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Abstract

The dynamics of a charged particle in a relativistic strong electromagnetic plane wave propagating in a nonmagnetized
medium is studied first. The problem is shown to be integrable when the wave propagates in vacuum. When it
propagates in plasma, and when the full plasma response is considered, an exhaustive numerical work allows us to
conclude that the problem is not integrable. The dynamics of a charged particle in a relativistic strong electromagnetic
plane wave propagating along a constant homogeneous magnetic field is studied next. The problem is integrable when
the wave propagates in vacuum. When it propagates in plasma, the problem becomes nonintegrable. Finally, one
particle in a high intensity wave, propagating in a nonmagnetized medium, perturbed by a low intensity traveling wave
is considered. Resonances are identified and conditions for resonance overlap are studied. Stochastic acceleration is
shown by considering a single particle. It is confirmed in plasma in realistic situations with particle-in-cell code
simulations.
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1. INTRODUCTION

The study of relativistic dynamics of a charged particle in
electromagnetic fields is of prime importance in high inten-
sity laser-matter interaction. Integrability and chaos are the
key to predicting conditions for stochastic heating that can
take place when very nonlinear regimes are reached.
Recently, particle-in-cell (PIC) code simulations results pub-
lished by Tajima et al. (2001) and theoretical results obtained
by Mulser et al. (2005) and Ziaja et al. (2007) have shown
that the irradiation of very high intensity lasers on clustered
matter leads to a very efficient heating of electrons. Tajima
et al. (2001) and Kanapathipillai (2006) have shown that
chaos seems to be the origin of the strong laser coupling
with clusters. It was confirmed in PIC code simulations, in
the case of two counter-propagating laser pulses, that sto-
chastic heating can lead to efficient electron acceleration
(Sheng et al., 2004, 2002; Bourdier et al., 2007, 2005a;
Patin, 2006; Patin et al., 2006, 2005a, 2005b). In this field,
many issues need to be studied. Those that we will address
below are mainly the stability of the electron motion in the
fields of one electromagnetic wave propagating in vacuum

or in plasma, and the conditions for stochastic heating to
take place. At very high intensities, the motion of a
charged particle in a wave is highly nonlinear. The situations
when the motion is integrable are exceptional. The solutions
corresponding to these situations deserve to be studied as
they are strong as predicted by the Kolmogorov-
Arnold-Moser (KAM) theorem (Lichtenberg &
Liebermann, 1983; Arnold, 1988; Rasband, 1983; Ott,
1993; Tabor, 1989; Walker & Ford, 1969). In some situ-
ations, they are necessary to predict resonances, build-up
perturbation calculations, and predict conditions to trigger
stochastic heating.

The dynamic of a charged particle in a linearly or almost
linearly polarized traveling high intensity wave is studied
when it propagates in a nonmagnetized medium first. The
problem is shown to be Liouville integrable when the wave
propagates in vacuum. In this situation, the equation of
Hamilton-Jacobi is also solved showing the integrability of
the system again and also giving resonance conditions
when a perturbing wave is taken into account (Bourdier
et al., 2007, 2005a, 2005b; Patin, 2006; Patin et al., 2006,
2005a, 2005b; Rax, 1992). When the wave propagates in
plasma, the plasma response is partly taken into account by
introducing an index, n, in the equations. Then, the
problem is still integrable. The effect of the full plasma
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response is studied next by considering plasma wave
equations. In their paper, Kaw et al. (1983) shown an appar-
ent absence of chaos for the system that was thus promoted to
a good position in the list of systems waiting for the proof of
their integrability. An exhaustive numerical study of the
system allowed us to witness chaotic trajectories, showing
that the system is not integrable. The stochastic behavior of
trajectories was first seen in the laboratory frame by perform-
ing Poincaré maps and confirmed by calculating a nonzero
Lyapunov exponent (Bourdier, 2009). The same kind of
numerical work was achieved in a special Lorentz frame
where the variables that describe the waves are space inde-
pendent (Winkles & Eldridge, 1972). The numerical work
happens to be easier in this frame as, at least some chaotic
trajectories, fill larger volumes in phase space.

Then, the wave is assumed to propagate along a constant
homogeneous magnetic field in vacuum or in plasma. In a
first part, the electromagnetic wave is assumed to propagate
in vacuum. It is shown that the synchronous solution dis-
cussed by Roberts and Buchsbaum (1964) in the case of a cir-
cularly polarized wave still exists when the wave is linearly
polarized. One of the constants of motion is present in the
resonance condition (Davydovski, 1963); it implies that
when the charged particle is initially resonant, it gains
energy indefinitely. Two constants that are canonically con-
jugate are found. This property is used to reduce the initially
three degrees of freedom problem to two degrees of freedom
problem. The system that was shown to be Liouville integr-
able (Lichtenberg & Liebermann, 1983; Arnold, 1988;
Rasband, 1983; Ott, 1993; Tabor, 1989; Bouquet &
Bourdier, 1998; Bourdier et al., 2007, 2005a, 2005b) is inte-
grated in this paper. Then, in order to study the plasma
response in the case of a very high intensity wave propagat-
ing in low-density plasma, it is assumed that the wave
remains linearly polarized. Performing a Lorentz transform-
ation eliminates the space variable corresponding to the
direction of propagation of the wave (Winkles & Eldridge,
1972). Just like above, two canonically conjugate constants
are used to reduce the initially three degrees of freedom
problem to two degrees of freedom problem. Thus,
Poincaré maps are performed. Lyapunov exponents are also
calculated to confirm the chaotic nature of some trajectories
(Lichtenberg & Liebermann, 1983; Ott, 1993; Tabor, 1989;
Bourdier & Michel-Lours, 1994). Chaos appears when a sec-
ondary resonance and a primary resonance overlap (Bourdier
et al., 2007, 2005a, 2005b; Patin, 2006; Patin et al., 2006,
2005b; Kwon & Lee, 1999; Van Der Weele et al., 1998).
Consequently, the system is not integrable and chaos
appears as soon as the plasma response is taken into account.

The interaction of low density plasma with a high intensity
plane wave perturbed by another plane wave is studied next.
The stability of a single particle interacting with two waves is
studied first. The solution of Hamilton-Jacobi equation, in the
case of a single particle interacting with one wave, is used to
identify resonances. The effect of the different parameters is
shortly described by using the Chirikov (1979) criterion.

Stochastic heating is seen by computing single particle ener-
gies. At last, considering plasma, PIC code simulations
results obtained with the code CALDER (Lefebvre et al.,
2003) are presented in order to validate the theoretical
model for experimentally relevant parameters. The stochastic
acceleration that is shown in this part can explain how the
Wakefield acceleration can be boosted by using a counter-
propagating wave (Davoine et al., 2008). For example, in
the work published by Mikhailov et al. (2008), the fact that
an efficient electron heating takes place when a counter-
propagating wave is reflected from the critical density can
be partially explained with this model.

Finally, let us point out that a lot of experimental work is
being achieved in order to use stochastic acceleration and
also, for instance, on laser interaction with clusters, where
stochastic heating is predicted to play an important role
(Faenov et al., 2008).

2. DYNAMICS OF A CHARGED PARTICLE IN A
LINEARLY POLARIZED ELECTROMAGNETIC
TRAVELING WAVE PROPAGATING IN A
NON-MAGNETIZED MEDIUM

2.1. The Wave Propagates in Vacuum

2.1.1. Hamiltonian Formulation of the Problem:
Integrability of the System

Let us consider a charged particle in an electromagnetic
plane wave propagating along the z direction (Fig. 1). The
following four-potential is chosen for the wave

[f, A] ¼ 0,
E0

v0
cos (v0t� k0z)êx

� �
, (1)

Fig. 1. Frame of reference.
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where E0, v0, k0 are constants and êx is the unit vector along
the x-axis.

When time is treated as a parameter entirely distinct from
the spatial coordinates, the relativistic Hamiltonian of a
charged particle in an electromagnetic wave is given by:

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Pþ eA)2c2 þm2c4

p
� ew, where 2e, m, and P are,

respectively, the particle’s charge, its rest mass, and its cano-
nical momentum. In the present situation, it reads

H ¼ Px þ
eE0

v0
cos (v0t� k0z)

� �2

c2 þ P2
yc2 þ P2

zc2 þm2c4

" #1=2

,

(2)

where the Pi (i ¼ x, y, z) are the canonical momentum com-
ponents. This system has three degrees of freedom. The fol-
lowing dimensionless variables and parameter are introduced
next

x̂ ¼ k0x, ŷ ¼ k0y, ẑ ¼ k0z, P̂x,y,z ¼
Px,y,z

mc
, t̂ ¼ v0t,

Ĥ ¼
H

mc2
, a ¼

eE0

mv0c
,

(3)

and the canonical transformation, (qi, pi)! Qi, Pi
� �

, given
by the type-2 generating function

F2 ẑ, P̂z, t̂
	 


¼ P̂z ẑ� t̂
� �

: (4)

is performed (Lichtenberg & Liebermann, 1983; Arnold,
1988; Rasband, 1983; Ott, 1993; Tabor, 1989; Bourdier &
Gond, 2000; Bouquet & Bourdier, 1998). Let us recall that
when performing a canonical transformation qi, pi

� �
!

Qi, Pi
� �

defined by a type-2 generating function

F2 qi, Pi, t
� �

, where Pi and Qi are the new coordinates, and
pi and qi are the old ones, the canonical transformation is
given by (Lichtenberg & Liebermann, 1983; Arnold, 1988;
Rasband, 1983; Ott, 1993; Tabor, 1989)

pi ¼
@F2(qi, Pi, t)

@qi
,

Qi ¼
@F2(qi, Pi, t)

@Pi
:

(5)

Consequently, the generating function defined by Eq. (4)
yields the canonical spatial transformation

Qi ¼ ẑ� t̂ ¼ 6: (6)

This canonical transformation keeps P̂z unchanged
and yields a new normalized Hamiltonian given by

H
^

ðx̂, P̂x, 6, P̂zÞ ¼ Ĥðx̂, P̂x, z, P̂z, t̂Þ þ ð@=@t̂Þ F2ðẑ, P̂z, t̂Þ, that

is to say,

H
^

¼ Ĉ ¼ P̂x þ a cos 6
	 
2

þP̂2
y þ P̂2

z þ 1

� �
� P̂z: (7)

This Hamiltonian is autonomous as it is a function of the
three momenta P̂x, P̂y, P̂z, and 6 which are space coordinate
(we have called the value of the Hamiltonian Ĉ), H

^

, P̂x, and

P̂y are three constants of motion, which are independent and
in involution and, as a consequence, the system is completely
integrable (Lichtenberg & Liebermann, 1983; Arnold, 1988;
Rasband, 1983; Ott, 1993; Tabor, 1989).

2.1.2. Integration of the Hamilton-Jacobi Equation

When using the proper time of the particle to parameterize
the motion in the extended phase space, the Hamiltonian of
the charged particle in the wave reads (Jackson, 1975)

H ¼
1
2

mc2g2 �
1

2m
(Pþ eA)2 �

1
2

mc2; (8)

where g is the Lorentz factor. Within the scope of this
Hamiltonian formulation one has H ¼ 0 (Jackson, 1975).
This zero-value Hamiltonian is satisfactory in the sense
that it allows us to derive the right equations of motion.
Then, the dimensionless variables and parameter defined
by equations (3) are used again, a normalized proper time:
t̂ ¼ v0t and a normalized vector potential: a ¼ eA/mc are
also introduced. The normalized Hamiltonian reads

Ĥ ¼
1
2
g2 �

1
2

P̂þ a
	 
2

�
1
2
: (9)

It is assumed that the electron motion is restricted to the
plane of polarization of the wave (the y degree of freedom
is assumed not to be excited). We look for a set of actions
(P?, P//, E) and angles (u, w, f), instead of the configuration
(r, t), and momentum, (P, 2g) in the ðx̂, ẑ, t̂, P̂x, P̂z,�gÞ
phase space. In other words, we seek a canonical transform-
ation ðx̂, ẑ, t̂, P̂x, P̂z, � gÞ ! ðu, w, f, P?, P==, EÞ, such that
the new momenta are constants of motion. It will be shown
further that P? and P// represent the drift motion of the
charged particle and E its average energy normalized to
mc2. To do so, we look for a generating function,

F̂2 P?, P==, E, x̂, ẑ, t̂
� �

such that P̂x ¼ @F2=@x̂, P̂z ¼ @F2=@ẑ,
g ¼ @F2/@t that is a solution of the Hamilton-Jacobi equation
(Arnold, 1988; Rasband, 1983; Ott, 1993; Tabor, 1989;
Goldstein, 1980; Landau & Lifshitz, 1975)

Ĥ x̂, ẑ, t̂,
@F2

@x̂
,
@F2

@ẑ
,
@F2

@t̂

� �
¼ Ĥ0 ¼ 0: (10)

Eqs (9) and (10) lead to

@F2

@t̂

� �2

�
@F2

@x̂
þ a cos t̂� ẑ

� �� �2

�
@F2

@ẑ

� �2

�1 ¼ 0: (11)
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Following Landau and Lifshitz (1975), it is assumed that F2

has the following form

F2 ¼ a1t̂þ a2x̂þ a3ẑþ F t̂� ẑ
� �

, (12)

where the quantities a1, a2, and a3 are chosen to be three
independent constants of integration in order to select three
new constant momenta. Letting z ¼ t̂� ẑ, Eq. (11) becomes

a1 þ @F(z)=@z½ �
2
� a2 � a cos zð Þ

2
� a3 � F0(z)½ �

2
¼ 1: (13)

Solving this equation leads to

F(z) ¼
1� a2

1 þ a2
2 þ a2

3

2(a1 þ a3)
zþ

a2

a1 þ a3
a sin z

þ
a

2(a1 þ a3)
z

2
þ

1
4

sin (2z)

� �
þ F0,

(14)

where F0 is a constant with respect to z, which is assumed to
vanish as only partial derivatives of F(z) are considered.
Letting

E ¼ �
1� a2

1 þ a2
2 þ a2

3

2(a1 þ a3)
� a1 �

a

4(a1 þ a3)
,

P== ¼ �
1� a2

1 þ a2
2 þ a2

3

2(a1 þ a3)
þ a3 �

a

4(a1 þ a3)
,

P? ¼ a2,

(15)

as: a1 þ a3 ¼ P// 2 E, the following expression is found for
F2 (Landau & Lifshitz, 1975; Rax, 1992)

F̂2 P?, P==, E, x̂, ẑ, t̂
� �

¼ P==ẑþ P?x̂� Et̂

þ
P?a

P== � E
sin (t̂� ẑ)þ

a2

8(P== � E)
sin 2(t̂� ẑ):

(16)

The old configuration variables expressed in terms of the new
ones are given by (Rax, 1992)

p̂x ¼ P? þ a cos (fþ w),

p̂z ¼ P== �
P?a

P== � E
cos (fþ w)�

a2

4(P== � E)
cos 2(fþ w),

g ¼ E�
P?a

P== � E
cos (fþ w)�

a2

4(P== � E)
cos 2(fþ w),

x̂ ¼ uþ
a

P== � E
sin (fþ w),

ẑ ¼ w�
P?a

(P== � E)2 sin (fþ w)�
a2

8(P== � E)2 sin 2(fþ w),

t̂ ¼ �f�
P?a

(P== � E)2 sin (fþ w)�
a2

8(P== � E)2 sin 2(fþ w),

(17)

where p̂x and p̂z are the components of the normalized
momentum of the charged particle ( p̂i ¼ pi=mc). It is

straightforward to check that, P? ¼ k p̂xl, P== ¼ k p̂zl, E ¼
kgl ( ,. stands for averaging over the oscillations), and
Ĉ ¼ E 2 P//. All the former constants of motion are found
again. P// and P? describe the uniform motion of translation
that is obtained by averaging out the oscillatory part of the
motion. The new Hamiltonian in terms of the action variables
reads (Rax, 1992)

~H P==, P?, E
� �

¼ �
1
2

M2 þ P2
== þ P2

? � E2
	 


, (18)

where M2 ¼ 1 þ a2/2. As ~H ¼ 0 (Jackson, 1975), the
energy momentum dispersion relation is given by

E(P==, P?, a) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ P2

== þ P2
?

q
: (19)

The solution of Hamilton equations is

u ¼ �P?t̂, w ¼ �P==t̂, f ¼ Et̂: (20)

Finding the solution of Hamilton-Jacobi equation is another
way to prove that the problem is integrable. This solution is
also very useful to predict resonances when a perturbing
mode is considered (Bourdier et al., 2007, 2005a, 2005b;
Patin, 2006; Patin et al., 2006, 2005b; Rax, 1992).

2.2. The Wave Propagates in Plasma

2.2.1. The Plasma Index of Refraction is Introduced to
Describe a Part of the Plasma Influence

A part of the influence of the plasma is taken into account
first by simply introducing the index of the medium in the
equation of propagation of waves in vacuum. It is shown in
Section 3, in the case of a plane wave propagating along a
constant homogeneous magnetic field, that including an
index of refraction in this very simple way is enough to
make the system non-integrable (Bourdier et al., 2007,
2005a, 2005b; Patin, 2006). The wave vector potential is sup-
posed to be given by Eq. (1). The dimensionless variables
and parameters previously defined are used again. The nor-
malized equations can be derived through the normalized
Hamiltonian: Ĥ ¼ ng ¼ nH/mc2, where n is the index of
refraction of the plasma. This Hamiltonian reads

Ĥ ¼ n P̂x þ a cos t̂� ẑ
� �	 
2

þ P̂2
y þ P̂2

z þ 1

� �1=2

: (21)

P̂x, P̂y, and Ĉ ¼ Ĥ� P̂z are still three constants of motion. As
they are independent and in involution, the system is still
integrable.

2.2.2. The Full plasma Response is Taken into Account
Through Plasma Wave Equations

Following Akhiezer and Polovin (1956), the propagation
of a relativistically strong wave in cold relativistic electron
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plasma is described with Maxwell and Lorentz equations. All
the variables entering into these equations are assumed not to
be functions of space and time separately, but only of the
combination i . r 2 Vt, where i is a constant unit vector par-
allel to the direction of propagation of the wave, and V is a
constant. Then, the equations describing nonlinear traveling
waves propagating in the absence of the external magnetic
field are as follows:

d2 p̂x

dt2
þ v2

p
b2

b2 � 1

b p̂x

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p̂2

p
� p̂z

¼ 0, (22a)

d2 p̂y

dt2
þ v2

p
b2

b2 � 1

b p̂y

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p̂2

p
� p̂z

¼ 0, (22b)

d2

dt2
b pz �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p̂2

p	 

þ v2

p
b2 p̂z

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p̂2

p
� p̂z

¼ 0, (22c)

where p̂ ¼ p=mc is the normalized hydrodynamic momen-
tum, t ¼ t 2 i . r/V, b ¼ V/c, and vp is the plasma fre-
quency. Letting u ¼ vp(b2 2 1)21/2 t, these equations read

d2 p̂x

du2 þ
b3 p̂x

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p̂2

p
� p̂z

¼ 0, (23a)

d2 p̂y

du2 þ
b3 p̂y

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p̂2

p
� p̂z

¼ 0, (23b)

d2

du2 b pz �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p̂2

p	 

þ

b2(b2 � 1) p̂z

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p̂2

p
� p̂z

¼ 0: (23c)

When considering that the electron motion is in the x-z
plane ( p̂y ¼ 0), we let X ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 1

p	 

p̂x and

Z ¼ b p̂z �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p̂2

p
, then, Eq. (23) become

d2X

du2 þ
b3Xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � 1þ X2 þ Z2
p ¼ 0, (24a)

d2Z

du2 þ
b3Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � 1þ X2 þ Z2
p þ b2 ¼ 0, (24b)

Eqs. (24a and 24b) can obviously be derived from the
Hamiltonian

H ¼
1
2

(P2
X þ P2

Z)þ b3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 1þ X2 þ Z2

q
þ b2Z, (25)

where PX ¼ dX/du and PZ ¼ dZ/du. Then, the coupled
stationary wave problem can be treated as a two-degree-
of-freedom conservative problem. Consequently, Poincaré
maps can be performed. Since the Hamiltonian is symmetric
in X, the X-oscillator can be used as a clock and PZ versus Z
can be plotted each time X ¼ 0 and PX . 0. The problem
looks integrable; most of the Poincaré maps obtained are
regular (Fig. 2) and most of theLyapunov exponents calcu-
lated go to zero (Kaw et al., 1983; Bourdier, 2009). Still,

chaos was found considering one trajectory for which
chaos takes place in a very small volume in phase space
(Fig. 3). Chaos appears when enlarging a lot the place
where it takes place; therefore, it was difficult to know
if it were numerical chaos or real chaos (Fig. 3b).
Consequently, the Lyapunov exponent of this trajectory
was carefully calculated by using Benettin’s method
(Lichtenberg & Liebermann, 1983; Tabor, 1989; Bourdier
& Michel-Lours, 1994). To do this, two very close trajec-
tories are considered, the very small distance between them
being initially d0. A sequence dn corresponding to these tra-
jectories is calculated numerically. For every fixed time Dt, or
for every fixed distance ratio dn/d0 � 2, dn is renormalized to
d0. The two ways to renormalize are used and compared,
Figure 4 shows the good agreement obtained for the
nonzero the Lyapunov exponent calculated when using the
two ways. It shows that it is real chaos and that, consequently,
the problem is not integrable.

Introducing q ¼ b3u, n ¼ 1/b, Eqs. (24a and 24b)
become

d2X

dq2 þ
Xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � 1þ X2 þ Z2
p ¼ 0, (26a)

d2Z

dq2 þ
Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � 1þ X2 þ Z2
p þ n ¼ 0: (26b)

Letting, ~PX ¼ dX=dq and ~PZ ¼ dZ=dq, dropping the tildes
for the sake of simplicity, Eqs. (26a and 26b) can be
derived from the following Hamiltonian

H ¼
1
2

P2
x þ P2

z

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 1þ X2 þ Z2

q
þ nZ: (27)

Then, the problem is under the form studied by Grammaticos
et al. (1987). In their paper, they claim that this system is not
integrable. Following their paper very high energies are con-
sidered (X2

þ Z2
� b2 2 1), then Eqs. (26a and 26b) read

d2X

dq2 þ
Xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2 þ Z2
p ¼ 0, (28a)

d2Z

dq2 þ
Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2 þ Z2
p þ n ¼ 0: (28b)

These equations can be derived from the Hamiltonian

H ¼
1
2

P2
x þ P2

z

� �
þ V(X, Z), (29a)

with

V(X, Z) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Z2

p
þ nZ: (29b)

This system corresponds to the limit of infinite energy.
Hamiltonian (29a and 29b) is Hamiltonian (27) when b2 ¼ 1.
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It was shown that if Hamiltonian (27) were meromorphic, then
system (27) would not be integrable when system (29a and 29b)
is not (Juillard Tosel, 2000, 1999). It is not clear a priori
whether this property can be applied to our problem as
Hamiltonian (27) is not meromorphic. Still, the right system
is described by this Hamiltonian (Eqs. 29a and 29b) plus a
small quantity that depends on b (in the limit of high
energies). Then, if system (29a and 29b) is not integrable,
system (27) is probably not integrable for an arbitrary value
of this parameter; in other words, the exact system that corre-
sponds to an arbitrary energy is likely to be nonintegrable.
Poincaré maps have been performed within this high energy
limit system. They show that the system defined by
Hamiltonian (29a and 29b) exhibit chaotic trajectories in
some conditions (Fig. 5).

The Lyapunov exponent for the trajectory correspond-
ing to Figure 5 is calculated by using Benettin’s
method (Eqs 6, 10, 21). The two ways to renormalize
are used and compared; Figure 6 shows the good agree-
ment obtained for the nonzero Lyapunov exponent when
using the two renormalization techniques. The fact that
the system (29a and 29b) is not integrable backs up the

previous assertion that says that the exact system is not
integrable.

Then, another frame is considered to look for chaotic tra-
jectories. This is to make absolutely sure that this very impor-
tant result concerning the integrability of the problem is right.
Following Winkles and Eldridge (1972) and Romeiras
(1989), a new frame (L*) that moves uniformly along the
z-axis with velocity U relative to the laboratory frame is
introduced. The Lorentz transformation of the four-
momentum is given by (Jackson, 1975; Landau & Lifshitz,
1975)

P0x ¼ Px, P0y ¼ Py, P0z ¼ G Pz �
U
c2

E

� �
, E0 ¼ G(E� UPz), (30)

where G ¼ (1 2 U2/c2)21/2 and E ¼ gmc2 are the energy of
the charged particle. In the extended phase space, where time
is treated on a common basis with other coordinates, a fully
covariant Hamiltonian formulation of the problem can be
constructed. In this space, the Lorentz transformation
defined above is identical to the canonical transformation

Fig. 2. Poincaré surface of section plots in the laboratory frame: PZ versus Z (X ¼ 0, Px . 0). H ¼ 20, b ¼ 1.2. (a, b): Several trajectories
are considered. H ¼ 50, b ¼ 1.2. (c): Several trajectories are considered.
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generated by the following type-2 generating function

F2 x, y, z, t, P0x, P0y, P0z, E0
	 


¼ P0xxþ P0yy

þ G P0z þ
U
c2

E0
� �

z� G E0 þ UP0z
� �

t:
(31)

As a consequence, if the hydrodynamic motion is not integr-
able in the frame (L*), it is also not integrable in the labora-
tory frame. The phase of the wave that is an invariant takes, in
the moving frame, the following form (Jackson, 1975;
Landau & Lifshitz, 1975)

v0t� k0z ¼ G v0 t0 þ
U
c2

z0
� �

� k0 z0 þ Ut0ð Þ

� �
: (32)

When the phase velocity of the wave is greater than the speed
of light, there exists one special frame (L*) in which the phase

does not depend on the variable z0. This frame has the follow-
ing drift velocity: U/c ¼ k0c/v0 ¼ n (Winkles & Eldridge,
1972). Still considering that the electron motion is in the
x–z plane ( p̂y ¼ 0), the wave Eqs. (23a, 23b, 23c) read

d2 p̂0x
du02
þ

p̂0xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p̂2

p ¼ 0, (33a)

d2 p̂0z
du02
þ

p̂0zffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p̂2

p þ n

 !
¼ 0: (33b)

where u0 ¼ v0pt0 (v0p is the plasma frequency in (L*)).
Introducing X0 ¼ p̂0x, Z0 ¼ p̂0z, P0X0 ¼ dX0/du0 and P0Z0 ¼

Fig. 3. Poincaré surface of section plots in the laboratory frame: PZ versus Z
(X ¼ 0, Px . 0). H ¼ 248.824, b ¼ 3.24. (a) One trajectory is considered.
(b) Enlargement of part of the stochastic orbit.

Fig. 4. Lyapunov exponents: (a) Lyapunov exponents calculated for the
same initial conditions as those of the trajectory shown in Figures 3a, 3b.
The two renormalization techniques are performed, they give almost the
same results. (b) Lyapunov exponent corresponding to a regular trajectory.

Fig. 5. Poincaré surface of section plots in the laboratory frame: PZ versus Z
(X ¼ 0, Px . 0). H ¼ 248.824, b ¼ 3.24. One trajectory is considered.
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dZ0/du0, dropping the primes for convenience, Eqs. (33a and
33b) can be derived from the following Hamiltonian

H ¼
1
2

P2
x þ P2

z

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2 þ Z2

p
þ nZ: (34)

Then, the problem is under the form studied by Grammaticos
et al. (1987) again. Poincaré maps are performed, PZ versus Z
is plotted each time X ¼ 0 and PX . 0. Figures 7 show
chaotic trajectories. In one case, chaos is confirmed by calcu-
lating a nonzero Lyapunov exponent (Fig. 8). In short, it has
been shown numerically that in both the laboratory frame
and in (L*), the problem is not integrable.

3. DYNAMICS OF A CHARGED PARTICLE IN
A LINEARLY POLARIZED
ELECTROMAGNETIC TRAVELING WAVE
PROPAGATING ALONG A CONSTANT
HOMOGENEOUS MAGNETIC FIELD

3.1. The Wave Propagates in Vacuum

3.1.1. Hamiltonian and Symmetries of the System

Let us consider a charged particle in an electromagnetic
plane wave propagating along the z direction (the wave
vector k0 is parallel to the z direction). The constant magnetic
field B0 is supposed to be along the z-axis. The traveling
wave is assumed to be linearly polarized. It has a propagation
vector k0 parallel to B0.

Fig. 6. Lyapunov exponents: (a) Lyapunov exponents calculated for the
same initial conditions as those of the trajectory shown in Figure 5. The
two renormalizations are performed; they give almost the same results. (b)
Lyapunov exponent corresponding to a regular trajectory.

Fig. 7. Poincaré surface of section plots in (L*): PZ versus Z (X¼ 0, Px . 0). H ¼ 10, n ¼ 0.3. (a) One trajectory is considered.
(b) Enlargement of part of the stochastic orbit H ¼ 20, n ¼ 0.3. (c) One trajectory is considered. (d) Enlargement of part of the stochastic orbit
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The following vector potential is chosen for the electro-
magnetic field

A ¼ �
B0

2
yþ

E0

v0
cos v0t� k0zð Þ

� �
êx þ

B0

2
x

� �
êy: (35)

The scalar potential is assumed to vanish. The relativistic
Hamiltonian for the motion is

H ¼ Px þ
eE0

v0
cos (v0t� k0z)�

eB0

2
y

� �2

c2

"

þ Py þ
eB0

2
x

� �2

þc2 þ P2
zc2 þm2c4

#1=2

:

(36)

This is a time-dependent system with three degrees of
freedom. It can be easily checked that

C ¼ H� (v0=k0)Pz, (37)

is a constant of motion for this system. Combining the
equations of Hamilton allows us to easily find two other con-
stants of motion

C1 ¼ Px þ
eB0

2
y, C2 ¼ Py �

eB0

2
x: (38)

These two constants are such that

C1,
C2

eB0

� �
¼ 1: (39)

The three constants just found are not in involution and, at
this stage, one cannot conclude that the problem is integrable.

The normalized equations of motion are obtained by intro-
ducing the normalized variables and parameters defined by

Eq. (3) and V0 ¼ eB0/mv0. The following three normalized
constants are also introduced Ĉ ¼ C/mc2, Ĉ1 ¼ C1/mc, and
Ĉ2 ¼ C2/mc.

3.1.2. Reduction to a Two Degrees of Freedom Problem
Integration of the System

The canonical transformation ðẑ, P̂zÞ ! ð6, P̂zÞ: 6 ¼ ẑ� t̂,
is performed first (Bourdier & Gond, 2000; Bouquet &
Bourdier, 1998). The Hamiltonian expressed in terms of
the new variables is

H
^

¼ Ĉ ¼ P̂x þ a cos 6�
V0

2
ŷ

� �2
"

þ P̂x þ
V0

2
x̂

� �2

þP̂2
z þ 1

#
� P̂z:

(40)

In this new system, 6 plays the part of a space coordinate. The
new Hamiltonian is a constant as it does not depend expli-
citly on time.

The fact that the two constants Ĉ1 and Ĉ1/V0

are canonically-conjugate is used to reduce the
system. To do so, a canonical transformation:

ðx̂, ŷ, P̂x, P̂yÞ ! ðQ1, Q2, P1, P2Þ, which is the product of
two canonical transformations is performed (Bourdier &
Gond, 2000; Bourdier et al., 1996; Michel-Lours et al.,
1992). The first canonical transformation: ðx̂, ŷ, P̂x, P̂yÞ !

ð~x, ~y, ~Px, ~PyÞ is defined by the following type-2 generating
functions: F2 ¼ ~Px � (V0=2)ŷ

� �
x̂þ ~Pyŷ

x̂ ¼ ~x, ŷ ¼ ~y, P
_

x ¼ ~Px �
V0

2
~y, P̂y ¼ ~Py �

V0

2
~x: (41)

In these variables C1 and C2 become: ~C1 ¼ ~Px

and ~C2 ¼ ~Py �V0 ~x. The second transformation:
~x, ~y, ~Px, ~Py
� �

! Q1, Q2, P1, P2ð Þ, is generated by F2 ¼

P2 þV0 ~xð Þ~yþ P1 ~xþ P2=V0ð Þ

~x ¼ Q1 �
P2

V0
, ~y ¼ Q2 �

P1

V0
, ~Px ¼ V0Q2, ~Py ¼ V0Q1: (42)

The resulting transformation, which is the product of the two
transformations, is given by

x̂ ¼ Q1 �
P2

V0
, ŷ ¼ Q2 �

P1

V0
,

P̂x ¼
1
2

(V0Q2 þ P1), P̂y ¼
1
2

(V0Q1 þ P2),

(43)

With these new variables, one has: Q2 ¼ Ĉ1/V0 and P2 ¼

Ĉ2. The degree of freedom associated to the conjugate vari-
ables (Q2, P2) is eliminated. Thus, the initially three
degrees of freedom system is reduced to a two degree of
freedom system. In terms of the new conjugate variables:

Fig. 8. Lyapunov exponents: (a) Lyapunov exponents calculated for the
same initial conditions as those of the trajectory shown in Figures 7c, 7d.
The two renormalizations techniques are performed and give almost the
same results. (b) Lyapunov exponent corresponding to a regular trajectory.
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(Q1, P1) and 6, P̂z

	 

, the new Hamiltonian is

H ¼ Ĉ ¼ (P1 þ a cos 6)2 þV2
0Q2

1 þ P̂z þ 1
h i1=2

� P̂z: (44)

The equations of Hamilton are

_P1 ¼ �
V2

0

g
Q1, _Q1 ¼

1
g

(P1 þ a cos 6),

_̂Pz ¼
a
g

sin 6(P1 þ a cos 6), _6 ¼
P̂z

g
� 1:

(45)

The equation of Hamilton for 6, can be put in the form

g d6=dt̂
� �

¼ �Ĉ. As a consequence, indicating differentiation
with respect to 6 by a prime in this paragraph, we can write
A0 ¼ dA=d6 ¼ dA=dt̂

� �
= d6=dt̂
� �

, which implies that
_A ¼ �A0Ĉ=g. Thus, the equations of Hamilton (Eqs. (45))
become

P01Ĉ ¼ V2
0Q1, (46a)

Q01Ĉ ¼ �(P1 þ a cos 6), (46b)

P̂0zĈ ¼ �a sin 6 P1 þ a cos 6ð Þ, (46c)

Ĉ ¼ g� P̂z: (46d)

Differentiating a second time the second equation leads to the
following equation of motion for Q1

Q001 þ
V2

0

Ĉ2
Q1 ¼

a

Ĉ
sin 6: (47a)

The following equation for P1 is obtained in the same way

P001 þ
V2

0

Ĉ2
P1 ¼ �

V2
0

Ĉ2
a cos 6: (47b)

These two equations (47a and 47b) are the equations of two
driven oscillators. One has a resonance when V2

0 ¼ C
_2

. This
resonance condition contains a first integral of the system,
this implies that when the particle is initially resonant it
remains resonant forever (Roberts & Buchsbaum, 1964;
Davydovski, 1963; Bourdier & Gond, 2001, 2000). These
equations can be easily solved analytically whether the res-
onance condition is satisfied or not. Then Eq. (46c) is used
to determine Pz and g is derived through Eq. (46d). The
Liouville integrability of this problem can also be shown
easily (Bourdier et al., 2007, 2005a, 2005b; Patin, 2006).

3.2. The Wave Propagates in Plasma

3.2.1. Existence of an Almost Linearly Polarized
Solution at Very High Intensities

Here again, all the variables entering into these equations
describing nonlinear traveling waves are assumed not to be

functions of space and time separately, but only of the com-
bination i . r – Vt. Then, the equations describing waves pro-
pagating along a constant homogeneous external magnetic
field are the following (Akhiezer & Polovin, 1956)

d2 p̂x

du2 þ
b3 p̂x

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p̂2

p
� p̂z

¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 1

q
Vp

�
d
du

p̂y

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p̂2

p
� p̂z

 !
,

(48a)

d2 p̂y

du2 þ
b3 p̂y

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p̂2

p
� p̂z

¼ �b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 1

q
Vp

�
d
du

p̂x

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p̂2

p
� p̂z

 !
,

(48b)

d2

du2 b pz �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p̂2

p	 

þ

b2(b2 � 1) p̂z

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p̂2

p
� p̂z

¼ 0, (48c)

where Vp ¼ vc/vp with vc ¼ eB0/m.
Let us consider transverse solutions (solutions such that:

p̂z ¼ 0). Eq. (48c) implies that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p̂2

p
is a constant. The

transverse solution has to be a solution of the following set
of two equations

d2 p̂x

du2 þ
b2 p̂xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p̂2

p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 1
1þ p̂2

s
Vp

d p̂y

du
, (49a)

d2 p̂y

du2 þ
b2 p̂yffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p̂2

p ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 1
1þ p̂2

s
Vp

d p̂x

du
: (49b)

One can look for transverse monochromatic plane waves
(fixing v0) which are solution of this set of equation. The fol-
lowing left-handed circularly polarized wave

p̂x ¼ LL cos v̂Lu,

p̂y ¼ LL sin v̂Lu,
(50)

is a solution of Eqs. (49a and 49b) if

v̂L ¼
v0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

L � 1
q
vp

¼
1
2

 
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

L � 1

1þ L2
L

s
Vp

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

L � 1

1þ L2
L

V2
p þ 4

b2
Lffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ L2
L

q
vuut

!
,

(51a)

where v0 is the time-frequency fixed by the light source.
The index of refraction for this mode is given by

n2
L ¼

1

b2
L

¼ 1�
1

v2
0

v2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ L2

L

q
þ
v0vc

v2
p

 ! : (51b)
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The following transverse right-handed circularly polarized
wave

p̂x ¼ LR sin v̂Ru,

p̂y ¼ LR cos v̂Ru,
(52)

is a solution when

v̂R ¼
v0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

R� 1
q
vp

¼
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

R� 1

1þL2
R

s
Vpþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

R� 1

1þL2
R

V2
pþ 4

b2
Rffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þL2
R

q
vuut

0
B@

1
CA:

(53a)

This implies that

n2
R ¼

1

b2
R

¼ 1�
1

v2
0

v2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þL2

R

q
�
v0vc

v2
p

 ! : (53b)

Equations (51b, 53b) allows us to find again the well-known
indexes of refraction for the left-handed wave and the right-
handed wave when LL,R! 0 (Swanson, 1989).

As two different phase velocities correspond to these two
solutions, one cannot conclude that their sum represents a
slow rotating wave solution of Eqs. (49a and 49b). Thus,
we now look for almost linearly solutions which are plane
waves that is to say solutions corresponding to one given
phase velocity (b is fixed). When introducing the complex
quantity p̂? ¼ p̂x þ i p̂y and assuming for simplicity that
the index of refraction of the medium is close to unity,
Eqs. (49) are equivalent to the following complex equation

d2 p̂?
du2 þ i

l

a2

d p̂?
du
þ

1
a2

p̂? ¼ 0, (54)

where a2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p̂2

p
and l ¼ Vp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 1

p
. The solution is

given by

p̂? ¼ L1 exp i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2=a2 þ 4

p
2a

�
l

2a2

 !
uþ w1

" #

þ L2 exp� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2=a2 þ 4

p
2a

þ
l

2a2

 !
u� w2

" #
,

(55)

where L1, L2, w1, and w2 are real constants which depend on
the initial conditions. This leads to

p̂x ¼ L1 cos (v1uþ w1)þ L2 cos (v2u� w2), (56a)

p̂y ¼ L1 sin (v1uþ w1)� L2 sin (v2u� w2): (56b)

This solution contains two frequencies. Taking into account

the fact that a2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ L2

1 þ L2
2

q
, v1 and v2 read

v1 ¼
v01

vp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 1

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

p(b2 � 1)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þL2

1 þL2
2

q þ 4

vuuut
2 1þL2

1 þL2
2

� �1=4 �
Vp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 1

p
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þL2

1 þL2
2

q

2
666666664

3
777777775

,

(57a)

and

v2 ¼
v02

vp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 1

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

p(b2 � 1)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þL2

1 þL2
2

q þ 4

vuuut
2 1þL2

1 þL2
2

� �1=4 þ
Vp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 1

p
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þL2

1 þL2
2

q

2
666666664

3
777777775

,

(57b)

Let us consider a frame of reference rotating slowly clock-
wise with an angular velocity—V. In this new frame, the
solution in the plane perpendicular to the propagation direc-
tion is the solution given by Eq. (55) multiplied by expiVu.
The solution reads

p̂0x ¼ L1 cos v1 þVð Þuþ w1

� �
þL2 cos v2 �Vð Þu� w2

� �
, (58a)

p̂0y ¼ L1 sin v1 þVð Þuþ w1

� �
�L2 sin v2 �Vð Þu� w2

� �
: (58b)

Assuming that L1 ¼ L2 and w1 ¼ w2 ¼ 0, p̂0y equals zero
when V ¼ (v2 2 v1)/2, then, the solution of by Eq. (55)
becomes

p̂0x ¼ L cosvu, (59a)

p̂0y ¼ 0, (59b)

where v ¼ v1 þV ¼ v2 �V and L ¼ 2L1. This solution
represents a rotating wave in the plane perpendicular to its
direction of propagation with the following angular velocity

V ¼
Vp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 1

p
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þL2=2

p : (60)

This rotation is not the classical Faraday rotation as the field
rotates for a given value of z. The rotation rate versus t is

da
dt
¼

vc

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þL2=2

p : (61)

It decreases when the intensity of the wave increases. As a
consequence, almost linearly polarized plane waves can pro-
pagate when very high intensities are considered. This
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legitimates the fact that the Faraday rotation is ignored in the
next paragraph.

3.2.2. Only the Plasma Index of Refraction is Introduced to
Describe the Plasma Influence: The Wave is Assumed to
Remain Linearly Polarized when Propagating in Plasma

In this part, the influence of plasma is taken into account.
The wave is assumed to remain linearly polarized. The wave
vector potential is supposed to be given by Eq. (35). The
dimensionless variables and parameters previously defined
are used again. The normalized Hamiltonian of the system,

Ĥ ¼ ng ¼ nH/mc2, where n is the index of refraction of
the plasma, reads

Ĥ ¼ n P̂x þ a cos t̂� ẑ
� �

�
V0

2n
ŷ

� �2

þ P̂y þ
V0

2n
x̂

� �2

þ P̂2
z þ 1

" #1=2

:

(62)

The Hamilton equations allow us to readily find two con-
stants of motion

Ĉ1 ¼ P̂x þ
V0

2n
ŷ,

Ĉ2 ¼ P̂y �
V0

2n
x̂:

(63)

It can be noted that the two constants Ĉ1 and nĈ2/V0 are
canonically conjugate. Ĉ ¼ Ĥ� P̂z is still a constant of
motion. These three constants of motion are not in involution
and one cannot conclude that the problem is integrable.

Then, the frame (L*), previously defined is considered
again. In (L*), the vector potential is assumed to be

A0 ¼ �
B0

2
y0 þ

E00
v00

cosv00t0
� �

ê0x þ
B0

2
x0

� �
ê0y: (64)

The equations of motion are generated by the following
Hamiltonian

H0 ¼ P0x þ
eE00
v00

cosv00t0 �
eB0

2
y0

� �2

c2

"

þ P0y þ
eB0

2
x0

� �2

c2 þ P02z c2 þm2c4

#1=2

:

(65)

Let us now introduce the following dimensionless vari-
ables and parameters

x̂0 ¼
v00
c

x0, ŷ0 ¼
v00
c

y0, ẑ0 ¼
v00
c

z0, t̂0 ¼ v0t0, P̂0x,y,z ¼
P0x,y,z

mc
,

V00 ¼
eB0

mv00
, a0 ¼

eE00
mcv00

, Ĥ0 ¼ g0 ¼
H0

mc2
:

(66)

The following normalized Hamiltonian

Ĥ0 ¼ P̂0x þ a0 cos t̂0 �
V00
2

ŷ0
� �2

þ P̂0y þ
V00
2

x̂0
� �2

þ P̂02z þ 1

" #1=2

,

(67)

leads to the normalized equations of motion.
Dropping the primes for convenience, it can be shown very

easily that this system has three constants of motion

Ĉ1 ¼ P̂x þ
V0

2
ŷ, Ĉ2 ¼ P̂y �

V0

2
x̂, Ĉ ¼ P̂z: (68)

The first two constants (Ĉ1 and Ĉ2/V0) are canonically
conjugate.

Let us reduce the system in order to perform Poincaré
maps. To do so, let us choose the two constants Ĉ1 and Ĉ2

as new momentum and coordinate conjugate. The canonical
transformation defined by Eqs. (43) is performed. The new
Hamiltonian is

H ¼ P1 þ a cos t̂
� �2

þ V2
0Q2

1 þ P̂2
z þ 1

h i1=2
(69)

This is a time-dependent system with only two degrees of
freedom. As P̂z is an obvious first integral, one can evacuate
the conjugate variable ẑ and say, even if it is not academic,
that we have a time-dependent system with one degree of
freedom.

Let us perform now the following canonical transform-
ation

P1 ¼ P� a cos t̂, Q1 ¼ Q, (70)

generated by

F2 Q1, ẑ, P, P̂z

	 

¼ Q1Pþ ẑP̂z � aQ1 cos t̂, (71)

The Hamiltonian in terms of the new variables is

H̃ ¼ P2 þV2
0Q2 þ P̂2

z þ 1
h i1=2

þ aQ sin t̂: (72)

This is still a time-dependent system with only two degrees of
freedom. P̂z is still a constant of motion. The equations of
Hamilton read

Q ¼
P
g

,

_P ¼ �
V2

0Q
g
� a sin t̂:

(73)

This set of equations is similar to the one found by Kwon and
Lee (1999) when describing the motion of a particle in a con-
stant and homogeneous magnetic field and an oscillating
electric field of arbitrary polarization. These equations of
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motion are solved numerically. We have assumed that P̂z ¼ 0
in every case. Chaos is evidenced first by performing
Poincaré maps. The plane P 2 Q with t̂ ¼ 0 (mod2p) is
chosen to be the Poincaré surface of section. Figure 9a
shows Poincaré maps for only one trajectory. The chaotic
nature of this trajectory is confirmed by calculating a
nonzero Lyapunov exponent by using Benettin’s method
(Lichtenberg & Liebermann, 1983; Tabor, 1989; Bourdier
& Michel-Lours, 1994). The two ways to renormalize are
used and compared, Figure 9b shows the good agreement
obtained for the Lyapunov exponents when using the two
renormalization techniques. The fact that we have chaotic tra-
jectories shows that the system is not integrable.

When going back to the laboratory frame, the equations
of Hamilton must be derived through Hamiltonian
(62). In order to reduce the system, two canonical
transformations defined by the following type-2 generating
functions F2 ¼ ~Px � V0=2nð Þŷ

� �
x̂þ ~Py ~y and F2 ¼

P2 þ V0=nð Þ~x½ �~yþ P1 ~xþ nP2=V0ð Þ are performed. The
new Hamiltonian reads

Ĥ ¼ n P1 þ a cos 6ð Þ
2
þ
V2

0

n2
Q2

1 þ P̂2
z þ 1

� �1=2

� P̂z: (74)

The equations of Hamilton are

_P1 ¼ �
V2

0

ng
Q1, _Q1 ¼

n
g

(P1 þ a cos 6),

_̂Pz ¼
an
g

sin 6(P1 þ a cos 6), _6 ¼
nP̂z

g
� 1:

(75)

When the index of refraction is very close to unity, chaotic
trajectories were evidenced by performing Poincaré maps
and calculating Lyapunov exponents (Figs. 10, 11).
Figure 10 shows Poincaré maps obtained with the same

Fig. 10. (Color online) Surface of section plots. V0 ¼ 0.282, a ¼ 4.03. (a)
n ¼ 1. (b) n ¼ 0.999. (c) n ¼ 0.99. (d) n ¼ 0.988. (e) n ¼ 0.95. (f): n ¼ 0.8.

Fig. 11. Lyapunov exponents for two trajectories. V0 ¼ 0.282, a ¼ 4.03. (a)
n ¼ 0.99 (the two ways to renormalize are used). (b) n ¼ 1.

Fig. 9. a ¼ 4.03, V0 ¼ 2. (a) Surface of section plots for one trajectory. (b)
Lyapunov exponent calculated with the same trajectory, the two renormaliza-
tion methods are compared.
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initial conditions in the integrable case when n ¼ 1 and in
nonintegrable cases. The trajectory of the charged particle
changes dramatically when n is close to unity. Figure 11
shows the Lyapunov exponents calculated through Eqs.
(75) for the chaotic trajectory (n ¼ 0.99) and the integrable
one (n ¼ 1).

Considering that the index of refraction of the plasma and
the magnetic field are fixed, when varied in the range (3.88
to 3.9), the trajectory becomes chaotic and suddenly visits
a larger phase space and reaches a higher average energy
(Fig. 12).

A nonzero Lyapunov exponent is also calculated in the
laboratory frame in terms of the ðx̂, P̂x, ŷ, P̂y, ẑ, P̂zÞ variables
confirming the nonintegrability of the problem (Fig. 13).

In order to estimate the effect of the Faraday rotation very
crudely, a slow varying phase is introduced in the expression
of the electromagnetic field. The following Hamiltonian is

considered

Ĥ ¼ n P̂x þ a cos t̂� ẑþ w
� �

�
V0

2n
ŷ

� �2
"

þ P̂y þ a cos t̂� ẑ� w
� �

þ
V0

2n
x̂

� �2

þ P̂2
z þ 1

#1=2

:

(76)

The phase w is assumed to be given by w ¼ 1z where 1 is a
small quantity. Different Lyapunov exponents are calculated
for different values of 1 and are compared to the LyapunovFig. 12. (Color online) V0 ¼ 0.282, n ¼ 0.99. (a) a ¼ 3.9. (b) a ¼ 3.88. (c)

a ¼ 3.86. (a): Surface of section plots for two trajectories. (b): Average
Lorentz factor of the particle versus time.

Fig. 13. (Color online) Lyapunov exponent calculated for one trajectory in
the laboratory frame in terms of the x̂, P̂x, ŷ, P̂y, ẑ, P̂z

	 

variables. V0 ¼

0.282, a ¼ 4.03. (a) n ¼ 0.99, the two renormalization methods are used,
the red circles are obtained by renormalizing dn to d0 every fixed distance
ratio d/d0. (b) n ¼ 0.2.

Fig. 14. (Color online) Lyapunov exponent calculated for some initial con-
ditions. V0 ¼ 0.282, a ¼ 2.85. The two renormalization methods are used;
the circles are obtained by renormalizing dn to d0 every fixed distance
ratio d/d0. (a) n ¼ 0.99, 1 ¼ 0. (b) n ¼ 0.99, 1 ¼ 1024, (c) n ¼ 0.99, 1 ¼
1023, (d) n ¼ 0.2, 1 ¼ 0.
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exponent of a regular trajectory (n ¼ 0.2). For one trajectory,
assuming that 1 is in the range [0–1023], the Lyapunov
exponent increases when 1 increases; chaos increases as
the Faraday rotation becomes more significant (Fig. 14).

3.2.3. The Full Plasma Response Is Taken Into Account
through Plasma Wave Equations

Letting X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 1

p	 

p̂x, Y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 1

p	 

p̂Y and

Z ¼ b p̂z �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p̂2

p
, Eqs. (48) become

dPX

du
¼ �

b3X
D
þ bVp

d
du

Y
D

� �
, (77a)

dPY

du
¼ �

b3Y
D
� bVp

d
du

X
D

� �
, (77b)

dPZ

du
¼ �

b3Z
D
� b2, (77c)

where D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 1þ X2 þ Y2 þ Z2

p
, PX ¼ dX/du, PY ¼

dY/du, and PZ ¼ dZ/du. When Vp ¼ 0, Eqs. (77) can
obviously be derived from the following Hamiltonian

H ¼
1
2

P2
X þ P2

Y þ P2
Z

� �
þ b3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 1þ X2 þ Y2 þ Z2

q
þ b2Z,

(78)

Positive Lyapunov exponents were also calculated for initial
conditions very close to those for which chaos is seen when
only n is considered to take into account the plasma response
(Fig. 15). The fact that the entire plasma response is taken
into consideration spreads out the initial conditions for
chaos to take place (Fig. 16).

4. DYNAMICS OF A CHARGED PARTICLE IN
TWO LINEARLY POLARIZED TRAVELING
ELECTROMAGNETIC WAVES PROPAGATING
IN A NONMAGNETIZED VACUUM

4.1. Compton Resonances

Let us consider a charged particle in a high intensity electro-
magnetic plane wave propagating along the z direction (the
wave vector k0 is parallel to the z direction) perturbed by a
low intensity wave. The high intensity mode 4-potential is
given by Eq. (1).

Fig. 15. (Color online) Lyapunov exponents. (a) Positive Lyapunov expo-
nents calculated by using the two ways to renormalize. H0 ¼ 248.824 [calcu-
lated with Eq. (80)], Vp ¼ 0.01 and b ¼ 3.24. (b) Lyapunov exponent
corresponding to a regular trajectory.

Fig. 17. Compton resonances. a ¼ 5p/6, a ¼ 1, ~v1 ¼ 1.

Fig. 16. (Color online) Positive Lyapunov exponents calculated when Vp ¼

1.999. Each time the distance ratio dn/d0 � 2, the distance dn is renormalized
to d0. (a) H0 ¼ 0.442, b ¼ 1.0101. (b) H0 ¼ 0.449, b ¼ 1.012. (c) H0 ¼

0.814, b ¼ 1.1. (d) H0 ¼ 1.664, b ¼ 1.25.
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Fig. 18. Compton resonances for different values of the parameters. (a) a ¼ p/6, a ¼ 1, ~v1 ¼ 1, (b) a ¼ p/4, a ¼ 1, ~v1 ¼ 1, (c) a ¼ p/6,
a ¼ 4, ~v1 ¼ 1, (d) a ¼ p/6, a ¼ 1, ~v1 ¼ 2

Fig. 19. (Color online) Chirikov criterion: RN,N0 as a function of different parameters when P? ¼ 0. a ¼ 1, a1 ¼ 0.1, (a) Resonances
N ¼ 21 and N ¼ 22, (b) N ¼ 22 and N ¼ 23.

Fig. 20. (Color online) Chirikov criterion: RN,N0 in function of electric field amplitudes when P? ¼ 0. Resonances N ¼ 21 and N ¼ 22.
(a) ~v1 ¼ 1, a ¼ p/6, (b) ~v1 ¼ 1, a ¼ 5p/6.
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In this theoretical part, the perturbing wave is assumed to
have its electric fields in the polarization plane of the high
intensity wave. Considering that the polarization plane of
the high intensity mode is the plane of reference, this situ-
ation is called the P–polarization case.

â1 ¼ a1 cosa sin ~v1t̂� ~k1==ẑ� k̂1?x
	 


êx

� a1 sina sin ~v1t̂� ~k1==ẑ� k̂1?x
	 


êz:
(79)

The Hamiltonian of an electron in the two waves is given by:

Ĥ ¼
1
2
g2 �

1
2

P̂þ aþ a1

	 
2
�

1
2

, (80)

and is approximated by:

Ĥ ¼ �
1
2

M2 þ P2
== þ P2

? � E2
	 


þ Ĥ1 (81)

with

Ĥ1 ¼ P̂þ â
	 


� â1, (82)

A straightforward but cumbersome calculation shows that
(Patin, 2006; Bourdier et al., 2005a, 2005b; Rax, 1992)

~H1 ¼ a1

X
N

VN sin ~k1==wþ ~k1?uþ ~v1fþ N wþ fð Þ

h i
, (83)

where N is a negative integer. When the phase of the sine is
stationary, the perturbation calculation fails to converge
because of the occurrence of a small denominator. On the
basis of the solution of Hamilton-Jacobi in the case of one

Fig. 21. (Color online) Energy of one particle versus time. P-polarization.

~v1 ¼ 1, a ¼ 5p/6, g0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2
p

, (g0 is the initial Lorentz factor). (a)
one wave case, a ¼ 4.0112, a1 ¼ 0. (b) two waves case, a ¼ 4, a1 ¼ 0.3,
h ¼ 1023, (c) two waves case a ¼ 4, a1 ¼ 0.3, h ¼ 1024

Fig. 23. (Color online) Average energy of one particle versus time.
P-polarization. ~v1 ¼ 1, a ¼ p. (a): g0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2
p

. (a) One wave case:
a ¼ 3.0016, a1 ¼ 0. (b) Two waves case: a ¼ 3, a1 ¼ 0.1. (c) Two waves
case: a ¼ 3, a1 ¼ 0.2. (d) Two waves case: a ¼ 3, a1 ¼ 0.3. (b): g0 ¼ 1,
a ¼ 3. (a) a1 ¼ 0. (b) a1 ¼ 0.08. (c) a1 ¼ 0.1, (d): a1 ¼ 0.2, (e): a1 ¼ 0.3

Fig. 22. (Color online) Energy of one particle in two waves versus time.
P-polarization. a ¼ 3, ~v1 ¼ 1, a ¼ p, g0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2
p

. (a) a1 ¼ 0.1. (b)
a1 ¼ 0.25. (c) a1 ¼ 0.3.
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wave, this stationary condition gives the Compton resonance
condition

~k1==P== þ ~k1?P? � ~v1E� N E� P==
� �

¼ 0: (84)

Figure 17 displays P? versus P// restricted to the energy
surface Eq. (19).

4.2. Influence of the Different Parameters. Chirikov
Criterion

Let us show how to choose the different parameters in order
to optimize the stochastic heating. Trajectories are chaotic
when their initial conditions stand in the overlapping
region of two or several resonances.

Figure 18 display the Compton resonances (P? versus P//)
for different situations. They show their influence on the
resonance pattern. Only the first resonances are shown in
these figures. The resonance lines become closer for
growing values of a and ~v1 while higher values of a have
the opposite effect. The resonance lines become symmetric
with respect to the P// axis when a grows. Figures 17 and
18 seem to show that chaos will be optimum when a is
close to p.

At this level, one cannot come to a conclusion as these
behaviors must be compared to the one of the resonance
widths. Only the ratio of the sum of the half-widths of two
resonances over the distance separating them allows a con-
clusion. When this ration is higher than unity, the two reson-
ances overlap, the Chirikov threshold criterion is fulfilled and

Fig. 24. (Color online) Phase space. P-polarization. ~v1 ¼ 1, a ¼ p, (a):

g0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2
p

. (a) One wave case: a ¼ 3.015, a1 ¼ 0. (b): Two waves
case: a ¼ 3, a1 ¼ 0.3. (b): g0 ¼ 1. (a) One wave case: a ¼ 3.0016, a1 ¼ 0.
(b) Two waves case: a ¼ 3, a1 ¼ 0.1.

Fig. 25. (Color online) (a) Energy spectrum in the case of one wave at two
different times. a ¼ 3, a1 ¼ 0, ~v1 ¼ 1,a ¼ p. tL ¼ 50 t0. (a): t ¼ 756 v0

21.
(b): t ¼ 2916v0

21. t. (b) Energy spectrum at two different times in the case
of two waves. P-polarization. a ¼ 3, a1 ¼ 0.3, ~v1 ¼ 1, a ¼ p. tL ¼ 50 t0.
(a): t ¼ 756 v0

21. (b): t ¼ 2916 v0
21.
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trajectories which have their initial conditions in overlapping
region are chaotic. Chaos will be widely spread in phase
space when the Chirikov criterion is satisfied for many reson-
ances. Then stochastic heating can take place. Two reson-
ances only, were considered and conditions for the
Chirikov threshold to be reached were explored. To do
so, the ratio RN,N0 ¼ DP?,==,N þ DP?,==,N0

� �
=dN,N0 where

DP?,//,N þ DP?,//,N0 is the sum of the half-widths of the
resonances and dN,N0 is the distance which separates them
was calculated (Bourdier et al., 2007, 2005a, 2005b; Patin,
2006; Patin et al., 2006, 2005b). Figure 19 show that the
Chirikov criterion is better satisfied when a in is close to
p, in the range (5p/6, 7p/6). The best choice is for reson-
ances N ¼ 21 and N ¼ 22, when ~v1 is in the range
(1, 2). The criterion is also satisfied when ~v1 [ 3:5, 4½ �

and a [ [9p/10, 11p/10]. With respect to the resonances
N ¼ 22 and N ¼ 23, a higher value of ~v1 must be con-
sidered, one must have ~v1 � 1:8.

Figure 20 show the influence on the Chirikov criterion of a
and a1. When a ¼ p/6 (Fig. 20a), the Chirikov threshold can
be reached only outside the scope of this model (a1 , a). It
can be reached, for instance, for a ¼ 4 and a1 ¼ 0.4 when
a ¼ 5p/6 (Fig. 20b).

In summary, the Chirikov criterion will be satisfied when
a is close to p and almost only the resonances N ¼ 21 and
N ¼ 22 can overlap when P? does not equal zero. Extended
chaos can take place in a banana-like surface in the (P?, P//)
phase space.

Fig. 25. (Color online) Continued.

Fig. 27. (Color online) Color map in log scale of the space – time
Fourier transform of the transverse electromagnetic field. P polarization.
The plasma slab is with a thickness of L ¼ 100 mm and a density at Ne ¼

0.01 Nc. tL ¼ 50 t0. A semi-infinite laser pulse is incident with a peak ampli-
tude a ¼ 3.

Fig. 26. (Color online) Electron energy distribution from 1D PIC simu-
lations at different times. P-polarization. The plasma slab is with a thickness
of L ¼ 100 mm and a density at Ne ¼ 0.01 Nc. tL ¼ 9.77 t0. A semi-infinite
laser pulse is incident with a peak amplitude a ¼ 3.
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4.3. Numerical Evidence of Stochastic Heating by
Considering a Single Particle or Plasma

First, stochastic acceleration was seen by considering a single
particle. The normalized energy of the particle was calculated
with a fourth order Runge-Kutta, Figure 21 shows its evol-
ution considering one and two waves. Figure 21a shows
the Lorentz factor when the total intensity is in one wave.
Figures 21b and 21c show the same when the total intensity
is in two waves. Figures 21b and 21c were obtained for two
different integration step sizes (h), the difference between the
two curves is a signature of chaos. Thus, Figure 21 displays
heating associated to chaos.

As it has been shown above that stochastic heating is
close to maximum when a is close to p, consequently,
the case of two counter-propagating waves was specially
considered. Moreover, this 1D configuration allowed us to
perform rapid PIC code simulations. Figure 22 shows the

existence of a threshold for stochastic heating. For one
given value of a, there is a threshold value for a1 so that
significant stochastic heating may take place. For two differ-
ent initial conditions (the initial Lorentz factor is g0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2
p

and g0 ¼ 1) when a ¼ 3, substantial stochastic
heating takes place when a1 is greater than about 0.1 (Figs.
22 and 23).

Figure 24 show the phase space visited by a single particle
when considering two different initial conditions. They show
that when the low intensity counter-propagating wave is
taken into account, particles undergo a stochastic acceleration
in the direction of propagation of the high intensity wave.
Low density plasma kinetic 1Dz3Dv (one spatial coordinate
and three velocity coordinates) PIC simulations were
achieved with the code CALDER partly in order
to confirm the acceleration mechanism predicted by the
single particle approach. A trapezoidal electronic density
profile plasma with a 10 c/v0 slope and a homogeneous

Fig. 28. (Color online) Electron energy distribution from 1D PIC simulations at different time. P polarization. The plasma slab is 100 mm
thick and has a density Ne ¼ 0.01 Nc, tL ¼ 50 t0. Two semi-infinite laser pulses collide with maximum peak amplitudes a ¼ 3. (a) a1 ¼

0.01, (b) a1 ¼ 0.1, (c) a1 ¼ 0.2, (d) a1 ¼ 0.3.
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slab which occupies a region of 100 mm step with a density,
Ne ¼ 1022Nc (Nc is the critical density for a 1 mm laser
wavelength), is considered. The plasma is assumed to have
an initial temperature of 1 keV, ions are supposed to be a con-
tinuous neutralizing background. A quadratic interpolation
shape factor ensuring optimal energy conservation (DE/
E , 1023) given the ratio Dx/lD � 0.25 (Dx is the spatial
step size of each mesh and lD the Debye length) is used. A
very good sampling of the phase space is performed using
two hundred particles per mesh. The laser pulses are
assumed to be two semi-infinite steps with the same 1 mm
wavelength; the peak intensity is reached after some time:
tL. A smooth intensity profile was considered here: tL ¼ 50
t0, where t0 is the time of a laser cycle. Figures 25 exhibit
electron phase space when considering respectively one semi-
infinite laser wave with a ¼ 3 or two colliding waves with
a ¼ 3 and a1 ¼ 0.3, that is to say, when the maximum inten-
sities are I ¼ 1.23 1019 W/cm2 and I ¼ 1.23 1017 W/cm2,
respectively, for the high and low intensity wave.
Figure 25b shows higher densities than Figure 25a along
the Ek,z axis thus confirming acceleration along the propa-
gation direction of the high intensity wave.

Figure 26 shows the electron energy distribution at five
different times, when considering a single semi-infinite
laser pulse with a ¼ 3. In this case, the peak intensity of
the laser pulse is assumed to be reached after tL ¼ 9.77 t0.
The first time t1 ¼ 216 T0 (T0 ¼ v0

21) is when the wave
has covered about 25% of the plasma, the second time
t2 ¼ 414 T0 is when the wave has run through about the
half of the plasma, at t3 ¼ 756 T0 the wave has reached the
plasma boundary. The two last times t4 ¼ 1512 T0 and
t5 ¼ 2916 T0 correspond to situations when the plasma
really interacts with two plane waves. The hot electron tail
reaches a maximum energy well after the wave has crossed
the entire plasma at times close to t4 ¼ 1512 T0. The
maximum energy reached by the distribution function
drops with times as evidenced by the pink curve at t4 ¼

2916 T0. In the physical situation considered here some elec-
trons are trapped in the wakefield until the wave comes to the
plasma-vacuum boundary, this phenomenon is responsible
for the hot electron tail observed in Figure 26 at 1512 T0.
The steep laser pulse gradient creates a wakefield which is
responsible for some electron trapping and acceleration.
The wakefield acceleration is almost ruled out when consid-
ering a smoother laser pulse gradient or lower electron den-
sities. It is also ruled out at lower intensities. The intensity
of Raman backscattering remains about four orders of
magnitude below the one of the high intensity wave
(Fig. 27); consequently, it plays no role in this hot tail
generation.

When considering two counter-propagating laser pulses
(with P polarization), the wakefield acceleration is over-
whelmed when strong stochastic-heating takes place.
Figures 28b, 28c, 28d, show that the threshold amplitude
of the counter-propagating mode is close to a1 ¼ 0.1 in
good agreement with the value predicted by the single

particle approach. Strong stochastic heating is observed
when a1 ¼ 0.3 (Fig. 28d).

The case when the perturbing mode is polarized perpendi-
cularly to the polarization plane of the high intensity wave is
also considered (S-polarization) (Bourdier et al., 2005). This
polarization rules out electron acceleration due to the
Kapitza-Dirac effect (Kapitza & Dirac, 1933; Kotaki et al.,
2004). First, the case when a ¼ 3 and a1 is close to 0.2
was considered. In this case, considering a single particle

Fig. 29. (Color online) Average energy of one particle in two waves versus time.
S-polarization. ~v1 ¼ 1,a¼ p, ~Py ¼ 0.g0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2
p

: (a) a¼ 3.0066, a1¼ 0.
(b) a ¼ 3, a1¼ 0.2. g0¼ 1: (c) a ¼ 3;0066, a1¼ 0, (d) a¼ 3, a1 ¼ 0.2.

Fig. 30. (Color online) Electron energy distribution from 1D PIC simu-
lations at different times. S-polarization. The plasma slab is 100 mm thick
and has a density Ne ¼ 0.01 Nc, tL ¼ 50 t0. Two semi-infinite laser pulses
collide with peak amplitudes. a ¼ 3, a1 ¼ 0.2.
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and many initial conditions, no significant stochastic heating
was found (Fig. 29).

No significant stochastic heating is found performing 1D
(1Dz3Dv ) PIC code simulation considering the same con-
ditions and parameters as in the previous P-polarization
study (Fig. 30).

5. CONCLUSION

The dynamic of a charged particle in a linearly or almost lin-
early polarized traveling high intensity wave that propagates
in a medium has been studied. The problem was shown to be
integrable when the wave propagates in vacuum. When the
wave propagates in plasma, the full plasma response was
taken into account by considering plasma wave equations.
Until now, the apparent absence of chaos for the system
would make it hold pending for the proof of its integrability.
Here, an exhaustive and cumbersome numerical work
allowed us to see chaotic trajectories in the laboratory
frame, showing that the system is not integrable. The same
kind of numerical work was achieved in a special Lorentz
frame where the variables that describe the waves are space
independent. In this frame, at least some chaotic trajectories
fill large volumes in phase space. One very important conse-
quence of the nonintegrability of the plasma wave equations
is that the Hamilton-Jacobi equation cannot be solved. This
implies that, when introducing a perturbing wave in order
to generate stochastic heating, one cannot use a classical per-
turbation method to predict resonances and apply Chirikov
criterion.

Then, the wave was assumed to propagate along a constant
homogeneous magnetic field in vacuum or in plasma. Two
constants, which are canonically conjugate, were found.
This property was used to reduce the initially three degrees
of freedom problem to two degrees of freedom problem.
The system was integrated. Then, in order to study the
plasma response in the case of a very high intensity wave
propagating in low-density plasma, it was assumed first,
that the wave remains linearly polarized. Performing a
Lorentz transformation eliminated the space variable corre-
sponding to the direction of propagation of the wave. Just
like in the laboratory frame, two canonically conjugate con-
stants were used to reduce the initially three degrees of
freedom problem to two degrees of freedom problem.
Thus, Poincaré maps are performed. Lyapunov exponents
are also calculated to confirm the chaotic nature of some tra-
jectories. Consequently, the system is not integrable and
chaos appears when the plasma response is taken into
account.

Finally, the interaction of low density plasma with a high
intensity plane wave perturbed by a counter-propagating
electromagnetic plane wave has been studied. The stability
of a single particle interacting with two waves was studied
first. The solution of Hamilton-Jacobi equation, in the case
of a single particle interacting with one wave, is used to
identify resonances. The effect of the different parameters

was briefly described by using the Chirikov criterion.
Stochastic heating is seen by computing single particle
energies. Finally, considering plasma, PIC simulations
results obtained with the code CALDER validate the theor-
etical model for experimentally relevant parameters.
Significant stochastic heating can take place in the
P-polarization case. Considering the same parameters, no
stochastic heating was seen in the S-polarization case. It
was shown that a threshold in intensity exists for the low
intensity wave when the intensity of the high intensity
mode is fixed.
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