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Abstract We study the decompositions of Hilbert schemes induced by the Schubert cell decomposition
of the Grassmannian variety and show that Hilbert schemes admit a stratification into locally closed
subschemes along which the generic initial ideals remain the same. We give two applications. First,
we give completely geometric proofs of the existence of the generic initial ideals and of their Borel fixed
properties. Second, we prove that when a Hilbert scheme of non-constant Hilbert polynomial is embedded
by the Grothendieck–Plücker embedding of a high enough degree, it must be degenerate.
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1. Introduction and preliminaries

In this paper, we give a geometric study of generic initial ideals. Given an ideal I of a
polynomial ring k[x0, . . . , xn] and a monomial order ≺, the generic initial ideal Gin≺(I)
of I is roughly defined as the monomial ideal generated by the initial terms of I after
a generic coordinate change. Its existence and basic properties were first worked out by
Galligo [9] in characteristic zero and subsequent works of Bayer and Stillman [3] and of
Pardue [16] established fundamental properties in prime characteristic. Generic initial
ideals found useful applications in the study of Hilbert schemes [12], and in the study of
the Castelnuovo–Mumford regularity and the complexity of Gröbner basis computation
[2] to name just a few.

We shall take Green’s geometric viewpoint of initial ideals [11] and prove further prop-
erties about generic initial ideals. Understanding the geometry of initial ideals leads to a
more conceptual and geometric proof of the existence of the generic initial ideals (Propo-
sition 3.2 and Definition 3.4). We also obtain a completely geometric proof of the Borel
fixedness (Proposition 3.5), which is the most important combinatorial property of generic
initial ideals. In essence, it is not a new proof but more of a reformulation since it shares
with the algebraic proof the key component, which is considering the non-vanishing of the
coefficient of the largest Plücker monomial. Nonetheless, we do believe that our geometric
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reformulation is a better display of the essence of the proof, and it has the obvious
advantage of being terse and to the point once we set up the machinery.

We also prove that the Hilbert schemes admit a stratification into locally closed
subschemes consisting of ideals with the same generic initial ideals.

Theorem 1.1. There is a finite decomposition

HilbP (P(V )) =
∐
�α∈G

Γ�α

into locally closed subschemes Γ�α = {[I]|Gin≺(I) = I�α} where �α runs through all indices
such that I�α are Borel fixed. Moreover, for each irreducible component H of HilbP (P(V )),
there is a unique maximal index �αH ∈ G such that Γ�αH

is Zariski open dense in H.

This will be established in § 2.3. As a corollary, we shall retrieve the main statement of
[6, Theorem 1.2].

Some authors have worked on the stratification of the Hilbert schemes of ideals accord-
ing to their initial ideals with respect to a monomial order [15,17]. Bertone et al.
considered in [4] what is called the Borel cover (an open cover, as opposed to a stratifica-
tion) of the Hilbert scheme. In § 4, we shall briefly sketch these related works and point
out the major differences from our work.

As the most prominent application of the geometric study of the stratification, we
demonstrate a very important and fundamental extrinsic geometry of the Hilbert scheme:
the Grothendieck–Plücker embedding of high enough degree is degenerate. More precisely,

Theorem 1.2. Let P be a non-constant admissible Hilbert polynomial. For any m � 0
(especially, m > m0), φm(HilbP (P(V ))) is degenerate.

Here, mo is the Gotzmann number of the Hilbert polynomial P and φm is the
Grothendieck–Plücker embedding (equation (2)). Admissible Hilbert polynomials are the
Hilbert polynomials of graded ideals. It is well known that for any admissible Hilbert
polynomial P , there exists a lex-initial ideal whose Hilbert polynomial is P , and this com-
pletely classifies the admissible Hilbert polynomials: see, for instance, [13, Appendix C,
p. 299]. This theorem will be proved in § 5.

We work over an algebraically closed field k of characteristic zero.

2. Schubert decomposition of the Hilbert schemes

2.1. Schubert cells in the Grassmannian

To introduce various notations properly, and for the sake of completeness, we recapit-
ulate the Schubert cell decomposition of Grassmannian varieties. Let d < n be positive
integers, and E be a k-vector space with an ordered basis {eα}α∈A. Here, A is an index
set and the order is denoted by ≺. We also let ≺ denote the induced order on A. The
standard Borel subgroup B ⊂ GL(E) consists of g ∈ GL(E) such that g · eα =

∑n
i=1 gαβeβ

and gαβ = 0 for all β � α.
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Let GrdE be the Grassmannian variety of d-dimensional subspaces of E and �α =
(α(1), . . . , α(d)) ∈ Ad satisfying eα(i) � eα(i+1). The Schubert cells are defined to be the
B-orbits of the d-dimensional coordinate subspaces i.e. for any �α as above,

C�α = B.E�α

where E�α is the subspace spanned by eα(1), . . . , eα(d).
For our purpose, it is useful to have the following description of Schubert cells in terms

of the initial subspace. A monomial of
∧d

E is an element of the form

e�α := eα(1) ∧ · · · ∧ eα(d)

with α(i) � α(i + 1), and we order the monomials lexicographically.
For any v =

∑
α aαeα ∈ E, the initial vector in≺(v) is simply eβ such that aβ �= 0 and

aα = 0 for all eα � eβ . Let F ⊂ E be a d-dimensional subspace of E. Then the initial
subspace in≺(F ) is defined to be the subspace spanned by in≺(w), ∀w ∈ F .

For �α = (α(1), . . . , α(d)) with α(i) � α(i + 1), The �αth Plücker coordinate p�α(F ) of F

is the eα(1) ∧ · · · ∧ eα(d)-coefficient of
∧d

F . Then the �αth Schubert cell is precisely

C�α := {F ∈ Grd(E)|p�α(F ) �= 0, p�α′(F ) = 0,∀�α′ � �α}. (†)

We define the partial order ≺s on Ad as follows: for any two indices �α and �α′, �α ≺s �α′ if
and only if α(i) ≺ α′(i) for all i. Then the Schubert cells are partially ordered accordingly,
and the closure C�α, called the Schubert variety, is the union

∐
�α′�s�α C�α′ . We point the

readers to the excellent lecture note by Michel Brion [5].

2.2. Decomposition of the Hilbert schemes induced by the Schubert cells of
the Grassmannians

Let V be a k-vector space of dimension n + 1 and x0, . . . , xn ∈ V ∗ be a basis of the dual
vector space. The symmetric product SmV ∗ has a basis consisting of degree m monomials

xα := xα0
0 · · ·xαn

n

where α = (α0, . . . , αn) ∈ Nn+1 has component sum |α| =
∑

αi = m. Let � be a mono-
mial order, and let B ⊂ GL(V ∗) and B′ ⊂ GL(SmV ∗) be the standard Borel subgroups
with respect to �. We abuse the notation and let � also denote the induced monomial
order on Zn+1

≥0 i.e. α � β if and only if xα � xβ .

Definition 2.1. ρm : GL(V ∗) → GL(SmV ∗) denotes the natural homomorphism
defined

ρm(g)xα =
n∏

i=0

(g · xi)αi .

Lemma 2.2. ρm(B) ⊂ B′.
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Proof. For any g ∈ B, we have

g · xα = g ·
∏

i

xαi
i =

∏
i

(giixi + l.o.t.s)αi

=
∏

i

(gαi
ii xαi

i + l.o.t.s)

=
(∏

i

gαi
ii

)
xα + l.o.t.s,

where l.o.t.s means lower order terms. �

Let P ∈ Q[m] be a rational polynomial admissible in the sense of [20, Theorem 1.3]
and Q(m) = dimk SmV ∗ − P (m) =

(
n+m

m

) − P (m). There is a number m0, called the
Gotzmann number, such that for all m ≥ m0, any homogeneous ideal I ⊂ S :=
k[x0, . . . , xn] with Hilbert polynomial P is m-regular [10]. This implies that we have
an exact sequence

0 → Im → Γ(P(V ),OP(V )(m)) → Γ(X,OX(m)) → 0 (1)

where X ⊂ P(V ) is the closed subscheme of P(V ) cut out by I. The point in GrQ(m)S
mV ∗

defined by the equation (1) is called the mth Hilbert point of I (or, of X), and is denoted
by [I]m or [X]m. Gotzmann’s theorem implies that we have an embedding of the Hilbert
scheme

φm : HilbP
P(V ) → GrQ(m)S

mV ∗

[I] �→ [I]m
. (2)

We call φm the mth Grothendieck–Plücker embedding of HilbP
P(V ). Fix m ≥ m0, let

d := Q(m) and consider the Schubert cell decomposition of GrdSm where Sm is the degree
m part SmV ∗ of S. For GrdSm, the Schubert cell (†) defined in the previous section takes
the following form.

Definition 2.3. An index is a sequence �α = (α(1), . . . , α(d)) such that each α(i) ∈
Nn+1 has component sum m and xα(i) � xα(i+1) for all i. Given an index �α, the Schubert
cell C�α of GrdSm associated to �α is

C�α = {F ⊂ Sm|in≺(F ) = k〈xα(1), . . . , xα(d)〉}.
Definition 2.4. Let �α be an index. We define I�α to be the saturation of the ideal

generated by xα(1), . . . , xα(d):

I�α := (〈xα(1), . . . , xα(d)〉 : 〈x0, . . . , xn〉∞).

And we will denote the saturation of an ideal J of S = k[x1, . . . , xr] by J sat.

Lemma 2.5. Let J be a saturated homogeneous ideal of k[x0, . . . , xn] with Hilbert
polynomial P . If Jm ∈ C�α, then (in≺J)sat = I�α.

Proof. Since the Hilbert polynomial of in≺J is P and m is not smaller than the
Gotzmann number m0 of P , (in≺J)m+l = Sl(in≺J)m for all l ≥ 0. Hence (in≺J)m =
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Plücker images of Hilbert schemes are degenerate 51

(I�α)m for all m ≥ m0 and it follows that (in≺J)sat = I�α since both ideals are
saturated. �

Lemma 2.6. Let J be as in the previous lemma. Suppose Jm ∈ C�α. Then there exists
a non-empty open subscheme U ⊂ GL(V ∗) such that for all g ∈ U , (in≺(g · I))sat = I�α′

for some �α′ � �α.

Proof. Let U ⊂ GL(V ∗) be the open subscheme that is complementary to the closed
subscheme cut out by the Plücker equation p�α(g · Jm) = 0. Since p�α(Jm) �= 0, U is non-
empty. That U has the desired property is clear from the defining property (†) of the
Schubert cells and Lemma 2.5. �

Let GL(V ∗) act on the product GL(V ∗) × HilbP (P(V )) on the first factor, and on
GrdS

mV ∗ through ρm (Definition 2.1). Define Ψm by

Ψm : GL(V ∗) × HilbP (P(V )) → GrdS
mV ∗

(g, [I]) �→ [g · I]m.

By abusing terminology, we shall call Ψm the mth Grothendieck–Plücker embedding when
there is no danger of confusion. Note that [g · I]m = ρm(g).[I]m, which amounts to saying
that Ψm is GL(V ∗)-equivariant.

Definition 2.7. C′
�α,m = (GL(V ∗) × HilbP (P(V ))) ×GrdSmV ∗ C�α,m.

Remark 2.8. When there is no danger of confusion, we suppress the subscript m.

The following two lemmas are immediate from Lemma 2.5.

Lemma 2.9. (g, [I]) ∈ C′
�α if and only if (in≺(g · I))sat = I�α.

Lemma 2.10. C′
�α is Borel invariant i.e. B · C′

�α = C′
�α.

Proof. For b ∈ B and (g, [I]) ∈ C′
�α, we have

Ψm(b · (g, [I])) = ρm(b) · Ψm((g, [I])) ∈ ρm(b) · B′ · E�α = B′ · E�α. �

Lemma 2.11. Let I be a set of indices and X ⊂ ∪�α∈I C�α be an irreducible subset. Let
�α� be a maximal index such that C�α� ∩X �= ∅. Then C�α� ∩X is open in X. Consequently,
such �α� is unique.

Proof. Reset the index set I such that every Schubert cell corresponding to a maximal
index of I meets X non-trivially. Let �α1, . . . , �αt be maximal indices, and hence whose
Schubert cells meet X. Now, consider the open set Ui := {F ∈ GrdSm|p�αi

(F ) �= 0}. Since
C�αi

= Ui ∩ ∪�α∈I C�α, C�αi
is open in ∪�α∈I C�α, then it follows that C�αi

∩X is open in X.
Since X is irreducible, it follows that t = 1. �

We summarize our findings in the following proposition.
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Proposition 2.12. Let H be an irreducible component of HilbP (P(V )). Then there
is a finite decomposition of GL(V ∗) × H into non-empty locally closed subschemes

GL(V ∗) × H =
∐
�α∈J

C′
�α

such that:

(1) if �α� is a maximal dimensional cell (such that C′
�α �= ∅), C′

�α� is Zariski open dense
in GL(V ∗) × H;

(2) (g, [I]) and (g′, [I ′]) are in the same C′
�α if and only if (in≺(g · I))sat =

(in≺(g′.I ′))sat;

(3) each C′
�α is B-invariant.

Proof. In a union of Schubert cells, any cell of maximal dimension is open. The index
set J consists of �α such that

Ψm(GL(V ∗) × H) ∩ C�α = φm(H) ∩ C�α �= ∅.

Since GL(V ∗) × H is irreducible, there is a unique �α� such that the corresponding Schu-
bert variety C�α� contains it. This establishes the first item. The second and the third
items are precisely the Lemmas 2.9 and 2.10. �

We obtain an induced decomposition of the irreducible components of Hilbert schemes,
simply by taking the trivial slice {1} × H of the product GL(V ∗) × HilbP (P(V )). See the
following result of Notari and Spreafico [15].

Corollary 2.13 (see [15, Theorem 2.1]). Fix a monomial order ≺ on the set of
monomials of k[x0, . . . , xn] and a monomial ideal I0 ⊂ k[x0, . . . , xn]. Then there exists a

locally closed subscheme HIo
of the Hilbert scheme HilbP (P(V )) whose closed points are

in bijective correspondence with the saturated ideals of k[x0, . . . , xn] whose initial ideal
equals I0.

2.3. Gin decomposition of the Hilbert scheme

Theorem 2.14. There is a finite decomposition

HilbP (P(V )) =
∐
�α∈G

Γ�α

into locally closed subschemes Γ�α = {[I] | (Gin≺(I))sat = I�α} where α runs through all
Borel fixed ideals. Moreover, for each irreducible component H of HilbP (P(V )), there is
a unique maximal index �αH ∈ G such that Γ�αH

is Zariski open dense in H.

Proof. We give an inductive proof. Let m be an integer larger than the
Gotzmann number of P . Set Γ0j = ∅, j ∈ N. Suppose that we have constructed
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Γ11, . . . ,Γ1s1 , . . . ,Γ�−1 1, . . . ,Γ�−1s�−1 such that for each irreducible component Huj of

Zu := HilbP (P(V )) \
∐

i≤u−1

Γij , u ≤ � − 1

there exists a unique Γuj which is open dense in Huj and an index �α�
uj such that

(Gin≺I)sat = I�α�
uj

for all I ∈ Γuj .
Let H�1, . . . , H� s�

be the irreducible components of Z� defined as above. Let π2

denote the projection from GL(V ∗) × H�j to the second factor. Since GL(V ∗) × H�j

is irreducible, by Lemma 2.11 there exists a unique maximal index �α�
�j such that

Ψm(GL(V ∗) × H�j) ∩ C�α�
�j

is non-empty open in Ψm(GL(V ∗) × H�j). Let U�α�
�j

be the
fibre product C�α�

�j
×GrdSmV ∗ (GL(V ∗) × H�j). It is an open subscheme of GL(V ∗) × H�j ,

and its projected image Γ�j = π2(U�α�
�j

) is an open subscheme of H�j since projections
are flat.

For any [I] ∈ Γ�j , C�α�
�j
×GrdSmV ∗ (GL(V ∗) × {[I]}) is not empty, and open in

GL(V ∗) × {[I]} which we identify with GL(V ∗). Clearly, �α�
�j is the maximal index whose

Schubert cell meets Ψm(GL(V ∗) × {[I]}). Hence for any g in the open non-empty sub-
scheme C�α�

�j
×GrdSmV ∗ (GL(V ∗) × {[I]}) of GL(V ∗), we have [in≺(g · I)]m = [I�α�

�j
]m,

and since m is at least as large as the Gotzmann number, (in≺(g · I))sat = I�α�
�j

. That is
(Gin≺(I))sat = I�α�

�j
for any [I] ∈ Γ�j , and we rename Γ�j to Γ�α�

�j
and obtain the statement

of the theorem. �

Remark 2.15. The definition/construction of the locally closed subschemes Γij

depends on the choice of the embedding φm of the Hilbert scheme but their properties
determine them uniquely.

As a corollary, we retrieve the following. Let ≺ be a monomial order and P be an
admissible Hilbert polynomial. We assume that HilbP

Pn is embedded in a suitable Grass-
mannian. Recall that an initial segment in degree d and length � with respect to ≺ is
simply the set of the first � monomials of degree d.

Corollary 2.16 (see [6, Theorem 1.2]). For any general member I of an irreducible
component H of HilbP

Pn, we have

(Gin≺(I))sat = I�α�

where �α� is the maximal index such that H meets C�α� . In particular, the generic initial
ideal of general points in the plane equals the ideal which is generated by initial segments
in every degree.

Proof. The first statement is straight from Theorem 2.14 and its proof. The second
statement follows since a Hilbert scheme of points on a smooth surface is smooth and
irreducible, and there exists an ideal with Hilbert polynomial P that is generated by
initial segments in all degrees [6, Lemma 5.5]. Note that the assertion does not depend
on the embedding φm since I�α� remains the same by Lemma 2.5. �
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Remark 2.17. Although we retrieve the main statement of Theorem 1.2 of [6], Conca
and Sidman do more: they explicitly give a set of conditions on the points that guarantee
that the generic initial ideal is the initial segment ideal.

3. Primary and secondary generic initial ideals

We retain the notations from the previous section. As an application of our geometric
study of the Gin decomposition of the Hilbert scheme, we give a geometric proof of
the existence of generic initial ideals and their Borel-fixed properties. One of the key
ingredients is that initial ideals can be thought of as flat limits with respect to a one-
parameter subgroup action: Bayer and Morrison used this in their study of state polytopes
of Hilbert points [2], and more recently Sherman has also used it to prove that the
one-parameter subgroup [18] taking an ideal to its generic initial ideal is also Borel fixed.

Fix a saturated ideal I ⊂ k[x0, . . . , xn] with Hilbert polynomial P , and consider the
orbit map

Ψm,I : GL(V ∗) � GL(V ∗) × [I] ↪→ GL(V ∗) × HilbP (P(V )) Ψm→ GrdS
mV ∗.

In short, Ψm,I(g) = [g · I]m. We have the induced decomposition

GL(V ∗) � GL(V ∗) × [I] =
∐
�α

(GL(V ∗) × [I]) ∩ C′
�α .

Definition 3.1. We let C′′
�α denote (GL(V ∗) × [I]) ∩ C′

�α regarded as a locally closed
subscheme of GL(V ∗).

Following Proposition 2.12 and its proof, we easily obtain the following.

Proposition 3.2. There is a finite decomposition of GL(V ∗) into locally closed
subschemes

GL(V ∗) =
∐
σ

Xσ

such that:

(1) there is a unique maximal stratum Xσ�
0

that is open dense in GL(V ∗);

(2) g, g′ are in the same stratum if and only if in≺(g · I) = in≺(g′.I);

(3) each stratum is B-invariant.

Proof. Since GL(V ∗) is irreducible, for each m there exists a unique �α�
m such that

Ψm,I(GL(V ∗)) ⊂ C�α�
m

.

By Proposition 2.12, C′′
�α�

m
is open dense in GL(V ∗) and in≺(g · I)m = (I�α�

m
)m for all

g ∈ C′′
�α�

m
.

Suppose that I has a universal Gröbner basis which has members in degrees d1, . . . , d�.
Let Xσ∗

0
:=

⋂�
i=1 C′′

�α�
di

: this is open dense in GL(V ∗) and for any g ∈ Xσ∗
0
, in≺(g · I)m =
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(I�α�
m

)m for each m = d1, . . . , d�. Since initial ideals of I (hence those of any GL(V ∗)-
translate of I) are generated in degrees d1, . . . , d�, it follows that in≺(g · I) are the same
for all g ∈ Xσ∗

0
. This is the primary generic initial ideal Gin≺(I) of I.

We shall repeat this procedure. Let Z11, . . . , Z1u1 be the irreducible components of
GL(V ∗) \ Xσ∗

0
. Apply the above argument to each Z1i and obtain Xσ1i

(1) which is open dense in Z1i and

(2) in≺(g · I) = in≺(g′.I) for all g, g′ ∈ Xσ1i
.

Having constructed Xσ(s−1)i
, i = 1, . . . , us−1, in this manner, we take the irreducible

decomposition

GL(V ∗) \
(

Xσ∗ ∪
s−1∐
j=1

Xσji

)
= Zs1 ∪ · · · ∪ Zsus

,

apply the same argument to each Zsi and obtain Xσsi
until we exhaust the whole of

GL(V ∗). �

Remark 3.3. Xσ�
0

meets the unipotent subgroup U = {g ∈ B | gαα = 1,∀α} since BoU
is Zariski open in GL(V ∗). See for instance, [8, Theorem 15.18].

Definition 3.4. The (primary) generic initial ideal of [I] is in≺(g · I) for any g ∈
C′′

�α� , and it equals I�α� . The secondary generic initial ideal with respect to �α �= �α� is
I�α = in≺(g · I) for g ∈ C′′

�α.

Let Bo denote the opposite Borel subgroup:

Bo := {g ∈ GL(V ∗) | g · xα =
∑

cαβxβ , cαβ = 0,∀β ≺ α}.

One sees from the definition of B and Bo that, for any b ∈ B (resp. b ∈ Bo) and [I]m ∈
C�α ⊂ GrdS

mV ∗, b.[I]m ∈ C�β with β � α (resp. β � α). We symbolically write

Bo · [I]m � [I]m � B · [I]m.

Proposition 3.5 (see [3, 9, 16]). The primary generic initial ideals are Borel fixed.
That is, BoGin≺(I) = Gin≺(I).

Proof. Let [I] ∈ HilbP
P(V ) and suppose b.Gin≺(I)m �= Gin≺(I)m for some b ∈ Bo

and m ≥ 2. Let �α� be the maximal index for [I]m i.e. I�α� = in≺(g · I)sat = Gin≺(I)sat

for any g ∈ C ′′
�α� . We fix an arbitrary g ∈ C ′′

�α� and work with it for the rest of this proof.
Since Bo · [I]m � [I]m, b.I�α� ∈ C�β for some �β � �α�.

There is a one-parameter subgroup λ : Gm → GL(V ∗), diagonalized by the basis
{x0, . . . , xn}, such that limt→0 λ(t).g · [I]m = in≺(g · [I]m): due to [19, Proposition 1.11],
there exists ω ∈ Zn+1

≥0 such that in ω(g · I) = in≺(g · I), where in ω(I) means the ideal
generated by the initial forms in ω(f) with respect to the partial weight order defined
by ω, ∀f ∈ I. Such ω is obtained by computing a Gröbner basis G and choosing ω such
that in ω(f) = in≺(f) for all f ∈ G. Let λ : Gm → GL(V ∗) be the 1-PS associated to
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−ω i.e. λ(t).xi = t−ωixi. Then [in≺(g · I)] = limt→0 λ(t).[g · I] in the HilbP (P(V )) [1,
Corollary 3.5].

Since λ is diagonalized by {x0, . . . , xn}, the Schubert cells are invariant under its action.
By our choice of g ∈ C ′′

�α� , g · [I]m ∈ C�α� and hence λ(t).g · [I]m is contained in C�α� , ∀t �=
0. Since �α� ≺ �β, C�α� ⊂ Z := C�β and hence we have λ(Gm).g · [I]m ⊂ Z. The Schubert
cells are locally closed, so C�β is open in Z. Since the limit of b.λ(t).g · [I]m is in the open
set C�β (of Z), it follows that b.λ(t).g · [I]m ∈ C�β for some t �= 0. Hence b.λ(t).g ∈ C ′′

�β
�= ∅

which contradicts the maximality of �α�. �

4. Other stratifications and covers

In this section, we shall describe related works and point out the apparent and crucial dif-
ferences that distinguish our work. Let P(V ), k[x0, . . . , xn] = ⊕mSmV ∗, and HilbP

P(V )
be as before in § 2.2.

4.1. Stratification according to the initial ideals

The first work appearing in the literature regarding the stratification

HilbP
P(V ) =

∐
HIo

of Hilbert schemes by using initial ideal is [15] which we retrieved in Corollary 2.13. This
stratification is clearly different from ours. In their stratification, there is a unique stratum
for each monomial ideal whereas in ours, there is a unique stratum for each Borel fixed
ideal. Hence the stratification HilbP (P(V )) =

∐
HIo

has far more strata. Also, a stratum
HIo

in general is not contained in one of our strata Γ�α since in≺I = in≺J does not
imply Gin≺I = Gin≺J : let ≺ be the degree reverse lexicographic order. There are ideals
I whose regularity is strictly lower than that of J = in≺I. Then in J = in (in I) = in I
but Gin I �= GinJ since the regularity is preserved under taking the generic initial ideal
with respect to the degree lexicographic order. This was pointed out to the author by
Hwangrae Lee.

Notari and Spreafico studied the properties of the strata and showed that HI0 is
isomorphic to an affine space if HI0 is non-singular at the Hilbert point of I0. They
also considered the strata HI�

that contains an open subset (of an irreducible compo-
nent H) and showed that I� should be Borel fixed. The distinguished open subschemes
HI�

and ΓαH
(from Theorem 2.14) are more closely related than others. First off, the

indices I� and αH are both determined by the largest Schubert cell that intersects the
Grothendieck–Plücker image of H (as in Proposition 2.12), so I� = IαH

. Also, if in I = I�,
then Gin I = I� due to Lemma 2.6. Hence we conclude that HI�

= HIαH
⊂ ΓαH

. They are
not equal in general, as can be easily seen in the hypersurface cases.

4.2. Borel open cover

In [4], Bertone et al. considered the open cover HilbP
P(V ) =

⋃
g,J Hg

J of the Hilbert
scheme, where:
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(i) the indices g and J respectively run over PGL(V ∗) and the set of all Borel fixed
ideals of Hilbert polynomial P ; and

(ii) the open subscheme Hg
J is the g-translate of the open subscheme φ−1

m (C�α) where �α
is the index satisfying J = I�α.

Note that Hg
I�α

is an open subscheme complement to the hypersurface {J ∈ HilbP
P(V ) |

p�α(g · Jm) = 0} whereas our stratum Γ�α is derived from the locally closed subscheme that
misses the hypersurface {J ∈ HilbP

P(V ) | p�α(Jm) = 0} and is contained in the closed
subscheme ∩�α′��α{p�α′(Jm) = 0}. If g · J has initial ideal I�α, then J ∈ Hg

I�α
, but there are

ideals J ∈ Hg
I�α

whose initial ideal after coordinate change by g differs from I�α. Hence the
Borel open cover does not give information about our stratification in Theorem 2.14.

5. Grothendieck–Plücker embedding is degenerate

Retain notations from § 2. Let P be a non-constant admissible Hilbert polynomial of a
graded ideal of S = k[x0, . . . , xn], and let mo denote its Gotzmann number.

Theorem 5.1. The Grothendieck–Plücker image φm(HilbP
Pn) is degenerate for m >

m0 unless P is a constant.

We first prove the following key lemma.

Lemma 5.2. Let Im be a subspace of SmV ∗ generated by an initial reverse
lexicographic segment of monomials.

(1) See [7, Corollary 2.9]. For any l > 0, SlIm is also generated by an initial reverse lex-
icographic segment if and only if dimk Im ≥ (

n+m−1
m

)
, i.e. if and only if Im contains

xm
n−1.

(2) Suppose that Im contains xm
n−1. Then dimk SmV ∗ − dimk Im = dimk Sm+lV ∗ −

dimk SlIm. In particular, if an ideal J is generated in degree ≤ m and Jm = Im,
then its Hilbert polynomial is a constant.

Proof. (1) One direction is straightforward. Assume that SlIm is generated by an
initial reverse lexicographic segment. Since SlIm contains a monomial divisible by xn,
xm+l

n−1 is also contained in SlIm. Thus xm
n−1 must be contained in Im.

Conversely, assume that Im contains xm
n−1. It is enough to prove that S1Im is generated

by an initial reverse lexicographic segment. Let μ be a degree m monomial M not divisible
by xn. Then μ � xm

n−1 and it follows that μ ∈ Im since xm
n−1 is contained in Im and Im

is generated by a revlex initial segment. In turn, we deduce that every monomial not
contained in S1Im is divisible by xn.

Consider two monomials μ1, μ2 ∈ S1Im such that μ1 � μ2 and μ1 /∈ S1Im. Then μ1 is
divisible by xn and since μ2 ≺ μ1, μ2 is also divisible by xn. If μ2 ∈ S1Im, then (μ2/xi) ∈
Im for some xi. The relation (μ2/xi) � (μ2/xn) � (μ1/xn) implies that (μ1/xn) ∈ Im and
thus μ1 ∈ S1Im which is a contradiction. Hence μ2 �∈ S1Im and this means that S1Im is
generated by an initial segment.
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(2) It suffices to prove that the number of monomials of degree m not contained in
Im is equal to the number of monomials of degree m + 1 not contained in S1Im. If μ is
the least monomial in Im then xnμ is the least monomial in S1Im. So a monomial μ′ of
degree m + 1 is not in S1Im iff xnμ � μ′. The last equation implies that μ′ is divisible by
xn, so there is a bijective map given by μ′′ �→ xnμ′′ from the set of monomials of degree
m smaller than μ to the set of monomials of degree m + 1 smaller than xnμ. �

An elementary argument shows that if an ideal I is generated by a lex initial segment
Im, then I is a lex initial ideal, i.e. Im′ is generated by a lex initial segment for all m′ ≥ m.
Moreover, by Macaulay’s theorem, given any admissible Hilbert polynomial P , one can
construct an ideal I whose Hilbert polynomial is P by taking the ideal generated by a
suitable initial lexicographic segment. The corollary below states that the opposite holds
for revlex. An ideal 〈W 〉 generated by a revlex initial segment W ⊂ Sm is never a revlex
initial ideal, except in the constant Hilbert polynomial case.

Corollary 5.3. Let J be a graded ideal of S. If Jm is generated by a reverse lexico-
graphic initial segment for some m > 0, then J has a constant Hilbert polynomial unless
J is generated in degrees ≥ m.

Proof. If J is not generated in degrees ≥ m, i.e. Jm′ �= 0 for some m′ < m, then
Jm ⊃ Sm−m′Jm′ ⊃ xm−m′

n Jm′ . Since Jm is generated by a reverse lexicographic initial
segment, Jm � xm

n−1. The assertion now follows due to Lemma 5.2(2). �

Proof of Theorem 5.1. We will prove that for all m > m0, φm(H) is degenerate
where H is an irreducible component of HilbP

Pn. Let H be an irreducible component of
HilbP

P(V ). Let � be the degree reverse lexicographic order and m > mo be an integer.
Let N = dimk Sm and d = N − P (m). We consider Sm � SmV ∗ as an N -dimensional k-
vector space with the basis consisting of degree m monomials ordered by �. Then

∧d
Sm is

the exterior product of Sm with the partially ordered basis consisting of exterior products
of degree m monomials.

Let �α�,m = {α(1), . . . , α(d)} be the maximal index set so that xα(1) ∧ · · · ∧ xα(d) is
the maximal basis element of

∧d
Sm, and let p�α�,m denote the corresponding Plücker

coordinate. Then C�α�,m = {p�α�,m �= 0} is the big open cell of GrdSm, and its complement
{p�α�,m = 0} defines an ample divisor, namely, the pull-back φ∗

mO
P(

∧d Sm)(+1) of the
hyperplane divisor.

We will show that φm(H) ⊂ {p�α�,m = 0} using Corollary 5.3. If φm(H) �⊂ {p�α�,m = 0},
then there exists I ∈ φ−1

m (C�α�,m) ∩ H such that [in≺(I)]m = [I�α�,m ]m. Since H is closed
and in≺(I) is the flat limit of an isotrivial family whose generic object is I, the component
H contains J := in≺(I). Since m > m0 and J is generated in degree ≤ m0, we have
Sm−m0Jm0 = Jm. Since [J ]m is generated by an initial reverse lexicographic segment,
we may apply Corollary 5.3 to conclude that the Hilbert polynomial of I is a constant,
contradicting the assumption.

So for each irreducible component H of HilbP
P(V ), φm(H) is contained in {p�α�,m = 0}

and thus φm(HilbP
P(V )) is contained in {p�α�,m = 0} for m > m0. �

As an example, we consider the Hilbert scheme of degree d hypersurfaces of Pn. We let
S = k[x0, . . . , xn] be the homogeneous coordinate ring of Pn and let V ∗ = S1 as before.
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Hypersurfaces have Hilbert polynomial

P (m) =
(

n + m

m

)
−

(
n + m − d

m − d

)
,

and the Hilbert scheme HilbP
Pn is naturally identified with P(H0(OPn(d))) and φd is an

isomorphism. On the other hand, consider the image under φd+1. For any [I] ∈ HilbP
Pn,

φd+1([I]) ∈ P(
∧n+1

Sd+1) is determined by

∧d+1I := x0f ∧ x1f ∧ · · · ∧ xnf

where f is a homogeneous degree d polynomial generating I. Therefore every monomial
appearing in the wedge product ∧d+1I has each variable x0, . . . , xn with a positive expo-
nent. It follows that φd+1(HilbP

Pn) is contained in the hyperplane cut out by p�α = 0
where �α = (�α(1), . . . , �α(n + 1)) is chosen such that {x�α(1), . . . , x�α(n+1)} are monomials of
degree d + 1 in x0, . . . , xn−1. Note that such �α exists since the number of degree d + 1
monomials in x0, . . . , xn−1 is

(
n+d
d+1

)
which is larger than n + 1 for any n ≥ 2 and d ≥ 1.

Hence we conclude that φd+1(HilbP
Pn) is degenerate. Since the Gotzmann number of

the Hilbert polynomial P (m) is d, this is also checked from the Theorem 5.1.

Acknowledgements. The authors thank HyunBin Loh for pointing out [14] which
provides an important ingredient in the proof of Theorem 5.1. We thank Hwangrae Lee
who made an observation in § 4 regarding the relation between our theorem and the work
of Notari and Spreafico. We also greatly benefited from conversations with Young-Hoon
Kiem on Hilbert schemes. An anonymous referee pointed out a few errors and made sev-
eral suggestions to improve the exposition of the article. We are very grateful for his/her
effort. The first named author was supported by the National Research Foundation of
Korea (NRF) Grant No. 2017R1A5A1015626 funded by the government of Korea.

References

1. D. Bayer and I. Morrison, Standard bases and geometric invariant theory. I. Initial
ideals and state polytopes, J. Symbolic Comput. 6(2–3) (1988), 209–217.

2. D. Bayer and M. Stillman, A criterion for detecting m-regularity, Invent. Math. 87(1)
(1987), 1–11.

3. D. Bayer and M. Stillman, A theorem on refining division orders by the reverse
lexicographic order, Duke Math. J. 55(2) (1987), 321–328.

4. C. Bertone, P. Lella and M. Roggero, A Borel open cover of the Hilbert scheme, J.
Symbolic Comput. 53 (2013), 119–135.

5. M. Brion, Lectures on the geometry of flag varieties https://www-fourier.ujf-grenoble.
fr/∼mbrion/lecturesrev.pdf.

6. A. Conca and J. Sidman, Generic initial ideals of points and curves, J. Symbolic Comput.
40(3) (2005), 1023–1038.

7. M. Crupi and M. La Barbiera, Ideals generated by reverse lexicographic segments,
Math. Notes 89(1) (2011), 68–81.

8. D. Eisenbud, Commutative algebra, Graduate Texts in Mathematics, Volume 150
Springer-Verlag, New York, 1995).
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