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Abstract

We prove polynomial ergodicity for the one-dimensional Zig-Zag process on heavy-
tailed targets and identify the exact order of polynomial convergence of the process
when targeting Student distributions.
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1. Introduction

The Zig-Zag process is a piecewise deterministic Markov process (PDMP) that was recently
used as a new way to construct Markov chain Monte Carlo (MCMC) algorithms. The one-
dimensional Zig-Zag appeared in [5] as a scaling limit of lifted Metropolis–Hastings (see [12]
and [21]) applied to the Curie–Weiss model (see [19]). The process was later extended to higher
dimensions in [7] and has been proposed as a way to sample from posterior distributions in
a Bayesian setting (see also [14] and [22]). Since then, its properties have been extensively
studied in the literature (see e.g. [4], [6], [8], [9], etc.).

In [10] Bierkens, Roberts, and Zitt proved ergodicity and exponential ergodicity of the
Zig-Zag process in arbitrary dimension, but a crucial assumption required for exponential
ergodicity in their work is that the target density has exponential or lighter tails. In [23]
Vasdekis and Roberts proved the converse result. The Zig-Zag sampler fails to be exponen-
tially ergodic when the target distribution is heavy-tailed. On the other hand, it was shown in
Theorem 1 of [10] that the process will converge to the invariant measure under very mild
assumptions, including the heavy-tailed case. Furthermore, Andrieu, Dobson, and Wang [1]
used hypocoercivity techniques (see also [2]) to prove polynomial rates of convergence for the
Zig-Zag process on heavy-tailed targets in arbitrary dimension.

In this note we will focus on the one-dimensional Zig-Zag process and prove polynomial
ergodicity in the heavy-tailed scenario. The result applies in the special case where the tails of
the target decay in the same manner as a Student distribution with ν degrees of freedom. In that
case, we prove that the polynomial rate of convergence is arbitrarily close to ν but not more
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than ν. This improves upon the result stated in [1] in the special case where d = 1, although
their work provides convergence results for higher dimensions as well.

The rest of this paper is organised as follows. In Section 2 we recall the definition of the one-
dimensional Zig-Zag process and state the main result concerning its polynomial ergodicity in
heavy-tailed targets. In Section 3 we provide a proof of this result. Finally, in Section 4 we
discuss the rates of polynomial convergence of the Zig-Zag process and compare them with
those of other state-of-the-art Metropolis–Hastings algorithms.

2. Results

We begin by recalling the definition of the one-dimensional Zig-Zag process. Let E =R×
{−1, +1}, U ∈ C1(E), and λ : E →R≥0 with

λ(x, θ ) = [θU′(x)]+ + γ (x),

where γ is a non-negative integrable function and we write a+ = max{a, 0}. The one-
dimensional Zig-Zag process (Zt)t≥0 = (Xt, �)t≥0 is a continuous-time Markov process with
state space E which evolves as follows. If the process starts from (x, θ ) ∈ E, then Xt = x + tθ
and �t = θ for all t < T1, where T1 is the first arrival time of a non-homogeneous Poisson
process with rate m1(s) = λ(x + sθ, θ ). Then XT1 = x + T1θ , �T1 = −θ . Then Xt = XT1 + (t −
T1)�T1 and �t = �T1 for all t ∈ (T1, T1 + T2), where T2 is the first arrival time of a Poisson
process with intensity m2(s) = λ(XT1 + s�T1, �T1 ). The process is then defined inductively up
to time Tn for all n ∈R.

It was proved in [7] that with this choice of λ, the process has measure μ as invariant, where

μ = π
⊗ 1

2
δ{−1,+1} (1)

and

π (dx) = 1

Z
exp{−U(x)}dx,

with Z = ∫
R

exp{−U(y)}dy < ∞.
Since this note concerns the polynomial ergodicity of the one-dimensional Zig-Zag process,

we now recall the definition of polynomial ergodicity.

Definition 1. Let (Zt)t≥0 be a Markov process with state space E, having invariant probability
measure μ, and let k > 0. We say that the process is polynomially ergodic of order k if there
exists a function M : E →R>0 such that for all z ∈ E and t ≥ 0,

‖Pz(Zt ∈ ·) − μ(·)‖TV ≤ M(z)

tk
,

where Pz denotes the law of the process starting from z.

We will make the following assumption, typically verified in practice.

Assumption 1. Assume that there exists a ν > 0 and a compact set C ⊂R such that for all
x /∈ C,

|U′(x)| ≥ 1 + ν

|x| . (2)
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Remark 1. This assumption directly implies that there exists a c′ such that for all x ∈R, U(x) ≥
(1 + ν) log(|x|) − c′. This is an assumption made in [10] in order to prove non-evanescence of
the Zig-Zag process, and it is a natural assumption given that the function exp{−U(x)} must be
integrable.

We also need the following assumption for the refresh rate γ .

Assumption 2. Assume that the refresh rate satisfies

lim|x|→∞
γ (x)

|U′(x)| = 0.

Assumption 2 ensures that the bouncing events will vastly outnumber the refresh events,
at least in the tails of the target. While we have not been able to establish the necessity of
this assumption for the conclusions of Theorem 1, some control over γ (x)/|U′(x)| is definitely
needed. Indeed, in the regime where lim|x|→∞ γ (x)/|U′(x)| = +∞ (as would be the case with
constant refresh rate and heavy-tailed targets), random direction changes would outnumber
systematic ones, leading to random walk/diffusive behaviour commonly associated with slow
convergence. In fact, in this case, the algorithm would resemble a random walk Metropolis
algorithm, which is known to converge at a slower polynomial rate. Therefore we believe
that some control of the refresh rate relative to |U′| should be assumed for guarantees about
specific rates of convergence to hold. This can be further supported by simulation studies.
In Figure 1 we present the mean square error of estimating a tail probability (P(X ≥ 5) for
a standard Cauchy target) using Zig-Zag with different refresh rates. We consider γ (x) = 0,
γ (x) = |U′(x)| and γ (x) = 1. For each algorithm we generated 1000 independent realisations,
all starting from (−5, +1), and all realisations run until time T = 104. For each time less than
T the average square error of the true probability (approximately equal to 0.0628) is reported.
It is clear that the smaller refresh rate leads to more rapid convergence.

Our main result is the following.

Theorem 1. (Polynomial ergodicity of Zig-Zag.) Suppose that U satisfies Assumption 1 and
let C and ν > 0 as in (2). Suppose further that the refresh rate satisfies Assumption 2. Then, for
any k < ν, there exist constants B, δ > 0 and β ∈ (0, 1) such that if we let

Vβ,δ(x, θ ) = exp{βU(x) + δ sgn(x)θ},
then for all (x, θ ) ∈R× {−1, +1},

‖Px,θ (Zt ∈ ·) − μ(·)‖TV ≤ BVβ,δ(x, θ )

t1+k
+ B

tk
, (3)

i.e. the process is polynomially ergodic of order k.

Remark 2. By carefully inspecting the proof of Theorem 1, we observe that Assumption 2 can
be weakened in the following sense. If ν is as in Assumption 1 and if we fix k < ν, then in order
to prove polynomial ergodicity of order k, it suffices that there exists a small η > 0 and that we
ask that

lim|x|→∞
γ (x)

|U′(x)| ≤ M,

where

M = M(k) =
(

k + 1

ν + 1
(1 + η) − η

) (
1 − 1+k

1+ν
(1 + η)

)1+η

1 − (
1 − 1+k

1+ν
(1 + η)

)1+η
. (4)

https://doi.org/10.1017/jpr.2021.97 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2021.97


898 G. VASDEKIS AND G. O. ROBERTS

Mean square error of tail event
M

ea
n 

sq
ua

re
 e

rr
or

FIGURE 1. Mean square error over time of three Zig-Zag algorithms with different refresh rates γ (x),
described in the upper right corner. The algorithms target the Cauchy distribution and are used to esti-
mate the probability mass the Cauchy distribution assigns to the event [5, +∞). For all three algorithms,
1000 independent realisations were generated, and for each time less than 104, the average square
error between the approximation of the probability and the actual probability (approximately 0.0628)

is reported. Evidently the fastest convergence is achieved by lowering the values of γ .

We observe, however, that M is not uniform in k. More precisely, assuming that η is small
enough so that M(k) > 0 for all k, we have limk→ν M(k) = 0. A proof of this remark will be
given in Section 3.

An immediate corollary of Theorem 1 is the following characterisation of the order of
polynomial convergence of the one-dimensional Zig-Zag on Student distributions. For the fol-
lowing lower bound on the total variation distance from the invariant measure, we use a type
of argument similar to the proof of Theorem 2.1 of [23], suggested to us by Professor Anthony
Lee in a private communication.

Corollary 1. Let ν > 0 and suppose π is a Student distribution with ν degrees of freedom,
that is,

π (x) = 1

Z

(
1 + x2

ν

)−(ν+1)/2

(5)

and the Zig-Zag process targets μ as in (1), having a refresh rate that satisfies Assumption 2.
For all k < ν, there exist β ∈ (0, 1) and δ, B > 0 such that for all (x, θ ) ∈R× {−1, +1},

‖Px,θ (Zt ∈ ·) − μ(·)‖TV ≤ BVβ,δ(x)

t1+k
+ B

tk
,

that is, for all k < ν, the process is polynomially ergodic of order k. Furthermore, for any k > ν,
the process is not polynomially ergodic of order k. More specifically, there exists a constant C′
such that for all t > 0 large enough,

‖P0,+1(Zt ∈ ·) − μ(·)‖TV ≥ C′

tν
.
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Corollary 1 illustrates that Theorem 1 is close to being tight. At least for Student distribu-
tions with ν degrees of freedom, it is established that the process is polynomially ergodic for
order k < ν and it is not for any order k > ν. Whether the process is polynomially ergodic of
order ν is still an open question, but probably of limited practical importance.

3. Proofs

Before we prove Theorem 1 we recall the form of the strong generator of the Zig-Zag
process.

Definition 2. We define L to be the operator acting on any f ∈ C1(E) so that for all
(x, θ ) ∈ E,

Lf (x, θ ) = θ f ′(x, θ ) + ([θU′(x)]+ + γ (x))(f (x, −θ ) − f (x, θ )).

It can be proved (see e.g. [11]) that L is the restriction on C1 of the strong generator of (Zt)t≥0.

General conditions for polynomial ergodicity can be found in Theorems 3.2 and 3.4 of [13]
and Theorem 1.2 of [3] (see also Corollary 6 of [15] for some earlier results on sub-geometric
convergence). Here we use a result found and proved in the presented form in the unpublished
lecture notes by Hairer [16].

Theorem 2. (Theorem 4.1 of [16].) Let (Xt)t≥0 a continuous-time Markov process on X with
strong generator L. Suppose that there exists a function V : X → [1, +∞) and a constant K
such that for all x ∈ X,

LV(x) ≤ K − f (V) (6)

for a function f : [0, +∞) → [0, +∞) which is strictly concave, increasing, with f (0) = 0,
lims→+∞ f (s) = +∞. Suppose further that all the sub-level sets of V are pre-compact and
small. Then the following hold.

(i) There exists a unique invariant measure μ for the process such that
∫

f (V(x))μ(dx) < ∞.

(ii) Let Hf (u) = ∫ u
1 1/f (s)ds. Then there exists a constant B > 0 such that for every x ∈ X,

‖Px(Xt ∈ ·) − μ(·)‖TV ≤ BV(x)

H−1
f (t)

+ B

f ◦ H−1
f (t)

.

Proof of Theorem 1. Suppose that U satisfies Assumption 1 and let k < ν. Select a such that
k = a/(1 − a), so that a < 1 − 1/(1 + ν). For any β̃ ∈ (0, 1) we see that there exists a c0 > 0
such that for all x /∈ C,

(
Vβ̃,δ(x, θ )

)1−a|U′(x)| ≥ c0 exp
{
β̃(1 − a)(1 + ν) log|x|}1 + ν

|x| = c0(1 + ν)|x|β̃(1−a)(1+ν)−1.

Since (1 − a)(1 + ν) − 1 > 0, there exists a β close to 1 such that β(1 − a)(1 + ν) − 1 > 0, so

lim|x|→∞ V1−a
β (x, θ )|U′(x)| = +∞. (7)

Now Vβ,δ ∈ C1 and lim|x|→∞ Vβ,δ(x, θ ) = +∞, so all the level sets are compact. Since the
process is positive Harris recurrent and some skeleton is irreducible (see [10]), we get from
Proposition 6.1 of [20] that the level sets are also small. Since lim|x|→∞ U(x) = +∞, it is clear
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that Vβ,δ is bounded below away from 0, so by multiplying with an appropriate constant we
can assume that Vβ,δ(x, θ ) ≥ 1 for all (x, θ ). We calculate

LVβ,δ(x, θ ) = Vβ,δ(x, θ )
(
θβU′(x) + ([θU′(x)]+ + γ (x))(exp{−2θ sgn(x)δ} − 1)

)
.

Note that due to Assumption 1 and since

U(x)
|x|→∞−−−−→ +∞,

we get that there exists a compact set C̃ such that for all x /∈ C̃, sgn(U′(x)) = sgn(x). Therefore,
when x /∈ C̃ and θ sgn(x) > 0,

LVβ,δ(x, θ )

Va
β,δ(x, θ )

≤ V1−a
β,δ (x, θ )|U′(x)|

[
β +

(
γ (x)

|U′(x)| + 1

)
(exp{−2δ} − 1)

]
,

and when θsgn(x) < 0,

LVβ,δ(x, θ )

Va
β,δ(x, θ )

≤ V1−a
β,δ (x, θ )|U′(x)|

[
−β + γ (x)

|U′(x)| (exp{2δ} − 1)

]
.

Overall, we have for x /∈ C̃

LVβ,δ(x, θ )

Va
β,δ(x, θ )

≤ V1−a
β,δ (x, θ )|U′(x)| max

{
β +

(
γ (x)

|U′(x)| + 1

)
(exp{−2δ} − 1),

[
−β + γ (x)

|U′(x)| (exp{2δ} − 1)

]}
. (8)

Recall that
γ (x)

|U′(x)|
|x|→∞−−−−→ 0.

Fix δ > −1/2 log(1 − β), and by possibly increasing C̃ we have that there exists a constant
c′ > 0 such that for all x /∈ C̃,

max

{
β +

(
γ (x)

|U′(x)| + 1

)
(exp{−2δ} − 1), −β + γ (x)

|U′(x)| (exp{2δ} − 1)

}
< −c′ < 0.

Combining this with (7) and (8), we find that Vβ,δ satisfies (6) with f (u) = cua for c = c′/2
and with K being an appropriate constant that bounds the continuous function LVβ,δ + f (Vβ,δ)
inside C̃.

Therefore all the conditions of Theorem 2 are satisfied. Note that

Hf (s) =
∫ s

1
1/f (u)du = c−1

∫ s

1
u−adu = 1

c(1 − a)

(
s1−a − 1

)
,

so
H−1

f (t) = (1 + c(1 − a)t)1/(1−a)

and therefore
f ◦ H−1

f (t) = c(1 + c(1 − a)t)a/(1−a).

Since we picked a such that k = a/(1 − a), meaning that k + 1 = 1/(1 − a), (3) follows. �
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Proof of Remark 2. Fix k < ν and set a such that k = a/(1 − a), therefore 1 − a = 1/(1 + k).
Our goal is to find an appropriate upper bound on γ (x)/|U′(x)| that will guarantee that the right-
hand side of (8) is negative for appropriately chosen β and δ. For this it suffices to prove that
for some β, δ > 0, the maximum appearing in the right-hand side of (8) is negative, bounded
away from zero and that (7) holds. These two conditions will guarantee that the drift condition
(6) holds for Vβ,δ and we can conclude similarly to the proof of Theorem 1. Since from the
proof of that theorem

(
Vβ̃,δ(x, θ )

)1−a|U′(x)| ≥ c0(1 + ν)|x|β̃(1−a)(1+ν)−1,

in order to guarantee (7) it suffices to pick β = (1 + η)(1 + k)/(1 + ν) for some η > 0. From
the discussion after (8), we can pick

δ = −1

2
(1 + η) log(1 − β) = −1

2
(1 + η) log(1 − (1 + η)(1 + k)/(1 + ν)).

With this choice of β, δ, the first part of the maximum of the right-hand side of (8) will be
negative, bounded away from zero. The second part of the maximum is given by

−β + γ (x)

|U′(x)| (exp{2δ} − 1) = −(1 + η)
1 + k

1 + ν

+ γ (x)

|U′(x)|
((

1

(1 − (1 + η)(1 + k)/(1 + ν))

)(1+η)

− 1

)
.

Therefore, solving the inequality

−β + γ (x)

|U′(x)| (exp{2δ} − 1) < −η

(which would guarantee that the maximum on the right-hand side of (8) is negative, bounded
away from zero), we get

γ (x)

|U′(x)| ≤ M(k),

where M(k) as in (4). �

Proof of Corollary 1. Let π as in (5). Then for all δ′ > 0 there exists a compact set C with
0 ∈ C, such that for all x /∈ C,

|U′(x)| = (ν + 1)|x|
ν + x2

≥ 1 + ν − δ′

|x| .

Therefore, for every δ′ > 0, the distribution satisfies Assumption 1, where the ν in that assump-
tion is equal to ν − δ′. From Proposition 1, for all k < ν, there exists a β ∈ (0, 1), δ > 0 and
B > 0 such that for all (x, θ ) ∈R× {−1, +1},

‖Px,θ (Zt ∈ ·) − μ(·)‖TV ≤ BVβ,δ(x)

t1+k
+ B

tk
.
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Now suppose that the Zig-Zag starts from x = 0, θ = +1. There exists a C0 and K > 0 such that
for all |x| ≥ K, π (x) ≥ C0|x|−ν−1. Fix a time t > K. Let At = {x : x > t}. After time less than or
equal to t has passed, the Zig-Zag will not have hit At. We therefore get for all t > K

‖P0,+1(Zt ∈ ·) − μ(·)‖TV ≥ |P0,+1(Xt ∈ At) − π (At)|
= π (At)

=
∫

|x|>t
π (x)dx

≥ 2C0

∫ +∞

t
x−ν−1dx

= 2
C0

ν

1

tν
. �

4. Discussion

It is interesting to compare the Zig-Zag polynomial convergence rates with those of the one-
dimensional random walk Metropolis (RWM) algorithm and the Metropolis-adjusted Langevin
algorithm (MALA). In fact, it is shown in Propositions 4.1 and 4.3 of [18] (see also [17]) that
when targeting a Student distribution with ν degrees of freedom with any finite variance pro-
posal RWM or with MALA, one gets polynomial order of convergence (ν/2)−, that is, for
any ε > 0, the polynomial rate of convergence is at least ν/2 − ε. However, it is proved not
to be ν/2. In [17], Jarner and Roberts provide these lower bounds for the convergence rates,
while in [18] they provide the upper bound. As proved in this note, the one-dimensional Zig-
Zag has polynomial rate of convergence ν− in the same setting, which is better than RWM
or MALA. This phenomenon was also observed in simulations in [4]. We conjecture that the
advantage of the Zig-Zag is due its momentum, which, in a one-dimensional, unimodal setting
with zero refresh rate, will force the process to never switch direction before it hits the mode.
This diminishes any possible diffusive behaviour of the process at the tails and helps the algo-
rithm converge faster. We should note here that better polynomial rates (and more precisely,
arbitrarily better rates) can be achieved for random walk Metropolis (RWM) if one introduces
a proposal with heavier tails. However, a natural analogue of this modification is to allow the
Zig-Zag to speed up and move faster in areas of lower density. This idea is further discussed
in [23] and proved to be able to provide exponentially ergodic algorithms even on heavy-tailed
targets, which can outperform the simple Zig-Zag in the sense of having better effective sample
size per number of likelihood evaluations.
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