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ON EQUIVALENCE RELATIONS INDUCED BY POLISH
GROUPS ADMITTING COMPATIBLE TWO-SIDED
INVARIANT METRICS

LONGYUN DING"® AND YANG ZHENG

Abstract. Given a Polish group G. let E(G) be the right coset equivalence relation G“ /¢(G). where
¢(G) is the group of all convergent sequences in G. We first established two results:

(1) Let G, H be two Polish groups. If H is TSI but G is not, then E(G) £p E(H).

(2) Let G be a Polish group. Then the following are equivalent: (a) G is TSI non-archimedean;
(b)E(G) <p E{:and (c) E(G) <p R®/co. In particular, E(G) ~p Ef iff G is TSI uncountable
non-archimedean.

A critical theorem presented in this article is as follows: Let G be a TSI Polish group, and let H be a
closed subgroup of the product of a sequence of TSI strongly NSS Polish groups. If E(G) <p E(H). then
there exists a continuous homomorphism S : Gy — H such that ker(S) is non-archimedean, where G is
the connected component of the identity of G. The converse holds if G is connected, S(G) is closed in H,
and the interval [0. 1] can be embedded into H.

As its applications, we prove several Rigid theorems for TSI Lie groups, locally compact Polish groups,
separable Banach spaces, and separable Fréchet spaces. respectively.

§1. Introduction. In recent years, logicians have achieved remarkable research
outcomes in descriptive set theory, specifically in the investigation of the relative
complexity among equivalence relations originating from various branches of
mathematics, utilizing Borel reducibility. Polish groups and their actions play a
crucial role in this research direction. Concurrently, researchers also aim to employ
Borel reducibility among equivalence relations to characterize the properties of
Polish groups.

The authors introduced in [5] the notion of equivalence relations induced by Polish
groups: given a Polish group G, the equivalence relation E(G) is defined on G as:

xE(G)y +<— lirllnx(n)y(n)’1

converges in G,

for x, y € G®. These equivalence relations have shown great potential in character-
izing properties of Polish groups. In fact, based on the results on Borel reducibility
involving the equivalence relation E(G), we can accurately determine the classes to
which certain Polish groups G belong. For instance, (1) G is countable discrete iff
E(G) ~p Eo; (2) G is non-archimedean iff E(G) <z="; and (3) if H is CLI but G
is not, then E(G) £ E(H) (see [5]). Additionally, the authors further established
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2 LONGYUN DING AND YANG ZHENG

results in [6] on Borel reducibility among equivalence relations induced by locally
compact abelian Polish groups, including a Rigid Theorem.

TueoreM 1.1 (Rigid Theorem, [6, Theorem 2.8]). Let G be a compact connected
abelian Polish group and H a locally compact abelian Polish group. Then E(G) <p
E(H) iff there is a continuous homomorphism S : G — H such that ker(S) is non-
archimedean.

In this article, we shift our focus to TSI Polish groups. i.e.. those that admit
compatible complete two-sided invariant metrics. Firstly, the Borel reducibility
among equivalence relations induced by Polish groups can accurately distinguish
non-TSI and TSI Polish groups. Actually, we have concluded that:

THEOREM 1.2. Let G, H be two Polish groups. If H is TSI but G is not, then
E(G) £p E(H).

To elucidate the research significance of equivalence relations induced by Polish
groups, we compare them with benchmark equivalence relations such as Ey, Ef.
R® /¢y, etc. (definitions of these benchmark equivalence relations can be found in
the next section).

Surprisingly, we prove that there is NO Polish group G such that

Eg) <B E(G) <p Rw/(}o.

In stark contrast, Farah proved that the partially ordered set P(w)/Fin can be
embedded into Borel equivalence relations between Ef and R” /¢ (see [7. Theorem
5.4)).

The above results stem from the following more precise theorem.

THEOREM 1.3. Let G be a Polish group. Then the following are equivalent:
(1) Gis TSI non-archimedean:
(2) E(G) <p EY: and
(3) E(G) <3 R?/co.
In particular, E(G) ~pg E§ iff G is TSI uncountable non-archimedean.

To generalize the Rigid Theorem for locally compact abelian Polish groups
mentioned above, we shall first generalize [5, Theorem 6.13] to a highly technical
theorem, namely the Pre-rigid Theorem (the statement of this theorem is too lengthy
to include in the introduction). The Pre-rigid Theorem and all its applications involve
a notion named strongly NSS Polish groups. A Polish group G is called strongly NSS
if there exists an open neighborhood V of 15 in G such that

V(gn) € G (gn - 1o = Tng < - < g (Gny - &n, EV))-

We employ the Pre-rigid Theorem to prove the following theorem, where Gy is
the connected component of 14 in G.

THEOREM 1.4. Let G be a TSI Polish group, and let H be a closed subgroup of
the product of a sequence of TSI strongly NSS Polish groups. If E(G) <z E(H),
then there exists a continuous homomorphism S : W — H such that ker(S) is non-
archimedean, where W 2 G is a countable intersection of clopen subgroups in G.

Moreover, the converse holds if G = W, S(G) is closed in H, and the interval [0, 1]
can be embedded into H.
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ON EQUIVALENCE RELATIONS INDUCED BY TSI POLISH GROUPS 3

Several applications of the Pre-rigid Theorem and the above theorem are listed
below.

THEOREM 1.5. Let G be a TSI Polish group, and let H be a closed subgroup of the
product of a sequence of TSI strongly NSS Polish groups. If H is totally disconnected
but G is not, then E(G) <5 E(H).

Recall that a Lie group is a group which is also a smooth manifold such that
the group operations are smooth functions. Let G be a Lie group, then Gy is an
open normal subgroup of G. A completely metrizable topological group G is called
a pro-Lie group if every open neighborhood of 14 contains a normal subgroup N
such that G/N is a Lie group (see [9, Definition 1]).

THEOREM 1.6. Let G, H be two TSI Polish groups such that H is a pro-Lie group.
IfE(G) <p E(H), then there exists a continuous homomorphism S : Go — H such
that ker(S) is non-archimedean.

Moreover, the converse holds if G is connected and S(G) is closed in H.

The following theorem is a generalization of Theorem 1.1. It should be emphasized
that all locally compact TSI groups are pro-Lie groups.

THEOREM 1.7 (Rigid Theorem for locally compact TSI groups). Let G be a locally
compact connected TSI Polish group and H a TSI pro-Lie Polish group. Then E(G) <p
E(H) iff there exists a continuous homomorphism S : G — H such that ker(S) is non-
archimedean.

Note that a topological group G is a Lie group iff it is locally compact and there
exists an open neighborhood V of 14 in G such that no non-trivial subgroup of G
is contained in V. This leads to a positive answer to [5, Question 7.4] as follows:

TueoreM 1.8 (Rigid Theorem for TSI Lie groups). Let G, H be two separable
TSI Lie groups such that G is connected. Then E(G) <p E(H) iff there exists a
continuous locally injective homomorphism S : G — H.

All separable Fréchet spaces, i.e., separable completely metrizable topological
vector spaces, can be viewed as abelian Polish groups under the addition operation.

TueorEM 1.9 (Rigid Theorem for Fréchet spaces). Let X, Y be two separable
Fréchet spaces such that Y is a closed subgroup of the product of a sequence of TSI
strongly NSS Polish groups. Then E(X) <p E(Y) iff X is topologically isomorphic
to a closed linear subspace of Y.

All Banach spaces are Fréchet spaces. We point out that a separable Banach space
X is not strongly NSS iff it has a closed linear subspace topologically isomorphic to
¢o. This implies that:

TueoreM 1.10 (Rigid Theorem for Banach spaces). Let X, Y be two separable
Banach spaces such that Y contains no closed linear subspaces topologically isomorphic
tocy. Then E(X) <p E(Y)iff Xis topologically isomorphic to a closed linear subspace
of Y.

In addition, we attempt to study some examples induced by totally disconnected
TSI Polish groups. For p € [1,4+00) and a € ¢y, let

Ii={ncew:an)#0}, A,,={vel,:Vn(v(n) €aln)z)}.
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4 LONGYUN DING AND YANG ZHENG

If 1, is infinite, then 4,, is a totally disconnected, strongly NSS abelian Polish
group, but is not non-archimedean. In particular, we let d(n) = 27", and define
Ap=A,g={vel,:Vn(v(n) € 2"Z)}.
THEOREM 1.11. For p.q € [1.+00) and a € cy. the following hold.:
(1) if 1, is a nonempty finite set, then E(A,,) ~p E:
(2) if 1, is infinite, then E(A,,) ~p E(A)):
(3) E(4,) <p E(l,):
(4) E(4,) <p E(lq) < p=gq:and
(5) E(4,) <p E(4y) <= p=gq.

This article is organized as follows. In Section 2, we recall some notions in
descriptive set theory and also recall some notions and results originated from
[5] that will be repeatedly used in this article. In Section 3, we prove Theorem 1.2. It
is worth noting that some notation defined in this section will continue to be used in
Section 5. In Section 4, we prove Theorem 1.3. In Section 5, we prove the Pre-rigid
Theorem, which will serve as the foundation for the subsequent sections. In Section
6, we prove Theorems 1.4-1.10. Finally, in Section 7, we prove Theorem 1.11.

§2. Preliminaries. In this article, all groups are assumed to contain at least two
elements. Any linear space can be viewed as an abelian group. The addition operation
in it, as well as in all its subgroups, is denoted by +, and its identity element is
denoted by 0. Unless otherwise specified, for any abstract topological group G, we
use multiplicative notation to express the group operation, and 15 to express the
identity element of G.

Given a topological group G, the connected component of 1 is denoted by Gy,
which is clearly a closed normal subgroup of G. Note that G is totally disconnected
iff Gy = {1¢}. It is worth noting that any open subgroup H of G is also closed, since
H=G\{gH:g¢ H}

A topological space is Polish if it is separable and completely metrizable. For
further details in descriptive set theory, we refer to [13]. We say a topological group
is Polish if its topology is Polish. Consider a Polish group G and a Polish space X. A
continuous action of G on X, denoted by G ~ X, isacontinuousmapa : G x X —
X which satisfies that a(lg,x) = x and a(gh. x) = a(g.a(h.x)) for g.h € G and
x € X. For brevity, we write gx in place of a(g, x). The orbit equivalence relation
E} is defined as

XEly <= Jg € G(gx=y).

A Polish group is non-archimedean if it has a neighborhood basis of the identity
element consisting of open subgroups. A metric d on a group G is left-invariant if
d(gh,gk) =d(h.k)forallg. h.k € G;we also define right-invariant metric similarly.
We say that d is two-sided invariant if it is both left-invariant and right-invariant. The
Birkhoff-Kakutani theorem asserts that every metrizable topological group admits
a compatible left-invariant metric (see [8, Theorem 2.1.1]). We say a Polish group G
is CLI if it admits a compatible complete left-invariant metric; and say G is TSI if it
admits a compatible two-sided invariant metric. A compatible two-sided invariant
metric on a Polish group is necessarily complete (see [8, Corollary 2.2.2]). Clearly,
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ON EQUIVALENCE RELATIONS INDUCED BY TSI POLISH GROUPS 5

every TSI Polish group is also CLI. All compact or abelian Polish groups are TSI,
and all locally compact Polish groups are CLI (see [8, Exercises 2.1.8 and 2.2.5]).

Given two equivalence relations £ and F on two sets X and Y respectively, we say
amap f : X — Y isan (E, F)-homomorphism if

xEy = f(x)Ff(y)
for any x, y € X. Moreover, f is called a reduction of E to F if
xEy <= f(x)Ff(y)

for all x,y € X. In particular, if both X, Y are Polish spaces, we say E is Borel
reducible to F, denoted by E <p F, if there exists a Borel reduction of E to F. We
write E ~p F ifboth E <p F and F < E hold; and write £ < F if E <p F and
F £ E. We refer to [8] for background on Borel reducibility.

We recall some benchmark equivalence relations in the research of Borel
reducibility. The equivalence relation E on 2 is defined as

xEyy <= ImV¥n > m(x(n) = y(n)).

If E is an equivalence relation on a Polish space X, we define an equivalence relation
E® on X® as

xE®y <= Vn(x(n)Ey(n)).
The equivalence relation R” /¢y on R is defined as
xR”/cyy <= limx(n)—y(n) =0.
n

Now we recall the definition of equivalence relations induced by Polish groups
as below, and list some relevant notions and results that will be repeatedly used
throughout the rest of this article.

DEerINITION 2.1 [5, Definition 3.1]. Let G be a Polish group. We define an
equivalence relation E(G) on G® as: for x. y € G?,

xE(G)y <= limx(n)y(n)" converges.
n

We say E(G) is the equivalence relation induced by G. Moreover, we define ¢(G) =
{x € G : lim, x(n) converges}. Then we have

XE(G)y < xylec(G) < ¢(G)x =c(G)y.

For TSI Polish groups G, it is more convenient to take the following E,(G) as
research object than E(G).

DEerNITION 2.2 [5. Definition 6.1]. Let G be a Polish group. We define an
equivalence relation E,(G) on G® as: for x, y € G®,

xXE,.(G)y +<— liznx(O)x(l) x(n)y(n) ™ y(1)7'y(0)! converges.

It is trivial that E(G) ~p E.(G) (see [6. Proposition 2.2]). In this article, we will
use these two equivalence relations interchangeably without further explanation.
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6 LONGYUN DING AND YANG ZHENG

For brevity, we define

(e p)lpy = x(m) - x(n)y(n) ™ - p(m)!

for x,y € G” and m < n. It is clear that

XE,(G)y <= lim(x,y)|; converges.
n

Let G be a TSI Polish group and d a compatible complete two-sided invariant
metric on G. Define for the sake of brevity

d(x. Y)lpmns1) = d(x. ) |pmny = d(x(m) - x(n). y(m) --- y(n))
for x,y € G® and m < n. Clearly, we have d (x. y)|jmn = d(1g. (x. y)|7).

ProposiTION 2.3 [5, Proposition 3.4]. Let G, H be two Polish groups. If G is
topologically isomorphic to a closed subgroup of H, then E(G) < E(H).

LEmMA 2.4 [5, Lemma 6.2]. Let G be a TSI Polish group, d a compatible complete
two-sided invariant metric on G.

(1) Forgo,....&n ho..... hy € G, we have

n

d(go-gn hohy) =d(goguhy o' 1) <Y d(gr. ).
k=0

(2) For x,y € G, we have

xE.(G)y <= limsupd(x,y)|pmn = 0.

m p>m
(3) Forx,y € G, if xE,.(G)y, thenlim, d(x(n), y(n)) = 0.

Now we recall the notion of additive reduction and a powerful lemma which
converts a Borel reduction to an additive reduction.

DEFINITION 2.5 (Farah [7]).

(1) Amapy : [, X» — [1, X, isadditiveifthereexist0 = lp < [} < - < [; < -
and maps 7 : X; — l_[”e[lj>1j+1) X, such that, for x € [], X,.

y(x) = To(x(0))"T1(x(1))" T2(x(2))" - .

(2) Let E and F be two equivalence relations on [], X, and [], X, respectively.
we say that E is additive reducible to F, denote by E <4 F, if there exists an
additive reduction of E to F.

Let E be an equivalence relation on [[, X,. and let / C w be infinite. Fix an
element w € [,4; Xy For x € [],¢; X, define x @ w € [], X, as: (x @ w)(n) =
x(n)forn € I and (x ® w)(n) = w(n) forn ¢ I. We define E|¥ on [],., X, as: for

nel
x.y €[l,er X

XE|}y &= (x®w)E(y ®w).
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ON EQUIVALENCE RELATIONS INDUCED BY TSI POLISH GROUPS 7

Let (F,) be a sequence of finite sets. A special equivalence relation Eo([], Fy)
defined as: for x, y € [], Fu.

xEy <1_[ Fn> y <= dmVn>m(x(n) = yh)).
n

LemMaA 2.6 [5, Lemma 6.9]. Let E be a Borel equivalence relation on [, F, with
Eo([1, Fu) C E. where all F, are finite sets. Let H be a TSI Polish group. If E <p
E.(H), then there exist an infinite set I C w and a w € Hﬂ%’ F, such that E|} <4
E.(H). In other words, there are natural numbers 0 = ny < ny < ny < - with I =
{nj:jew}.0=h<lh<h<--. maps Ty, : Fp, — H'i+75 and y - I, Fr —
H® with

nel

w(x) = Ty (x(0)) " Ty (x(11)) " Ty (x(m2)) "
such that y is an additive reduction of E| to E.(H).

The following notions and results are not directly presented in [5], but ideas of
them have already appeared in it.

DErFINITION 2.7. Given two sets X, Y andamap S : X — Y, we define two maps
S® X 5 Y?and S*: X® = Y9 x X? as:forx € X? and n € w,

§?(x)(n) = S(x(n)).
S*(x) = (S”(x). x).

For any metric space (M, d), recall that E(M:;0) is an equivalence relation on
M? (see [3, Definition 3.2]) defined as: for x, y € M®,

E(M:0)y < li’gnd(x(n),y(n)) =0.

Note that, for any Polish group G, the equivalence relation E (G 0) is independent
of any choice of left-invariant compatible metric d on G, since d (x(n), y(n)) — 0
iff x(n)'y(n) — 1¢.

ProposiTION 2.8. Let G, H be two TSI Polish groups, and let S : G — H. Then
the following are equivalent:

(1) Forall x.y € G, iflim, x(n)'y(n) = 1g. then
XE(G)y <= S?(x)E.(H)S(y).
(2) S*# is a reduction of E,.(G) to E,.(H) x E(G:0).
ProOF. This is an easy corollary of Lemma 2.4(3). -
LeEMMA 2.9. Let G, H be two TSI Polish groups such that E.(G) <p E.(H) x

E(G:0). If the interval [0, 1] can be embedded into H, or E(G;0) <p E(H:0) holds,
then we have E.(G) <p E.(H).

PrOOF. By [3. Theorem 3.4(ii)], we have E(G:;0) <p E([0.1];0).

Let f:[0,1] - H be an embedding. By the uniformly continuity of f and
71 £([0.1]) — [0, 1], we see that E([0.1]:0) ~z E(f([0.1]);:0) < E(H:0). So
E.(G) <p E.(H) x E(H:0).

Finally, by [5, Lemma 6.3], we obtain E,(H) x E(H:0) <p E,(H). -
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8 LONGYUN DING AND YANG ZHENG

§3. Non-TSI vs TSI Polish groups. In this section, we show that we can use Borel
reducibility among equivalence relations induced by Polish groups to characterize
the class of TSI Polish groups.

Let G be a CLI Polish group, H a TSI Polish group. Suppose that d, is a
compatible complete left-invariant metric on G and dp is a compatible complete
two-sided invariant metric on H. Put dg(g.g’) = d/(g'.(g') ") forg.g’ € G. Itis
trivial to check that d¢ is a compatible complete right-invariant metric on G.

Assume that E,(G) <p E.(H). Let (F,) be a sequence of finite subsets of G such
that

(1) lg e F, = F;l;
(ii) F', C F,:and
(iii) U, Fu is dense in G.
Denote by E the restriction of E.(G) on [], F,. By Lemma 2.6, there exist a
w € ]_[n¢, F, and natural numbers 0 =ng < ny <np, < --- with I ={n; : j € o},

0=l <h<h<-- mapsTy :F, — H'iv17li and y : [1,e; Fr — H® with

w(x) = Ty (x(n0)) " T, (x (1)) Ty (x (m2)) " -+,

such that y is an additive reduction of E|¥ to E,(H ).
Put u,, = 1. and for j > 0, let

Uy, =w(nj + 1) wln; -1).

J

By (i) and (ii), u,;jl_ € F,, foreach j € o.

Define xo € [],.; F» as

nel

1

xo(n;) = Uy (Vj € w).

We may assume that y(xy) = 1y, otherwise we can replace w with the following
y'forx € [[,c; Fanand k € 0,

' (x)(k) = w(x0)(0) -+ w(xo)(k — Dy (x) (k) (x0) (k)™ y(x0)(0) "
Clearly. (y(x). w (P& = (y/(x).v'(»))

w(X)E.(H)y(y) <= y'(x)E.(H)y'(y)

holds for x. y € [],c; Fu- Hence y' is an additive reduction of E[} to E,(H) with
w'(x0) = 1y, as desired.
For s = (h..... ;1) and t = (h{.....h] ) in H', we define
dif(s.1) = max dy(h; - hy, hl--h),).

0<i<m<l

’5, so we have

For any integer j > 0and g € Fy. it is worth noting that
ul;jlg = w(nj — 1)71 .--’w(l/l_,;] + 1)71g S Fn’é/‘—l - Fnj~
LemMA 3.1. For any q € . there exists ad, > 0 such that

Vonelvg.g € Fui(de(g.g') <y = di(Tu(u,'g). Tu(u,'g")) < 279).
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ON EQUIVALENCE RELATIONS INDUCED BY TSI POLISH GROUPS 9

PrOOF. If not, then there exist an gy > 0, a strictly increasing sequence (j; ). and
8k- & € F”fk*‘ for each k. such that

1
(u njk

Since dg is right-invariant, we have lim; g; g,;l = lg. We shall inductively find a
strictly increasing sequence of natural numbers ko < k; < --- so that

de(gr.gp) <27V de(T,

njk gk)s Tnjk (u gl’c)) Z 80'

-1
njk

-1 -1 -1 -1 -
dG(g/’co g]ip 1gkp . '“gko’g]/(o ...g]/(pgkp ...gko) < 2 P

for each integer p > 0. Put ko = 0 first. Assume that k. ..., k,_; have been found.
By the continuity of group operations, there is some > 0 such that, for g,g’ € G
with dg(16.¢'g™") < . we have

-1 -1 1,1 -1 -
dc(Sky 8k, 168k, |~ Sky-8ky " 8k, 188 8k, 8ky) <27
Then we can find a k, > k,; large enough so that dG(lg,g,’cpg,;;) < 0. This

completes the induction. It follows that, for m > p, we have

m
dG(g//CO.g]/(pgl;i..g/;é’gllco.g]/(mg/;i’.glgé) < Z 2*1 <2*[7

i=p+1
Since dg is complete, we get that
: 4 eS| -1
111r7n ko " 8k, 8k, 8k, converges.
Foreachn € I, put
1yt -1
u . n=mnj, . u, gk,, H=nj .
x(n) =1 S Ty = &
u,, otherwise, u,, otherwise.

For any n > e let p, be the largest p such that i, < n. Note that
(x ®w.y DG = gty &y 8epy Sy
so (x ®w)E.(G)(y ® w). But for each p € w. if k = k. then

max  di (). y ()l = di (T, (0} g0). T,

ljk §i§m<ljk+1

(15! £0) > 0.
So w(x)E,(H)w(y) fails, contradicting that y is a reduction. 4

DEriNiTION 3.2. For any g € Un F,.if g € F, for some n < n;, then u;,jl,g S F,,j,
so Ty, (u;ll_g) € H'i+1”li This allows us to define

Sy (&) = T, (1, €)(0) - T, (1, @) (U1~ 1; 1) € H.
Recall that w(xy) = 15, this implies that
Sn;(16) = T (1, )(0) - Ty () (L1 = 1; = 1) = 1y
forall j € w. Itisclear that, for g, g’ € F, withn < n;,
dir(S)(8). S0, () < diF (T, (1,1 g). Ty, (1),
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10 LONGYUN DING AND YANG ZHENG

Lemma 3.3, Let x.y €[], Fu such that lim;dg(x(n;).y(n;)) =0 and
x(n). y(n;) € Fy,y for all j > 0. Then

v(x"E,(H)y(y') < li}n(l//(x/), l//(y/))|(l{71 converges,

where x'(n) = u,'x(n), y'(n) = u,' y(n) foralln € I.
Proor. If y(x')E.(H)y(y’).thenlim,(w(x’). w(y’))|5 converges. In particular,
lim; (w (x'), w(y’))|éiflconverges.
/j

Conversely, suppose lim; (y (x”). w(y"))|{ ! converges. For any ¢ € w. by Lemma
3.1, there is a d, € w such that

V>®n € IVg.g' € Fuy(dg(g.g') <3y = dif (T(u,'g). Tu(u,'g’)) < 279).

Sincelim; dg(x(n;), y(n;)) = 0and x(n;). y(n;) € F,, 1 foranyinteger j > 0, there
exists a jo € w such that

Vj > jo(d (T, (e, x(n))). Ty, (1, v (7)) < 279).

Then for any j, k € w with j > joand [; < k <y, since dy is two-sided invariant,
we have

diy (). DI D I = di(w (). w ("Dl
< dip (T, (x"(n))). Ty (v' ()
<279,

So by the convergency of lim; (y (x'). w(y’)) |IO"71, we obtain that

fim (y (x'). (")) converges,

and hence v (x")E.(H)y(y'). -

The following proposition may be well known. We provide a proof here for the
convenience of readers.

ProposITION 3.4 (folklore). Let G be a Polish group. Then G is TSI iff for all
sequences (g,) and (g),) in G. we have

li}r)ngpg; =1l &= li}r)ng‘f,gp = lg.

Proor. Suppose G is TSI, and let dg be a compatible complete two-sided
invariant metric on G. Then we have dg(1¢.g,¢)) = de(g,'.g)) = do(1c.g)g).
solim, g,g, = l¢ <= lim, g,g, = lg.

On the other hand, fix an open neighborhood basis (V,) of 1. We claim that

Vn3m, Vg € G (gV,,g ' C V).

If not, there exist an ny and two sequences (g,). (%,) in G such that lim, &, = 1¢.
but g,h,g,' ¢ Vy, for each p € w. Put g, = h,g,'. It is clear that lim, g/g, = 1¢.
but g,g, + lg. which is a contradiction.
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ON EQUIVALENCE RELATIONS INDUCED BY TSI POLISH GROUPS 11

Now we put U, = | e ng,,g’l. Note that U, C V,, for each n € w. Therefore,
(U,) is also an open neighborhood basis of 15 with gU,g ! = U, forall g € G and

n € w. By [8, Exercise 2.1.4], G admits a compatible two-sided invariant metric.
Hence G is TSI (see [2, Corollary 1.2.2]). -

THEOREM 3.5. Let G, H be two Polish groups. If H is TSI but G is not, then
E(G) £p E(H).

PrROOF. Assume toward a contradiction that E(G) < E(H). By [5. Theorem
4.3], it suffices to consider the case that G is CLI. Let d; be a compatible complete
right-invariant metric on G and dy a compatible complete two-sided invariant metric
on H.

We use the notation defined earlier in this section.

Since G is not TSI, by Proposition 3.4, there are two sequences (g,). (g;,) of
elements of G such that lim, g;,gp = lg, but gpg;, - 1¢. Since dg is right-invariant,
lim, dg (gl’,, g [;1) = 0. By transferring to a subsequence, we may assume that, there
isad > 0 such that inf, dg (1. g,g,) > 9.

Since |, F» is dense. by perturbation, we may assume that {g,.g,: p € w} C
U, Fu. By Lemma 3.1 and Definition 3.2, we can find two sequence (p(i)) and
(¢(i)) of natural numbers so that

(i) g ) € B,
(i) d ( ,NH( (,))S 1 (&y(n)) <27rand
(iii) foreachi € w, O<p() qli) <qli)+1 < p(i+1).

For each n € I, define

-1

uy, gp( ) =Ny unlgpgi)’ n= Ny
x(n) =13 u,'g by M= Mg y(n) = Uy &, = Ng(i)4rs
u! otherwise, u ! otherwise.

n >’ n

For j € w. by letting i, = S, (u,,x(n;)) and h; = S, (un; y(n;)). we have

11
W)y = by iy by

Fori € wand m > j > ¢(i) + 1., it follows from (ii) and Lemma 2.4(1) that

dp (W) - By by ) < 27K < 27

k>i

Now by Lemma 2.4(2),

lim(y (x). 1//()/))|g"“71 =limhg - hih;' - hy' converges.
J j
Note that lim; dg (g;(l.), g;%i)) = 0. So by Lemma 3.3, we have

w(x)E.(H)w(y).
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12 LONGYUN DING AND YANG ZHENG
and hence (x ® w)E,(G)(y ® w). In particular,
lilr_n(x Dw,y D w)|g"(”+1 = lilrngp(0>g‘;(0) ~-~gp(i)g;<l.) converges.
Therefore, it follows that
lim ,,1)2,;) = m(g,018(0) * Ept-1)8p-1) Ep(& (o) € 8pi) = -

We obtain a contradiction. =

§4. A gap between £ and R®/co. In this section, we prove that there is NO
Polish group G satisfying that

E((ja <B E(G) <p R(U/Co.

To do so, we need the following notions. The author [4] defined equivalence relations
E(X. (x,)) and R®/cs. Let (x,) be a sequence in a Banach space X. We define an
equivalence relation E (X, (x,)) on R® as: for any a, b € R®,

(a.b) € E(X. (x,)) < Z(a(n) — b(n))x, converges in X.

The equivalence relation R” /cs is defined as: for any a, b € R?,

(a.b) e R”[cs — Z(a(n) — b(n)) converges in R.

The following lemma is an easy corollary of [4, Lemma 4.2].

LEMMA 4.1. Let E be a Borel equivalence relation on [, F, with Eo([], Fu) C E.
where all (F,) are finite sets. If E <p R® /¢y, then there exist an infinite set I C w and
aw € [,g; Fusuch that E[f <4 R”/c.

n
Proor. Let e, = (0.....0,1,0,...) for each integer n > 0. Then (e,) is the
canonical Schauder basis of c¢y. Note that E(co, (e,)) = R®/co. By applying [4,
Lemma 4.2] to E(co. (e,)). we conclude the proof. =

THEOREM 4.2. Let G be a Polish group. If E(G) <p R®/cy, then G is TSI non-
archimedean.

PrROOF. Suppose E(G) <p R?/cy. Note that R” /¢y <p R?/cs = E.(R) (see [4,
Theorem 5.9(i)]). By Theorem 3.5, G is also TSI. Let dg be a compatible complete
two-sided invariant metric on G. Put V, = {g € G : dg(15.g) < 27F}.

Assume for contradiction that G is not non-archimedean. Then thereisa K € w
such that Vx contains no open subgroups of G. Itis clear that V; = V- land U, V"
isan open subgroup which is not contained in V. So there exists n;, > 0 with V,:" kg
Vk for each k. We can find gio. ..., km,-1 € Vi such that gxo - gxkm,1 ¢ Vk. Put
hj = giifor j =3",_, m + i with i < my. Then we have lim; #; = 1. By Cauchy
Criterion,

lim A --- h; diverges.
J
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ON EQUIVALENCE RELATIONS INDUCED BY TSI POLISH GROUPS 13

Assume that E,(G) <z R?/cy. Let (F,) be a sequence of finite subsets of G such
that

(i) 1g.ho € F, = F, "

(ii) F', C F,:and

(iii) forn > 0,h, € F, 1.
Denote by E the restriction of E,(G) on [], F,. By Lemma 4.1, there exist an
infiniteset / Cwandaw € ]_[n g1 Fnsuch that E|7 <4 R?/co. So there are natural
numbers0 =ny <ny <ny <---withl ={n;: jew},0=10 <l <l <--,maps

Ty, @ Fy, — R+l and y 2 [],c; Fr — R® with

w(x) = Ty (x(n0)) ™ T, (x(11)) ™ Ty (x (n2))”

such that y is an additive reduction of E|}/ to R”/c.
Put u,, = 1¢. and for j > 0, let

tp; = w(njg+1)-wln; - 1),

Assume again for contradiction that there are £y > 0 and natural numbers 0 <
j(0) < j(1) < - < j(p) < - such that

, _ -1 >
okt )ITM,)( w1 (6) = Ty G ()| = eo.
By lim, /;,) = lg. we can find natural numbers py < p; < -+ < p; < s0

that dG(lg,h ) <27 for each i € w. Thus (/ “hj(p)) is dg-Cauchy, so

J(po)

lim; 72 - h_,(pi) converges. For each n € I, put xo(n) = u,,' and
u, ¢ n=n;
/ — j(pi) i(pi)>
yo(n) { u,;l, otherwise.
For any n > n;(, ). let i, be the largest i with n;(, ) < n. Then

(o & w. xo w5 = hj(po )
and thus (y) ® w)E.(G)(xo ® w). Note that for all i € w,
max [y (yg)(k) — w(xo) (k)| > eo.

Lip) SK<Lj(py 1

So y (p))R® /cow (xo) fails, which is a contradiction.
Therefore, for all € > 0, we have

WV € (0.1~ 1) (1T, (i ) () = T () ()] < ).
Foreachn € I, put yo(n) = u;lhj, where n = n;. Then we have
w(¥o)R” /eoy (xo0).
and hence (yy ® w)E.(G)(xo © w). In particular,

lim(yo @ w. xo @ w)|y’ = lim /g -+ h; converges.
J J

This leads to a contradiction. -

Building upon previous results, we establish the following theorem.
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14 LONGYUN DING AND YANG ZHENG

THEOREM 4.3. Let G be a Polish group. Then the following are equivalent:

(1) Gis TSI non-archimedean;
(2) E(G) <p E{: and
(3) E(G) <p R?/cy.

In particular, E(G) ~p EJ iff G is TSI uncountable non-archimedean.

Proor. (1) = (2) follows from [5. Theorem 3.5]. (2) = (3) follows from
[8, Lemma 8.5.3]. (3) = (1) follows from Theorem 4.2.

Again by [5. Theorem 3.5]. we see that E(G) ~p E{ iff G is TSI uncountable
non-archimedean. =

The equivalence relation R” /¢ on R® is defined as
(a.b) eR”/c < li}gna(n) — b(n) exists.
Note that R® /¢y <z R®/cs = E.(R) (see [4, Theorem 5.9(i)]) and E(R) = R®/c.
The results of this section make the following question very interesting.
QUESTION 4.4. For any Polish group G, does it hold that
E(G)<p E(R) < E(G) <p EJ?

§5. The Pre-rigid Theorem on TSI Polish groups. In this section, we prove a highly
technical theorem, namely the Pre-rigid Theorem, which will serve as the foundation
for the subsequent sections.

We say that a topological group G has no small subgroups, or is NSS, if there
exists an open subset V' 5 1g in G such that no non-trivial subgroup of G is
contained in V.

To generalize [5, Theorem 6.13], we introduce the following definition.

DEerINITION 5.1, A Polish group G is called strongly NSS if there exists an open
set V' 5 14 in G such that

V(gn) € G” (g0 = lg = Fng < - <y (guy - gy V).
where the set V' is called an unenclosed set of G.

PrOPOSITION 5.2.  Let G be a Polish group. The following hold:

(1) if Gis strongly NSS. then G is NSS'; and
(2) if Gis locally compact, then G is strongly NSS iff G is NSS.

Proor. (1) Let V be an unenclosed set of G. We have
VgeG(g#1lg=3Tm(g" ¢V)).

Thus V' contains no non-trivial subgroups of G. so G is NSS.

(2) By (1), we only need to prove another direction. Suppose that G is NSS and
locally compact. Let ¥ 5 15 be an open subset of G such that ¥ is compact and
contains no non-trivial subgroups of G. Then

Vg eV (g#1g=3m(g" ¢V)).

Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 15 Mar 2025 at 17:13:07, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2025.9


https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.9
https://www.cambridge.org/core

ON EQUIVALENCE RELATIONS INDUCED BY TSI POLISH GROUPS 15

We claim that V is an unenclosed set of G. Fix a (g,) € G® with g, -+ 1. By the
definition of unenclosed set. it suffices to consider the case that (g,) € V. Since
V' is compact, there exist a subsequence (g,,) of (g,) and an element 1¢ #h € V
such that lim; g,, = &. Then we can find an m € w with 1" ¢ V. By the continuity
of group operations, there are iy < i} < -+ < i, such that Snig&niy " &my ¢ 7
Therefore G is strongly NSS. -

The addition group R with the product topology is not strongly NSS because it
is not NSS. Let (e,) be the canonical basis in ¢. For any r > 0, the sequence (5e,)
witnesses that the open set {x € ¢¢ : ||x|| < r} is not an unenclosed set of ¢y. On
the other hand, for any x € ¢y with ||x|| # 0, we have lim,, ||nx|| — +oc. Thus the
Banach space ¢ is NSS, but not strongly NSS, under the addition operation.

Now, we are ready to prove the Pre-rigid Theorem. Let us recall that the definitions
of the maps (75)® and S# appearing in the following theorem can be found in

Definition 2.7.

THEOREM 5.3 (Pre-rigid Theorem). Let G be a TSI Polish group. and let H be a
closed subgroup of the product of a sequence of TSI strongly NSS Polish groups (H,,).
IfE(G) <p E(H). then for each m € w. there exist an open subgroup W,, of G and

a continuous map 5, : Wy, — H,, with s (1) = 1y, satisfying the following:
(i) The map (z5)” : W — H? is an (E.(W,,), E.(H,,))-homomorphism.

(ii) Define S : W =, W — H as: forg € W,
S(g) = (23 (). 77 (8). ... .o (g). -..).
then the map S*: W® — H® x W is a reduction of E,(W) to E,(H) x
E(W;0).
Moreover. the converse holds if G = W and the interval [0, 1] can be embedded
into H.

PrOOF. Let dg.dy, < 1 be compatible complete two-sided invariant metrics on
G and H,, respectively. A compatible complete two-sided invariant metric dy on H
is defined as

dy(h.h') =Y 2" dp,, (h(m). k' (m))
m=0

for h,h' € H. Assume that E.(G) <p E.(H).

We use the notation defined in the arguments before Lemma 3.1 and before
Lemma 3.3.

For m € w. let ny, : [[, H, — H,, be the canonical projection map. so tm(h) =
h(m) for each h. It is clear that every 7,, is a continuous homomorphism.

It is worth noting that

Vh.h' € H (dy,, (tm(h). 7 (k")) < 2"dy (h. ")),
Form € w, let X,,, be the set of all g € | J,, F, such that:

Note that S,,j(lg) =lyforall j € w.solg € X,,.
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16 LONGYUN DING AND YANG ZHENG

Cram 1. For any m € w, there is an r,, > 0 such that

vgag, € UFn ((dG(g)g/) <rmNge Xm) :>g/ € Xm)

n

ProOF OF CLAIM 1. If not, there are an my € w and two sequences (g;). (g) €

U, F» such that
(i) d(gi.g}) <2':and

(ii) gi € Xy, and g/ ¢ X,,.

Note that H,,, is strongly NSS. Let open set V' > 1 Hu, be an unenclosed set of
H,,,. Put p(—1.2M_; — 1) = 0. For any i € . we will find an M; € w and natural
numbers 0 < p(i,0) < p(i.1) < --- < p(i,2M; — 1) so that

(1) pi = 1.2M; - 1) < p(i.0):

(2) gi.8i € Fu

(3) fori € w,
ﬂmO(Snp(,-_o) (gl{)S”p(f.l)((g’{)il) SnP(i.ZM,-—Z) (g'{)S”p(i,zM,-—w((g’{)il)) gV
(4) fori € w,
M;i-1
> iy Uty g (S (€)1 (871)) < 27
1=0

Let us begin with i = 0. Since g, ¢ X,,,,. there are a 69 > 0 and natural numbers
p(0) < p(1) < -+ < p(j) < -+ such that g € F, -1 and for each j € o.

dH’"O (1Hm0 > Tomygy (S”p(zj) (g(g)Snp(sz) ((g(;)il))) 2 50-

By the definition of X, and gy € X,,. there exists a strictly increasing sequence
(jx) of natural numbers such that g € F 1 and for each k € w,

(g0) < 27040,

P2j+1)

deo (1Hmo > nmo (Snp(ij) (gO)Sn
Let h € H® be such that

my

h(k) = an(Sn (gO)S 22 +1) ((gé)il))

for each k € w. Then (k) » 1 Hy,y- Since V' is an unenclosed set of H,,,. there are
finitely many natural numbers ko < k; < --- < k, such that h(ko) -+ h(k,) ¢ V. ie.

g (S (&)™) Suy (89S, o (867 £ ¥

Now we put My =g + 1, p(0.2]) = p(2jk1), and p(0.2/ + 1) = p(2j, + 1) for all

I < g + 1. Then we have go. g} € an(/,o),l C F"p(o,o)*ly and

P(2jy)

(£0)Sn

p(ZJ’kO) p(2jk0+l)

q

q
Zde()(le(Vnmo(Snp(OAZI) (gO)Snp(O.ZH»l) (g(;l))) < 22*(/([4'1) < 1
=0 =0

We can see that clauses (1)—(4) hold for i = 0.
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ON EQUIVALENCE RELATIONS INDUCED BY TSI POLISH GROUPS 17

Now assume that My, ..., M; and p(0.0) < --- < p(0,2My - 1) < --- < p(i,0) <
-+ < p(i,2M; — 1) have been defined. Using similar arguments as those presented
in the preceding paragraph, pick a p’ > p(i.2M; — 1) with g[+1,gl~/+1 € F,,p,,l,
then we can find an M; | € v and natural numbers p’ < p(i +1,0) < - <
p(i +1,2M;, 1 — 1) so that clauses (1)—(4) hold.

For each n € I, define

u’lg{y o= i) 0 < k < M;.
x(n) = Uy (g,») . M=ok 0 < k< M;,
u, otherwise,

n

u,'g;. n=n,3),0 < k< M;,
y(n) =1 u,'g’. n=n,x%41).0 <k <M,
u,', otherw1se

Then for ¢ € w, the following equality holds:

gi'gf]a Hpiiok) < g < np([,2k+1)'/0 <k<M,.
lg, otherwise.

(xow.yow)lf= {

By (i), we have
lim(x @ w,y ®w)|f = 1¢.
q
So (x ® w)E,.(G)(y @ w), and thus y (x)E,(H )y (y) holds. It follows from Lemma
2.4(2) that
tim d () D)t 00 Lyians, 17000 = ©

For each jcw, let h} =S, (uy;x(n;)) and h; =S, (u,,y(n;)). Note that
Sn;(1g) = 1y forall j > 0, so

(w(x).w(y ))\, s it = o W 0 Boto i) i)

p(i.0)

Now we have

tim g (.0, Fp 1) = Py ang, 1) Pot0) i) -+ Bptiana, 1) = 0.
and hence

li,mh;?(i.o)h; h/ (i2M; 1)(hp(i,0)hp(i.1) "'hp(i,ZMi—l))J =lg.
Let 1121 Hu be an open subset of H,,, with V12 C V. Since 7, is a continuous
homomorphism, there exists an iy € w such that

-1
Tmy (hgly(i,o)h;)(i,l) h;)(i.ZM,-—l))nmo(hp(l'-,o)hﬂi,l) whpGam, 1) €V

holds for any i > iy. By (4). we have

li}’n dH’"O (1H'”0 s Tmg (hp([,o)hp(i.l) hp(i,2Ml«—l))) < lilITI 27 =0,

Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 15 Mar 2025 at 17:13:07, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/js1.2025.9


https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.9
https://www.cambridge.org/core

18 LONGYUN DING AND YANG ZHENG

Therefore, for i large enough,

T (hp(i.O)hp(iAl) hp(lﬂZM,-—l)) e
It follows that

/

Tong (.0 1)~ Poiong, 1) € V-

1.€.,
/ A% / Nn-1
an(Snp(i,O) (gi)Snp(i.l)((gi) )“.Snp(i.,2M,-—2)( i)Snp(i,ZMl-—l)(( i) )) S I/>
contradicting (3). 4

Foranym € w.letV,, = {g € G : dg(1g.g) < rn}and W,, = |J; V. Note that
V.l = V,. It is clear that W,, is an open, and thus a clopen subgroup of G. We
claim that W,, n{J, F» € X,,. For i =0, note that 15 € X,. so Claim 1 gives
that V,, N U, F» C Xn. Assumethat Vi, N, Fu C Xn. Leth € ViF 0, F, with
h =gg'.whereg € V) and g’ € V,,. Note that |, F, is a dense subgroup of G. We
can find g,8’ € |, F,, such that dg(h.g8’) < r,, with ¢ € V! and g’ € V,,. Since
dg(8.88") =ds(16.8') <rnand g € X,,, wehave g’ € X,,. and thus 2 € X,,. So
Wi U, Fy C X

Letg € W, N, Fn C Xu. Picka j, € o with g € Fnjg,l. For any ¢ > 0, by the
definition of X, there exists a js > j, such that

Vj/ > ] Z j& (de(le-,ni7z<Snj (g)Sn i’ (gil))) < 5)

J

Let j. k € w with js < j < k. Fixa k' > k. Since r,, is a homomorphism, we have
ity (L (S (€))7 (S, (1)) <0,
du, (le , nm(snk (g))7um (Snk/ (g71 ) <9.

So du,, (1 (Sy;(g)). 7 (Sn, (g))) < 20. Thus (r,,(S,,(g))) is a Cauchy sequence in
H,,. By the completeness of dp,,, we can define

7 (8) = im 7 (S, (8)) € Hin.
Note that for g. g’ € F, withn < n;.
di(Sn;(g). Sn;(g") < di (T (w1 8). Ty (1 8")).
and
Vh.h' € H (du,, (im(h). mm (k') < 2"dy (b 1")).

By Lemma 3.1, 73, is uniformly continuous on W,, N |, F,. which can be uniquely
extended to a uniformly continuous map from W,, to H,,, still denoted by 3. Put
W =, Wn.forany g € W, welet

S(g) = (m3(g). 77 (g). ... 7h(g)....).
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ON EQUIVALENCE RELATIONS INDUCED BY TSI POLISH GROUPS 19

We claim that S(g) € H. Indeed, fix a g € W and an arbitrary neighborhood O of
S(g). then there are € > 0 and natural number L such that

he[]Hn:m < L(dy, (ma(h).n5(g)) <€) € O.
m
Clearly g € (,,<; Wn. Since |, F, is dense in G, by the continuity of 7. we can
findsome g’ € (,,<; W N, Fnsothatdy, (z5(g"). 75 (g)) < e form < L.Note
that 73 (g') = lim(,;zm(Snj (g")) € H,, holds forany m < L.Sothereisa j' € w such
that S, , (¢g’) € HN O. Thus S(g) € H by the fact that H is closed in [],, Hy,. The
map S is a continuous map from W to H.

It is worth noting that S(15) = 15 and W is a closed subgroup of G.
Now we prove clause (ii) first:

CramM 2. The map S* is a reduction of E,(W) to E,(H) x E(W:0).

ProoF oF CLAM 2. Let x,y € W®. Note that xE,(G)y <= xE,(W)y as W
is a closed subgroup of G. By Proposition 2.8, we only need to show that

XE(G)y <= S”(x)E.(H)S"(y)

holds whenever lim, dg(x(p). y(p)) = 0. Since |, F, is dense. by the definitions
of dy and S, for each p € w, we can find a sufficiently large j(p) € w and gp,g;7 €
\U,, Fu so that

(1) 0<j(0) < j(1) < j(p) <ot

(2) gpbgpeF lmmm<p ms

(3) d(x(p). gp) < 27 and dg(y(p).gp) <27:and

(4) forallm < p,

de (”m(S(X(P)))a nm(Sn](p) (g;,))) < 27(p+1),

de (ﬂm (S(y (P))), Tim (Sn .

Now we define, for eachn € I,

-1 5/

— -1 .
d) = | S e = f g

u,. otherwise, u, . otherwise.

For any i < k. by (3) and Lemma 2.4(1),

K
do((x.9)|f gl gig' ') < ) 297 <272,

q=i
Then by Lemma 2.4(2),

xE.(G)y +— limgén-g;g;l .- go! converges.
P

For any k > n; ). let p; be the largest p with n;(,) < k. Note that

(FDw. ) O w)l§ =g gp & &'
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20 LONGYUN DING AND YANG ZHENG
It follow that
YE(G)y <= (R 0w)E(G))ow) < wX)E.(H)y()).
By (4), we have
(S S (7)) = Zio2 i (S 2) (S5 (63))

< ZP 2- (m+p+1) + Z =1 o-m
<2 i ,

ISPy 60) = 2 i (S ) S 6)
< ZP —(m+p+1) + Z Lt 2-m
<2 1

Note that S, (1) = 1y forall j € c, by similar arguments as above, we see that

S (x)E.(H)S”(y)
= lim, S, (go) Sy, (gp)S (gp) -~-S,1],(0)(g0)*1 converges.

For any i > j(0), let p; be the largestp with j(p) < i. Then we have
(W) w NG = Suy0)(@0) S, (€50, (@) o+ S (20)!
This implies that
li}n(t//(fc), ()l il converges <= S®(x)E,.(H)S®(y).
Note that lim, d¢ (g;7 gp) = 0. it follows from Lemma 3.3 that
lim(y (£). y (9) g™ converges <= y(R)E.(H)w(§).

So S?(X)E.(H)S®(y) <= w(X)E.(H)y()) < xE.(G)y.
Subsequently, we prove clause (i) as follows:

Cram 3. Form € w, if x,y € W2, then

XE*(G)J} - (nm) (X)E*(Hm)(nlfq)w(y)

Proor oF CLamm 3. Let x,y € W2 with XxE,.(G)y. Then for each p € w, we can
finda j(p) € w and g,. g, € W, N, Fy so that
(1) 0<j(0) < j(1) <-j(p) <
(2 )gp g,,€F 1N W
(3) do(x(p).g ) 27 and dg(y(p).gp) <27:and
(4) we have
de (nfn(x(p))»nm(sn(
s

J\p

de (ﬂm (y (p))s T (Sn :

j(p

(gh) <27,
(&) <27,

Now define, foreachn € I,

—1,57 -1
A _ u, gp’ nz”j(p)* N _ U, &p- n:nj(p>,
*(n) { u;'.  otherwise, () -1 otherwise.

Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 15 Mar 2025 at 17:13:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms. https://doi.org/10.1017/js1.2025.9


https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.9
https://www.cambridge.org/core

ON EQUIVALENCE RELATIONS INDUCED BY TSI POLISH GROUPS 21
Following a similar approach to the proof of Claim 2, we obtain
XE(G)y <= (R@w)E(G)Jew) < yR)E(H)y ()
So we have

Ll
lim(y(2), w(3))|J""" " converges,
P

and thus

im S, (86) S, (€5)Sn,, (€)™ -+ S (g0) " converges.

"i(p
Since 7, is a continuous homomorphism, we obtain

tim 7, (S, o, (80) S, (€5) S (€)™ +++ S ) (g0) ) converges.

Following again the similar arguments as in the proof of Claim 2, we get
(75) (%) E(Hyp) (73,)” (). .

It follows from Claims 2 and 3 that ¥,,, n,f,, W, and S are as desired. Finally,
by Lemma 2.9, we can conclude that the converse is also true if G = W and if the
interval [0, 1] can be embedded into H. -

REMARK 5.4. Recall that Gy is the connected component of 15 in G. Since each
W, in the preceding theorem is an open subgroup of G. it is also clopen in G. So
Gy C W, as it is connected, and thus Gy C W.

From the proof of the preceding theorem, it follows that W can be chosen to be
clopen when H is TSI strongly NSS. Similarly, by [5, Theorem 6.13], W can be also
clopen when H is locally compact, and W can be chosen to be W = G when H is
compact.

§6. Rigid theorems. In this section, we use the Pre-rigid Theorem to prove several
Rigid theorems for various classes of TSI Polish groups.

LEmMMA 6.1. Let G, H be two Polish groups and S : G — H a continuous map with
S(1g) = 1y. Suppose H is NSS. Then the following are equivalent:

(1) There exists an open subgroup W of G such that themap S | W : W — H isa
continuous homomorphism.

(2) There exists an open subgroup W' of G such that the map S® is an
(E.(W"), E.(H))-homomorphism.

Proor. (1)=-(2). Let W be an open subgroup of G such that S [ W : W — H
is a continuous homomorphism. Then

Vx,y € WOvg € W (lim(x, y)[g = g = lim($”(x). S (y))[; = S(g)).

Since W is also closed, we see that S is an (E.(W), E,(H))-homomorphism.
Hence W' = W is as required.

(2)=(1). Let W’ be an open subgroup of G such that the map S® is an
(E.(W'), E.(H))-homomorphism, and let dg.dy be compatible left-invariant
metrics on G and H respectively.

Define X = {g € W’ :S(g"") = S(g)'}. Then X # 0. since 1 € X.
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22 LONGYUN DING AND YANG ZHENG

Cram 1. There exists an ro > 0 such that

Vg.g' e W ((d(g.8') <roNng e X) =g €X).

ProOF OF Cramv 1. If not, then we can find two sequences (g,) and (g;) in W’
so that

(i) g, € X and g; ¢ X:

(i) lim,(g;)'g, = 16-
Let hy = S((g/)")S(g,). then h, # 1y for ¢ € w. Since H has no small subgroups.
there exists some D > 0 such that, for each g € w. we can find an m, > 0 with

dy(hy ' 1) > D.
Put M_; = 0and M, = mg + --- + m, for ¢ € w. For each p € w, define

(g, p=2M,1+10).0<i<m,,
x(p) = /! : :
2, p=2My +i)+1.0<i<my

g;l, p=2M,;+1i).0<i<my,
y(p) = _ : .

g P=2M_1+1i)+1.0<i<m,.
For any k € w, let ¢, be the largest ¢ such that M, | < k. Clearly,

2k+1

(xﬂy)() :lG’ (xay)‘%k

= (g7,) "4,

By (ii), we have xE.(G)y. Since S® is an (E.(G).E.(H))-homomorphism,
S®(x)E.(H)S?(y) holds, i.e.,

lilgn(S‘”(x), S¢(y))|& converges.

Then by Lemma 2.4(2) and g, € X, we have

2My-1
2M(I*l

la.

lim ;" = lim(S* (x). S (y))
q q

A contradiction! -

Put V ={g e W’ :ds(lg.g) <ro}. Note that ¥ = V~!. Define W, =, V'".
which is an open subgroup of W’. We claim that W; C X. Note that 1 € X,
so by Claim 1, we have V' C X. Assume that V' C X. For any g = gig, € V!

with g; € V¥ and g, € V., we note that g; € X and dg(g1.g) = dg(g1.2122) =
dc(1g,g2) < ro. Again by Claim 1, we have g € X. This shows that W C X.

CrLAM 2. There exists 0 < ry < ro such that
Vg.g' € Wi(d(lg.g) <r = S(gg’) = S(g)S(g')).

ProOF OF Cramv 2. If not, there are two sequences (g,). (g;) in W) such that
lim, g, = 1 and S(g,g;) # S(g,)S(g;) for ¢ € w.
For each ¢ € w. let h, = S(g,¢/)S((g,)")S(g,"). It follows from W C X that

hy = S(gq2,)S(g)) ' S(g)) " # 1.

Since H has no small subgroups, there exists some D > 0 such that, for each ¢ € w,
we can find an m,, € o with dy (hy". 1) > D.
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ON EQUIVALENCE RELATIONS INDUCED BY TSI POLISH GROUPS 23

Put My =0and M, = mg + --- + m, for g € w. For each p € w, define

g8, p=3(My1+1i).0<i<my.
x(p) = (1{)' p=3My1+i)+1.0<i<my,
g :3( q1—|—l)—|-2,0§i<m(],
24 p=3My+1).0<i<m,.
yip)=1 €)' p=3M+i)+1.0<i<m,,
lg. p=3(My 1 +i)+2.0<i<m,.

For any k € w, let g, be the largest ¢ such that M, ; < k. Clearly.

) 3k+1 _ ) 3k+2 __ 10.

(x)F = (xy =gy (x.p

Note that lim, g, = 1g. so xE.(G)y holds. Since S is an (E,(G).E.(H))-
homomorphism, S®(x)E,(H)S®(y) holds, i.e.,

liIEn(S“’(x) “(y))|k converges.
By Lemma 2.4(2) and g, € W) C X, we have S(g;)S((gé)*l) =1y4.So0

lim £ = lim(S (x). S () 1! =
q q

A contradiction! B

Finally, let V; ={g € W' :dg(lg.g) <ri} and W =, V'{. Note that V; =
Vi'and ¥ C V. so W isan opensubgroup of W;. Foranyg. g’ € W, we shall check
that S(gg’) = S(g)S(g’). There are go.g1.....gm € V1 such that g = gog1 -+ gm-
Note that W C W1, so by Claim 2, we have

S(gg') = S(g0)S(g1--gmg’) = S(go) - S(gm)S(g") = S(g)S(g").
Then W is as required. -

Consider a Polish group G and a sequence (g,) in G. Recall that (g,) is 1-Cauchy
if it is d-cauchy for some compatible left-invariant metric ¢ on G. This definition is
independent of the choice of d (see [1, Proposition 3.B.1]).

Let G, H be two Polish groups and ¢ : G — H a continuous homomorphism.
We define IPC(¢p) as the set of all x € G that satisfies:

(x(0) -+ x(p)) is 1-Cauchy <= (p(x(0)) ---(x(p))) is --Cauchy.

LEMMA 6.2. Let G,H be two Polish groups and ¢ : G — H a continuous
homomorphism. If x € IPC(p) for any x € G® with lim, x(p) = 1. then ker(p)
is non-archimedean.

Moreover, if o(G) is closed in H, then the converse is also true.

ProOF. Let dg,dy be compatible left-invariant metrics on G and H respectively.
Define V; = {g € ker(yp) : dg(15.g) < 27},

First, suppose x € IPC(y) for any x € G with lim, x(p) = 1.

Assume toward a contradiction that ker(y) is not non-archimedean. Then there
exists a K € o such that Vg contains no open subgroups of ker(y). Since |, 44
is an open subgroup of ker(y). we have | J,, V" € Vk. Thus for each k € w, we can
find an m; € w and gio. .... gkm, 1 € Vi such that g ogr1 - gkmy 1 & Vi
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24 LONGYUN DING AND YANG ZHENG

Put M_; = 0and M = mg + - + my fork € w.Letx € G® bedefinedas x(p) =
gri for p = My + i with 0 < i < my. Note that lim, x(p) = 15. so x € IPC(p).
Since dg is left-invariant, we have

Vk (dg(x(0) - x (M1 = 1).x(0) - x(My — 1)) > 27).

Thus (x(0) --- x(p)) is not :-Cauchy. But (¢(x(0))---@(x(p))) is 1-Cauchy since
p(x(p)) = 1y for all p € w, contradicting that x € IPC(yp).

Now assume that ¢ (G) is closed in H and ker(¢) is non-archimedean. Let x € G¢
with lim,, x(p) = 15. We prove x € IPC(yp) as follows:

On the one hand, suppose that (x(0) --- x(p)) is i-Cauchy. For any € > 0, since ¢
is continuous, there is a § > 0 such that

Vg € G(dg(lg.g) <0 = du(ly.¢(g)) <e).
Since (x(0) --- x(p)) is 1-Cauchy, we can find an N € w such that
Vm >n> N (dg(1g.x(n)---x(m)) < 9).
Thus we have that, foranym >n > N,

dp (1. o(x(n)) -+ @(x(m))) = dy (1. p(x(n) - x(m))) <e.

This shows that (¢ (x(0)) --- (x(p))) is 1-Cauchy.

On the other hand, suppose that (¢(x(0)) - ¢ (x(p))) is i-Cauchy. Let (W,) be a
decreasing neighborhood basis of 1, such that each W), is an open subgroup of
ker(p). Let ¢ : G/ker(p) — H be defined as

P(ker(p)g) = o(g).

Note that ¢(G) is closed, so it is also a Polish group under the topology inherited
from H. Thus @ is a topological isomorphism of G/ker(p) onto ¢(G) (see
[8. Corollary 2.3.4]). Note that u = @ ' o is the canonical projection map.
where u(g) = ker(p)g for g € G. Since { is a topological isomorphism, we have

(1(x(0)) - u(x(p))) is 1-Cauchy.

Let d,(ker(p)g. ker(p)g’) = inf{dg(hg.h'g’) : h.h’ € ker(p)}. then d,, is a com-
patible left-invariant metric on G/ ker(y) (see [8, Lemma 2.2.8]).

For any £ > 0, we can find 0 < ¢’ < € and py € w satisfying

{g eker(p) :dg(1g.g) <3’} C W,, C {g € ker(p) :dg(lg.g) <e}.

Note that lim, x(p) = 1g and (u(x(0)) --- u(x(p))) is 1-Cauchy. Thus there is an
N € w such that

dc;(lg,x(n)) < E/,
A (N) - x(n)), Ker(p) 1) < &

for each n > N. By the definition of d,, there exists some g, € ker(¢y) for each
n > N such that

dg(x(N) - x(n).gn) <€
Forany n > N, we have

dg(x(N) - x(n),x(N) - x(n+1)) =dg(1g.x(n + 1)) < €.
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All these together imply that dg(16.g,'gnr1) = d6(gn. gni1) < 3€’. S0 g,'gn11 €
W),- Since W), is a subgroup, it follows that g,'g,, € W), foranym > n > N. This
gives that

dg(x(0) -+ x(n).x(0) -+ x(m)) = dg(x(N) - x(n), x(N) -+ x(m))
< 25/+dG(gnagm)
<2’ +e<3e
Therefore, (x(0) -+~ x(p)) is 1-Cauchy. =

ProPoOSITION 6.3.  Let G, H be two TSI Polish groups and ¢ : G — H a continuous
homomorphism. Then the following are equivalent:

(1) for x € G, iflim, x(p) = 1g. then x € IPC(¢p); and
(2) the map ©¥ is a reduction of E,(G) to E,(H) x E(G:0).

Proor. Since G and H are both TSI, for x € G, we have
(x(0) ---x(p)) is 1-Cauchy <= xE,(G)lgo.
(p(x(0)) ---(x(p))) is 1-Cauchy <= liIrJn 0 (x)E.(H)lgo.
So (2)=(1) follows from Proposition 2.8. We prove (1)=-(2) as follows:
Let dg be a compatible compete two-sided invariant metric on G.
Given x,y € G“. Suppose xE,(G)y. Since ¢ is a continuous homomorphism,
we have ¢ (x)E.(H )p®(y) holds and lim, dg (x(p). y(p)) = 0.

On the other hand. suppose ¢®(x)E.(H)p®(y) holds and lim, dg(x(p).
y(p)) = 0. Define z € G? as:

z(p) = p(0) - y(p - Dx(p)y(p) ' y(p— 1) p(0)"

for p € w. Since dg is two-sided invariant,
limdg(z(p). 16) = limdg(x(p). y(p)) = 0.

So z € IPC(¢). Since ¢ is homomorphism, it holds that
e(z(p) = ((0) - o(y(p - 1))e(x(P)e(y(p) e((p—1)" ()"

Therefore,
xE.(G)y <= (z(0)---z(p)) is i-Cauchy,
¢”(x)E.(H)p”(y) <= (p(z(0)) - p(z(p))) is 1-Cauchy.
So (1)=(2) follows from Proposition 2.8 again. 4

Now we are ready to prove the following theorem, which is crucial for the rest of
this article.

THEOREM 6.4. Let G be a TSI Polish group, and let H be a closed subgroup of the
product of a sequence of TSI strongly NSS Polish groups (H,,). If E(G) <p E(H),
then there exists a continuous homomorphism S : W — H such that ker(S) is non-
archimedean, where W DO Gy is a countable intersection of clopen subgroups in G.

Moreover, the converse holds if G = W, S(G) is closed in H, and the interval [0, 1]
can be embedded into H.
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PrOOF. Suppose E(G) <p E(H). It follows from Theorem 5.3 that, for each m ¢
o, there exists an open subgroup W), of G and a continuous map =5, : W/, — H,,
with 75 (1) = 1y, such that (1) (z3)? : (W.)® — H? is an (E.(W).), E.(H,,))-

homomorphism: and (2) let W' =, W,, and define S: W' — H as S(g) =
(75 (g). 75 (g)....). then S* is a reduction of E.(W') to E,(H) x E(W';0).

Note that H,, is NSS. By Lemma 6.1, there is an open subgroup W,, of W,, such
that z5, | W,, is a homomorphism. We put W = (1), W,,. and still denote S | W by
S for brevity. Then S is a continuous homomorphism. It is clear that Gy € W C W’.

As both G and H are TSI, according to Lemma 6.2 and Proposition 6.3, ker(S)
is non-archimedean. Thus, W and S fulfill the requirements.

On the other hand, let S be a continuous homomorphism from G to H such that
ker(S) is non-archimedean. Suppose that S(G) is closed in H and the interval [0, 1]
can be embedded into H. Again by Lemma 6.2 and Proposition 6.3, the map S¥ is
a reduction of E,(G) to E,(H) x E(G;0). Finally, it follows from Lemma 2.9 that

E(G) <p E(H). Ny

REMARK 6.5. Let G be a TSI Polish group and H a TSI strongly NSS Polish group.
Suppose that E(G) <p E(H). Then it follows from the proof of Theorem 6.4 that
there exist an open subgroup W 2O Gy of G and a continuous homomorphism S :
W — H such that ker(S) is non-archimedean. Moreover, the map S¥ is a reduction
of E.(W)to E.(H) x E(W:0).

This observation will be crucial in Section 7.

The following is an immediate corollary.

COROLLARY 6.6. Let G be a TSI Polish group and H a closed subgroup of the
product of a sequence of TSI strongly NSS Polish groups. If H is totally disconnected
but G is not, then E(G) £ E(H).

PrOOF. Assume for contradiction that £E(G) < E(H). By Theorem 6.4, there
is a continuous homomorphism S : Gy — H such that ker(S) is non-archimedean.
Note that S(Gy) is also connected, so S(Gg) C Hy. Since H is totally disconnected,
we have S(Gy) = {1y }. So Gy = ker(S), which is connected and non-archimedean.
This implies that Gy = {1}, contradicting that G is not totally disconnected. -

Note that the converses of Lemma 6.2 and Theorem 6.4 require S(G) to be closed
in H. Next we present a lemma in which this requirement can be avoided.

LEMMA 6.7. Let G,H be two TSI Polish groups. Suppose S :G — H is a
continuous homomorphism, and U > 1¢ is an open subset of G such that S | U :
U — S(U) is a homeomorphism. Then the map S* is a reduction of E.(G) to
E.(H) x E(G:0).

Proor. Let dg.dy be compatible complete two-sided invariant metrics on G and
H respectively. By Proposition 2.8, we only need to show that

xE.(G)y <= S®(x)E.(H)S”(y)

holds whenever lim, dg (x(p). y(p)) = 0.
Suppose xE.(G)y holds. Since S : G — H is a continuous homomorphism, it
follows trivially that S (x)E.(H)S?(y).
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On the other hand. suppose lim, dg(x(p). y(p)) = 0 and S®(x)E.(H)S”(y).
We prove xE,(G)y as follows:

If not, by Lemma 2.4(2), sup,.,dG(x.y)|jpq - 0. So there exist r > 0 and
two strictly increasing sequences of natural numbers (py).(gx) such that p; <
qr and dg(lg. (x.p)|%) = dg(x. p)|p,.q > r for each k € w. Let 0 <rg<r
satisfying that {g € G : dg(lg.g) <ro} C U. There exists a K € w such that
de(x(p).y(p)) < ro/2 for p> pk. For p > p; and k > K, since dg is two-sided
invariant, we have

de((x. p)|5 . (x. )5 1) = de(x(p)y(p) " 16) < ro/2.

and hence

do (1. (x. p)|h) < de(lg. (x. p)|5") + ro/2.
For each k > K. we can find p; < p; < ¢ such that

ro/2 <dg(lg. (Xy)|£l,§) < 70,

so (x, y) Z € U.By S?(x)E.(H)S”(y). it is clear that

S((x.y)5) = (5°(x). SP )5k — 1.

Since S | U is a homeomorphism from U to S(U). we have (x, y) Zjﬁ — 1. This
contradicts that dg(1g. (x. y) ﬁ’;) > ro/2. 4

6.1. Applications on Lie groups, locally compact groups, and pro-Lie groups.
Recall that a Lie group is a group which is also a smooth manifold such that the
group operations are smooth functions. A topological group is a Lie group iff it is
locally compact NSS (see [11, p. 159]). Clearly, a Lie group is Polish iff it is separable
iff it has only countably many connected components. Let G be a Lie group, then
G is an open normal subgroup of G. For more details on Lie groups, we refer to
[19].

A completely metrizable topological group G is called a pro-Lie group if every
open neighborhood of 15 contains a normal subgroup N such that G/N is a Lie
group (see [9, Definition 1]). For more details on pro-Lie groups, we refer to [9].

Applying Theorem 6.4, we obtain the following result.

THEOREM 6.8. Let G. H be two TSI Polish groups such that H is a pro-Lie group.
If E(G) <p E(H). then there exists a continuous homomorphism S : Go — H such
that ker(S) is non-archimedean.

Moreover, the converse holds if G is connected and S(G) is closed in H.

Proor. Since H is a pro-Lie group, there exist a countable open neighborhood
basis (U,,) of 1z and a sequence of normal subgroups (N,,) of H such that N,, C U,
and H/N,, is a Lie group for each m € w. Note that N, is closed in H, since H/N,,
is Hausdorff. Without loss of generality, assume that N,, O N,,. ;. We define a map
f+H — [, H/Nyas f(h)(m) = hN,, for h € H.m € w. By [12, Proposition 2.3].
/ is a topologically isomorphic embedding and f (H ) is closed in [],, H/N,.
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By [8. Exercise 2.2.8], all H/N,, are separable TSI Lie groups. As mentioned
above, all Lie groups are locally compact NSS. By Proposition 5.2(2), all Lie groups
are strongly NSS. So the first part of the theorem follows from Theorem 6.4.

For proving the second part of the theorem, by Theorem 6.4, we only need to show
that the interval [0, 1] can be embedded into H. Since S(G) is a closed subgroup
of H, it is also a pro-Lie Polish group. Since ker(S) is non-archimedean and G is
connected, ker(S) # G. So S(G) is non-singleton and connected. Note that, for any
non-singleton connected pro-Lie Polish group K, there exists a nontrivial continuous
homomorphism y : R — K (see [9, Proposition 19 and Definition 2.6]). All of these
together allow us to embed the interval [0, 1] into S(G), and also into H. o

A topological group G is called a SIN-group if G admits arbitrarily small invariant
identity neighborhoods, or equivalently, G has a neighborhood basis (U;);c; of 1
such that gU;g' = U; for all g € G (see [11, Definition 2.1]). It follows from [8.
Exercise 2.1.4] that a Polish group is SIN iff it is TSI. By [11, Theorem 3.6], every
locally compact TSI Polish group is a pro-Lie group.

We point out that, in [6, Theorem 1.2], groups G and H are required to be
abelian with G being compact. Following is a generalized theorem that removes
these requirements.

THEOREM 6.9 (Rigid Theorem for locally compact TSI groups). Let G be a locally
compact connected TSI Polish group, H a TSI pro-Lie Polish group. Then E(G) <p
E(H) iff there exists a continuous homomorphism S : G — H such that ker(S) is
non-archimedean.

PrOOF. (=). It follows from Theorem 6.8 and G = Gj.

(). Let ¢ : G — G/ker(S) be the canonical projection. Note that ¢ is a
continuous surjective homomorphism with ¢(g) = ker(S)g for g € G. Clearly,
ker(p) = ker(S) is non-archimedean. By Lemma 6.2 and Proposition 6.3, the map
% is a continuous reduction of E,(G) to E.(G/ker(S)) x E(G:0).

Let S* : G/ ker(S) — H be the map defined as S*(ker(S)g) = S(g) forg € G.
It is clear that S* is a continuous injective homomorphism. Let d; be a compatible
complete two-sided invariant metric on G, and define

d*(ker(S)g. ker(S)g’) = inf{dg(kg.k'g’) : k. k' € ker(S)}.

Then d* is a compatible metric on G/ker(S) (see [8, Lemma 2.2.8]). Since G is
locally compact, we can find some » > 0 such that the closure ' of the open set
V={g€eG:ds(lg,g) < r}iscompact. Let

U = {ker(S)g : d" (L purs) ker(S)g) < 1.
Since dg is two-sided invariant, from the definition of d*, we see that U C S(V).
Note that U C S(V7). so U is also compact. This implies that S* | U : U — S*(U)
is a homeomorphism. By Lemma 6.7, the map (S*)* is a continuous reduction of
E.(G/ker(S)) to E.(H) x E(G/ker(S):0).
Given x,y € G with lim, dg(x(p). y(p)) = 0. It follows from Proposition 2.8
that

xE,(G)y <= ¢“(x)E.(G/ker(S))p”(y).
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The continuity of ¢ implies lim, d*(¢(x(p)). ¢(y(p))) = 0. so we also have

¢”(X)EL(G/ ker(S))p”(y) == (87)”(p”(x))E.(H)(S™)" (" ().
Note that S = S* 0, 0 §? = (§*)? 0 ¢®. It is clear that
xE.(G)y <= S®(x)E.(H)S"(y).

Thus the map S* is a continuous reduction of E,(G) to E,(H) x E(G:0).

Since G is connected, ker(S) # G, and so {1y} # S(G) C Hy. So Hy is non-
singleton. As a closed subgroup of H, H) is also a TSI pro-Lie Polish group. Similar
to the last paragraph of the proof of Theorem 6.8, we can embed the interval [0, 1]
into Hy, and also in H. Therefore, the (<=) part follows from Lemma 2.9. -

By restricting our analysis to Lie groups, we provide an affirmative response to
[5. Question 7.4] as follows:

THEOREM 6.10 (Rigid Theorem for TSI Lie groups). Let G, H be two separable
TSI Lie groups such that G is connected. Then E(G) <p E(H) iff there exists a
continuous locally injective homomorphism S : G — H.

PrOOF. By Theorem 6.9, we only need to show that ker(S) is discrete. Note that
any non-archimedean subgroup of a Lie group is discrete, as all Lie groups are
NSS. 4

6.2. Applications on Banach spaces and Fréchet spaces. Now we focus on infinite
dimensional vector spaces. Let us recall some elementary notions. All separable
Fréchet spaces, i.e., separable, completely metrizable topological vector spaces (see
[20, 5-1]). can be viewed as abelian Polish groups under the addition operation.
In this article, all vector spaces are assumed to be real, i.e., over the field R. This
is because, in accordance with view of Borel reducibility, the equivalence relation
induced by a separable Fréchet space is independent of the choice of the field of

scalars.

Let X be a vector space. Amap || - || : X — Ris called a rotal paranorm (see [20,
2-1]) if

(1) ol = 0. ]| = v|| = [Jv[l. and [Jv]| = 0 = v = 0:

(2) flv+o'l < [lo]l + [lv']I

(3) for (¢,) € R?, (v,) € X*,if 1, — t and |lv, — v|| — 0, then ||#,v, — tv|| — 0.
A total paranorm || - || is called a norm if ||tv]| = |¢|||v|| for t € R and v € X. Any
Fréchet space admits a compatible complete two-sided invariant metric ¢, which is
given by a total paranorm || - || as d (v.v’) = |lv — V']

In particular, all separable Banach spaces are separable Fréchet spaces. The
following are some classical separable Banach spaces:

co. C[0.1]. 1,. L,[0.1] (Vp € [l.+0)).

The classical Banach-Mazur theorem [21, I1.B] asserts that every separable Banach
space is isometric to a subspace of C[0, 1]. Thus for any separable Banach space
X, we have E(X) <p E(C[0.1]). For more details on Fréchet spaces and Banach
spaces, we refer to [20, 21].
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TueoreM 6.11 (Rigid Theorem for Fréchet spaces). Let X, Y be two separable
Fréchet spaces such that Y is a closed subgroup of the product of a sequence of TSI
strongly NSS Polish groups. Then E(X) < E(Y) iff X is topologically isomorphic
to a closed linear subspace of Y.

Proor. («=). It follows from Proposition 2.3.

(=). Suppose E(X) <p E(Y). Note that X is connected. By Theorem 6.4,
Theorem 5.3(ii), and (2) = (1) of Proposition 6.3, there exists a continuous
homomorphism S : X — Y such that ker(S) is non-archimedean, and for x € X,
if lim, x(p) = 0. then

Z x(p) converges < Z S(x(p)) converges.
p p

For any integers m. n with n > 0 and v € X, we have that nS(1v) = S(v). and thus
S(%) = 2§ (v). By its continuity, S is a R-linear map. Note that ker(S) is a non-
archimedean closed linear subspace of X, so ker(S) = {0}. Therefore S is injective.
We will show that S is a topological isomorphism from X onto S(X).

Let || |lx, || - ||y be total paranorms on X and Y respectively. Assume for
contradiction that there exist a sequence (v,) in X and a d > 0 such that

(1) lim, [|S(vy)|ly =0, and
2) inf, [|v,||x > o.

By transferring to a subsequence, we may assume that ||S(v, )|y < 27 forallg € w.
For each ¢ € w, we can find an integer m, > 0 such that || ;:l—"q llx <27.

Put M_; =0and M, = mo + --- + m, for ¢ € w. For each p € w, define x € X
with x(p) = ;—‘2 for p = M, 1 + i and 0 < i < my. It follows that lim, x(p) = 0. so

Z x(p) converges <= Z S(x(p)) converges.
p p

Fixa k € w. By [10, Exercise E7.12(ii)]. there is an open set ¥ > 0in Y such that
Vr € [0.11Vh € V (|[rh]y < 275+2).
By (1), there is a Q > k such that
Vg(g> 0= Sv,)eV).

Forany p’ > p > M. thereare ¢’ > g > Q suchthat M, | < p < M,and M, <
p’ < My . It follows that
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These imply that
»’ q'-1
oSG v < ISK(p) + -+ S (My = D))lly + Y [ISw)lly
i=p i=q+1
1S (Myr 1)) + -+ S (p)ly
q'-1
< 5-(k+2) + Z i +2—(k+2) <2k
i=q+1

This shows that (S(x(0)) + -+ S(x(p))) is a Cauchy sequence. So the series

>, S(x(p)) converges.
For any ¢ € w, we have

Ix(My1) + x (M1 + 1) 4 -+ x(My = 1)]lx = llog|lx > 6.

and thus 3~ x(p) diverges. A contradiction!
Now we see that

V(v,) € X (lim S(v,) = 0 = limv, = 0).
q q
This implies that S7!:S(X) — X is continuous. So S is a topological linear
isomorphism from X onto S(X), and hence S(X) is closed. 4
The following theorem characterizes strongly NSS separable Banach spaces.

THEOREM 6.12. A separable Banach space X is not strongly NSS iff it has a closed
linear subspace topologically isomorphic to cy.

PrOOF. (<=). It follows from the fact that any closed subgroup of a strongly NSS
Polish group is strongly NSS, whereas ¢ is not strongly NSS.

(=). Suppose X is not strongly NSS. Denote the norm of X by || - ||. Let V =
{ve X :|v| <1}. Then V is not an unenclosed set of X, and thus there exists a
sequence (v;) in X such that v; - 0 and

Vi< k0 € {- 1 1}V* 100w, + - 4+ 0(k)vi| < 2.

For any integer n > 0 and 2.z, ...,z € R", let
m ) m
Con({z°.z'.....2"}) = {ZA,-Z’ D> hi=1Vi<m(h> 0)} .
=0 i=0

Define D(n) = {z e R" : Vi < n(|z(i)| < 1)}. It is clear that
D(n) = Con({6 e R" : Vi< n(0(i) = £1)}).

Now let (#;) € ¢y. We claim that > ; tiv; converges. For any € > 0, we can find
an iy € w so that |t;| < e for i > iy. Let r = sup{|t;| : i > ip}. We may assume r >
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that
(Ut fr=" > AOO().....00k)).
ge{-1.1} {3
So
k ‘ k
Z;’Ui = Z A(Q)Zg(l)’u,
=J Oe{-1.1} 1k} i=j
Then we have
k k
Ztivi < Z ri(0) Zﬁ(i)vi
i=j 0c{-1.1}{k} i=j

< Z 2ri(0) = 2r < 2e.

So by Cauchy Criterion, ), t;v; converges.

Therefore, ), #;v; converges whenever (t;) € co. Note that >, v; diverges, since
v; = 0. By [14, Proposition 2.e.4] and its remark, X has a closed linear subspace
topologically isomorphic to ¢. o

Applying previous results to separable Banach spaces, we get:

THEOREM 6.13 (Rigid Theorem for Banach spaces). Let X, Y be two separable
Banach spaces such that Y contains no closed linear subspaces topologically isomorphic
tocy. Then E(X) <p E(Y)iff Xis topologically isomorphic to a closed linear subspace
of Y.

Proor. It follows from Theorems 6.11 and 6.12. =

REMARK 6.14. It is well known that /, and L,[0.1] contain no closed linear
subspaces topologically isomorphic to ¢, where p € [1.+00). Note that /, is
topologically isomorphic to a closed linear subspace of /, iff p = ¢ (see [17, Theorem
5.1]). Let X be a separable Fréchet space and let ¥ be the space /, or L,[0. 1]. Then
E(X) <p E(Y) iff X is topologically isomorphic to a closed linear subspace of Y.
In particular,

E(l,) <E(l) < p=q.

Without the assuming of strongly NSS for TSI Polish groups G and H, we do not
know how to compare E(G) and E (H ) with respect to Borel reducibility so far. For
instance, it is not known whether E(C[0. 1]) <g E(co). or whether E(/,) <p E(co)
for p € (0. +00).

A worthwhile question is:

QUESTION 6.15. Let X, Y be two separable Fréchet spaces. Does it hold that
E(X) <p E(Y) iff X is topologically isomorphic to a closed linear subspace of Y?
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§7. Uniformly NSS Polish groups. Recall that a topological group G is uniformly
NSS (see [16, Definition 11]) if there is an open subset V' > 15 of G such that, for
any open subset U > 15 of G,

dnVgeGgd¢U=3Im<n(g"¢V)).

Clearly, a locally compact Polish group is uniformly NSS iff it is NSS.

A topological group is a Banach-Lie group if it is a Banach manifold such that the
group operations are smooth functions (see [18, Section 6]). All Banach spaces and
Lie groups are Banach-Lie groups, while all Banach—Lie groups are uniformly NSS
(see [15, Theorem 2.7]).

Under the assumption of uniformly NSS, we show that every Borel reduction
of E(G) to E(H) results in a continuous homomorphism, which is also a local
homeomorphism.

THEOREM 7.1. Let G, H be two TSI Polish groups. Assume that G is uniformly NSS
and H is strongly NSS. If E(G) <p E(H), then there exist an open subgroup W of G.
an open neighborhood U C W of 1, and a continuous homomorphism S : W — H
such that S | U : U — S(U) is a homeomorphism and S(U) is closed in H.

Moreover, the converse is also true if G = W and the interval [0, 1] can be embedded
into H.

PrOOF. Let dg, dy be compatible complete two-sided invariant metrics on G and
H respectively. Assume that E(G) <p E(H). It follows from Remark 6.5 that there
exist an open subgroup W' of G and a continuous homomorphism S : W/ — H
such that, for x, y € (W')*, if lim, x(p)y(p)™ = 1. then we have

xE.(G)y <= S®(x)E.(H)S”(y).
Let V' > 1 be an open subset of G witnessing that G is uniformly NSS. For each

kcw. define Vy, ={g e W :ds(1g.g) <2*}.
We claim that there exists a ky € w such that

V(gq) € Vi, (li;nS(gq) =ly = limg, = lg). (%)

If not, then for each k € w, there are a j(k) € w and a sequence (gi,) of
elements of Vj such that lim, S(gi,) = 1y and gy ¢ V() for all ¢ € . Then
by the definition of V, there exists an n; > 0 such that

Ve eG(g ¢ Vip=Im<m(g"¢gV)).
Pick a large enough g € w so that dp (14.S(gkg,)) < 27 /ni. Then we can find an
my < ny with g]':’(;k ¢v.
Put M_; = 0and My = mg + - + my fork € w.Letx € G® bedefinedas x(p) =

8kqy for p = My +iwith0 < i < my. Itis clear that lim,, x(p) = 1. This implies
that

XE*(G)IG(U — Sw(X)E*(H)Sw(IGw).
For any k£ € w, we have

X(Mi)x(My_y + 1) - x(My - 1) = g:’,;k ¢V
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By Lemma 2.4(2), we see that xE,(G)1go fails.
Forany p < p/,if M1 < p < My and My, < p’ < M, then we have

pl

du(1go.S?(x))|ppm < ZdH(lHaS(x(i)))
i=p
My—1 k-1 r
= Z du(1g.S(grq,)) + Z midy (157.8(gig,)) + Z du (1. S(grrg,,))
i=p i=k+1 i=M;,_,
k-1
<2’kmk/nk + Z 2’imi/ni + Z’k,mk//nk/
i=k+1

<3.2°%,

This implies that lim, sup,, di(1g.S”(x))[;,n = 0. Then it follows from
Lemma 2.4(2) that S (x)E,.(H)S?(1g»). A contradiction! So () holds.

Now put U = Vi 2. Then U C Vig+1 = 1;01+1= o) 717 C Vi, Forg € U and
(g,) € U”. since g,'g € Vi, for each p. we have

limS(g,) = S(g) = limS(g;,lg) =1y = limg’jlg =1g =limg, =g
P P P p

This implies that S | U is a topological embedding.

Then we only need to show that S(U) is closed. Let (g,) € TU” and he H
with lim, S(g,) = h. Assume for contradiction that (g,) does not converge in
U. Then it is not dg-Cauchy, we can find two strictly increasing sequences of
natural numbers (py). (¢x) with py < gx such that dg (g, .8, ) - 0. By the fact
thatlimy S(g,, g4, ) = limg S(g,, )" S (g, ) = g, wehavelimy g,! g, = 1¢.and we
get a contradiction as desired. Therefore, lim, g, = g for some g € U, and hence
h=1lim, S(g,) = S(g) € S(U). So S(U) is closed.

Finally, if G = W and the interval [0, 1] can be embedded into H, by lemmas 6.7
and 2.9, we see that the converse is also true. —{

COROLLARY 7.2. Let G, H be two TSI Polish groups. Assume that G is uniformly
NSS and H is strongly NSS. If E(G) < E(H), then G is strongly NSS too.

Proof. By Theorem 7.1, we can get an open subset U > 1g of G and a
homeomorphism S : U — H such that S(gg’) = S(g)S(g’) forg.g’.gg’ € U. Let
V' be an unenclosed set of H. It is clear that S~!( V') N U is an unenclosed set of G,
so G is strongly NSS. -

REMARK 7.3. The assumption of uniformly NSS in Theorem 7.1 and Corollary
7.2 can not be avoided. For example, for p-adic solenoid T,. we have E (’]I‘p) <p
E(T). where T is strongly NSS but T, is not (see [5, Theorem 6.24]).

In the rest of this article, we attempt to study some examples that are induced by
totally disconnected TSI Polish groups.
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ExaMPLE 7.4. Let G = {v € ¢y : Vn (v(n) € 27"Z)}. Then G is uniformly NSS
but not strongly NSS with the subspace topology inherited from c¢y. By Theorem
6.12, 1, is strongly NSS. So E(G) %5 E(l,) for p € [1. +0).

Recall that a sequence (v;) in a Banach space X is called a Schauder basis of X if

Vv e X 3! (l_/) € R? (1} = Zl_/v_/).

Two sequences (v;) and (v ) are called equivalent in X if

!
E tjv; converges <= E 1;v; converges.

For p € [1,+o0) and a € ¢y, we define
I,={ncew:an)#0}. A,,={vel,:VYn(v(n)€aln)Z)}.

If 1, is infinite, then 4, , equipped the relative topology inherited from /, is a totally
disconnected, strongly NSS abelian Polish group, but is not non-archimedean. In
particular, we put d(n) = 27, and let

A, =A4,0={vel,:Vn(v(n) € 2"Z)}.

J
Lete; = (0,....0.1.0,...), then (¢;) is a Schauder basis of /,.

THEOREM 7.5. For p.q € [1,+00) and a € cy, the following hold.:

(1) if 1, is a nonempty finite set. then E(A,,) ~p Ey:
(2) if 1, is infinite, then E(A,,) ~p E(A4,):

() E(4,) <5 E():

(4) E(4,) <p E(l;) <= p=gq:and

(5) E(4,) <p E(4,) <= p=gq.

Proor. (1) If I, is a nonempty finite set. then 4,, is a nontrivial countable
discrete group. So E(A4,,) ~p Ey (see [5, Theorem 3.5(1)]).

(2) Suppose that I, is infinite. We can find a strictly increasing sequence of
j(n) € w for each n € I, such that 27" < |a(n)|. Clearly. there is an m, € @ with

la(n)| < m,27™ < 2la(n)|.
Lety: A,, — A, be defined as

mpv(n) .
e(v)(k) = { 2iMa(n)’ k= jn).nel,.

0, otherwise.

It is obvious that ¢ is a continuous homomorphism. For any v € 4, ,, we have

1

1
P ?

ol = | S | < [ ]22 10 ) Z o), < 20,

nely nely Zj(n)a(n)

Thus ¢ is a topological group isomorphism from 4, , onto ¢ (A4, ). It follows from
Proposition 2.3 that E(A4,,) <p E(A,). Similarly, E(4,) <g E(A4,.).
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(3) Since A4, is a closed subgroup of /,,. we get that E(A4,) <z E(I,). By Corollary
6.6, we have that E(4,) <p E(l,).

(4) The («=) part is from (3). We prove the (=) part as follows:

Suppose that E(A4,) <g E(l;). Then by Theorem 7.1, there exist an open
subgroup W of 4, and a continuous homomorphism S : W — [, such that
S|1U:U— S(U) is a homeomorphism and S(U) is closed in /,, where U C W
is an open neighborhood of 0.

For k € w, let Vi = {v € 4, : ||[v|, < 27*}. Since S is continuous, we can find
an integer ko > 0 so that

Vko CU We Vko (HS(U)Hq < 1).
For any k € w. we define v, € V), as

v (n) o 27k071, n = k + k()»
K= 0, otherwise.

Note that for any k # k’. we have
okl = 27507 < JJog = v, = 21772700t < 2k,
and thus both v, and vy — v are in V. So

sup ||S(Uk)||q <1, sup ”S(Uk) _S(Uk’)Hq <l
k KAk

Since S | Uisa homeomorphism, there are D, D, > 0 such that

II/:f ||S(’Uk)||q > Dy, kl;l{/ ||S(1)k) - S(’Uk/)”q > D».

Since supy, || S (vx )4 < 1. by the compactness of [- 1, 1]”, there are a subsequence
(S(vg,;)) of (S(vx)) and a w € [— 1, 1]” such that

Vn (lilm S (v, )(n) = w(n)).

Itis clear that ||wl|, < 1.and thusw € I,. Putw; = S(v,,) — S(vg,,,,) € I, for each
i € w. We have

D, < inf |lw;|l; < supllwily < 1. Va(limw;(n) = 0).
1 i 1

It follows from [14, Proposition 1.a.12] that there is a subsequence (w;;) of (w;)
which is equivalent to a block basis (see [14, Definition 1.a.10]) (w}) of (e;). In
other words, we get that, for any (z;) € R®,

Zt_,»wij converges < thw} converges.
J J

Then it is routine to check that 0 <inf; [|w}|l; < sup; |w}|; < oc. By similar
arguments in proof of [14, Proposition 2.a.1(i)]. we see that (w;) is equivalent
to (e;) in I,. Therefore, (w;,) is equivalent to (e;) in /.

Let x(j) = vk, — Vs, ,, foreach j € w.Then x € Ve C U C e ltis trivial

J J

to check that (x(j)) is equivalent to (e;) in /,. Note that 2%~ < || x(j)|, <20
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and Dy < [Jw;;[ly < 1for j € w. Thus for any (z;) € R”, we have

hmt]x(]):() <~ hmt]:O <~ limtjwij =0.
J J J

Put X = {(7;) e R® :Vj (¢; € 27ZN[0.1])}. Then for any (z;) € X. j € w. we
have ||2;x(j)||, < |x(j)|l, <2%.Sot;x(j) € Vi, €U C W.Notethatx(j) € U.
Then we have S(z;x(j)) = t;w;; for each (¢;) € X (This is because that w;, =

S(’Ukzl'/.) - S(’Ukzl'/_+1) = S(vkz,-/_ - vkzi/.+1) = S(X(]))
Forany ¢ = (¢;) € X.letX' = (t;x(j)) € W®. By Lemma 6.7, S¥ is a reduction

of E.(W)to E.(l;) x E(W:0).Lety =0 € W“. Again by Proposition 2.8, we can
get the following conclusion that, if lim; X' (j) = 0. then

th(j)fy(j) converges <= ZS(%’(]))fS(y(j)) converges.
J J

Because both sides of the above formula imply lim; X’ () = 0. So for any (¢;) € X.

Zt ;x(j) converges <~ Zt jwi; converges.
J J

From the fact that (x(;)) is equivalent to (e;) in /, and (w;, ) is equivalent to (e;) in
ly. we see that

V(t;)) e X (1) el, < (1;) €ly).

this gives that p = g¢.
(5) It follows immediately from (3) and (4). 4
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