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Drag reduction at the external surface of a cylinder in turbulent flows along the axial
direction by circumferential wall motion is studied by direct numerical simulations.
The circumferential wall oscillation can lead to drag reduction due to the formation
of a Stokes layer, but it may also result in centrifugal instability, which can
enhance turbulence and increase drag. In the present work, the Reynolds number
based on the reference friction velocity and the nominal thickness of the boundary
layer is 272. A map describing the relationship between the drag-reduction rate
and the control parameters, namely, the angular frequency ω+ = ων/u2

τ0 and the
streamwise wavenumber k+x = kxν/uτ0, is obtained at the oscillation amplitude of
A+ = A/uτ0 = 16, where uτ0 is the friction velocity of the uncontrolled flow and ν
is the kinematic viscosity of the fluid. The maximum drag-reduction rate and the
maximum drag-increase rate are both approximately 48 %, which are respectively
attained at (ω+, k+x )= (0.0126, 0.0148) and (0.0246, 0.0018). The drag-reduction rate
can be scaled well with the help of the effective thickness of the Stokes layer. The
drag increase is observed in a narrow triangular region in the frequency–wavenumber
plane. The vortices induced by the centrifugal instability become the primary coherent
structure in the near-wall region, and they are closely correlated with the high skin
friction. In these drag-increase cases, the effective control frequency or wavenumber
is crucial in scaling the drag-increase rate. As the wall curvature normalised by the
boundary layer thickness becomes larger, the drag-increase region in the (ω+, k+x )
plane as well as the maximum drag-increase rate also become larger. Net energy
saving with a considerable drag-reduction rate is possible when reducing the
oscillation amplitude. At A+ = 4, a net energy saving of 18 % can be achieved
with a drag-reduction rate of 25 % if only the power dissipation due to viscous stress
is taken into account in an ideal actuation system.

Key words: drag reduction, turbulent boundary layers, turbulence control

1. Introduction
The control strategy to reduce skin friction in fully developed turbulent flows has

been a persistent research topic for many years because of the increasing demands

† Email address for correspondence: xucx@tsinghua.edu.cn
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for energy saving and pollutant-emission reduction. Among the drag-reduction control
schemes (Gad-El Hak 2000), active open-loop control methods such as moving
the surface or imposing an extra body force have attracted significant attention.
This strategy can achieve relatively higher drag-reduction (DR) rates compared with
passive controls, and it is easier to accomplish in practical application compared with
closed-loop controls. The spanwise (circumferential) movement of the wall is one
of the controls that has been extensively studied in turbulent boundary layers (Choi,
Debisschop & Clayton 1998; Skote 2012, 2013; Skote, Mishra & Wu 2015), channel
flows (Jung, Mangiavacchi & Akhavan 1992; Baron & Quadrio 1996; Quadrio, Ricco
& Viotti 2009; Viotti, Quadrio & Luchini 2009; Quadrio 2011; Touber & Leschziner
2012; Hurst, Yang & Chung 2014) and pipe flows (Choi & Graham 1998; Quadrio
& Sibilla 2000; Choi, Xu & Sung 2002; Auteri et al. 2010).

Reducing friction drag by spanwise wall oscillation (time oscillation) was first
proposed by Jung et al. (1992) in numerically simulated turbulent channel flows. The
wall moves in the spanwise direction as

wwall(t)= A sinωt, (1.1)

where wwall is the spanwise velocity of the wall, A denotes the oscillation amplitude
and ωis the oscillation angular frequency. The oscillation period T is determined by
T = 2π/ω. Jung et al. (1992) showed that the time oscillation of the wall is very
effective in reducing friction drag; a DR rate of as much as 40 % can be attained
when the wall oscillates at the optimal period, T+opt0≈ 100 (hereinafter, the superscript
‘+’ denotes the scaling by the friction velocity uτ0 of the uncontrolled reference flow
and the kinematic viscosity ν of the fluid unless otherwise specified).

Similar to the time oscillation of the wall, Viotti et al. (2009) transformed the
control law (1.1) into a streamwise wavy distribution of spanwise velocity (streamwise
oscillation) described by

wwall(x)= A sin kxx, (1.2)

where x denotes the streamwise coordinate and kx is the wavenumber. The
corresponding wavelength is obtained by λx= 2π/kx. This control can reach a DR rate
of up to 52 % at the amplitude A+ = 20 and the wavelength λ+x = 1250. At different
amplitudes, the optimal wavelength in (1.2) was found to be in good accordance with
the optimal oscillating period in (1.1) after being converted by using the near-wall
convective velocity under the Taylor hypothesis. Similar results were found by Skote
(2011) who applied the wall forcing according to (1.2) in the boundary layer flow.

Quadrio et al. (2009), combining (1.1) and (1.2), proposed a more general control
scheme, i.e. the streamwise-travelling wave of spanwise velocity (streamwise-travelling
wave):

wwall(x, t)= A sin(kxx−ωt). (1.3)

By performing direct numerical simulations (DNSs) in turbulent channel flows,
the relationship between the DR rate and the control parameters ω and kx was first
obtained under the condition of fixed amplitude A+ = 12 and the Reynold number
Reτ = 200 based on uτ0 and the half-channel width. The authors showed that in the
non-zero wavenumber and oscillation frequency region, the behaviour of the DR rate
is quite complex. The optimal control parameters off the axes led to a DR rate of
48 % at ω+ = 0.030 and k+x = 0.008, which is higher than the DR rates of the time
oscillation control (34 % at ω+ = 0.060) and the streamwise oscillation control (45 %
at k+x = 0.005). They also indicated that the drag increase (DI) appears in a narrow
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triangular region in the frequency–wavenumber plane, where the maximum DI rate
is up to 23 %. In this region, the wave speed of the spanwise velocity at the wall is
almost identical to the convection speed of the near-wall coherent structures, namely,
U+c ≈ 10. This value is the same as that used by Viotti et al. (2009) to convert the
streamwise oscillation into the time oscillation.

Changes in turbulence statistics under spanwise wall oscillation have been reported.
Baron & Quadrio (1996) analysed the turbulence statistics at the optimal control
parameters similar to Jung et al. (1992). They found that in the DR cases, the
streamwise mean velocity is reduced in the viscous sublayer. When scaled by the
actual friction velocity, the mean velocity profiles for the controlled flow collapse well
with that of the uncontrolled flow in the viscous sublayer but are up-shifted in the log
region. Baron & Quadrio (1996) indicated that in the DR cases, the spanwise wall
oscillation can greatly suppress the turbulence intensity and cause outward movement
of their peak position. Similar changes in the mean velocity profile and turbulence
intensity were also observed in subsequent studies (Quadrio & Sibilla 2000; Quadrio
et al. 2009; Viotti et al. 2009; Touber & Leschziner 2012; Skote 2014).

The turbulent coherent structures, particularly the quasi-streamwise vortices and
the velocity streaks, are also prominently affected by spanwise wall motion. In
the time oscillation cases, the near-wall low-speed streaks change their orientations
periodically in accordance with the wall motion. The inclined angle of the streaks is
consistent with that of the mean shear stress vector at y+∼ 10 (Touber & Leschziner
2012). In the streamwise-travelling wave cases, the streaks are modulated by the
waves in the DI cases, which show a difference from the uncontrolled flows (Quadrio
et al. 2009). Choi et al. (2002) discussed the relationship between the streaks and the
quasi-streamwise vortices for time oscillation DR cases in pipe flows. In the near-wall
region, the high-speed fluid intrudes beneath the low-speed fluid in the period of
the wall co-rotating with the streamwise vortices. However, in the counter-rotating
period, the quasi-streamwise vortices are surrounded by the high-speed fluid and the
low-speed fluid is lessened. This change in the relationship between the streamwise
vortices and the low-speed streaks leads to the suppression of the negative velocity
fluctuations and has a significant effect on the generation of the Reynold shear stress.
However, away from the wall, the streaks and the quasi-streamwise vortices are
hardly affected by the wall oscillation. This indicates that the influence range of the
spanwise moving wall is essential in reducing the wall friction drag.

The influence range of the spanwise wall motion can be quantified by the
thickness of the Stokes layer (Quadrio 2011), which is crucial for DR behaviour.
Choi et al. (2002) investigated the drag reduction in the channel and pipe flows by
time oscillation control and first proposed two key factors that could determine the
DR rate, namely, the thickness and the acceleration of the Stokes layer. Based on
this finding, the linear relationship between the DR rate and the derived parameter
S+ became clear. S+ is a function of the thickness and the acceleration of the Stokes
layer, both of which are related to the oscillation period. The linear relationship
holds well for T+ < 150 in channel flows (Quadrio & Ricco 2004; Ricco & Quadrio
2008). For streamwise-travelling wave cases, Quadrio & Ricco (2011) introduced the
corresponding oscillation period:

T+s = |λ
+

x /(c
+
−U+c )| (1.4)

to examine the DR scaling, where c+ = ω+/k+x is the wave speed of the control and
U+c is the convective velocity of the near-wall coherent structures. They pointed out
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that as long as T+s < T+th (T+th ≈ 120 in channel flows), the phase-averaged profiles of
the spanwise velocity will collapse well with the exact solution of the laminar Stokes
layers and the DR rate can be scaled well with the thickness of the laminar Stokes
layer.

In the present study, the drag reduction at the external surface of a cylinder in
turbulent flows along the axial direction of the cylinder (referred to as turbulent
flows along a cylinder for abbreviation in the following) was investigated by direct
numerical simulations. This work was motivated by the following two considerations:
(i) many practical flying vehicles are in the shape of a cylinder, such as fuselages
of aircrafts, submarines and missiles; (ii) the circumferential wall movement can
trigger the instability of the flow outside the cylinder, which has crucial influence
on the drag-reduction behaviour and has not been considered in the previous works
concerning the flows above flat (such as channel) or concave (such as pipe) surfaces.
When the cylinder rotates in the circumferential direction, the flow pattern in the
near-wall region is very similar to that of the best-known Taylor–Couette flow
between two coaxial cylinders, which will lose its stability if the rotation speed of
the inner cylinder is beyond a certain threshold (Taylor 1923). In the case of pure
circumferential rotation, the turbulent transport in the radial direction is enhanced
due to the instability, and the circumferential vortices, regularly spreading along
the axial direction, become the primary coherent structures in the near-wall region
(Ostilla-Mónico et al. 2013, 2014) (hereinafter, these vortices induced by centrifugal
instability are referred to as ‘rotation-induced vortices’). Therefore, in the turbulent
flow along a cylinder with circumferential wall movement, the Stokes layers that
can reduce wall friction and the rotation-induced vortices that may enhance turbulent
intensity both take effect, and their impact on DR behaviour should be investigated,
which is the main concern of the present work.

The paper is structured as follows. In § 2, the physical problem and the numerical
method are outlined briefly. Section 3 presents the results and discussion: the variation
of DR rate with control frequency and wavenumber is displayed in § 3.1, the rotation-
induced vortices and drag increase are analysed in § 3.2, the effect of wall curvature
on DR rate is further discussed in § 3.3 and the net energy saving of the control is
evaluated in § 3.4. Finally in § 4, the conclusions are given.

2. Problem formulation and numerical method

The geometry of the present computation domain is shown in figure 1 in which
R1 is the radius of the cylinder, and R2 is the radius of the outer boundary of
the computational domain. The cylindrical coordinates are adopted, in which r, θ
and x denote the radial, circumferential and axial directions, respectively, and the
corresponding velocity components are ur, uθ and ux. The mean flow is along the
axial direction. The oscillating circumferential velocity is imposed on the wall.

The flow is governed by the incompressible Navier–Stokes equations as follows:

∇ · u= 0, (2.1)
∂u
∂t
= u×ω−∇Π + ν∇2u, (2.2)

where u is the velocity vector, ω is the vorticity vector and Π is the total pressure. In
the streamwise and circumferential directions, periodic conditions are applied. The no-
slip and impermeable conditions are imposed on the cylinder wall, i.e. at r= R1, the
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x
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Mean streamwise flow

Circumferential forcing
uœwall = Asin(kxx - øt)

FIGURE 1. Sketch of the computational setting.

streamwise and radial velocity are zero and the circumferential velocity is described
by the control law

uθwall(x, t)= A sin(kxx−ωt), (2.3)

where A is the oscillation amplitude, kx and ω are the wavenumber and frequency
of the forcing velocity, respectively. On the outer boundary of the computational
domain, the free-slip and no penetration conditions are applied, i.e. at r = R2,
∂ux/∂r = 0, ∂uθ/∂r = 0 and ur = 0. It is noteworthy that the flow considered in
the present study is not a flow in an annulus. We tried to use the present setting
as a surrogate of the boundary layer flow along the external surface of a cylinder.
Although the flow is driven by a pressure gradient rather than a free stream as
in a true boundary layer, it can still represent the flow physics in the near-wall
region of the boundary layer flow, because the Reynolds stress and viscous stress
are dominant terms in the mean momentum equation, and the pressure gradient or
the convection terms are negligible in the near-wall region (Klewicki 2010). Using
this geometry, the flow is homogenous and a periodic condition is allowed in the
streamwise direction, and hence the computational cost is greatly reduced compared
with that needed by the spatially developing boundary layer. Therefore, it is possible
for us to run several hundred DNSs in order to give the map of drag-reduction rate.
In literature, pressure-driven wall-bounded flows have also been used in the study
on the mechanism of drag-reduction control in turbulent boundary layers (Kim 2003,
2011).

For spatial discretisation of the governing equations, Fourier expansions are used in
the streamwise and circumferential directions, and a second-order central difference
scheme on a non-uniform staggered grids is used in the radial direction. A third-
order time-splitting method (Karniadakis, Israeli & Orszag 1991) is adopted for time
advancement as follows:

γ0un+1
−

2∑
i=0

αiun−i

1t
=N(un+1)−∇Π n+1

+ ν


∇

2ux

∇
2ur −

ur

r2

∇
2uθ −

uθ
r2


n+1

, (2.4)
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FIGURE 2. The mean streamwise velocity profiles normalised by Um.

where

N(un+1)=

2∑
i=0

βi

(u×ω)+ ν
2
r2


0

−
∂uθ
∂θ
∂ur

∂θ




n−i

. (2.5)

The coefficients take the values of γ0 = 11/6, α0 = 3, α1 =−3/2, α2 = 1/3, β0 = 3,
β1 =−3 and β2 = 1.

To validate the numerical method and the code, DNS was performed for turbulent
flow in an annulus (boundary conditions at r = R1 and r = R2 were changed to
be ur = uθ = ux = 0) and compared with those of Chung, Rhee & Sung (2002), in
which the second-order central difference scheme was used in all three directions.
The radius ratio of the inner and outer cylinders is R1/R2 = 0.5. The flow is driven
by a constant pressure gradient along the axial direction at the Reynolds number
Rem = UmH/ν = 4450, in which Um is the bulk mean velocity and H = R2 − R1
is the annulus width. The computation is conducted in only one quarter of the full
cross-section, and the length in the streamwise direction is Lx= 9H. Uniform grids are
used in the streamwise and circumferential directions, and non-uniform grids obeying
the cosine distribution are adopted in the radial direction. The above computational
settings are the same as those of Chung et al. (2002). The present numbers of grid
points are 128 × 71 × 192 in the circumferential, radial and streamwise directions,
respectively, whereas the numbers of grid points are 128× 65× 192 in Chung et al.
(2002).

Figure 2 shows the mean velocity profile in comparison with that of Chung
et al. (2002). The radial coordinate is transformed and non-dimensionalised as
y= (r − R1)/H. The present result collapses well with that of Chung et al. (2002).
The root-mean-square (r.m.s.) of velocity fluctuations and the Reynolds shear stress
are shown in figure 3; they also agree well with the results of Chung et al. (2002).

In the present simulations of the turbulent flows along a cylinder, the outer edge
is assumed to be at R2 = 4R1 for most cases, and R2 = 2R1 is also considered in
§ 3.3 to see the curvature effect on the drag-reduction rate. The flow rate between
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FIGURE 3. Root-mean-square velocity fluctuations (a) and Reynolds shear stress (b)
normalised by Um.

R1 and R2 is kept constant in all the simulations by adjusting the driving pressure
gradient. The bulk mean velocity Um and radial width H = R2 − R1 are selected to
non-dimensionalise the governing equations. The Reynolds number based on Um and
H is fixed at Rem = 4450 (corresponding to Reτ = uτ0H/ν = 272 for uncontrolled
reference flow). The radial width H is analogous to the nominal thickness of the
boundary layer along the external surface of the cylinder in the present approach.
The momentum thickness of the corresponding uncontrolled reference flow is θ ≈
H/12.0 and H/10.3 for R2 = 4R1 and 2R1, respectively, and the Reynolds number
based on θ and the mean velocity at the upper boundary r = R2 is Reθ = 407 and
476. The amplitude of the wall oscillation velocity in (2.3) is chosen to be A = Um
(corresponding to A+= 16) for most cases. A= 0.5Um (A+= 8) and A= 0.25Um (A+= 4)
are also considered in § 3.4 for the evaluation of net energy saving of the control. The
computation is conducted in the full cross-section spanning the streamwise length of
Lx = 2πH. The grid distribution in the simulation of turbulent flows along a cylinder
is the same as that in the validation case. For most simulations, to obtain the DR
rate in §§ 3.1 and 3.3, 256 × 256 Fourier modes are used in the streamwise and
circumferential directions, and 64 grid points are used in the radial direction. The
grid resolution is 1x+ = 6.68, (r1θ)+min/max = 1.33/5.34 and 1r+min/max = 0.16/6.67.
Approximately 300 DNSs were performed with the control frequency ω+= 0∼ 0.378
and the wavenumber k+x = 0∼ 0.018. To investigate the mechanism of drag increase as
discussed in § 3.2, a finer grids of 512× 191× 384 is adopted for the selected typical
DI cases. The grid resolution is improved to 1x+= 3.34, (r1θ)+min/max= 0.89/3.56 and
1r+min/max = 0.018/2.23.

3. Results and discussion
3.1. Drag-reduction rate

The change of the mean wall shear stress τw under different control parameters is first
investigated. The DR rate is defined as

DR=
τw0 − τwc

τw0
, (3.1)

where the subscripts ‘0’ and ‘c’ denote the uncontrolled and controlled flows,
respectively. Figure 4 shows the DR rate as a function of the control frequency ω+
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FIGURE 4. (Colour online) Variation of DR rate with control frequency and wavenumber.

and wavenumber k+x . For the time oscillation cases on the horizontal axis (k+x = 0),
the maximum DR rate is 45.4 %, achieved at the control frequency ω+opt0 ≈ 0.0504
(corresponding to T+opt0≈ 124.7), which is slightly lower than the optimal frequency in
channel flow ω+opt0 ≈ 0.06 (corresponding to T+opt0 ≈ 106) at Reτ = 200 (Quadrio et al.
2009). On the vertical axis representing streamwise oscillation controls (ω+ = 0), the
optimal wavenumber is k+x,opt0 ≈ 0.0148 (corresponding to λ+x,opt0 ≈ 424.5), which also
results in a DR rate of approximately 45.4 %. The optimal wavelength in the present
work is very different from that in the channel flow λ+x,opt0 ≈ 1250 (Quadrio et al.
2009). The shorter optimal wavelength in the present cylinder flow is attributed to
the centrifugal instability caused by the transverse convex curvature of the moving
wall because the longer wavelength provides a larger space for the development
of the rotation-induced vortices. This will be discussed in detail in § 3.2. At the
control parameters of (ω+, k+x ) = (0.0126, 0.0147), very close to the vertical axis,
the maximum DR rate DRmax = 48.4 % is obtained, a value that is similar to that
achieved in the channel flow (Quadrio et al. 2009).

It is worth comparing the DI region with that of the channel flow by Quadrio et al.
(2009) and pipe flow by Auteri et al. (2010). In the present turbulent flows along a
cylinder, the turning point from DR to DI is around ω+≈ 0.0397 and k+x ≈ 0.0051 at
the lateral and vertical axes in figure 4, whereas in channel flows, the turnings are very
close to the origin (Quadrio et al. 2009). The present maximum DI rate (DR=−48 %)
at (ω+, k+x ) = (0.0246, 0.0018) is approximately twice that of channel flows (DR =
−23 %). Furthermore, comparisons can be made among Auteri et al.’s (2010) pipe,
Quadrio et al.’s (2009) channel and the present cylinder flows for the controls with the
fixed wavenumber k+x ≈ 0.0041 and different frequencies (shown by the black dashed
line in figure 4). The maximum DI rate in the present cylinder flow is approximately
40 %, whereas, it is only approximately 10 % in channel flow (Quadrio et al. 2009)
and no drag increase happens in pipe flow (Auteri et al. 2010). This also suggests
that the mechanism related to the centrifugal instability, which does not appear in the
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plane channels, must be considered in the present turbulent flows along a cylinder for
evaluation of the control performance.

In figure 4, the black solid line going through the points of the maximum DI rate
demarcates the DR map into two parts: the S region on the top left, which is close
to the streamwise oscillation control, and the T region on the bottom right, which
is close to the time oscillation control. The slope of the demarcation line represents
the wave speed at which the maximum DI rate is achieved. This wave speed in the
present cylinder flow is approximately U+c ≈ 10, a value that is almost the same
as that in channel flow. Quadrio et al. (2009) found that in channel flow this wave
speed is very close to the convective velocity of the near-wall coherent structures. To
validate whether this still holds in the present cylinder flows, the convective velocity
of near-wall coherent structures was directly computed by the linear regression of
(∂ux/∂t+, ∂ux/∂x+) obtained from the DNS data for both controlled and uncontrolled
flows. It is found that in the near-wall region of y+ < 10, U+c is very close to 10 for
all the considered cases. Although a new mechanism has been introduced into the
turbulent flows along a cylinder, it is still very useful to use U+c to scale the DR rate,
just as in the plane channels of Quadrio & Ricco (2011).

The oscillation of the surface can lead to the formation of a Stokes layer, and the
thickness of the Stokes layer is a key parameter to determine the drag-reduction rate
(Choi et al. 2002; Quadrio & Ricco 2011). In the case of a cylinder oscillating in
the circumferential direction, the expression for the Stokes layer thickness δs can be
derived from the magnitude analysis of the equation governing the circumferential
motion in the generalised Stokes layer as done by Quadrio & Ricco (2011), but with
an additional assumption of δs�R1 because of the cylindrical geometry in the present
approach,

ω+(δ+s )
2
+ (1−DR)k+x (δ

+

s )
3
≈ 1. (3.2)

For time oscillation and streamwise oscillation controls, considered as the special
cases of travelling wave control, the thickness of the Stokes layer can be estimated
as δ+s ∼ (ω

+)−1/2 and δ+s ∼ (k
+

x )
−1/3, respectively.

Quadrio & Ricco (2011) pointed out that as long as the equivalent oscillation period
T+s defined in (1.4) satisfies T+s < T+th , the DR rate can be scaled well by δ+s . The
threshold T+th is determined by the optimal period T+opt0 in time oscillation control
or the transformed optimal period T+t = λ

+

x,opt0/U+c in streamwise oscillation control,
here the optimal period refers to the period with maximum drag-reduction rate. In
a plane channel, these two optimal periods are almost same, i.e. T+opt0 ≈ T+t ≈ 120
(Quadrio et al. 2009). In the present turbulent flows along a cylinder, the optimal
period for time oscillation control is T+opt0≈ 124.7, but the transformed optimal period
for streamwise oscillation control is T+t ≈ 42.4, that is, the thresholds for the T region
(T+th,T ≈ 120) and the S region (T+th,S ≈ 40) are very different. Figure 5 shows the
relationship between the DR rate and the thickness of the Stokes layer δ+s determined
from (3.2) for the cases in T region. The cases satisfying T+s < T+th collapse well and
other cases are widely scattered. This is similar to those in channel flows (Quadrio &
Ricco 2011). The quadratic regression (red line) shows that the minimal thickness for
drag reduction is δ+min ≈ 0.8 and the optimal thickness is δ+opt ≈ 4.5.

For the cases not satisfying T+s < T+th in the T region and also in the S region, the
scaling of the DR rate has not been considered in previous studies. In the present
work, we propose to use the effective frequency and wavenumber to scale the DR
rate. The effective parameters come from the transform of the streamwise-travelling
wave (2.3) into time oscillation or streamwise oscillation by using Taylor’s hypothesis
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FIGURE 5. (Colour online) Relationship between DR rate and Stokes layer thickness.

x = Uct or t = x/Uc. Therefore the effective frequency ω+e and the effective
wavenumber k+xe is introduced as

ω+e =ω
+
− k+xeU

+

c (3.3)

and
k+xe = k+x −ω

+/U+c . (3.4)

The streamwise-travelling wave control is transformed to the equivalent time
oscillation control in the T region and streamwise oscillation control in the S region by
respectively employing the effective frequency and wavenumber. According to (3.2),
the effective thickness of the Stokes layer can be defined as

δ+e = (ω
+

e )
−1/2 (3.5)

and
δ+e = (k

+

xe)
−1/3 (3.6)

for the cases in the T region and S region, respectively.
Figure 6 shows the variation of DR rate as a function of the effective thickness

of the Stokes layer δ+e . Compared with the scaling by δ+s as shown in figure 5 and
in Quadrio & Ricco (2011) for channel flow, the present scaling by δ+e collapses
well all the DR and DI cases in the T and S regions. The time oscillation cases are
also indicated by the red line in figure 6, which agrees well with the distribution of
other control cases. The DR rate increases as the effective thickness of the Stokes
layer increases and reaches an maximum value at around δ+e,opt ≈ 4. As the effective
Stokes layer further thickens, the DR rate suddenly decreases, and the wall friction
can increase dramatically, which means that the centrifugal instability begins to play
a significant role.
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FIGURE 6. (Colour online) Variation of DR rate with the effective thickness of
Stokes layer.

3.2. Rotation-induced vortices and drag increase
In this section, four DI cases indicated as DI1-DI4 in figure 4 are chosen to analyse
the effect of rotation-induced vortices, i.e. (k+x , ω

+) = (0.0, 0.0378), (0.0037, 0.0),
(0.0037, 0.0687) and (0.0110, 0.0756), and the corresponding drag-reduction rates are
−5.9 %, −22.4 %, −16.4 % and −24.5 % respectively.

The rotation-induced vortices are the primary coherent structures in the near-wall
region in the DI cases. Figure 7 shows the time history of the circumferential wall
velocity, the surface-averaged wall shear stress and the near-wall instantaneous vortices
for DI1, the time oscillation control at ω+= 0.0378 (TUm/H= 10). In figure 7(c), the
mean flow is from left to right, and the counter-clockwise wall rotation is taken as
the positive direction seen along the mean flow. The streamwise length is Lx/H= 2π.
The vortices are identified by the isosurfaces of the second invariant of the velocity
gradient tensor (Hunt, Wray & Moin 1988). Eight phases (φ) were chosen from 0 to
7π/4 with a step of π/4 in one oscillation period (t̄ = tUm/H from 0 to 8.75 at a
step of 1.25). At φ= 0 (t̄= 0), the circumferential velocity of the wall is zero but the
displacement of the wall reaches its maximum. The rotation-induced vortices occupy
the near-wall region and spread quasi-periodically along the streamwise direction
due to the clockwise rotation before this phase, which severely enhances the radial
momentum transportation in the near-wall region. Therefore, the surface-averaged
wall shear stress reaches its maximum at φ= 0 (t̄ = 0). At φ = π/4 (t̄ = 1.25), the
wall is rotating in a counter-clockwise direction. The vortices induced by clockwise
wall rotation are being destroyed and the intensity is weakened gradually. When
the wall reaches its maximum rotation speed at φ = π/2 (t̄ = 2.5), the vortices
previously formed are destroyed completely, and the counter-clockwise wall rotation
does not induce the formation of new vortices yet. Therefore, the vortical structure
appears out of order, and the wall friction is relatively low. The counter-clockwise
wall rotation-induced vortices are strengthened at φ= 3π/4 (t̄ = 3.75) until reaching
maximum intensity and maximum surface-averaged wall shear stress at φ =π (t̄= 5).
After φ = π, the counter-clockwise wall rotation-induced vortices are weakened,
and the clockwise wall rotation-induced vortices are strengthened gradually until
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FIGURE 7. (Colour online) The time history of circumferential wall velocity (a), the
surface-averaged wall shear stress (b) and the near-wall instantaneous vortices (c) for DI1,
the time oscillation control at ω+ = 0.0378.

φ = 2π (t̄= 10). The surface-averaged wall shear stress then reaches maximum again.
This process is repeated periodically, corresponding to the oscillation of the wall.

Figure 8 shows the streamwise distribution of circumferential wall velocity, the
phase-averaged wall shear stress and the near-wall instantaneous vortices for DI2,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

94
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.948


Drag reduction in turbulent flows along a cylinder 87

1.0

u œ
 w

al
l/U

m 0.5

† w
c/

† w
0

0

-0.5

-1.0

1.6

1.4

1.2

1.0

0 2 4 6

x/H

(a)

(b)

(c)

FIGURE 8. (Colour online) The streamwise distribution of circumferential wall velocity
(a), the phase-averaged wall shear stress (b) and the near-wall instantaneous vortices (c)
for DI2, the streamwise oscillation control at k+x = 0.0037.

the streamwise oscillation control at k+x = 0.0037 (kxH = 1). It can be clearly seen
that the rotation-induced vortices and the wall shear stress are modulated along the
streamwise direction by the wave of circumferential wall velocity. The wall shear
stress is high in the region that is occupied by the rotation-induced vortices but is
relatively low elsewhere. The rotation-induced vortices are observed in the downstream
region of the maximum rotation speed of the wall, which can be explained by
the difference between the wave speed c+ and the convective velocity U+c . In the
streamwise oscillation case, c+ is zero, whereas U+c ≈ 10. Consequently, when the
observer follows the wave, the phase of the circumferential wall velocity will lag
behind that of the rotation-induced vortices.

Figures 9 and 10 show the streamwise distribution of circumferential wall velocity,
the phase-averaged wall shear stress and the near-wall instantaneous vortices for
DI3 and DI4, the two streamwise-travelling wave control cases at k+x = 0.0037,
ω+ = 0.0687 (kxH = 1, ωH/Um = 1.14) and k+x = 0.0110, ω+ = 0.0756 (kxH = 3,
ωH/Um = 1.26) respectively. The streamwise distribution of the rotation-induced
vortices and the wall shear stress are also modulated along the streamwise direction
by the wave of circumferential wall velocity, and the wall shear stress is also high
in the region that is occupied by the rotation-induced vortices but is relatively low
elsewhere, which are both very similar to the streamwise oscillation control case as
shown in figure 8(b,c). In figure 9, the rotation-induced vortices are observed in the
upstream region of the maximum rotation speed of the wall because the wave speed
c+ = 18.6 is greater than U+c ≈ 10. However, in figure 10, the wave speed c+ = 7 is
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FIGURE 9. (Colour online) Streamwise distribution of circumferential wall velocity (a),
phase-averaged wall shear stress (b) and near-wall instantaneous vortices (c) for DI3, the
travelling wave control at k+x = 0.0037 and ω+ = 0.0687.

close to U+c ≈ 10; therefore, the phases of the rotation-induced vortices and the wave
of the wall oscillation are almost same.

Figure 11 shows the circumferential vorticity fluctuations 〈ω′θω
′

θ 〉
+ in the near-wall

region as a function of y+ for the four DI cases. The off-wall peak is related to the
rotation-induced vortices: the peak value indicates the intensity of the vortices and
the peak position can be considered as the averaged location of the vortex cores. The
distance between the off-wall maximum and minimum positions corresponds to the
average size of the vortices (Kim, Moin & Moser 1987). It is shown that due to the
wall rotation, the circumferential vorticity fluctuations are enhanced in all the DI cases
in comparison with the reference uncontrolled flow, especially in the near-wall region
of y+ < 30. The off-wall peak value increases with increasing the DI rate, indicating
a positive correlation between the intensity of the rotation-induced vortices and the
friction drag. The off-wall peak position is at approximately y+c ≈ 7 and the radius of
the vortices is approximately r+ ≈ 4, indicating that the rotation-induced vortices are
much smaller and located closer to the wall than the streamwise vortices (y+c ≈ 20 and
r+ ≈ 15, Kim et al. (1987)).

Figure 12 shows the streamwise energy spectra of the radial velocity fluctuations
for the four DI cases. For the uncontrolled flow, the energy decays monotonically
as the wavenumber increases. However, in all the DI cases, new peaks appear in
the spectrum at high wavenumbers, approximately kxH ≈ 26 (k+x ≈ 0.0956). The peak
value is greater at larger DI rates. According to the wavenumber of the new peak,
the averaged streamwise spacing of the rotation-induced vortices can be estimated as
1xR/H = 0.24 or 1x+R = 65.7.
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FIGURE 10. (Colour online) Streamwise distribution of circumferential wall velocity (a),
phase-averaged wall shear stress (b) and near-wall instantaneous vortices (c) for DI4, the
travelling wave control at k+x = 0.0110 and ω+ = 0.0756.
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Although the vortices in the four DI cases shown in figures 7–10 are quite
different in size, wall-normal position and streamwise distribution from the near-wall
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FIGURE 12. (Colour online) The streamwise energy spectra of radial velocity fluctuation
at y+ ≈ 7.

streamwise vortices in canonical wall-bounded turbulent flows, it deserves further
investigation to elucidate that they originate from the centrifugal instability and not
the reorientation due to the circumferential wall motion. We first resorted to the linear
stability analysis of the Stokes layer induced by the pure rotation of the cylinder in
the literature. Kuwabara & Takaki (1975) gave the neutral stability curve in the
Reynolds number–wavenumber plane for various ratios of the cylinder radius to the
Stokes layer thickness. This can be used to verify the rotation-induced instability in
the present flows. To see the influence of the axial flows, which are coupled with
the Stokes layer in the present controlled flows, two simulations with the absence of
the axial flow are performed for a pure time oscillation case with TUm/H = 10 (the
same as DI1) and a pure streamwise oscillation case with kxH= 1 (the same as DI2).
They are compared with DI1 and DI2, respectively.

Figure 13 compares the pure time oscillation case with DI1. The influence ranges
of the wall oscillation are the same, not affected by the axial flow, as shown in
figure 13(a). Figure 13(b,c) shows the near-wall instantaneous vortices, which follow
the wall motion in both cases. The vortices are intensified at φ= 0 but suppressed
at φ = π/2. In figure 13(d), the maximum positions of the circumferential vorticity
fluctuations 〈ω′θω

′

θ 〉
+ for both cases are located at approximately y+ = 7∼ 10 and the

distances between the local maximum and minimum are approximately r+ = 4 ∼ 6,
indicating that the axial flow has negligible influence on the size and location of
the vortices. Figure 13(e) shows the streamwise energy spectra of the radial velocity
fluctuations. When the circumferential oscillation is coupled with axial flow, the
peak appears at kxH ≈ 26, whereas, in pure wall oscillation flow, it appears at
kxH ≈ 37. Considering the inclined angle between the rotation-induced vortices and
the streamwise direction is approximately 45

◦

in the case with axial flow, as shown
in figure 13( f ), the wavenumber perpendicular to the elongation direction of the
vortices is also approximately kxH ≈ 37, which corresponds very well to that in pure
wall oscillation flow. In these two cases, the Reynolds number and wavenumber are
1500 and 12.3, respectively, as used in Kuwabara & Takaki (1975), and the ratio
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FIGURE 13. (Colour online) Comparison of the two time oscillation cases with and
without axial flow: (a) profiles of uθ at different phases; near-wall instantaneous vortices
for the cases (b) without and (c) with axial flow; (d) distribution of 〈ω′θω

′

θ 〉
+; (e)

streamwise energy spectra of the radial velocity fluctuations; ( f ) near-wall instantaneous
vortices viewed from the cylinder wall to the plane at y+= 10 in the case with axial flow,
where the black line shows the orientation of the vortices.

between the cylinder radius to the Stokes layer thickness is α = 17.3. With these
parameters, the cases fall into the unstable area, as can be seen from figures 2 and 3
of Kuwabara & Takaki (1975).

Figure 14 compares the pure streamwise oscillation case with DI2. The profiles
of uθ shown in figure 14(a) indicate that the influence ranges of the wall oscillation
are very different in these two cases. When there is no axial flow, the wall motion
can affect the region very far from the wall. Figure 14(b,c) shows the near-wall
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FIGURE 14. (Colour online) Comparison of the two streamwise oscillation cases with and
without axial flow. Figure captions are the same as in figure 13.

instantaneous vortices, which are intensified near the region with large wall velocity
and are suppressed in other regions. The distribution of 〈ω′θω

′

θ 〉
+ shown in figure 14(d)

indicates the core location and size of the vortices are similar to those in the
time oscillation case. Figure 14(e) shows the streamwise energy spectra of the
radial velocity fluctuations. The peaks both appears at the wavenumber kxH ≈ 26.
Considering the inclination angle of the vortices to the streamwise direction is
approximately 45

◦

in DI2 as shown in figure 14( f ), the wavenumber perpendicular
to the elongation direction of the vortices is also approximately kxH ≈ 37, which
also falls into the unstable area according to the neutral stability curve obtained by
Kuwabara & Takaki (1975). However, this wavenumber does not agree with that in
pure streamwise oscillation flow. This discrepancy in wavenumber results from the
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FIGURE 15. (Colour online) Relationship between DR rate and the effective time
period 1/ω+e .

fact that the ratios of the cylinder radius to the thickness of the Stokes layer are too
different in these two cases.

For the DI cases near the thick solid line in figure 4 (representing the case with
c+=U+c ), the rotation-induced vortices play a dominant role in the near-wall region to
enhance the wall-normal momentum transport. When the wave speed c+ of the control
is closer to the convective velocity U+c , the effective wavenumber k+xe or frequency ω+e
is smaller, and the effective wavelength λ+xe or time period T+e is larger, which makes
the rotation-induced vortices be fully developed and results in the locally larger DI
rate. Therefore, the effective wavenumber k+xe or frequency ω+e is a key parameter to
scale the DR rate. Figure 5 has shown that the DR rates in the T region and S region
collapse well when scaled by the effective thickness of the Stokes layer. Therefore, the
transformation

ω+e = (k
+

xe)
2/3 (3.7)

can be used to estimate the effective frequency ω+e in the S region. Figure 15 plots
the DR rate as a function of the effective time period 1/ω+e for all cases satisfying
δ+e > 4. There is a sudden fall of the DR rate due to the centrifugal instability. When
the effective Stokes layer penetrates into the main flow deeper, the rotation-induced
vortices enhance the radial component of velocity fluctuations and consequently
increase the wall shear stress. The tendency of the DR rate can be regressed by
a monotonically decreasing exponential function (red line). When the effective time
period 1/ω+e > 100 (corresponding to δ+e > 10), the DR rate tends to a value of −40 %.
The influence of the rotation-induced vortices on the near-wall flow is saturated.

3.3. Effect of transverse wall curvature
The above discussion is based on the simulated flows in the geometry with R2= 4R1.
To quantitatively understand the effect of transverse wall curvature on the control, we
performed some additional direct numerical simulations in the domain with R2 = 2R1.
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FIGURE 16. Variation of DR rates for time oscillation (a) and streamwise oscillation
(b) control.

The wall curvature 1/R1 normalised by the momentum thickness θ is denoted as
ε = θ/R1. The geometry with R2 = 4R1 used in the above discussions corresponds
to ε = 0.25, and the cylinder with R2 = 2R1 used in this section has the non-
dimensionalised curvature of ε= 0.097. The DR rates in these two cases are compared
with each other and with those in plane channel (Quadrio et al. 2009) corresponding
to ε= 0.

Figure 16 shows the DR rates for time oscillation and streamwise oscillation
control in cases of ε = 0.25 and ε = 0.097, respectively. For time oscillation control,
the maximum DR rates are around 45 % in both cases and the corresponding optimal
oscillation periods are both at T+ ≈ 120, which are slightly higher than that in plane
channel flow (T+≈ 100, Quadrio et al. (2009)). But the turning points from DR to DI
are at T+≈ 250 when ε= 0.097, and at T+≈ 150 when ε= 0.25. The maximum DR
rates in the streamwise oscillation controls are also around 45 % with both curvatures,
but are achieved at λ+x ≈ 425 when ε = 0.25 and at λ+x ≈ 842 when ε = 0.097. The
turning point from DR to DI moves from λ+x ≈ 1000 to λ+x ≈ 2500 when the curvature
decreases. As discussed in § 3.2, the centrifugal instability due to the transverse wall
curvature has a strong effect on drag increase. Figure 16 also verifies that as the wall
curvature increases, the DI rate also increases. The turning period and wavelength
reduces at larger curvature because the centrifugal instability is stronger and the
rotation-induced vortices grow faster as compared with those at smaller curvature.

Figure 17 shows the DI regions in the (ω+, k+x ) plane for ε = 0.25, ε = 0.097
and ε = 0 (Quadrio et al. 2009). As the wall curvature decreases (from a to c in
figure 17), the area of DI region also decreases and the point of DR= 0 on the axis
moves closer to the origin of the coordinates. This fact means that in turbulent flows
along a cylinder with circumferential wall movements, the instability-induced vortices
need more time (1/ω+e ) or a larger space (1/k+xe) to develop when the wall curvature
decreases. In addition, at ω+ = 0.038 and k+x = 0.0037, where the phase speed is
c+ = 10.3, nearly the same as the convective velocity in the near-wall region, the DI
rate decreases dramatically when the wall curvature decreases, which is also owing to
the weakening or even the disappearance of centrifugal instability.

3.4. Net energy saving
The above discussion is only from the viewpoint of the drag-reduction rate, and it is
necessary to consider the net energy saving in the evaluation of the control.
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FIGURE 17. DI region in (ω+, k+x ) plane for ε=0.25 (a), ε=0.097 (b) and ε=0 (Quadrio
et al. 2009) (c). The number in the circle indicates the DR or DI rate, the empty circle
implies drag reduction and the filled circle implies drag increase.

In an ideal actuation system that only takes into account the energy expenditure due
to viscous stresses, the power cost of the control normalised by the power driving the
uncontrolled main flow can be calculated by

Pspend =
1

2πτwUmLxTT

∫ Lx

0

∫ 2π

0

∫ TT

0
uθwallτrθwall dt dθ dx, (3.8)

where TT is the total sampling time, τw=µ(d〈ux〉/dr)wall is the mean wall shear stress
in the streamwise direction and τrθwall=µ(∂uθ/∂r− uθ/r)wall is the instantaneous wall
shear stress in the circumferential direction, µ is the kinetic viscosity of the fluid, 〈 〉
denotes averaging in time as well as in the x and θ directions. The normalised saving
of power due to the reduced friction drag equals the DR rate, i.e.

Psave =DR. (3.9)

Therefore, the net energy saving is

Pnet = Psave − Pspend. (3.10)

Since Pspend is directly related to the control amplitude A, therefore we performed
additional direct numerical simulations with A= 0.5Um (A+ = 8) and A= 0.25Um
(A+ = 4) in addition to the above A = Um (A+ = 16) cases at the maximum DR
rate for the three kinds of control under the condition of A = Um, that is, for time
oscillation control at ω+ = 0.0504, for streamwise oscillation control at k+x = 0.0148
and for streamwise-travelling wave control at (k+x , ω

+)= (0.0147, 0.0126). As shown
in figure 18, Pspend is much higher than Psave at A = Um for all the three kinds
of control, therefore no net energy saving can be obtained in these cases. When
the control amplitude is reduced to A= 0.5Um, Pspend decreases sharply but Psave
just drops slightly, so Pnet can be positive. For example, Pnet is still negative for
time oscillation control (−3.3 %), and becomes positive for streamwise oscillation
control and streamwise-travelling wave control (5.8 % and 10.6 %, respectively).
If further reducing the control amplitude to A= 0.25Um, Pnet is further increased
to 10.2 %, 13.7 % and 18.1 % for the time oscillation, streamwise oscillation and
streamwise-travelling wave controls, but with a lower DR rate of 19.2 %, 21.7 %
and 25.2 %, respectively. The net energy saving in the present cylinder flows is
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FIGURE 18. (Colour online) Variation of Pspend, Psave and Pnet with control amplitude A at
the maximum DR rates for time oscillation (a), streamwise oscillation (b) and streamwise-
travelling wave controls (c), respectively.

also compared with that in channel flows. For the time oscillation cases shown in
figure 18(a), Pnet is approximately 10.3 %, −3.3 % and −100 % at A/Um = 0.25,
0.5 and 1 respectively, which is almost the same as that in channel flow (Baron
& Quadrio 1996). However, for the streamwise travelling wave controls shown in
figure 18(c), Pnet in the present cylinder flow is apparently lower than that in channel
flow (Quadrio et al. 2009). This difference may be attributed to the different optimal
control parameters between the present flow with (k+x , ω

+)= (0.0147, 0.0126) and the
channel flow with (k+x , ω

+)= (0.0083, 0.0192).

4. Conclusion

The drag reduction in turbulent flows along a cylinder is studied by direct numerical
simulations. Three forms of circumferential wall motion are considered: the time
oscillation, the streamwise oscillation and the streamwise-travelling wave.

A map of DR rate varying with control frequency ω+ and wavenumber k+x is
obtained at the control amplitude A+= 16 and the reference friction Reynolds number
Reτ= 272 with the cylinder wall curvature of ε= 0.25. The maximum DR rate and
the maximum DI rate are both around 48 %. The former is similar to that obtained
in channel flow (Quadrio et al. 2009), but the latter is almost twice of that of
channel flow. The maximum DI is achieved at a wave speed c+ very close to the
convection velocity of near-wall coherent structures U+c . The line crossing the origin
with the slope of U+c = 10 demarcates the DR map into the S region and T region.
By transforming the streamwise-travelling wave control into streamwise oscillation
control in the S region and time oscillation control in the T region, the effective
wavenumber and effective frequency are respectively introduced and the effective
thickness of the Stokes layer is defined. The DR rates collapse well as a function of
the effective thickness of the Stokes layer.

In DI cases, the rotation-induced vortices become the primary coherent structures
in the near-wall region, which are responsible for the increase of wall skin friction.
The averaged core location of the rotation-induced vortices is at y+c ≈ 7 and their
radius is r+≈ 4. The rotation-induced vortices are much closer to the wall and much
smaller than the streamwise vortices. The mean streamwise spacing of the vortices
is approximately 65 wall units. To scale the DI rate in the centrifugal instability-
dominated cases (cases satisfying T+s > 120), the present work attributes the drag
increase to the spreading of rotation-induced vortices; that is, the wall skin friction
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is increased more for cases with more developed vortices. An exponential regression
is obtained perfectly for all of the δ+e > 4 cases.

The effect of the transverse wall curvature on drag-reduction behaviour is also
examined by performing additional DNSs to time oscillation control and streamwise
oscillation control with the cylinder wall curvature of ε= 0.097. The results are
compared with those of the ε= 0.25 and ε= 0 (channel) cases. As the wall curvature
increases, the maximum DR rate is almost unchanged, but the turning from DR to DI
happens earlier with smaller T+ and λ+x for time oscillation and streamwise oscillation
controls respectively. The DI rates are also considerably increased in both controls.
The DI region in the (ω+, k+x ) plane shrinks when the wall curvature decreases, and
consequently, the map of DR rate converges to that of plane channel flow.

Additional DNSs with A+= 8 and A+= 4 are conducted to evaluate the net energy
saving of the controls. At A+ = 16, Pspend is much higher than Psave for all the
three kinds of control, while when the control amplitude is reduced to A+ = 8, Pnet
becomes positive for streamwise oscillation and streamwise-travelling wave controls.
At A+ = 4, Pnet values of 10.2 %, 13.7 % and 18.1 % could be achieved for the time
oscillation, streamwise oscillation and streamwise-travelling wave controls with DR
rates of 19.2 %, 21.7 % and 25.2 %, respectively. Compared with channel flows (Baron
& Quadrio 1996; Quadrio et al. 2009), the net energy saving in the present cylinder
flow is almost unchanged for time oscillation controls, but becomes apparently lower
for streamwise-travelling wave controls.
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