensions of the
scour hole, to be compared with empirical scaling relations such as those obtained
by Rajaratnam (1981). Likewise, the complicated flow pattern of figure 5(b), where
both breaching and flow separation are observed, appears to lie beyond the reach
of a simple theory. The situation is more favourable, however, for the conditions
of figures 5(c) and 5(d), where the flow appears sufficiently well-behaved to permit
a hydraulic theory of the interaction between jet, ambient and sediment. In what
follows, we restrict our attention to these two regimes, which also correspond to the
conditions of practical interest in jet trenching applications.

2.4. Profile measurements

As shown in figure 6(a), time-lapse photographs like those shown in figure 4 are used
to extract longitudinal flow profiles. The photographs are taken using a low-distortion
wide-angle lens, capturing the entire tank length, and oriented with the image plane
parallel to the tank walls. Image acquisition is performed at the rate of one image
per second. To obtain quantitative measurements, profiles are extracted from these
images using manual mouse clicks, then converted to physical coordinates using a
calibrated scale factor and rotation adjustment. Coordinates in the travelling frame
of reference are obtained by measuring distances with respect to a moving origin
chosen as the position of the nozzle closest to the sidewall, projected vertically down
onto the initial sediment bed profile.

As illustrated in figure 6(a), two profiles are extracted from each image. The first is
the bed profile (filled circles), separating the motionless sand deposit below from the
flowing current above. As for the settling column tests, this boundary is rather sharp
and its visual identification does not suffer from much ambiguity. The second profile
extracted (open circles) is an upper boundary of the zone occupied by suspended
sediment. As seen in figures 4 and 6(a), this transition between sediment-laden and
sediment-free regions is reasonably sharp in some places, but rather diffuse in others,
leaving ample room for the subjectivity of the analyst. This second profile should
therefore be taken as indicative only.

To gauge the rate of convergence of the trench profile towards a steady shape in
the travelling frame of reference, the bed profiles corresponding to the time-lapse
images of figure 4 are plotted together in figure 6(b). For clarity, the profiles are
distorted vertically by a factor of 2, and plotted in the moving coordinates. They
are observed to converge rather rapidly towards a steady-state limit, the more so for
positions located closer to the jetting tool. Convergence is slowest for the far end of
the trench, where bed levels exceed the initial bed elevation as a result of the start-up
heap, which requires a significant travel distance to be left behind. With the exception
of the distal tail, where profiles may not be fully converged, profiles captured near
the end of a run are thus checked to approximate an asymptotic steady shape, and
will be used in § 6 for quantitative comparisons with steady calculations.

2.5. Simple model and characteristic parameters

Before developing a more complete theory, it is useful to sketch a simple model
which explains how moving jets lead to the formation of a steady scour profile in a
travelling frame of reference. Let z(0), h and u denote, respectively, the bed height,
current thickness and longitudinal current speed along the curved profile of a shallow
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Figure 6. Longitudinal profiles: (a) bed profile (filled circles) and outer limit of suspended
sediment (open circles) acquired manually from a digital image (time t =12 s); (b) successive
unsteady bed profiles (thin lines), converging towards a permanent shape approximated by the
last profile (thick line) near the end of the experiment (vertical scale distorted by a factor of
2); (c) bottom profile (thick line) and current boundary (dash-dotted line) from a simplified
model of the jet trenching process. Arrows indicate steady sand fluxes as perceived in a frame
of reference moving with the jetting head.

trench. A simple unsteady equation for the local bed evolution can be written

∂z(0)

∂t
≈ −Eu + DW, (5)

where E is a dimensionless erosion coefficient, D is a dimensionless deposition
coefficient, and W = w(0) is the fall speed in the dilute limit, all assumed constant
for simplicity. At steady state in a frame of reference moving with the jetting tool (at
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12 A. T. H. Perng and H. Capart

speed of advance U from right to left), the profile z(0)(x, t) reduces to z(0)(x̂) where

x̂ = x + Ut. (6)

It follows that
∂z(0)

∂t
=

dz(0)

dx̂

∂x̂

∂t
= U

dz(0)

dx̂
= −Eu + DW, (7)

which equates the flux of sand across the sloping bed surface to the rate of erosion
and deposition by the jet-induced current. In figure 6(a), the thickness of the current
is observed to vary roughly linearly with distance from the jetting head, i.e. h ≈ C x̂

where C ≈ 1/10. If we assume that the momentum flux of the current Σ = hu2 is
approximately conserved as the current entrains bed material and ambient water,
then u(x̂) ≈

√
Σ/h(x̂), and therefore

U
dz(0)

dx̂
= −E

√
Σ

C x̂
+ DW, (8)

which constitutes an idealized model of the trench response. The erosion rate is
strongest near the jetting head and decays with distance, whereas the settling rate
does not vary as long as suspended sand is available for deposition. The trench
consequently deepens as long as erosion exceeds deposition, but rises back towards
the undisturbed seabed level when settling starts to predominate. Neglecting the
standoff distance between the jetting device and the sediment bed, this simple ODE
can be solved immediately over the interval 0 � x̂ � L to yield

z(0)

H
= −4

√
x̂

L

(
1 −

√
x̂

L

)
, (9)

where

H =
E2

CD

Σ

UW
, L =

4E2

CD2

Σ

W 2
(10)

are, respectively, the maximum depth and the length of the trench. The dimensionless
profile obtained in this way is plotted in figure 6(c). The trench shape is asymmetric,
with the point of maximum scour located at x̂/L = 1/4, in qualitative agreement with
the observed profile of figure 6(a). Approximate quantitative agreement for the trench
depth and length for this and similar runs can be obtained by setting D = 0.6 and
E = 0.035.

The above simple model and approximate coefficient values can be used to provide
rough estimates of various characteristic parameters. The aspect ratio of the trench
is for instance

H

L
=

D

4

W

U
≈ 0.15

W

U
, (11)

suggesting that trenches become reasonably shallow once the speed of advance U

exceeds the fall velocity W . At the location of deepest scour, furthermore, the current
velocity u and friction velocity u∗ are given by

u
(

1
4
L

)
=

D

E
W, u∗

(
1
4
L

)
=

√
f u

(
1
4
L

)
, (12)

where f ≈ 0.05 is a bed friction factor (discussed further below). The corresponding
ratio of friction velocity to fall velocity is then

u∗

W
=

D
√

f

E
≈ 4. (13)
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Underwater sand bed erosion by travelling plane jets 13

This lies well beyond the suspension threshold u∗/W =1 − 1.25 proposed by Bagnold
(1966; see also Sumer et al. 1996). At such a high u∗/W value, the ratio of suspended
load to total sediment load effectively reaches unity (see the experimental data of
Guy, Simons & Richardson 1966; figure 18 in van Rijn 1984). Suspension-dominated
transport can therefore be assumed, as confirmed visually by the photographs
of figure 5. We can also gauge the relative magnitudes of the water velocity,
speed of advance of the jetting head, and particle fall velocity. For the present
experiments, the current velocity at the point of maximum scour is approximately
u(L/4) = DW/E ≈ 1 m s−1. This is to be compared with speeds of advance U of
the order of 5 cm s−1, and with water speeds through the jetting nozzles of the
order of 10 m s−1. The velocity disturbance associated with the moving jetting head
can therefore be safely neglected in comparison to the jet-induced water velocity.
Likewise, the representative current velocity u =1ms−1 (at the point of maximum
scour) can be compared with the fall velocity W = 6 cm s−1. As regards longitudinal
flow motions, it therefore appears legitimate to treat the water–sediment mixture as
a single phase (without interphase slip). For normal to bed motions, however, this is
not the case, since the typical erosion speed (of the order of the jetting head speed at
the trenching front) is of the same order as the fall velocity. Relative fluxes between
the two phases must therefore be considered along the direction normal to the bed.
Finally, for the test shown, maximum scour occurs approximately 10 cm away from
the jetting head, or about 50 times the nozzle separation distance. While the round
jets may not have merged completely before impinging with the bed, they can be
expected to coalesce fully into a plane jet well before reaching the point of maximum
scour.

These observations can be used to guide the formulation of a more complete
theory, and overcome some key limitations of the simple model. It was assumed
above that the coordinate x̂ is equivalent to the distance travelled by the current. This
approximation is reasonable for the shallowest trenches (such as the one shown in
figure 6), but must be replaced by a curvilinear description for steeper trenching fronts
such as those of figure 5(c) and 5(d). Most importantly, save for the settling of sand
grains back to the bed, the simple model above does not account for gravitational
influence. To deal with Froude-number effects (such as the formation of an internal
hydraulic jump observed in figure 5c) and Richardson-number effects (the influence
of density stratification on turbulence), a more elaborate theory is required and is
developed in the next section.

3. Sublayered shallow-flow theory
3.1. Notations and assumptions

The various notations and assumptions used to derive the more complete theory are
illustrated in figure 7. We consider the idealized situation sketched in figure 7(a). A
plane jet submerged in a deep quiescent ambient impinges onto a loose stationary
sediment bed, and we are interested in the ensuing pattern of water and sediment
motion. Mean velocities are restricted to the x- and z-directions, and the flow is
assumed uniform in the transverse direction. The jet-induced current takes the form
of a turbulent bottom layer, flowing tangentially along the curved bed profile. Flow
separation is not considered and the turbulent layer is assumed to remain attached to
the stationary bed. Mass transfers occur both through the upper and lower boundaries
of the turbulent current: quiescent water is entrained from the above ambient, and
sand grains are eroded from the underlying bed. Sediment transport is taken to occur
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14 A. T. H. Perng and H. Capart
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Figure 7. Flow idealization: (a) jet-induced turbulent current, assumed attached to the curved
bed profile; (b) suspended sand sublayer embedded within the turbulent current; (c) control
volume with longitudinal fluxes and interfacial transfers; (d) mass drift and shear stress
functions.

as suspended load, with eroded sand grains eventually falling back to the bed by
gravitational settling.

To model the above processes, a sublayered shallow-flow description is adopted.
Because the bed profile may adopt a steep slope near the jet impingement, boundary-
fitted coordinates are used. The curvilinear coordinate s denotes arclength along the
bed. The bed profile (x(0), z(0)) can then be integrated from

∂x(0)

∂s
= cosβ,

∂z(0)

∂s
= −sinβ, (14)

where β is the local bed inclination below the horizontal. It is assumed that β is
a slowly varying function of time and space, which can be considered constant on
the scale of the adaptation time and length of the shallow current. Measured normal
to the bed, the depth h of the flowing layer is considered small compared to the
radius of curvature � of the bed profile, i.e. h � �. The turbulent layer is further
assumed to be sharply stratified into two distinct sublayers having depths h1 and
h2, where h1 + h2 = h. The lower sublayer of depth h1 is composed of a turbid
mixture of turbulent water and suspended sand. The upper sublayer, on the other
hand, features turbulent water taken to be entirely sediment-free. These two sublayers
are distinguished in order to let turbulent water detrain from the turbid layer. As
suggested by the experimental photographs of figures 4 and 5, the overall jet-induced
turbulent layer of depth h can be expected to expand monotonously owing to mixing
with the ambient, yet the thickness of its internal turbid layer h1 will eventually
decrease owing to the settling of sand grains. In addition to the bed profile (x(0), z(0)),
two other interfaces are therefore of interest: turbid interface (x(1), z(1)) marks the limit
between the sediment-laden and clear-water sublayers, and outer interface (x(2), z(2))
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Underwater sand bed erosion by travelling plane jets 15

denotes the limit between the turbulent current and the quiescent ambient. Their
geometry is given by

x(1) = x(0) + h1 sinβ, z(1) = z(0) + h1 cosβ, (15)

x(2) = x(0) + (h1 + h2) sinβ, z(2) = z(0) + (h1 + h2) cos β. (16)

Here and throughout the developments below, subscripts are used to denote layer
quantities (e.g. the sublayer depths h1, h2), whereas superscripts denote interface
quantities (e.g. the interface elevations z(1), z(2)). A definition sketch is provided in
figure 7(b).

Denoting by n0 and n1 the volume concentrations of sediment in the stationary bed
and turbid sublayer, the densities of the bed, sublayers and ambient are

ρ0 = ρW + n0(ρS − ρW ), (17)

ρ1 = ρW + n1(ρS − ρW ), (18)

ρ2 = ρ∞ = ρW, (19)

where ρW and ρS are the mass densities of water and sand, and where subscript ∞ is
used to denote properties of the ambient. In what follows, the bed sand concentration
n0 and the densities ρ0, ρ2 and ρ∞ will be assumed constant, but the sand concentration
n1 and the resulting density ρ1 of the turbid sublayer will be allowed to evolve in time
and space.

Contrasting with the stationary bed and quiescent ambient, the jet-induced turbulent
current has a high velocity v, shared by the turbid and clear-water sublayers, and
assumed to be oriented parallel to the local inclination of the stationary bed. The x-
and z-components of the turbulent-layer velocity are thus approximated by

(ux, uz) = (v cos β, −v sinβ). (20)

Adopting a boundary-layer approximation, normal-to-bed components of the velocity
will be disregarded in the balance of momentum and mechanical energy. This would
not be valid for the stationary and very slowly moving jets of figures 5(a) and
5(b), where a two-dimensional roller and flow separation away from the bed are
observed. For the slowly and rapidly moving jets of figures 5(c) and 5(d), however,
the approximation appears reasonable since the flow direction is predominantly
parallel to the bed.

3.2. Governing equations

As illustrated in figure 7(c), balance of volume, mass and momentum can be applied
to control volumes wrapped around the whole turbulent layer or around each sublayer
separately. Volume balance leads to the following continuity equations for the bed
elevation z(0), and the depths h1 and h2 of the two sublayers:

cos β
∂z(0)

∂t
= −e(0), (21)

∂h1

∂t
+

∂

∂s
(h1v) = e(0) − e(1), (22)

∂h2

∂t
+

∂

∂s
(h2v) = e(1) − e(2). (23)

In order to account for erosion and entrainment, terms e(a) on the right-hand sides
denote volume transfer (per unit area) across interfaces (x(a), z(a)), for a = 0, 1, 2,
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16 A. T. H. Perng and H. Capart

respectively. Transfers are defined positive when volume is transferred from a lower
layer to an upper layer. Conversely, transfers take negative values when volume
goes from an upper layer to a lower layer, as expected for instance for turbulent
entrainment from the outer ambient into the flowing current across interface z(2).

Because their mass densities remain constant, equations for the mass balance of the
bed and sediment-free sublayers can be obtained simply by multiplying (21) and (23)
by the corresponding densities ρ0 and ρ2. In the turbid layer, however, the sediment
concentration and associated sublayer density can evolve. An additional equation for
mass balance is thus required and can be written

∂

∂t
(ρ1h1) +

∂

∂s
(ρ1h1v) = i(0) − i(1), (24)

where the terms i(a), a = 0, 1, denote mass transfers across the corresponding interfaces.
Again, mass transfers are defined positive when going up from a lower to an upper
layer or sublayer. Two other useful equations can be obtained by linear combination of
equations (21)–(24). The first is a balance equation for the overall mass m = ρ1h1+ρ2h2

of the flowing layer (per unit bed surface):

∂m

∂t
+

∂

∂s
(mv) = i(0) − i(2), (25)

where the mass flux i(2) across the outer interface is given by i(2) = ρ2e
(2). The second

is a conservation equation for the total sediment mass

∂

∂t
{(ρ0 − ρ∞)z(0) cosβ + (ρ1 − ρ∞)h1} +

∂

∂s
{(ρ1 − ρ∞)h1v} = 0, (26)

where the first term denotes the local rate of change of the sediment mass contained
in both the bed and turbid sublayer, and the second term is the divergence of the
turbid flux. In this equation, there are no non-conservative products on the left-hand
side, and no source or sink terms on the right-hand side. It is the only one of the
governing equations that can be cast in such a pure conservation form.

Because the two turbulent sublayers are assumed to share the same velocity v, a
single momentum equation is needed, with only along-bed momentum considered.
The corresponding balance equation is obtained for a control volume enclosing both
sublayers jointly (figure 7c). Neglecting non-hydrostatic effects, momentum balance
in the normal-to-bed direction reduces to an expression for excess pressure (relative
to a sediment-free hydrostatic water column)

p(y) =

{
(ρ1 − ρ∞)g cosβ(h1 − y), 0 � y � h1,

0, h1 < y,
(27)

where y is a local normal-to-bed coordinate, p(y) is the local excess pressure, and g

is the acceleration due to gravity. Including the thrust from these excess pressures,
momentum balance in the along-bed direction s can be written

∂

∂t
(mv) +

∂

∂s

{
mv2 + 1

2
(ρ1 − ρ∞)g cosβ h2

1

}
− (ρ1 − ρ∞)h1g sinβ = j (0) − j (2). (28)

The terms on the left-hand side of this equation represent momentum change and
flux, pressure thrust, and the along-bed component of the submerged weight. On the
right-hand side, terms j (0) and j (2) represent momentum transfers across the lower and
upper boundaries separating the turbulent current from its underlying sediment bed
and outer ambient. Upwards transfers are again defined positive. Equations (21)–(28)
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Underwater sand bed erosion by travelling plane jets 17

represent a generalization of the classical Saint Venant equations of open-channel
hydraulics (see e.g. Abbott 1979). In the context of turbulent jets and boundary layers,
the momentum equation equivalent to (28) is known as the von Kármán equation
(see e.g. Mathieu & Scott 2000).

3.3. Interface transfer relations

Let e(y) denote volume transfer across a line parallel to the bed at normal coordinate
y. We decompose the mass transfer i(y) across the same line as the sum of a convective
transfer associated with e and a mass drift ι (iota) due to gravitational settling and
correlated turbulent fluctuations:

i = ρ e + ι, (29)

where the mass drift can be written as Reynolds average ι = 〈ρ ′u′
y〉, in which ρ ′ and

u′
y are local fluctuations in density and normal-to-bed velocity. Likewise, the normal-

to-bed momentum transfer j is composed of a convective transfer associated with
mass flux i combined with a shear stress τ :

j = v i − τ, (30)

where the minus sign before τ reflects the usual convention in which a positive shear
stress drives a downwards flux of momentum. Expressed as a Reynolds average of
correlated fluctuations of the parallel and normal to bed velocities u′

s , u′
y , the shear

stress can be written τ = −ρ〈u′
su

′
y〉 for a homogenous fluid, with more complicated

triple correlations arising in the presence of density fluctuations.
Across the interfaces (x(a), z(a)) separating the flow sublayers from each other and

from the bed and ambient, the quantities ρ, v, ι and τ may undergo discontinuous
jumps. Notations ι

(a)
b and τ

(a)
b will be adopted to specify the mass drift and shear

stress on side b of interface a. Consider first the bed interface (x(0), z(0)). Turbulent
suspension and gravitational settling drive a non-zero mass drift ι

(0)
1 immediately above

the interface on the side of sublayer 1. Underneath the interface, on the other hand,
no mass drift occurs within the stationary sediment bed. Applied to an infinitely thin
‘pillbox’ control volume wrapped around the sharp interface, conservation of mass
requires that the mass flux i(0) be the same on both sides, leading to the compatibility
relation

i(0) = ρ0e
(0) = ρ1e

(0) + ι
(0)
1 , (31)

where ρ0 and ρ1 are the mass densities on both sides of the bed interface. Likewise,
a turbulent shear stress τ

(0)
1 will be applied on the top side of the bed interface, to

which the stationary sediment bed below can oppose a resisting shear stress τ
(0)
0 . If

the mass flux i(0) is non-zero, the two shear stresses will not be equal to each other.
Instead, they must satisfy a second compatibility condition

j (0) = −τ
(0)
0 = vi(0) − τ

(0)
1 . (32)

Here no convective term appears on the lower side of the interface because the
velocity in the stationary bed is equal to zero. The two compatibility relations (31)
and (32) are analogous to the Rankine–Hugoniot shock relations governing hydraulic
jumps and bores. They represent a generalization of the morphodynamic interface
relation used by Fraccarollo & Capart (2002) to relate erosion rate and shear stresses
at the base of an erosional dam-break wave. In this earlier work, no mass drift was
considered.
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18 A. T. H. Perng and H. Capart

For interface (x(1), z(1)) separating the turbid and clear-water sublayers, we have

i(1) = ρ1e
(1) + ι

(1)
1 = ρ2e

(1), (33)

where mass drift is absent on the right-hand side because of the assumption that the
top sublayer is entirely sediment-free. Because the two sublayers are assumed to share
the same velocity v, no relation for the momentum flux j (1) is required. Finally, for
interface (x(2), z(2)) separating the turbulent layer and outer ambient, compatibility of
the momentum flux requires

j (2) = vi(2) − τ
(2)
2 = 0, (34)

where i(2) = ρ2e
(2) = ρ∞e(2) and where τ

(2)
2 is the turbulent shear stress applied below

the interface. There is no mass drift on either side because both the upper sublayer
and outer ambient are composed of water alone. Furthermore, the right-hand side of
(34) is zero because the outer ambient is assumed to be devoid of both current and
turbulence. The mass drift and shear-stress functions discussed above are illustrated
in figure 7(d).

The balance equations and interface relations can be combined to obtain two
additional equations that will be useful for the calculations below. The first is an
evolution equation for the mass density of the turbid sublayer

∂ρ1

∂t
+ v

∂ρ1

∂s
=

ι
(0)
1 − ι

(1)
1

h1

, (35)

which takes the form of an advection-source equation, where the source function
is associated with mass drifts at the top and bottom of the sublayer. The second
equation is an equation of motion for the turbulent layer:

∂v

∂t
+ v

∂v

∂s
+

(ρ1 − ρ∞)gh1

m

∂z(1)

∂s
+

1
2
g cosβ h2

1

m

∂ρ1

∂s
=

−τ
(0)
1 + τ

(2)
2

m
, (36)

where the right-hand-side sink term involves two shear stresses: the free-shear
turbulent shear stress τ

(2)
2 acting along the inner side of the upper boundary of

the turbulent current, and the wall shear stress applied along the upper side of the
erodible bottom τ

(0)
1 (see figure 7d).

3.4. Mass drift and shear stress functions

Up to this point, the balance equations (21)–(28) and compatibility relations (31)–
(34) are direct consequences of our basic assumptions, combined with conservation
principles. To complete the description, however, it is necessary to provide semi-
empirical laws for the turbulent mass drift and shear stress functions. For the mass
drift functions, we adapt the classical sediment suspension theory of Rouse (1937)
and write

ι
(0)
1 = ξ

√
k(ρ0 − ρ1) − (ρ1 − ρ∞) ω cos β, (37)

ι
(1)
1 = ξ

√
k(ρ1 − ρ2) − (ρ1 − ρ∞) ω cosβ, (38)

where each drift function is expressed as the sum of an upwards turbulent diffusive
flux and a downwards gravitational settling flux. The turbulent diffusive fluxes are
assumed proportional to the square root of the specific turbulent kinetic energy k (per
unit mass), multiplied by the density difference experienced across the corresponding
interface. The non-dimensional proportionality constant ξ represents a ratio of eddy
length l to shear-layer thickness δy, both assumed to scale with the depth h of the
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Underwater sand bed erosion by travelling plane jets 19

turbulent layer. The downward gravitational drift, on the other hand, is expressed
as the product of the local excess density with the normal-to-bed projection of
the sediment settling rate ω. Because of hindered settling associated with the finite
concentration of suspended sediment n1 in the turbid layer, the effective settling rate
ω will be lower than the fall speed of individual sand grains in unbounded fluid
(Richardson & Zaki 1954). For the experiments described above, for instance, in
which medium sand of diameter equal to 0.33 mm is used, the settling speed drops
from 6 cm s−1 to 2 cm s−1 when the sand concentration goes from n1 = 0 to n1 = 0.3.
Within this range, the effective settling speed that best accounts for the observed
trench response is found to be ω ≈ 3 cm s−1.

For the turbulent shear stress τ
(0)
1 applied along the upper side of the stationary

bed, we adopt the Chézy-type formula,

τ
(0)
1 = ρ1f |v|v, (39)

applied by Kobayahsi & Johnson (2001) and Kobayahsi & Tega (2002) to the coastal
surf and swash zones where fast water currents induce high rates of suspended
sediment transport. For non-dimensional friction coefficient f , Raubenheimer,
Elgar & Guza (2004) obtained values in the range 0.02–0.06 for beach uprush
and downrush (Dronkers 2005). The friction coefficient f is known to be influenced
by various processes, including the particle Reynolds number (Bombardelli & Gioia
2006), turbulence modulation due to the presence of solid grains (Crowe 2000), and
sediment transport intensity (Wilson 1989; Sumer et al. 1996). For the present jet
trenching conditions, however, the manner in which these processes should be jointly
parameterized is unclear, and we choose instead a constant friction factor f to be
tuned by comparison with the experiments. Towards the higher end of the range
quoted above, value f ≈ 0.05 is found to yield the best agreement and used for all
the calculations reported below.

For the turbulent shear stress τ
(2)
2 applied on the inner side of the outer interface, the

situation is close to free-shear turbulence, and we adapt the turbulent stress function
used in standard one-equation turbulence models (Fredsøe & Deigaard 1992). By
analogy with the Kolmogorov–Prandtl eddy-viscosity expression νT = l

√
k, the shear

stress function is written

τ
(2)
2 = ρ2ξ

√
k(−v), (40)

where −v is the velocity difference across the interface, and where non-dimensional
parameter ξ is again the ratio of eddy length l to shear-layer thickness δy. Based on
the assumption that the same turbulent eddies mix both momentum and density, the
same constant ξ is used in (37), (38) and (40).

For the bed reaction shear stress τ
(0)
0 , there is no need for any additional empirical

function. Combining the two compatibility functions (31) and (32), we obtain

τ
(0)
0 = τ

(0)
1 − ρ0vι

(0)
1

ρ0 − ρ1

. (41)

By Euler’s momentum theorem, momentum transport associated with mass flux across
the assumed infinitely thin interface is balanced by a jump in shear stress. In the
absence of mass flux, this jump vanishes and the identity τ

(0)
0 = τ

(0)
1 is retrieved in

accordance with Newton’s third law. The resisting shear stress on the lower side of
the bed interface is therefore fully determined once the mass drift and shear stress
functions ι

(0)
1 and τ

(0)
1 have been specified. We address in the next section the derivation
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of an additional balance law for the evolution of the specific kinetic energy k of the tur-
bulent velocity fluctuations, which intervenes in the three functions (37), (38) and (40).

3.5. Balance of mechanical energy

To close the description, energy balance must be invoked. The total mechanical energy
of the system is composed of three different contributions: (i) the potential energy
of the bed, current, and ambient system; (ii) the kinetic energy of the mean flow;
(iii) the kinetic energy of the turbulent velocity fluctuations. For the latter, we do not
distinguish between the solid and fluid phase, and consider the joint kinetic energy
of the mixture. Approaches resolving the two phases separately have been proposed
by Hsu, Jenkins & Liu (2003) and Ten Cate et al. (2004), but exceed the level of
detail sought in the present work. Accordingly, the total energy flux across a vertical
transect is due to advection of the different energy components complemented by the
work of the excess pressure forces. The resulting balance equation is

∂

∂t

{
1
2
(ρ0 − ρ∞)gz(0)2 cos β + (ρ1 − ρ∞)gh1

(
z(0) + 1

2
h1 cosβ

)
+ 1

2
mv2 + mk

}
+

∂

∂s

{[
(ρ1 − ρ∞)gh1

(
z(0) + 1

2
h1 cos β

)
+ 1

2
mv2 + mk + 1

2
(ρ1 − ρ∞)g cosβ h2

1

]
v
}
= −γ,

(42)

where the first term on the left-hand side is the time rate of change of the total
mechanical energy (sum of potential energy, mean flow kinetic energy, and kinetic
energy of the turbulent fluctuations, per unit bed surface), and the second term on the
left-hand side is the divergence of the energy flux. Note that the potential energy is
measured with respect to a ground state in which the settled sea bed rises to elevation
z(0) = 0 below a sediment-free water ambient. The symbol γ on the right-hand side
of (42) is the energy dissipation function. Assuming an isothermal system, the second
law of thermodynamics requires that this dissipation function be everywhere positive,
i.e. γ � 0 (see e.g. Abbott 1979).

In order to obtain a balance equation for the kinetic energy of the fluctuations
alone, we can form the quasi-linear combination

(equation (42)) − 1
2
v2 × (25) − mv × (36) −

{
(ρ0 − ρ∞)gz(0) + (ρ1 − ρ∞)gh1/ cos β

}
× (21)

−
{

1
2
(ρ1 − ρ∞)g cos β h1 − ρ∞g

(
z(0) + 1

2
cos β h1

)}
× (22) − g

(
z(0) + 1

2
h1 cosβ

)
× (24).

(43)

After repeated application of the chain rule, a considerable amount of algebra,
and right-hand-side substitutions based on the compatibility relations (31)–(34), the
resulting equation simplifies to

∂

∂t
(mk) +

∂

∂s
(mkv) = 1

2

(
τ

(0)
0 + τ

(0)
1

)
v + 1

2
τ

(2)
2 (−v) − 1

2
g cosβ h1

(
ι
(0)
1 + ι

(1)
1

)
− γ, (44)

which is one of the key results of the overall derivation. This equation is a balance law
for the turbulence intensity k, where we recognize on the right-hand side the following
source and sink terms. The first two terms are production terms associated with the
work of the mean flow against the interfacial shear stresses τ

(a)
b , and correspond to

a loss of kinetic energy by the mean flow. The third term is a sink term associated
with the work of the turbulent fluctuations against gravity, and corresponds to a gain
of potential energy induced by the upwards mass drifts ι

(a)
b . Finally, the last term

is the energy dissipation function, inherited from the overall balance of mechanical
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energy (42). It is seen from the right-hand side of (44) that both the production and
gravitational work contributions are naturally expressed in terms of the shear stress
and mass drift functions, further motivating our introduction of these terms.

In order to close the above cascade of equations, the final element that is required
is a semi-empirical specification of the dissipation function γ . For this function, we
adopt the formulation

γ = 1
2
τ

(0)
0 v + mε + g h1(ρ1 − ρ∞)ω(cos β)2, (45)

similar to that proposed by Parker et al. (1986), and composed of the following three
contributions. The first is a direct dissipation of the work of the shear stress τ

(0)
0

applied to the lower side of the bed interface. Because this shear stress is only a
reaction of the sediment bed, we expect the associated work to be dissipated locally
rather than contribute to the production of turbulence. The second term represents
the more standard dissipation of turbulent kinetic energy associated with transfer
to smaller eddies and eventual dissipation by viscosity. This dissipation would occur
even if settling sand grains were absent in the turbulent layer. Although the presence
of sand particles may exert an influence on this term (Crowe 2000), we neglect it
in first approximation. The third term, finally, is the Knapp–Bagnold dissipation
introduced by Parker et al. (1986), and is associated with potential energy loss due to
gravitational settling. This ongoing potential energy drop is not transferred back to
the turbulence but rather lost to viscous processes.

For the rate of turbulent energy dissipation per unit mass ε, we adopt the standard
expression

ε = c2

k3/2

l
, (46)

derived from the dimensional arguments of Kolmogorov (1941). Here l is again the
eddy length (or length scale of turbulence), and c2 is a non-dimensional constant.
The standard k − ε model value for this parameter is c2 ≈ 0.08, while the eddy length
can be assumed to scale with the depth of the turbulent layer as l ≈ 0.1 h (Fredsøe &
Deigaard 1992). Like Hsu et al. (2003), we do not make corrections to these values
owing to the presence of solid particles. We will thus model the rate of turbulent
dissipation by the formula

ε =χ
k3/2

h1 + h2

, (47)

where the non-dimensional constant χ takes the value χ = 0.08/0.1 = 0.8.
Since h1, (ρ1 − ρ∞), ω, k and ε are positive, both the Knapp–Bagnold and turbulent

dissipation terms are automatically greater than or equal to zero. To guarantee overall
dissipation, however, the first term must also be positive, i.e.

τ
(0)
0 v � 0, (48)

which amounts to requiring that the bed reaction shear stress must oppose velocity
v. By virtue of interface relation (41), this places a constraint on the maximum mass
drift that can be attained near the bed:

ι
(0)
1 �

ρ0 − ρ1

ρ0

τ
(0)
1

v
, (49)

and this constraint will be enforced in the computations.
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U

Z

x̂I x̂ x̂J x̂ x̂C x̂E x̂0

ŝ

2δ

α + δ

ν

ν′

(a) (b) (c)

Figure 8. Flow details: (a) jet expansion before and after bed impingement; (b) internal
hydraulic jump; (c) detrainment and settling pool.

4. Travelling-wave solutions
4.1. Equations in moving coordinates

We now consider the case of a plane jet travelling along an initially horizontal
sea bed. Approximating a steadily advancing injection dredge or jet trencher (see
figure 1b, c), the jetting device is assumed to move at constant speed U to the left.
To describe the resulting water flow and sand bed response, it is then convenient to
postulate an observer moving with the jetting device at the same leftward speed U .
The corresponding change of independent variables (x, t) ↔ (x̂, t̂) is given by

x̂ = x + Ut, t̂ = t, (50)

where x̂ denotes horizontal distance from the origin of the travelling jet (figure 8a).
The associated curvilinear coordinate ŝ is such that

dx̂

dŝ
=

dx

ds
= cosβ. (51)

Using the chain rule, it follows that the time and spatial derivatives in balance
equations (21)–(28) transform to

∂·
∂t

=
∂·
∂t̂

+
U

cos β

∂·
∂ŝ

,
∂·
∂s

=
∂·
∂ŝ

. (52)

In the moving frame of reference, furthermore, the bed and ambient acquire apparent
velocities û0 = û∞ = U , and the apparent velocity of the turbulent current becomes

v̂ = v + U/ cosβ. (53)

In terms of moving coordinates (ŝ, t̂), transformed governing equations can be written

∂z(0)

∂t̂
+

U

cos β

∂z(0)

∂ŝ
= σ0, (54)

∂h1

∂t̂
+ v̂

∂h1

∂ŝ
+ h1

∂v

∂ŝ
= σ1, (55)

∂h2

∂t̂
+ v̂

∂h2

∂ŝ
+ h2

∂v

∂ŝ
= σ2, (56)

∂ρ1

∂t̂
+ v̂

∂ρ1

∂ŝ
= σρ, (57)

∂k

∂t̂
+ v̂

∂k

∂ŝ
= σk, (58)
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∂v

∂t̂
+ v̂

∂v

∂ŝ
+

(ρ1 − ρ∞)gh1

m

∂h1

∂ŝ
+

1
2
g cosβ h2

1

m

∂ρ1

∂ŝ
= σv, (59)

where linear combinations were used to reduce (57) and (58) to standard advection-
source equations, and where we have defined the source terms

σ0 = − e(0)

cos β
, σ1 = e(0) − e(1), σ2 = e(1) − e(2), σρ =

ι
(0)
1 − ι

(1)
1

h1

,

σk = { 1
2
(τ (0)

0 + τ
(0)
1 )v + 1

2
τ

(2)
2 (−v) − 1

2
g cosβ h1(ι

(0)
1 + ι

(1)
1 ) − k(i(0) − i(2)) − γ }/m,

σv = {−τ
(0)
1 + τ

(2)
2 + (ρ1 − ρ∞)h1g sinβ}/m.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(60)

Equations (54) to (59) represent six evolution equations for the six primitive variables
(z(0), h1, h2, ρ1, k, v). Note that the primitive variables and source terms continue
to include the original velocity v (without hat), which must now be interpreted
as a current velocity relative to the stationary bed. In the convective derivatives
D/Dt̂ = ∂/∂t̂ + v̂∂/∂ŝ, on the other hand, it is the apparent velocity v̂ (with hat)
which intervenes. Although the six equations (54)–(59) constitute a complete set of
governing equations, the balance equation for total sediment mass (26) will also be
useful, and transforms to

∂

∂t̂
{(ρ0 − ρ∞)z(0) cos β + (ρ1 − ρ∞)h1} +

∂

∂ŝ
{(ρ0 − ρ∞)z(0)U + (ρ1 − ρ∞)h1v̂} =0. (61)

Its usefulness stems from the fact that it is the only equation that can be expressed
in pure conservation form.

4.2. Characteristic structure

To analyse the system of quasi-linear equations (54)–(59), it is useful to first cast it in
the matrix form

∂V
∂t̂

+ J(V )
∂V
∂ŝ

= S(V ), (62)

where

V =

⎛
⎜⎜⎜⎜⎜⎝

z(0)

h1

h2

ρ1

k

v

⎞
⎟⎟⎟⎟⎟⎠ , J=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

U

cos β
0

v̂ h1

v̂ h2

v̂ 0
v̂ 0

0 g1 0 π1 0 v̂

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, S =

⎛
⎜⎜⎜⎜⎜⎝

σ0

σ1

σ2

σρ

σk

σv

⎞
⎟⎟⎟⎟⎟⎠ , (63)

and where we have introduced definitions

g1 =
(ρ1 − ρ∞) cosβ h1

m
g, π1 =

1
2
g cos β h2

1

m
. (64)

Because only the diagonal and the last line and column of the Jacobian matrix J are
non-zero, it is straightforward to derive its eigenstructure. Defining

c =
√

g1h1 =

√
(ρ1 − ρ∞) cos β gh2

1

m
, (65)

the six eigenvalues of the matrix are

λ0 = U/ cos β, λρ = v̂, λk = v̂, (66)

λ∗ = v̂, λ− = v̂ − c, λ+ = v̂ + c. (67)
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The first three eigenvalues λ0, λρ and λk are associated with (54), (57) and (58), which
are already in characteristic form and are decoupled from the others. Eigenvalue λ∗
is associated with advection of the depth ratio h1/(h1 + h2) at the shared apparent
velocity v̂ of the two sublayers. Finally, λ− and λ+ are the speeds of the left and right
internal gravity waves. Although there are at least three repeated eigenvalues, the
system is endowed with a complete basis of six independent eigenvectors provided
that (ρ1 −ρ∞)h1 is non-zero (i.e. provided that suspended sand is present). The system
is then hyperbolic. If the bottom current is entirely free of suspended sediment, on
the other hand, eigenvalues λ− and λ+ and their eigenvectors collapse together, and
the eigenvector basis becomes deficient.

As illustrated in figure 8, the jet-induced current will be assumed to flow from left
to right, hence in what follows we restrict our attention to cases in which both U > 0
and v̂ > 0. Under these restrictions, the Jacobian matrix J will be regular everywhere
except at locations where

λ− = v̂ − c = 0, (68)

causing the determinant to be equal to zero and the matrix to become singular. This
will occur for the following critical value of the local Froude number

F̂ r =
v̂

c
=

v + U/ cos β√
{(ρ1 − ρ∞) cosβ gh2

1}/m
= 1. (69)

The above is a generalized definition of the internal Froude number, modified
to account for the moving frame of reference, the sublayered structure, and the
flow inclination. Using this revised definition, however, the Froude number can be
interpreted as in standard hydraulics to precisely identify distinct regimes of flow.
Where F̂ r > 1, the flow is supercritical, and all wave speeds of the system are oriented
to the right, i.e. λa > 0 for a = 0, ρ, k, ∗, −, +. Where F̂ r = 1, the flow is critical, with a
stationary wave speed λ− = 0, and a singular Jacobian matrix. Where F̂ r < 1, finally,
the flow is subcritical, with five wave speeds oriented to the right, i.e. λa > 0 for
a =0, ρ, k, ∗, + and one wave speed oriented to the left, λ− < 0.

4.3. Longitudinal flow structure

We now further restrict our attention to flows which have attained steady state in
the moving frame of reference. The resulting solutions are known as travelling-wave
solutions (see e.g. Hydon 2000). As discussed in § 1, such solutions are of great
practical interest because dredging and jet trenching tools often operate continuously
over great distances, allowing the flow pattern that they induce to converge to steady
state in a frame of reference attached to the jetting device. Such solutions are obtained
by setting the time derivatives ∂/∂t̂ to zero in (54)–(59). In matrix form, the reduced
system of equation can be written

J
dV
dŝ

= S, (70)

which represents a coupled system of 6 ordinary differential equations. Before
integrating (70), we must first clarify the appropriate boundary conditions and
consider the possible occurrence of critical sections where the matrix J will be
singular.

For a horizontal sea bed, we anticipate that the jet-induced sediment motion will
only take place over a finite distance behind the jetting device. Flowing to the right,
the jet-induced current will dissipate energy until it is no longer able to sustain a
sediment suspension. Consider the consequences of conservation equation (61), which
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at steady state reduces to

d

dŝ
{(ρ0 − ρ∞)z(0)U + (ρ1 − ρ∞)h1v̂} =0. (71)

To the left, in front of the jetting device, the undisturbed sea bed has elevation z(0) = 0,
and (ρ1 − ρ∞)h1 = 0 (no sediment is yet in suspension). Integration of (71) therefore
yields the invariant

(ρ0 − ρ∞)z(0)U + (ρ1 − ρ∞)h1v̂ = 0. (72)

Once jet-induced sediment transport occurs, therefore, (ρ1 − ρ∞)h1v̂ > 0 and the bed
elevation will drop below the original sea bottom. Furthermore, it will remain below
this level for as long as a suspended sediment flux is sustained. When this flux
decreases, deposition will occur, and eventually the bed will recover its original
elevation when all sediment motion has ceased. The temporary trench that is incised
then backfilled in this fashion is precisely the objective of jet trenching, which seeks
to bury the ‘product’ (cable or pipeline) under a protective layer of sediment after a
single pass of the machine (see figure 1c).

Let us examine the conditions upstream and downstream of this travelling trench.
Upstream, a high-speed clear-water jet impinges on the sand bed at location x̂ = x̂I .
Since the jet has not yet eroded any sediment, h1(x̂I ) = 0 and the shooting flow is
clearly supercritical. In fact, the internal Froude number, (69), is infinite there, and
the system of equations has not yet become hyperbolic. Less obviously, a similar
situation holds at the downstream end of the trench. At a certain finite location
x̂ = x̂E , the current has re-deposited its suspended sediment load, but retains a certain
residual velocity v̂ �= 0. Again, we therefore have a supercritical flow of infinite Froude
number, where the equations cease to be hyperbolic.

The jet-induced current is therefore supercritical at both ends of the trench, and
this leads to the question: Does the current stay supercritical throughout? In fact,
we will show that this is indeed a possible outcome. There is, however, a second
possible longitudinal flow structure, featuring two transcritical transitions: first, a
discontinuous transition from super- to subcritical flow across an internal hydraulic
jump (see figure 8b); then, a smooth passage back from sub- to supercritical across a
critical section located at x̂ = x̂C somewhere between the jump at x̂ = x̂J and the trench
end at x̂ = x̂E (see figure 8c). The possible occurrence of two different travelling-wave
structures (with or without shock) for flows induced by moving sources where the
upstream conditions are supercritical was earlier identified by Hoffman (1967), in a
problem of magnetogasdynamics (see also Whitham 1974). Steady profiles with and
without hydraulic jumps have also been examined recently by Kostic & Parker (2007)
for turbidity currents traversing a canyon/fan/canyon complex.

Regardless of the case, conditions at the upstream impingement point x̂ = x̂I are
supercritical, with six characteristics propagating from left to right, hence a need to
prescribe boundary conditions there for all six primitive variables. We can then simply
integrate system (70) from left to right, and proceed to the end of the trench if the
flow is supercritical throughout. If the flow is transcritical, two additional difficulties
must be addressed. First, means must be found to integrate through the discontinuous
internal jump and through the singular critical section, assuming that their locations
x̂J and x̂C are known. The more difficult issue, however, is that these locations are
in fact unknown, and we must provide an additional internal boundary condition in
order to close the problem. In the next section, we address these points one by one,
starting with the specification of upstream boundary conditions.
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5. Flow and solution details
5.1. Jet expansion before impingement

We examine first the development of the pure-water plane jet, before impingement
onto the sand bed. A highly concentrated point-like source of momentum is
considered, located at horizontal position x̂ = 0 and elevation Z above the unperturbed
sea bed (figure 8a). This standoff elevation is taken to remain constant as the jetting
device translates to the left. The jet is oriented at an angle α below the horizontal,
where 0 <α < 90◦. The jet-induced water speed is assumed to be much larger than
the travelling speed, v � U , and the influence of the latter is neglected at this stage
(i.e. we approximate v̂ ≈ v). Before impingement, the problem considered is thus the
expansion of a neutrally buoyant turbulent jet in a quiescent ambient. This is a
classical problem of turbulence research, which need not be solved anew, but it is
useful to treat it using the equations derived above in order to clarify their meaning
and consequences. Measuring distance using curvilinear coordinate ŝ, defined again
along the lower interface of the expanding jet, we can write equations

d

dŝ
(hv) = e(0) − e(2), (73)

d

dŝ
(ρ2hv2) = 0, (74)

d

dŝ
(ρ2hkv) = 1

2
τ

(0)
2 v + 1

2
τ

(2)
2 (−v) − ρ2hε. (75)

These three equations describe balance of volume, momentum and turbulence
intensity, specialized to the case of a pure water jet in contact with a quiescent
water ambient along both its upper and lower boundaries. They constitute reduced
versions of (23), (28) and (44), with h1 = 0 and h = h2. The interface relations and
semi-empirical functions described above can also be adapted to express

e(0) = −e(2) = ξ
√

k, τ
(0)
2 = −τ

(2)
2 = ρ∞ξ

√
kv, ε = χk3/2/h. (76)

Since ρ2 = ρ∞ = ρW stays constant during the jet expansion, the equations reduce to

d

dŝ
(hv) = 2ξ

√
k, (77)

d

dŝ
(hv2) = 0, (78)

d

dŝ
(hkv) = ξ

√
kv2 − χk3/2. (79)

Using (78), we can express h = Σ/v2 where Σ = hv2 denotes the constant specific
momentum flux of the jet. We now seek a similarity solution to (77)–(79) using the
ansatz

√
k =Av, where A is a dimensionless constant to be determined. It can then

be checked that the explicit solutions

h(ŝ) = 4ξ A ŝ, v(ŝ) =
√

Σ/h(ŝ),
√

k(ŝ) = Av(ŝ), (80)

satisfy (77)–(79) provided that constant A take the value A=
√

ξ/(χ − 2ξ ). In
accordance with a wealth of experimental data for plane turbulent jets, the result is
a jet of linearly increasing thickness h(ŝ) = 2 tan δ ŝ, where the wedge semi-angle δ is
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such that

tan δ =2ξ A=

√
4ξ 3

χ − 2ξ
. (81)

Experiments further suggest for semi-angle δ values in the range δ =6 − 8◦ (Chen &
Rodi 1980; Mathieu & Scott 2000; Durbin & Pettersson Reif 2001; Jirka 2006). In
the present work, we choose for entrainment parameter ξ the value ξ = 0.13 which
yields a semi-angle δ ≈ 7◦, in the middle of the above range.

Although similarity solutions strictly apply only beyond distances ŝ of about
60 times the nozzle diameter (Panchapakesan & Lumley 1993), or about 3 cm
for the present experiments, we also use the above water-jet solution to specify
approximate boundary conditions upstream of the trench. At the bed impingement
point ŝ = ŝI = Z/ sin(α + δ), we set

z(0) =h1 = 0, h2 = 4ξ AŝI , ρ1 = ρW, v =
√

Σ/h2, k = A2v2. (82)

Jetting parameters which have an influence on the trenching process thus include the
jet strength Σ , the standoff elevation Z and the jetting angle α. The above simplified
jet geometry also places a further constraint on the erosion rate, associated with
incipient detachment of the turbulent jet from the trenching front. If the erosion rate
e(0) is high or the travelling speed U slow, unphysical bed profile angles β may be
obtained in excess of the inclination α + δ of the lower boundary of the free jet (see
figure 8a). To ensure that the angle of the trenching front satisfies β � α + δ, the mass
drift ι

(0)
1 along the bottom will be subject to one further constraint:

ι
(0)
1 � (ρ0 − ρ1)U sin(α + δ), (83)

which will be enforced in addition to the constraint (49), whichever is more restrictive.

5.2. Internal hydraulic jump

Under conditions examined further below, it may be that the supercritical bottom
current is not able to flow out of the scour hole it has itself incised without first
undergoing an internal hydraulic jump (see figure 8b). In that case, the thin fast
turbulent layer will make a sharp transition to a thick, slow current. There must be a
corresponding conversion of the kinetic energy of the mean flow to potential energy,
with an associated energy loss that may be transferred to some extent to the turbulent
fluctuations. To describe this transition, assumed to occur as a sharp discontinuous
jump at location x̂ = x̂J , shock relations must be derived. Conservation of volume,
mass and momentum across the jump leads to equations

[z(0)U ] = 0, [h1v̂] = 0, [h2v̂] = 0,

[ρ1h1v̂] = 0, [mvv̂ + 1
2
mc2] = 0,

}
(84)

where the square brackets denote a difference [η] = η′ − η between quantities sampled
downstream (marked with a prime), and upstream of the jump (unmarked). In the
shock relations (84), the apparent velocity v̂ = v+U/ cos β is used as convective speed
because we consider a jump that is stationary in the travelling frame of reference. It
follows from (84) that the following quantities are preserved across the jump:

z′(0) = z(0),
h′

1

h′ =
h1

h
,

h′
2

h′ =
h2

h
, ρ ′

1 = ρ1, (85)
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and the volume and mass fluxes q = hv̂ and ṁ = mv̂ are also shock invariants. The
current thickness h′ downstream of the jump is then given by the following relation

h′ = 1
2
h{

√
1 + 8F̂ r2 − 1}. (86)

This turns out to be identical to the classical jump relation of open-channel hydraulics
(Bakhmeteff 1932), save for the non-standard definition (69) of the Froude number
F̂ r .

An equation for the balance of mechanical energy can also be written

[{ 1
2
mv2 + 1

2
(ρ1 − ρ∞)g cos β h2

1 + mk}v̂ + 1
2
(ρ1 − ρ∞)g cos β h2

1v] = −Γ, (87)

where Γ is the rate of energy dissipation associated with the jump. Note in (87) that
the convective flux component features apparent velocity v̂, but the term associated
with work of the pressure forces involves the original velocity v. Using relations
(84)–(87), lengthy but straightforward algebra leads to the following relation

[mkv̂] = ṁ [k] = ṁc2 (h′ − h)3

4h2h′ − Γ, (88)

governing the change in turbulence intensity [k] = k′ − k across the jump. The first term
on the right-hand side of (88) is a production term associated with the mechanical
energy lost by the mean flow, and constitutes a generalization of the dissipation
formula for classical hydraulic jumps and bores (Stoker 1957). The second term on
the right-hand side, Γ , denotes the rate of dissipation of the total mechanical energy
(mean flow+ turbulent fluctuations), by processes acting locally within the jump. We
will neglect this term and simply set Γ =0.

Whereas the flow thickness h on the upstream side of the jump is much smaller
than both the trench depth H and its local radius of curvature �, this is not true
on the downstream side of the jump, where h ∼ H ∼ �. As a result, the curvilinear
description no longer applies, and we revert to a Cartesian view for the region
x̂ > x̂J downstream of the jump. In this region, we further apply the small-slope
approximation

sin β ≈ tan β, cos β ≈ 1. (89)

To ensure compatibility of the pressure thrust terms, which dominate on the
downstream side of the jump, assumption (89) will be adopted for the shock relations
as well. With this precision, (85), (86) and (88) provide a complete set of relations
allowing us to compute the conjugate state downstream of the jump based on the
known upstream state. The matter of determining the jump position x̂J , however, is
left unresolved, and will be addressed in the next subsection together with the critical
section.

5.3. Passage through the critical section

If the sediment-laden bottom current undergoes an internal hydraulic jump, then of
necessity it must pass through a critical section before reaching the end of the trench.
Let x̂C be the location of this critical section, where the local Froude number takes
the precise value F̂ r =1 on the way back from sub- to supercritical flow. Where
F̂ r =1, however, the Jacobian matrix J is singular, and cannot be simply inverted
to determine the primitive variable gradients dV/dŝ at that location. In fact, the
governing equations have no admissible solution at the critical section, unless the
source vector S of system (70) satisfies there the solvability condition

ST W (−) = 0, (90)
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where superscript T denotes the transpose, and W (−) is the left eigenvector of J
associated with the zero eigenvalue λ−. At the critical section, this eigenvector provides
a basis for the left null space of the singular matrix. Condition (90) then states that
admissible source vectors must be orthogonal to this left null space (see e.g. Strang
1988). The left eigenvector W (−) is obtained from the condition

JT W (−) = λ−W (−) = (v̂ − c)W (−), (91)

and is given by W (−) = (0, g1, 0, π1, 0, −c). The solvability condition can then be
written explicitly

ST W (−) = g1σ1 + π1σρ − cσv = 0, (92)

where the products g1, π1 and source terms σa are given by (64) and (60). This is
the missing internal boundary condition that we were looking for, and is all that is
required in order to determine the positions x̂J and x̂C of the jump and critical section.
An admissible jump location x̂J will be such that the subcritical flow downstream of
the jump satisfies solvability condition (92) at the precise location x̂C where the Froude
number reaches the value F̂ r = 1. The computational procedure used to determine
locations x̂J and x̂C based on this criterion will be described in the next subsection.

To gain first a rough idea of what the distal end of the trench will look like,
downstream of the jump, the following approximate solution is useful. We first
neglect both the turbulent bottom shear stress and the turbulence intensity, i.e. we
assume τ

(0)
1 ≈ 0 and k ≈ 0 for x̂ > x̂J . Equations (57), (54) and (58) then reduce to

∂n1

∂x̂
= 0, (93)

∂z(0)

∂x̂
=

n1ω

(n0 − n1)U
, (94)

v̂
∂v

∂x̂
+

(ρ1 − ρ∞)gh1

m

∂z(1)

∂x̂
=0, (95)

where the small-slope approximation (89) was invoked. Equations (93) and (94) show
that the suspended sediment concentration remains constant, and that the bed profile
takes a constant adverse slope controlled by the ratio of the settling rate ω to the
travelling speed U . Assuming a small Froude number, we can furthermore neglect
the first term on the left-hand side of the reduced equation of motion (95), and
approximate

∂z(1)

∂x̂
≈ 0. (96)

As illustrated in figure 8(c), this approximate solution represents a turbid pool
characterized by a nearly horizontal turbidity interface z(1) = z(0) + h1, from which
water is detrained and suspended sediment settles back to the bed. The depth h1 of
the turbid sublayer decreases approximately linearly with distance, until all suspended
sediment has re-deposited and the trench ends. In the more complete description, the
turbulence intensity will remain non-zero for some distance downstream of the jump,
delaying this backfill process.

5.4. Numerical solutions

Although the above developments show that partial information can be obtained semi-
analytically, solutions to the full governing equations must be sought numerically.
Consider first the situation in which no jump is present. Integration of system (70)
can then proceed from left to right, starting from the known conditions V = V I at the
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impingement point. For this purpose, an explicit second-order Runge-Kutta scheme
is used, advancing from curvilinear position ŝ to position ŝ +�ŝ in the two successive
sub-steps

V (ŝ + 1
2
�ŝ) = V (ŝ) + 1

2
�ŝ J−1(V (ŝ)) S(V (ŝ)), (97)

V (ŝ + �ŝ) = V (ŝ) + �ŝ J−1(V (ŝ + 1
2
�ŝ)) S(V (ŝ + 1

2
�ŝ)). (98)

In order to preserve exactly the invariant (72), however, the turbid sublayer density
ρ1 is adjusted after each sub-step using

ρ1 = ρ∞ + (ρ0 − ρ∞)(−z(0)U )/(h1v̂). (99)

Integration halts when either one of the following conditions are met. If the depth
h1 of the turbid sublayer drops to zero, then the end of the trench has been reached,
and the solution is complete. If, on the other hand, the Froude number decreases
below critical value F̂ r = 1 at some point along the way, then the assumption of a
fully supercritical flow fails, and a solution featuring an internal hydraulic jump must
be sought instead. Let us define function F (x̂) as the value of the Froude number
obtained at position x̂ using supercritical integration. An admissible supercritical
trench profile will then be such that Fmin = minF (x̂) > 1.

To construct a solution with a jump, a supercritical integration is first performed
as described above, starting from the point of impingement. Each point along the
way is then a possible candidate for the location x̂J of the internal hydraulic jump.
We associate with each candidate jump position x̂J a value of the solvability function
G(x̂J ), constructed as follows. The jump relations (85)–(88) are used to determine the
conjugate state V ′(x̂J ) immediately downstream of the assumed jump, based on the
state V (x̂J ) before the jump known from the supercritical integration. Integration
of the subcritical profile is then continued, again from left to right, using the same
Runge–Kutta scheme, until a section x̂C is reached where the Froude number rises
back to the critical value F̂ r =1. Having calculated the flow state V (x̂C) at that critical
section, the local source terms S(x̂C) can be obtained from (60), hence the solvability
product (92) can be evaluated at the critical section, i.e. G(x̂J ) = ST (x̂C)W (−)(x̂C). This
is interpreted as a function of the jump position x̂J since the profile downstream of
the jump depends on where the jump is assumed to occur.

The equilibrated jump position sought is therefore such that G(x̂J ) = 0, and the
problem becomes one of finding, if it exists, the root x̂J of the solvability function
G. This function takes negative values near impingement, rises in the downstream
direction, then decreases again, taking a maximum Gmax = max G(x̂J ) at a certain
candidate jump location x̂J,max = argmax G(x̂J ). If Gmax > 0, then a jump is possible
in the interval x̂I < x̂J < x̂J,max . The function G(x̂J ) is found to be monotonous in this
interval, hence it is straightforward to find the simple root x̂J using bisection. Once
this root has been found, we can continue the left-to-right integration past the critical
section until the end of the trench is reached.

The conditions under which admissible solutions with and without jumps can be
constructed can thus be summarized as follows. A fully supercritical profile (without
jump) is such that Fmin > 1. An admissible transcritical profile (with an internal jump
along the way), on the other hand, is such that Gmax > 0. Depending on the jet and
sand properties, it turns out that three cases are possible. For certain values of the
governing parameters, Fmin > 1 and Gmax < 0, implying that only the fully supercritical
profile is admissible. For other values, Fmin < 1 and Gmax > 0, which means that only
the solution with a jump is admissible. Finally, there is a domain of overlap where
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Figure 9. Computed travelling-wave solution for a fast speed of advance U = 8 cm s−1:
(a) bed interface z(0) (thick solid line), turbid interface z(1) (dashed line), and outer interface
z(2) (thin solid line); (b) profiles of the current velocity v (thick solid line) and square root of
the turbulence intensity

√
k (thin solid line); (c) profile of the sand concentration n1 in the

turbid sublayer (thick solid line), with asymptotic value shown as dash-dotted line.

both Fmin > 1 and Gmax > 0, implying that both the solutions with and without jump
are admissible. In that case, the travelling profiles adopted by the flow at steady
state are not determined by the governing parameters alone, but depend on the full
unsteady history of the flow.

Examples of computed profiles for these three cases are presented in figures 9,
10 and 11. For all cases, the model parameters are set to the values appropriate
for the small-scale experiments described previously. Material parameters take values
ρS =2670 kgm−3 (quartz sand), ρw = 1000 kg m−3 (fresh water), sand concentration
of the loose bed n0 = 0.6, bed friction factor f = 0.05, and effective settling speed of
the suspended sand ω = 3 cm s−1 (sand grains of median diameter d50 = 0.33 mm). The
operating parameters of the jetting device are given the following values: jetting angle
α = 60◦, standoff distance Z = 0.5 cm, jetting strength Σ =8 l s−2. The only parameter
that is varied between the three examples is the speed of advance U of the travelling
jets.
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Figure 10. Computed travelling-wave solution for a slow speed of advance U = 3 cm s−1:
(a) bed interface z(0) (thick solid line), turbid interface z(1) (dashed line), and outer interface
z(2) (thin solid line), with approximate solutions for the constrained trenching front and turbid
pool re-sedimentation profile shown as a dash-dotted lines; (b) profiles of the current velocity
v (thick solid line) and square root of the turbulence intensity

√
k (thin solid line); (c) profile

of the sand concentration n1 in the turbid sublayer (thick solid line), with maximum value
shown as dash-dotted line.

5.5. Interpreted profiles

Figure 9 shows computed steady profiles obtained for a relatively fast speed of advance
U = 8 cm s−1. For this speed, the only admissible solution features a supercritical
profile throughout the trench. Figure 9(a) shows the computed profiles for interfaces
z(0) (thick solid line), z(1) (dashed line), and z(2) (thin solid line). Bed interface z(0)

exhibits a curved profile which transitions smoothly from a steep trenching front
upstream to a backfill tail of milder adverse slope. In the upstream part of the
trenching front, close to the point of impingement, the bed profile features a steep
inclination that approaches, but does not attain, the maximum allowed inclination
α + δ = 67◦. Comprised between the bed interface z(0) and the turbid interface z(1), the
suspended sand layer thickens along the upstream portion, as a result of erosion and
entrainment, before gradually thinning along the backfill tail where deposition and
detrainment occur. The trench ends where the turbid layer reaches zero thickness,
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Figure 11. Computed travelling-wave solutions for intermediate speed of advance
U = 5 cm s−1: (a) shooting-flow solution (without jump); (b) alternative admissible solution
featuring an internal hydraulic jump. The profiles shown are the bed interface z(0) (thick solid
line), turbid interface z(1) (dashed line), and outer interface z(2) (thin solid line).

at which point the bed has returned to its original elevation. Throughout this
erosional and depositional process, the turbulent bottom current, comprised between
interfaces z(0) and z(2), monotonously increases in thickness as a result of the one-way
entrainment of ambient water across the outer interface z(2). This freedom given to
the turbid sublayer thickness to either grow or decay while the overall bottom current
continuously thickens is a key feature of our proposed sublayered description.

Figures 9(b) and 9(c) show how the other variables evolve along the trench profile.
The velocity v of the turbulent current and the square root

√
k of its turbulence

intensity are plotted in figure 9(b). As suggested by the simplified model of § 2.5, the
velocity decreases roughly with the inverse of the square root of the along-bed distance,
i.e. v ∝ 1/

√
ŝ. This slowdown is the direct result of erosion and entrainment, which

both induce mixing of the high-velocity turbulent current with initially motionless
bed material and ambient water. Fast equilibration of production and dissipation
of turbulent kinetic energy likewise lead to the scaling

√
k ∝ 1/

√
ŝ, implying the

approximate proportionality
√

k ≈ Cv. Figure 9(c), finally, shows the evolution of
the sediment concentration n1 in the turbid sublayer. Starting from value n1 = 0
at the point of impingement of the pure-water jet, this sand concentration rapidly
converges towards an asymptotic maximum value n1,max = n0/2, shown as a dash-
dotted line in the same figure. This can be understood as follows from the governing
equations. Away from the trenching front, both constraints (49) and (83) eventually
become inactive. At that point, the evolution equation for the density of suspended
sediment in the turbid layer becomes

dρ1

dŝ
=

ι
(0)
1 − ι

(1)
1

h1v̂
=

2ξ
√

k

h1v̂

{
1
2
(ρ0 + ρ∞) − ρ1

}
, (100)
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which takes the form of a non-equilibrium relation and implies that, asymptotically,
the density of the turbid layer will tend towards a density ρ1 = (ρ0+ρ∞)/2 intermediate
between the densities of the underlying sediment bed and outer ambient. For the
suspended sediment concentration n1, the asymptotic result is n1 → n0/2. Because of
the upstream boundary conditions, constraints (49) and (83), and the lag distance
required for equilibration, however, the concentration will start from below and never
quite reach this value. Value n1,max = n0/2 thus constitutes an upper bound for the
suspended sediment concentration that can be attained in the turbid sublayer.

Figure 10 shows corresponding plots for a slower speed of advance, set to value
U = 3 cm s−1, with all other parameters kept the same as before. For this case, the only
admissible solution features an internal hydraulic jump. As illustrated in figure 10(a),
the eroding jet first plunges down a steep trenching front, limited by constraint (83)
shown as a dash-dotted line. This intense erosion is cut short when the thin shooting
current undergoes an internal hydraulic jump, beyond which the turbid interface
slightly overshoots the original sea-bed level. Shown in figure 10(b), the current
velocity v undergoes a sudden drop at the jump transition. The modelled turbulence
intensity k, on the other hand, rises across the jump owing to the assumed energy
transfer from the mean flow. This enhanced turbulence intensity allows the slower
flow to erode the sea-bed gently beyond the jump, delaying re-deposition until further
downstream.

Eventually, turbulence dissipates, at which point the backfill limb of the trench
approaches the turbid pool approximation of (93)–(96), with a linear rise of the bed
profile (dash-dotted line), back to the undisturbed sea-bed level where the trench
terminates. For this case, the jump is located at position x̂J = 0.034 m, such that
the steady flow passes smoothly through a critical section at position x̂C = 0.221 m,
before the trench ends at position x̂E = 0.244 m. Figure 10(c) shows how the sand
concentration in the turbid sublayer rises along the supercritical upstream stretch
of the profile, then drops slightly immediately after the jump, where entrainment of
ambient water exceeds erosion of bed material. The suspended sand concentration
then rises again to approach a constant value in the downstream turbid-pool region,
but this value lies below the limiting concentration n1,max = n0/2 (dash-dotted line).

Figure 11 shows the case of intermediate speed of advance, set here to value
U = 5 cm s−1, with all the other parameters again left unchanged. For this speed, the
admissibility conditions overlap, and solutions with and without a jump can both
be constructed. Figure 11(a) shows the flow pattern computed under the assumption
that no jump forms, while figure 11(b) shows the resulting profiles when a jump is
introduced. Both flows represent admissible steady-state solutions for the exact same
model and operating parameters. The resulting profiles are therefore strictly identical
in their upstream portion, where the flow is supercritical. Figure 11(a) shows how the
supercritical profiles can be continued to the end of the trench without any regime
transition. The current gradually expands, but remains thin throughout the erosion
and deposition process. Figure 11(b), on the other hand, shows the alternative steady
profiles obtained when an internal jump is allowed to form. The flow then undergoes
a sudden expansion at the jump, with the turbid sublayer invading the whole depth
of the trench. Eventually, however, the suspended sand settles back to the bed which
rises back to its original level. Owing to the local turbulence enhancement associated
with the jump, scour in figure 11(b) reaches slightly deeper than in figure 11(a), but
the resulting trench length is shorter.

In the literature, the possible coexistence of two possible steady states, with and
without jump, is known to occur for other types of shallow flow. This includes the
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case of single-layer flow over a moving obstacle described by Baines (1995). We find
here that the same situation occurs for erosional bottom currents induced by moving
plane jets. To summarize, the present shallow-flow theory predicts that the jet-induced
flow will take the form of a shooting current for high enough speeds of advance.
As this speed is decreased, the jet will incise a deeper trench, inside which the flow
may or may not undergo an internal jump. If the speed is decreased further, the
sediment-laden flow becomes forced to go through a jump. These general predictions
of the theory, as well as the more specific features of the computed profiles, must now
be checked against the laboratory observations.

6. Comparison of theory and experiments
6.1. Longitudinal profiles

To permit qualitative and quantitative evaluations of the theory, figures 12 and 13
show computed and observed profiles for low and high values of the jetting strength
Σ , respectively. For each jetting strength, results for four different speeds of advance
U are shown, and ordered from fast to slow speeds in (a) to (d) for each figure. In
accordance with the theoretical calculations, both series feature purely shooting flows
for high speeds of advance (figures 12a, b and 13a), but exhibit internal hydraulic
jumps for slower speeds (figures 12c, d and 13b–d).

For the purely shooting flows of figure 12(a, b), the bed profile adopts a
characteristic ‘swoosh’-shaped curve, similar to the profile of figure 6(c) calculated
using the simplified theory of § 2.5. The corresponding asymmetric profile smoothly
blends together a steep trenching front with a gentle backfill tail. In the presence of
a strong hydraulic jump, by contrast (figure 12c, d), the bed profile features three
distinct zones: a steep erosional trenching front, a nearly horizontal zone of delayed
deposition, then a linearly rising backfill limb. These observed features are seen to
be reproduced well by the computations. Whereas the bed profile measurements
(filled circles) are unambiguous and can be identified with the predicted bed interface
profile z(0) (thick solid line), the observed outer limit of suspended sand (open circles)
is more diffuse, and can only be expected to lie somewhere between turbid interface
z(1) (dashed line) and the outer turbulent current boundary z(2) (thin solid line), both
modelled as sharp discontinuities. The corresponding distributions of flow velocity and
sediment concentration along normal-to-bed transects are modelled as step functions,
whereas the actual distributions are gradually varied. Moreover, the internal hydraulic
jump is modelled by the theory as a localized shock, whereas, in practice, the jump
develops over a certain length. Despite these limitations, the flow-thickness evolution
depicted by the calculations and by the experimental profiles exhibit similar trends.
For the shooting-flow runs, the sediment-laden current remains comparatively thin
as it flows along the streamlined profile of the incised trench. In the presence of an
internal jump, on the other hand, the current suddenly thickens before re-depositing
its suspended sediment.

Figure 13 shows the influence of an increased jetting strength, leading to deeper
and longer trenches. The flow goes from a shooting regime (figure 13a) to a strong
internal jump (figure 13d), with intermediate stages (figure 13b, c) featuring a weaker
internal jump. Although agreement is poorer for these intermediate stages, the overall
trend from absent to weak to strong jump as the trench is scoured deeper is
captured well by the computed profiles. While limited in its accuracy for any given
individual run, the level of agreement obtained in figures 12 and 13 is nevertheless
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Figure 12. Comparison of observed and computed profiles for low jetting strength
Σ =5.8 l s−2 at various speeds of advance: (a) U = 4.0 cm s−1; (b) U = 3.5 cm s−1;
(c) U = 2.9 cm s−1; (d) U = 2.4 cm s−1. Filled circles = measured bed profile; open circles =
measured outer limit of suspended sediment; curves = computed profiles for the bed interface
z(0) (thick solid line), turbid interface z(1) (dashed line), and outer interface z(2) (thin solid line).

significant because all computations are performed under the same values of the model
parameters.

Among these parameters, tuning was required only for the friction factor f (set
to value f = 0.05), and for the effective settling speed (set to value ω = 3 cm s−1), all
other constitutive constants being obtained from either generic experiments (e.g. plane
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Figure 13. Comparison of observed and computed profiles for high jetting strength
Σ = 10.6 l s−2 at various speeds of advance: (a) U = 8.6 cm s−1; (b) U =6.3 cm s−1;
(c) U = 5.0 cm s−1; (d) U = 3.2 cm s−1. See the caption to figure 12 for symbol definitions.

jet spreading rates) or standard material tests. A higher friction factor f increases
erosion and leads to deeper and longer trenches, without greatly affecting the aspect
ratio H/L, where H and L are, respectively, the trench depth and trench length. The
effective settling speed ω, on the other hand, influences both the size and aspect ratio
of the trench, with larger sizes and smaller H/L ratios obtained for lower values of
the effective settling speed. Although results are sensitive to the precise choice of f

and ω, the tuned values nevertheless fall within the range expected from past work
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Figure 14. Relation between trench depth H and speed of advance U : symbols = experimental
observations for different jetting strengths Σ1 = 5.8 l s−2 (∗, �), Σ2 = 8.1 l s−2 (+, �) and
Σ3 = 10.6 l s−2 (×, �); curves = computed relations H (U ) parameterized by the jetting strength
Σ for values Σ1,Σ2,Σ3; circled symbols = stationary jets; algebraic symbols = separated
flows; filled symbols and solid lines = flows with internal jump; open symbols and dashed
lines = shooting flows.

(for the friction factor) and from our settling column tests (for the settling speed).
Without forcing or case-by-case tuning, the proposed model is thus able to predict
the main features of the system response over a range of jetting conditions.

6.2. Trench depth

Figure 14 further documents the dependence of the trench depth H on the speed of
advance U and jetting strength Σ , using data from a larger set of 38 experimental runs.
The trench depth is defined as the maximum drop of the bed profile below its initial
level, i.e. H = max(−z(0)(x̂)). As noted previously, this depth tends to increase for
higher jetting strengths and slower speeds of advance. In figure 14, data points from
runs with and without a hydraulic jump are plotted using filled and open symbols,
respectively, with different symbol shapes associated with the three jetting strengths
tested Σ1 = 5.8 l s−2, Σ2 = 8.1 l s−2, and Σ3 = 10.6 l s−2. For comparison, calculated
curves for the internal jump case and purely shooting-flow case are plotted as solid
and dashed lines, respectively. For intermediate speeds of advance, both types of
solution are admissible and the two sets of curves overlap.

For jetting strengths Σ1 and Σ3, the obtained relationship between trench depth
and speed of advance features a break of trend at the transition between regimes
with and without jumps. In the absence of internal jump, the trench depth varies
roughly with the inverse of the speed of advance (dashed lines and open symbols).
A deeper trench results when the sand bed is exposed longer to the erosive action
of the jet. Although the trench depth continues to increase for the slower speeds of
advance at which an internal hydraulic jump forms (solid lines and filled symbols),
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Figure 15. Phase diagram showing the parametric domains of the different flow patterns
(cartoons), depending on jetting strength Σ and speed of advance U . Symbols denote
experimental observations, using the same code as figure 14. The curves represent the
theoretical boundaries of the shooting-flow and jump regimes: the solid line is the locus
Gmax = 0 representing the maximum speed of advance at which a jump can form; the dashed
line is the locus Fmin =1 representing the minimum speed of advance of purely shooting flows.
The sector between the two curves is the domain of overlap in which both solutions (with and
without jump) are admissible.

the corresponding depths are lower than would be expected from extrapolating to
the left the inverse relation observed for the shooting flows. This indicates that the
internal jump tends to curtail the trench depth that would otherwise be reached in
its absence. Overall, the observed and computed depths are in reasonable agreement
with each other over the range of jetting strengths and speeds of advance for which
the theory applies.

For completeness, we have also included in figure 14 the trench depth measurements
obtained for very slow speeds of advance (see figure 5b), in which the flow separates
and fountains upwards, and for stationary jets (see figure 5a). The strongly deflected
jet obtained at very slow speeds of advance (algebraic symbols) generates the deepest
trenches. For stationary jets, on the other hand (circled algebraic symbols), the
formation of lateral levees and roll-up of the flow into a recirculating vortex lead to
smaller trench depths, in line with results for flows with internal jump. Qualitatively,
we may thus interpret the stationary case as a type of drowned internal hydraulic
jump. As discussed earlier, the more complicated flow patterns obtained for the very
slow and stationary cases render our theory inapplicable.

6.3. Phase diagram

To summarize the above findings, computations and observations of the domain of
occurrence of various flow regimes are represented in figure 15 as a phase diagram. The
two governing parameters examined are the speed of advance U and jetting strength
Σ , with other parameters kept constant. Going from left to right in the diagram, the
experimentally observed flows are classified into four groups: stationary jetting flows
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(circled algebraic symbols), obtained when the jetting head is held fixed; separated
flows (algebraic symbols), observed at very slow speeds of advance; flows with an
internal hydraulic jump (filled symbols) observed at slow speeds; and shooting flows
(open symbols) observed at high speeds of advance. These correspond, respectively,
to figures 5(a) to 5(d), reproduced in cartoon form on the phase diagram of figure 15.
To facilitate comparison with results from other tests, we have provided in figures 14
and 15 alternative abscissae and ordinates expressed in dimensionless form, taking
the fall speed W and acceleration due to gravity g as normalizing variables.

On the same diagram, lines are used to delineate the domains of admissibility
of solutions with and without jump, as computed on the basis of our shallow-flow
theory. The solid line denotes condition Gmax = 0 which, for a given jetting strength,
represents the fastest speed of advance at which a jump may form. The dashed line
denotes condition Fmin = 1, which likewise represents the slowest speed of advance at
which the flow can remain supercritical throughout the trench. The sector comprised
between these two curves represents the domain of overlap in which both types of
solution are admissible.

Agreement between theory and experiments requires that only open symbols
(shooting flows) be observed to the right of the solid line, and that only solid
symbols (flows with internal jumps) be found to the left of the dashed line, with both
types of symbol allowed inside the sector of overlap (where both flow patterns can
theoretically occur). The observations are found to be consistent with these domain
predictions. Nevertheless, we emphasize again that the experiments conducted at zero
and very slow speeds of advance (circled and uncircled algebraic symbols) lie outside
the scope of the theory. For these conditions, the jet-induced flow either rolls up into
a spanwise vortex or separates from the bed, and the theory breaks down.

7. Conclusions
In the present work, theory and experiments were used to examine underwater

sand beds exposed to the geomorphic action of travelling plane jets. This jetting
action leads to the formation of a translating scour hole of permanent shape, in
which the turbulent current negotiates a dynamic equilibrium with the curved bed
profile. The turbulent underflow erodes and deposits sediment from the static bed,
while simultaneously entraining quiescent water from the outer ambient. Because of
sediment suspension, the bottom current acquires a higher density than the ambient,
allowing gravity to affect both the turbulence generation and the longitudinal balance
of the flow. In particular, gravitational influence on the sediment-laden current can be
strong enough to force a transition between supercritical and subcritical flow, leading
to the formation of an internal hydraulic jump.

As a result, the jet-induced bottom currents can equilibrate into two types of steady
profiles inside the travelling trench: shooting flows, which remain thin throughout,
or flows featuring a sudden expansion at the internal hydraulic jump. For constant
jetting strength, the transition from shooting-flow to internal-jump regimes takes place
when the speed of advance of the travelling jet goes from fast to slow. Slower speeds
of advance lead to longer exposure of the bed to the erosional action of the plane jet,
leading to a deeper scour hole. Eventually, the sediment-laden current cannot flow
out of the deep hole it has dug itself into without first undergoing an internal jump.
By slowing down the current, the jump curtails its erosive action and acts as a limiter
on the trench depth. Internal-jump formation also leads to trenches of shorter length.
On the downstream side of the jump, the sediment-laden current ponds into a turbid
pool where sand grains settle back to the bed.
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To elucidate these processes, shallow-flow theory was found to provide a valuable
tool. Viewing the jet-induced flow as a sublayered current delimited by sharp interfaces
across which transfers of mass and momentum occur provides a simple, but versatile
framework in which erosion and entrainment effects can be modelled together. By
complementing mass and momentum balance with an energy budget, furthermore,
the dynamics of stratified turbulence can be taken into account. The treatment can
be extended further to steep, but gradually curved profiles, by using curvilinear
coordinates. Provided shallow-flow theory is extended in this fashion, the key notions
of classical hydraulics become applicable to the jet trenching problem. This includes
a precise identification of supercritical and subcritical regimes, along with their
transitions through hydraulic jumps and control sections. Most importantly, the
resulting predictions turn out to be in reasonably good agreement with laboratory
experiments. Shooting flows and internal jump flow patterns are observed, and their
profiles and range of occurrence accord with the shallow-flow computations.

Nevertheless, the present results are subject to a number of restrictive limitations.
First, experimental test of the theory was limited to a narrow range of conditions,
featuring a single jetting geometry and only one sand size. We expect the range of
observable behaviour to expand significantly if more varied conditions are examined,
stretching the ability of the theory to keep up. Secondly, even for the limited range of
conditions examined in the present experiments, some significant flow features clearly
fall outside the scope of the proposed theory. For plane jets travelling very slowly
along the bed, gravity-induced breaching occurs ahead of jet impingement, whereas
further into the trench the jet-induced current undergoes a strong deflection away
from the bed. The recirculating roller obtained for stationary jets likewise renders
our theory inapplicable. Paradoxically, jets translating at sufficient speed thus appear
more amenable to theoretical treatment than the more basic case of stationary jets.

Finally, the configuration examined in the present paper is far simpler that
the conditions of interest in actual trenching and dredging operations. Challenges
encountered in practice include three-dimensional water and sediment motions, more
complex soil responses affected by cohesion, sorting and liquefaction, and seafloors
featuring varied bathymetry such as slopes, sand waves and pre-existing cables and
pipelines. For some of these challenges, further scientific study may yield useful results
in support of technical ingenuity.
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