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Optimisation of the geometry of axisymmetric
point-absorber wave energy converters
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We propose a scientifically rigorous framework to find realistic optimal geometries of
wave energy converters (WECs). For specificity, we assume WECs to be axisymmetric
point absorbers in a monochromatic unidirectional incident wave, all within the context
of linearised potential theory. We consider separately the problem of a WEC moving
and extracting wave energy in heave only and then the more general case of motion and
extraction in combined heave, surge and pitch. We describe the axisymmetric geometries
using polynomial basis functions, allowing for discontinuities in slope. Our framework
involves ensuring maximum power, specifying practical motion constraints and then
minimising surface area (as a proxy for cost). The framework is robust and well-posed,
and the optimisation produces feasible WEC geometries. Using the proposed framework,
we develop a systematic computational and theoretical approach, and we obtain results and
insights for the optimal WEC geometries. The optimisation process is sped up significantly
by a new theoretical result to obtain roots of the heave resonance equation. For both the
heave-only, and the heave-surge-pitch combined problems, we find that geometries which
protrude outward below the waterline are generally optimal. These optimal geometries
have up to 73 % less surface area and 90 % less volume than the optimal cylinders which
extract the same power.

Key words: wave–structure interactions, surface gravity waves

1. Introduction

Wave energy represents an abundant source of renewable energy, with an estimated global
resource of 2 TW (Gunn & Stock-Williams 2012). This energy is predictable, relatively
consistent and energy-dense and could add much-needed diversity to the renewable
generation required to combat the global climate crisis. The technology is still relatively
young, with only a handful of wave energy converter (WEC) designs having completed any
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real-sea testing (Al-Shami, Zhang & Wang 2019). At present, ocean wave energy is still
not economically competitive with other renewable energy resources, such as wind or solar
energy (Chang et al. 2018). Chang et al. (2018) estimate that capital expenditure (CapEx)
and operating expenditure (OpEx) must be reduced by 45 % and power production must be
increased by 200 % for wave energy to be economically viable. Clearly, significant – not
just incremental – improvement in wave energy extraction efficiency is needed for wave
energy to be economically and physically viable.

To date, many theoretical, experimental and pilot-scale studies have been conducted
on WECs – in fact, there have been over 1000 different proposed WEC designs (Drew,
Plummer & Sahinkaya 2009). However, as yet there has been no consensus or convergence
on the optimal WEC geometry. Dallman et al. (2018) summarise the 2016 US Department
of Energy ‘wave energy prize’, and a comparison of the finalist designs shows a wide range
of geometric shapes, configurations and designs. Babarit (2015) compares ∼100 WECs,
showing a vast range of both geometry and performance.

There have been a number of studies that optimise the dimensions of a specific
geometric design (for example, Shadman et al. 2018; Xu, Stuhlmeier & Stiassnie 2018).
There have also been studies that look at simple geometries (such as a cylinder,
hemisphere, cone or a library of shapes) and optimise the dimensions of these shapes
under different conditions (for example, Kurniawan 2013; Zhang et al. 2016). However,
these studies have a wide range of optimisation functions and constraints, illustrating that
there is no accepted or consistent definition of what it means for a WEC to be optimal and
also no established framework for finding the optimal geometry.

In this paper, a robust and practical framework for defining and finding optimal
geometries of WECs is presented. We assume linear potential flow, and, as an initial
step, we limit the geometry optimisation to a unidirectional monochromatic wave incident
on an axisymmetric (single-body) WEC in deep water. By developing a new analytic
understanding of the problem, a general and efficient optimisation of a wide range of
geometries is performed. The optimal geometries for different constraint regimes are
revealed and physical insights are discussed, showing how to extract maximum power
for minimum cost.

Although the hydrodynamic problem is linearised, the dependence of the hydrodynamic
parameters (and consequently everything determined by these parameters) on the body
geometry can be highly nonlinear. Therefore, solving for the optimal geometry of a
(point-absorber) WEC in this context is a nonlinear problem of fundamental interest.

While the linearisation of the hydrodynamics enables us to perform the efficient
(nonlinear) geometry optimisation we describe, the general validity of our results could
be limited by this assumption. To partly address this, we introduce in the optimisation two
physical constraints (see § 3): (i) a motion constraint (α) which limits the resonant motion
amplitude relative to the incident wave amplitude, and (ii) a steepness constraint (ε),
which, given α, requires the body draft to be not small relative to the incident wavelength.

Even with these constraints, the general wave-body hydrodynamics contains
nonlinearities associated with the free surface and body nonlinearities associated with
changing underwater geometry, which are not considered in this paper. For example,
when second-order effects are considered for a truncated vertical cylinder or cone (e.g.
Kim & Yue 1989), the relative importance of second-order effects is not insignificant
with increasing wave steepness. Similarly, when higher-order effects are considered in
a flap-type WEC body with curvature (see, Michele & Renzi 2019; Michele, Renzi
& Sammarco 2019), nonlinear effects such as those associated with trapped modes
and nonlinear synchronous resonances can significantly affect the optimal design of
these WECs and increase the theoretical maximum power relative to linear theory.
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Figure 1. Illustration of the problem set-up for the (a) heave-only and (b) heave-surge-pitch problems.

In this context, the current optimisation results and geometries must be considered
preliminary designs that should be verified/refined by higher-order or fully nonlinear
wave-body hydrodynamics effects.

2. Problem assumptions and theory

For specificity and simplicity, we consider a vertically axisymmetric body in a plane
incident wave. We consider two related but separate optimisation problems associated
with this body, illustrated in figure 1: (a) ‘Heave-only’: a point absorber constrained to
motion and extraction in heave only, which is the most common design for a WEC, and
(b) ‘Heave-surge-pitch’: the full 3-D problem of a point absorber moving and extracting
energy in the heave, surge and pitch combined modes in the plane of the incident wave.

The power take-off (PTO) mechanisms are modelled as simple linear dampers, of which
there is one for the heave-only problem and four for the heave-surge-pitch problem. The
mooring force is modelled as a spring in surge.

We choose to optimise axisymmetric shapes, which perform well in ocean waves with
direction which is often highly variable (Drew et al. 2009). The PTO mechanisms are
usually direct-drive linear generators (Al-Shami et al. 2019) which can be well-modelled
as a linear damper. While controls are sometimes used in WECs, there are known issues
(Babarit 2015), and we choose not to introduce more parameters to our optimisation than
is necessary.

The theory for maximum extractable power is well-known (see for example Mei,
Stiassnie & Yue 2005; Edwards 2020; Falnes & Kurniawan 2020). For completeness,
we summarise a few key results here. For clarity, we hereafter consistently use { }∗
to denote dimensional quantities, while all quantities without asterisk are appropriately
non-dimensionalised. The linearised equation of motion for a 3-D WEC moving in six
degrees of freedom in a monochromatic incident wave with wavenumber k∗ and frequency
ω∗ (ω∗2 = g∗k∗ in deep water, where g∗ is gravitational acceleration) can be written as

6∑
j=1

M∗
ijΞ̈

∗
j = X

∗
i +

6∑
j=1

[
−A∗

ijΞ̈
∗
j +

(
B∗

ij + β∗
ij

)
Ξ̇∗

j −
(

C∗
ij + K ∗

ij

)
Ξ∗

j

]
, (2.1)

where M∗
ij, A∗

ij, B∗
ij, β

∗
ij , C∗

ij and K ∗
ij are the mass, added mass, radiation damping, PTO

damping, restoring force and spring force coefficient matrices, and Ξ∗
j = Re{ξ∗

j eiω∗t∗} and
X

∗
i = Re{X∗

i eiω∗t∗} are the body motion and exciting force vectors. For an axisymmetric
body in a unidirectional incident wave, the modes of motion are j = 1 (surge), 3 (heave)
and 5 (pitch), with heave uncoupled from surge-pitch (which are coupled).
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For the heave-only problem, extractable power is maximised when the body is in
resonance, meaning that it solves the following condition, expressed in dimensional
quantities:

C∗
33 − ω∗2 (

m∗ + A∗
33

) = 0, (2.2)

(where m∗ is body mass) and when the PTO damping coefficient equals the radiation
damping coefficient,

β∗
33 = B∗

33. (2.3)

For deep water, in non-dimensional quantities, R ≡ k∗R∗ (where R∗ is the radius at the
waterline), lV ≡ k∗l∗V (where l∗V = (V∗)1/3, with V∗ being submerged volume) and A33 ≡
A∗

33k∗3/ρ∗ (where ρ∗ is density of water), (2.2) can be expressed as

πR2 − l3V − A33 = 0. (2.4)

For the heave-surge-pitch problem, since heave is uncoupled from surge-pitch, (2.2) and
(2.3) must still be met. As shown in Edwards (2020), one way to achieve maximum power
for coupled surge-pitch modes is to put the body in resonance in surge-pitch:

k∗
1 − ω∗2 (

m∗ + A11∗
) = 0; A∗

15 − m∗z∗
G = 0; C∗

55 − ω∗2 (
I∗55 + A∗

55
) = 0, (2.5a–c)

(where k∗
1 is the surge spring coefficient, z∗

G is the vertical centre of gravity and I∗55 is the
pitch moment of inertia) and additionally

β∗
11 = B∗

11, β∗
55 = B∗

55, β∗
15 = B∗

15. (2.6a–c)

Note from (2.5a–c) that there are tunable parameters in each equation that are independent
of geometry: k∗

1, z∗
G and I∗55.

Expressing extractable power as a ‘capture width’ W∗, which is the ratio of the WEC
extractable power to the incident power per unit incident wave crest length, it can be shown
(e.g. Budal & Falnes 1975; Evans 1976; Mei 1976; Newman 1976) that when the above
conditions are met,

Wmax
3 ≡ k∗Wmax∗

3 = 1, Wmax
1+5 ≡ k∗Wmax∗

1+5 = 2, Wmax
1+3+5 ≡ k∗Wmax∗

1+3+5 = 3.

(2.7a–c)
We see that maximum extractable power limits for axisymmetric bodies do not depend
on geometric shape or size, therefore one cannot, in general, find the optimal geometry
by solely maximising power extraction, since any geometry that satisfies the above
requirement will extract the same, maximum power.

3. Optimisation framework

There is not a generally accepted definition for optimality of WEC geometry, and as yet no
agreed-upon framework to find that optimal geometry. For example, Kurniawan & Moan
(2012) perform a multi-objective optimisation, minimising surface area and maximising
the integral of power over a given spectrum. McCabe (2013) considers three optimisation
functions, given a spectrum: overall power, power per characteristic length, and power
per volume. We choose to optimise a vertically axisymmetric body in a monochromatic
incident wave, since even this simplified problem has not been solved.

The main goals when optimising the geometry of a WEC are to maximise power
extraction and minimise cost, while ensuring that the geometry is feasible and realistic.
While the extractable power is relatively easily defined (for example by absorption

933 A1-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

99
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.993


Geometry optimisation of axisymmetric point-absorber WECs

width W), cost is a complex engineering function. We use wetted surface area as a proxy
for cost in this paper. Dallman et al. (2018) show that wetted surface area is a good proxy
for cost (and a better proxy for cost than volume). Furthermore, for a given surface area,
the maximum possible volume is necessarily constrained. To non-dimensionalise surface
area, we use lS = k∗l∗S, where l∗S = √

S∗
W , S∗

W being the wetted surface area of the WEC
geometry.

Simply maximising W and minimising lS, however, would result in an ill-posed
framework, since minimising lS without any constraints results in the absence of a body
as the solution to the optimisation. One optimisation problem might be to maximise W
and minimise lS/lV for a given displacement volume. However, due to the nature of
the resonance equation (2.4), for each lV there are many geometries which achieve the
maximum W. Looking across multiple values of lV , the best shape would be the one which
achieves the maximum W with the minimum lS/lV , which would be the resonating floating
hemisphere. However, this answer minimises neither surface area nor volume, so it would
not in fact meet the goal of minimising cost.

In this work, we propose a new optimisation framework and definition of WEC geometry
optimality. For all WEC geometries that extract the maximum theoretical power Wmax

(2.7a–c) and also satisfy realistic constraints for maximum body motion, minimum draft
and stability, we minimise body surface area lS. This framework is well-posed, satisfies the
goals of maximising power and minimising cost, and produces realistic body geometries,
ensured by the enforced constraints.

For the heave-only problem, § 2 shows that to achieve maximum power, the body
must be in resonance with the incident wave and the PTO damping must be tuned
to the radiation damping. That is, when (2.2) and (2.3) are solved, Wmax

3 = 1. For
a given incoming wavenumber k∗, the independent parameter in (2.2) is the device
geometry. Many geometries will solve the resonance equation, which will all extract the
same, maximum power. Similarly, for the heave-surge-pitch problem, one way to achieve
maximum power is for the WEC to be in resonance with the PTO damping equal to
the radiation damping in the respective modes. That is, when (2.2), (2.3), (2.5a–c) and
(2.6a–c) are met, Wmax

1+3+5 = 3. There are tunable parameters in each resonance equation
other than the heave mode, shown in (2.5a–c). Therefore, we find that to maximise power
for the heave-surge-pitch problem, geometry can be solved from the heave resonance
equation (2.2) and then the tunable parameters can be solved, using (2.5a–c), to ensure
resonance in all modes.

Requiring bodies to be in resonance can result in large motion amplitudes for
many geometries, particularly for small bodies, as discussed in Mei et al. (2005).
These amplitudes are practically unrealistic (and incompatible with the small-amplitude
assumption). Therefore, following Evans (1981), we impose a motion constraint: αi < α0,
where αi = |ξ∗

i |/A∗, i = 1, 3, α5 = |ξ∗
5 |R∗/A∗, where R∗ is the radius at the waterline,

A∗ is incident amplitude and α0 is a given design constant. Furthermore, we introduce a
‘steepness constraint’ to avoid geometries which tend towards unrealistic thin, disk-like
shapes, which in seas of small but finite steepness would leave the ocean surface. This
constraint restricts the draft at the centreline, H∗, to be greater than the body motion, ξ∗

i .
Consequently, H = k∗H∗ must be greater than αik∗A∗. Here k∗A∗ is the wave steepness
parameter, which is assumed to be small to justify linearisation. We can express this
constraint as εi > ε0 where εi = k∗H∗/αi, i = 3, 5 and ε0 is another given design constant.
In all our results, the effects of different values of α0 and ε0 are considered.

There are two additional constraints needed in the heave-surge-pitch problem for
the tunable parameters: the body vertical centre of gravity, zG = z∗

G/H∗, must ensure
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equilibrium stability, −1 < zG < zmax
G , and the radius of gyration rg = r∗

g/R∗, must be
within the body, 0 < rg < r(zG).

The heave-only and heave-surge-pitch optimisation statements are summarised as
follows. For all axisymmetric bodies satisfying the heave resonance equation (2.2),
minimise surface area, lS, subject to (a) for heave-only: α3 < α0 and ε3 > ε0, and (b)
for heave-surge-pitch: αi < α0 (i = 1, 3, 5), εi > ε0 (i = 3, 5), −1 < zG < zmax

G and 0 <

rg < r(zG).

4. Approach to obtain optimised geometries

4.1. General geometric description
We use piecewise parametric Chebyshev polynomial basis functions to describe the
generating curve, 𝒮, of the axisymmetric body in the r–z plane, and allow slope
discontinuities at specific points with coordinates (r∗

j , z∗
j ), j = 1, 2, . . .. For segment j,

rj∗ and zj∗ define the radial and depth parameters, and a∗
ji, b∗

ji, i = 0, 1, 2, . . . are the
coefficients for the i-th order Chebyshev basis functions, Ti, for the radial and depth
parameters, respectively:

(r, z)j∗(s) =
(N,M)j∑

i=0

(a, b)∗jiTi(s), (4.1)

where s is a parameter in the range [0, 1], j = 1 refers to the segment closest to the
waterline, and N and M are the highest-order basis function for the radial and depth
directions, respectively. We solve for a∗

j0, a∗
j1, b∗

j0 and b∗
j1 to ensure that r∗ = R∗ when

z∗ = 0 (at the waterline), r∗ = 0 when z∗ = −H∗ (at the centreline), and, if applicable,
r∗ = r∗

j when z∗ = z∗
j for any slope discontinuities.

We non-dimensionalise the geometric parameters, setting r = k∗r∗, z = k∗z∗, R =
k∗R∗, H = k∗H∗, rj = r∗

j /R∗, zj = z∗
j /H∗, aji = a∗

ji/R∗, bij = b∗
ji/H∗, r j(s) = rj∗(s)/R∗

and z j(s) = zj∗(s)/H∗.

4.2. Classifying geometries
Given the description of geometric shapes above, there are many ways to group the
parameters to describe different shapes. As explained further in § 4.3, we need a way to
represent the set of all shapes with all geometric parameters other than radius and volume
fixed. We call these sets ‘classes’ of shapes. We define the vector

BE = {a12, b12, a13, b13, . . . , r1, z1, a22, b22, a23, b23, . . . , . . .}, (4.2)

so that a geometry is fully defined by B̄ = {lV , R,BE}. We define a ‘class’ of geometries
as the set of all geometries with a common BE. The simplest example class is the set
of all cylinders. The BE for the cylinder class is {0, 0, 0, 0, 0, 0, 1, −1, 0, 0, 0, 0, 0, 0}.
Each cylinder is then defined by its lV and R values. Figure 2(a) shows the generating
𝒮 curves for a range of cylinders, with R values from 0.4 to 2.25 and lV = 1. In reality,
the class of cylinders contains all values of R and lV . Figure 3(a) shows the generating
𝒮 curves for another example class, which we will call class C1. The BE for C1 is
{0, 0, 0, 0, 0, 0, 1.1, −1.5, 0, 0, 0, 0, 0, 0}. In figure 3(a), we show the generating 𝒮 curves
for a range of geometries belonging to this class for R values ranging from 0.5 to 1.5
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Figure 2. (a) Generating 𝒮 curves for a range of R values for the class of cylinders, for lV = 1. (b) Generating
𝒮 curves for the two roots of the heave resonance equation (2.2) for lV = 1. (c) Plot of G(R, lV ), from (4.4), in
colour, as a function of R (x-axis) and lV (y-axis). G = 0 is shown with the black line.

and lV = 1. In reality, class C1 contains all values of R and lV . Recall that these 𝒮
curves are the 2-D generating curves for the 3-D axisymmetric geometry, and the axes
are non-dimensionalised by wavenumber, so r = k∗r∗ and z = k∗z∗.

4.3. A theorem for obtaining the roots of the heave resonance equation (2.2)
In this section, a novel theorem for finding roots of the heave resonance equation is
presented and proved. This theorem adds to our understanding of resonating heave bodies,
and it significantly decreases computation time in our optimisation by providing analytic
solutions for the resonating shapes instead of brute-force searching. Our new theoretical
result relates BE to the heave resonance equation (2.2). If, for a given BE, A33 = A∗

33k∗3/ρ∗
can be approximated by the function

A33 = fA(lV)R3, (4.3)

where fA(lV) > 0 for all lV > 0, and Δ ≡ lV [−27(fA(lV))2(lV)3 + 4π3] has one positive
real root, (lV)max, such that Δ > 0 for lV < (lV)max and Δ < 0 for lV > (lV)max, then for
lV < (lV)max there are two geometries, with R values R1 and R2, that satisfy (2.2), and for
lV > (lV)max there are no such geometries.

The proof is as follows. Inputting (4.3) into (2.4), we get

G(R, lV) = πR2 − lV
(

1 + fA(lV)R3
)

= 0. (4.4)

Since fA(lV) > 0 for all lV > 0, Descartes’ rule of signs tells us that there is always one
real negative root and either zero or two real positive roots. The cubic discriminant of (4.4)
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Figure 3. (a) Generating 𝒮 curves for a range of R values for class C1, for lV = 1. (b) Generating 𝒮 curves for
the two roots of the heave resonance equation (2.2) for lV = 1. (c) Plot of G(R, lV ), from (4.4), in colour, as a
function of R (x-axis) and lV (y-axis). G = 0 is shown with the black line.

is Δ ≡ lV [−27(fA(lV))2(lV)3 + 4π3], and Δ has one positive real root, (lV)max, and for
0 < lV < (lV)max, Δ > 0, and for lV > (lV)max, Δ < 0, then for 0 < lV < (lV)max there
are two resonant geometries, defined by the two positive real roots of (4.4), R1(lV) and
R2(lV). For lV > (lV)max there are no such geometries, since there are no positive real
roots of (4.4).

In figures 2(c) and 3(c), we plot G(R, lV) as a function of lV and R for the cylinder
class and C1 (described in § 4.2 and visually in figure 3a), showing G(R, lV) = 0 in black.
Figures 2(c) and 3(c) show visually that for lV < (lV)max, there are two roots of G(R, lV),
and for lV > (lV)max, there are no roots of G(R, lV). The G(R, lV) plots differ for the
different classes, showing that (lV)max depends on BE.

Using this theorem, given lV and BE, we can determine the two resonating bodies,
B̄1 = {lV , R1,BE} and B̄2 = {lV , R2,BE}, if they exist, since (4.4) becomes a simple cubic
equation in R we can solve explicitly (since lV is fixed). Figures 2(b) and 3(b) show an
example of what the generating 𝒮 curves for the two resonating bodies look like for the
cylinder class and for class C1 for lV = 1.

Without this theorem, it would be necessary to search R to find the roots of (2.2), without
knowing how many there are. By removing one degree of freedom from the optimisation,
the process is sped up by two or more orders of magnitude.

4.4. Groups of geometries to optimise
As described in § 4.2, we define a class of geometries as the set of all geometries with
a common BE. Using the theorem from § 4.3, we can determine if there are zero or
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two resonating geometries in each class for a given lV and then find the corresponding
resonating geometries, if they exist.

We define a ‘group’ of geometries as a set of multiple classes that possess some
particular geometric property. The framework described in § 3 is valid for any set of
geometries, but we find that describing geometries using classes and groups to specify
different geometry sets enables faster optimisation by using the theorem in § 4.3.

For our optimisation, we consider a broad variety of groups that encompass practical
shapes that can be built: (i) cylinders (‘CYL’), a group of just one class, (ii) ‘flat-bottomed’
(‘FB’) geometries with two piecewise linear segments and one slope discontinuity, with
the bottom segment being horizontal (that is, z1 = −1 and r1 > 0), (iii) ‘wall-sided’
(‘WS’) geometries with two piecewise linear segments with one slope discontinuity,
with the segment closest to the waterline being vertical (that is, r1 = 1 and z1 < 0),
(iv) ‘one-kink’ (‘OK’) geometries with two piecewise linear segments with one slope
discontinuity (that is, r1 > 0 and z1 < 0), (v) ‘no-kink-2nd-order’ (‘NK2O’) geometries
with no slope discontinuities, with second-order coefficients of both parametric equations
(that is, a12 and b12), and (vi) compound cylinders (‘CC’) geometries made from two
cylinders of differing widths and depths stacked on top of each other (that is, r2 > 0 and
−1 < z2 < 0).

We use a genetic algorithm to optimise lV and the geometric parameters in BE,
minimising lS, subject to the relevant constraints. Extensive sensitivity studies are
performed for both the heave-only and the heave-surge-pitch problems to determine
mutation probability, initial population size and number of generations needed to converge.
Additionally, we study the sensitivity to the grid-step size to ensure convergence to within
5 % of the final lmin

S .
To find the hydrodynamic coefficients for each geometry, we use the linear

frequency-domain panel method WAMIT (Lee & Newman 2006), with results converged
to within 3 % for all cases. We use a 2-D+ interpolation of roots of the resonance equation
for each group to provide initial guesses, and each final geometry is again checked using
WAMIT. All figures of generating 𝒮 curves show the profile, not the discretisation.
Figure 9(c) shows an example discretisation of a 3-D axisymmetric shape, which is put
into WAMIT to find the hydrodynamic parameters.

5. Results and discussion

5.1. In the heave-only problem, constraint boundaries provide class optimal
We can reduce the degrees of freedom in the heave-only optimisation further by observing
that the optimal geometry for each class lies on the constraint boundary. Recall that for the
heave-only optimisation, the two constraints are α3 < α0 and ε3 > ε0, described in § 3.
Figure 4 shows the dependence of (a) α3 and (b) ε3 on lS for the given BE, shown in (c) by
their 𝒮 curves. We notice in figure 4 that as lS increases, α3 decreases monotonically, while
ε3 monotonically increases from zero to some maxima and then monotonically decreases.
Note that these α3 and ε3 correspond to the (heave) resonating bodies only.

For a given BE, α0 and ε0, we define lαS to be the value of lS for the geometry where
α3 = α0. Here lεS,1 and lεS,2, where lεS,1 < lεS,2, are the values of lS for the geometries such
that ε3 = ε0. From the observed trends in figure 4, we conclude the following: if lαS < lεS,1,
then lmin

S = lεS,1; if lεS,1 < lαS < lεS,2, then lmin
S = lαS ; and if lαS > lεS,2, there is no lmin

S . Note
that to solve α3 = α0 and ε3 = ε0, we still use the theorem described in § 4.3 since the
geometries must be in resonance in heave.
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Figure 4. For a given BE, as lS increases, (a) α3 monotonically decreases, and (b) ε3 monotonically increases
from zero to some maxima and then monotonically decreases. (c) Generating 𝒮 curves for the three given BE.

Therefore, for a given BE, α3 and ε3, we can find the geometry with the minimum surface
area directly, eliminating a variable (lV ) from the optimisation and greatly increasing the
efficiency. We note that these results pertain only to the heave-only problem.

5.2. Optimal geometries for different constraint regimes

For the heave-only problem, we optimise BE to minimise lS. Given BE, α0 and ε0, we find
lV and lmin

S for that BE using the method described in § 5.1, ensuring that the geometry
adheres to the heave motion and steepness constraints and that it is in resonance in heave.
A genetic algorithm is used to find the values in BE that minimise lS. Figure 5 shows
the generating 𝒮 curves for the optimal geometries for the heave-only problem for four
different constraint regimes, corresponding to α0 = 1 and 3, ε0 = 0.1 and 0.2, for each
group discussed in § 3. Numerical data for the geometries in figure 5, including geometric
parameter values and heave motion amplitudes, are tabulated in supplementary materials
available at https://doi.org/10.1017/jfm.2021.993. We observe the following general trends.
(i) Optimal geometries generally protrude outward below the waterline. Groups that can
protrude outward (FB, CC, OK, NK2O) perform significantly better than groups that
cannot protrude outward (CYL, WS). (ii) The maximum radius generally occurs close
to the waterline. (iii) Optimal geometries across different groups share many common
features/values, such as radius at the waterline and maximum radius, suggesting these are
general trends and may be features of a global optimum. (iv) As α0 decreases, the optimal
geometries are generally shallower and wider. (v) Geometries that protrude downward are
generally not optimal.
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Figure 5. Generating 𝒮 curves of the optimal geometries for the heave-only problem with constraint constants
(a) α0 = 3, ε0 = 0.1, (b) α0 = 3, ε0 = 0.2, (c) α0 = 1, ε0 = 0.1, (d) α0 = 1, ε0 = 0.2. Groups (described in
§ 4.4): CYL, purple; FB, blue; WS, orange; OK, dark green; NK2O, light green; CC, red.

For the heave-surge-pitch problem, we optimise lV and BE to minimise lS. Given lV and
BE, we use the theorem described in § 4.3 to find geometries in resonance in heave (if
they exist), and then check if they adhere to all of the constraints for the heave-surge-pitch
problem (described in section § 3). A genetic algorithm is used to find the lV value and
values in BE that minimise lS. Figure 6 shows the generating 𝒮 curves for the optimal
geometries for the heave-surge-pitch problem, for the same constraint values and groups
as for the heave-only problem. Data for these geometries are tabulated in supplementary
materials. We observe the following general trends. (i) Optimal geometries still generally
protrude outward. (ii) As α0 increases, optimal geometries are generally wider. (iii)
Compared with the heave-only problem, these optimal geometries are wider and less
protruding outward.

We find that, as expected, there is little sensitivity to small changes in geometry. For
example, for the optimal shape for the heave-only problem for α0 = 3, ε0 = 0.1, which
we will call 𝒮O, altering R, H, r1 and z1 (separately) by 5 % results in no more than a 5 %
decrease in W3 (for most cases, the decrease is less than 1 %). Since 𝒮O has a sharp corner,
we also consider geometries very similar to 𝒮O but with the corner rounded. As might be
expected in the context of potential flow, the performance is very close to 𝒮O.

Finally, we find that the optimal geometry does not change significantly when
we broaden the classes of geometries further, for example, by including higher-order
polynomial coefficients in each segment. This further suggests that the optimal geometries
we find may be close to a global optimum.
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Figure 6. Generating 𝒮 curves of the optimal geometries for the heave-surge-pitch problem with constraint
constants (a) α0 = 3, ε0 = 0.1, (b) α0 = 3, ε0 = 0.2, (c) α0 = 1, ε0 = 0.1, which is the same as α0 = 1, ε0 =
0.2. Groups (described in § 4.4): CYL, purple; FB, blue; WS, orange; OK, dark green; NK2O, light green; CC,
red.
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Figure 7. (a) Generating 𝒮 curves for the geometries considered and (b) the corresponding non-dimensional
added mass and damping, as functions of r1. Panel (c) shows lmin

S as a function of r1.

5.3. Physical insights into the observed general trends

5.3.1. Optimal geometries generally protrude outwards below the waterline
Consider two categories of geometric groups: P for all groups that include classes of
geometries that protrude outwards, and N for all groups that do not include such classes.
As shown in figure 5, P performs significantly better than N . To understand why, recall
(2.2). For deep water, solving for lV , we get lV = (πR2 − A33)

1/3. Therefore, a smaller
R and/or larger A33 will result in a smaller lV (and thus a smaller body). In figure 7(b),
we plot non-dimensional added mass, A33, for flat-bottomed geometries with constant R
and H but varying r1 (shown in figure 7(a) by their 𝒮 curves), showing that added mass
coefficient increases with r1 for a constant R.
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Figure 8. (a) Generating 𝒮 curves for the geometries considered and (b) the corresponding non-dimensional
added mass and damping, as functions of z1.

At resonance, using the Haskind relation, heave motion can be expressed as α3 =
(1/(2B33))

1/2, where B33 = B∗
33k∗3/(ρ∗ω∗). Therefore, greater B33 will result in smaller

α3. In figure 7(b), we also plot non-dimensional damping coefficient, B33, for the same
flat-bottomed geometries with constant R and H but varying r1. We see that the damping
coefficient decreases until r1 = 1 and then for r1 > 1 it increases with r1.

Therefore, both heave added mass and heave damping are greater for geometries that
protrude outward further, meaning that P is significantly better than N because geometries
that protrude outward can be smaller at resonance while still satisfying the heave motion
constraint. Figure 7(c) shows lmin

S values for flat-bottomed classes of geometries as a
function of r1. As r1 increases, lmin

S decreases, and there is a stark change in slope at
r1 = 1.

5.3.2. The maximum radius generally occurs close to the waterline
We see in figure 5 that, when the group definition allows, the outward protrusion of
the optimal geometry generally occurs closer to the waterline than the maximum draft.
Figure 8(b) shows non-dimensional added mass and radiation damping coefficients as
functions of z1 for outward-protruding one-kink (OK) geometries, keeping R, H and r1
constant (shown in figure 8(a) by their 𝒮 curves). We see that as z1 increases (and thus the
protrusion moves closer to the waterline), added mass decreases and damping increases.
We showed in § 5.3.1 that a greater damping coefficient results in a smaller heave motion at
resonance, meaning that geometries that have an outward protrusion close to the waterline
will satisfy the heave motion constraint at resonance.

5.3.3. Heave-surge-pitch optimal geometries are generally wider and less protruding
than heave-only optimal geometries

The analysis in §§ 5.3.1 and 5.3.2 apply to both the heave-only and the heave-surge-pitch
problems, since, as discussed in § 3, geometries in both problems are found using the heave
resonance equation. However, there are additional constraints for the heave-surge-pitch
problem that affect the optimal geometries. Figure 6 shows that the heave-surge-pitch
optimal geometries are generally wider and less protruding than the heave-only optimal
geometries. Due to the increased constraints for the heave-surge-pitch problem, there are
multiple possible reasons for these trends. One reason is that pitch motion is larger for
geometries that are ‘intermediate’ (between disks and spar buoys). For example, Garrison
(1975) showed pitch motion to be very large at resonance for cylinders with H/R ≈ 0.5.
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Figure 9. (a) The optimal cylinder (CO, blue) and the overall optimal geometry (𝒮O, green) for α0 = 3, ε0 =
0.1, for the heave-only problem. (b) 𝒮O (green) and the (non-resonating) cylinder with equivalent R and H
(CE, red). (c) The 3-D representation of 𝒮O, the optimal (wetted) geometry for the heave-only problem with
α0 = 3, ε0 = 0.1. The colour scheme corresponds to depth for ease of viewing.

5.4. Elucidating the optimal geometry for the heave-only problem, for α0 = 3, ε0 = 0.1
As illustration, we focus in this section on the heave-only problem optimal geometry for
α0 = 3, ε0 = 0.1, which we will call 𝒮O. This geometry is shown in 3-D in figure 9(c).
As shown in figure 5(a), 𝒮O is a one-kink geometry, with r1 = 1.65 and z1 = −0.2.
Figure 9(a) compares 𝒮O with the optimal (vertical) cylinder for the same constraint
values, denoted as CO. Although 𝒮O and CO extract the same (maximum) power, 𝒮O
is significantly smaller than CO. In fact, 𝒮O has 73 % smaller surface area and 90 %
smaller volume than CO. This highlights the benefit of the geometric optimisation – WEC
costs can be significantly decreased without compromising power extraction. As another
comparison, figure 9(b) compares 𝒮O and a (non-resonating) cylinder, denoted CE, with
radius and draft equal to the maximum radius and draft of 𝒮O. We calculate that 𝒮O
can extract approximately 10 times more power than CE for a monochromatic wave. This
comparison illustrates the importance of optimising geometry.

To give some physical context to a WEC with 𝒮O geometry, consider an incident wave
of 10 s period and 1 m amplitude. The extractable power (corresponding to Wmax

3 = 1) is
approximately 1 MW (and for the heave-surge-pitch problem approximately 3 MW). Here
𝒮O has a radius at the waterline of 6 m, draft of 8 m and maximum radius of 10.3 m, which
might be contrasted against a 1 MW wind turbine, which has a radius of 40–50 m.

We have focused on a monochromatic incident wave in this study. For irregular incident
waves given by an amplitude wavenumber spectrum S∗(k∗), the extracted ‘spectral’
capture width can be defined as WS∗ = (

∫
P∗(k∗)S∗(k∗) dk∗)(

∫
Π∗

I (k∗)S∗(k∗) dk∗)−1,
where P∗(k∗) is extractable power (per incident amplitude) at wavenumber k∗, and Π∗

I (k∗)
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Figure 10. (a) Given a Gaussian spectrum with peak wavenumber k∗
p and standard deviation σ ∗

k = δkk∗
p

(different values of δk shown with different colours), this shows WS − 1 for each value of κ , for 𝒮O(κ), where
κ is resonating wavenumber over k∗

p . (b) k∗
r W∗

3 (blue) for 𝒮O(k∗
r ) for a range of frequencies k∗/k∗

r , compared
with a Bretschneider spectrum (green) with k∗

p = k∗
r (scaled for comparison).

is incident wave power (per amplitude per crest length) at k∗. For broad-banded S∗(k∗), the
present optimisation framework is not useful, and one must resort to a much more general
optimisation. For relatively narrow-banded S∗(k∗), however, the present framework and
results can be generalised and adopted.

As an illustration, consider a narrow-banded Gaussian incident spectrum with peak
wavenumber k∗

p and standard deviation σ ∗
k , which is non-dimensionalised as δk ≡ σ ∗

k /k∗
p .

Consider a wavenumber k∗
r , which is non-dimensionalised as κ ≡ k∗

r /k∗
p , near k∗

p . We
denote 𝒮O(κ) to be the 𝒮O geometry resonated at wavenumber k∗

r , with β∗
33 = B∗

33(k
∗
r ),

i.e. the optimal geometry obtained for the case of a monochromatic incident wave with
wavenumber k∗

r . Figure 10(a) shows WS ≡ k∗
pWS∗ for 𝒮O(κ) as a function of κ for different

spectral bandwidths δk. We see that for a relatively broad range of κ , WS is close to 1,
the theoretical maximum for the case of a regular wave. Furthermore, it is clear that the
optimal geometry should be 𝒮O(κ < 1), i.e. the optimal geometry should resonate at a
frequency lower than k∗

p .
For 𝒮O resonated at a wavenumber k∗

r , figure 10(b) plots the (non-spectral)
capture-width k∗

r W∗
3 = k∗

r P∗(k∗)/Π∗
I (k∗) as a function of k∗/k∗

r . We see that k∗
r W∗

3 (k∗)
is relatively broad banded. For comparison, we also plot a Bretschneider spectrum with
k∗

p = k∗
r in figure 10(b). For this spectrum, we calculate k∗

r WS∗ to be 0.72. This is 72 % of
the theoretical maximum for a monochromatic wave, which suggests that 𝒮O will perform
well, even in realistic irregular seas.

6. Conclusions

We propose a rigorous framework to define and find the optimal geometry of a WEC in the
context of linearised wave-body hydrodynamics. For the specific case of an axisymmetric
WEC in monochromatic waves, we develop a highly robust and efficient optimisation
procedure for broad groups and classes of geometries defined by piecewise polynomial
basis functions. This framework and procedure involve specifying maximum power,
solving the heave resonance equation for WEC geometry, ensuring resonance in surge
and pitch using tunable parameters, applying practical motion constraints, and finally
identifying the optimal geometry as the one that minimises (wetted) surface area while
extracting the maximum theoretical power for a given incident wave.
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We consider a wide range of geometric groups, including those with slope
discontinuities and higher-order slopes, and we optimise each group under different
constraint regimes. Optimal geometries are compared with the corresponding optimal
cylinders under each constraint regime, and it is shown that the optimal geometries have
up to 73 % less surface area and 90 % less volume than the optimal cylinders.

Insights and physical intuition are gained about features of optimal WEC geometries.
Geometries that protrude outward below the waterline are optimal because of their
larger heave added mass and damping, and smaller waterline radius, resulting in smaller
resonating geometries that satisfy the motion constraints. Stricter motion constraints lead
to shallower and wider geometries. Finally, optimal geometries for the heave-surge-pitch
optimisation are wider and less protruding outwards than those for the heave-only
optimisation.

The framework, results and insights presented represent a step forward in our
understanding of the geometric optimisation of WECs, which could help move ocean wave
energy significantly closer to being a viable source of renewable energy.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2021.993.
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