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BROWNWESTRICK

Abstract. We define the notion of a completely determined Borel code in reverse mathematics, and
consider the principle CD-PB, which states that every completely determined Borel set has the property of
Baire. We show that this principle is strictly weaker than ATR0. Any �-model of CD-PB must be closed
under hyperarithmetic reduction, but CD-PB is not a theory of hyperarithmetic analysis. We show that
whenever M ⊆ 2� is the second-order part of an �-model of CD-PB, then for every Z ∈ M , there is a
G ∈ M such that G is Δ11-generic relative to Z.

§1. Introduction. The program of reverse mathematics aims to quantify the
strength of the various axioms and theorems of ordinary mathematics by assuming
only a weak base theory (RCA0) and then determining which axioms and theo-
rems can prove which others over that weak base. Five robust systems emerged (in
order of strength, RCA0,WKL0,ACA0,ATR0, andΠ11-CA0) with most theorems of
ordinary mathematics being equivalent to one of these five (earning this group the
moniker “the big five”). The standard reference is [15]. In recent decades, most work
in reverse mathematics has focused on the theorems that do not belong to the big
five but are in the vicinity ofACA0. Here we discuss two principles which are outside
of the big five and located in the general vicinity of ATR0: the property of Baire for
completely determined Borel sets (CD-PB) and the Borel dual Ramsey theorem for 3
partitions and � colors (Borel-DRT3�). Both principles involve Borel sets.
Our motivation is to make it possible to give a meaningful reverse mathematics
analysis of theorems whose statements involve Borel sets. The way that Borel sets
are usually defined in reverse mathematics forces many theorems that even mention
a Borel set to imply ATR0, in an unsatisfactory sense made precise in [5]. Here we
propose another definition for a Borel set in reverse mathematics, distinguished
from the original by the terminology completely determined Borel set, and to put
bounds on the strength of the statement

CD-PB : “Every completely determined Borel set has the property of Baire”.

This statement should be comparedwith the usual “Every Borel set has the property
ofBaire”,which [5] showed is equivalent toATR0 for aforementioned empty reasons.
In contrast, working with CD-PB requires working with hyperarithmetic generics,
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Figure 1. CD-PB, ATR0, and some theories of hyperarithmetic
analysis. The new results are those concerning CD-PB. A double
arrow indicates a strict implication.

giving this theorem more thematic content. While we do not claim that CD-PB is
the “right” formalization of the principle that Borel sets have the Baire property, it
is a step in that direction.
We show that over RCA0, CD-PB is implied by ATR0 and implies L�1,�-CA. Our
first main theorems say that both implications are strict.

Theorem 1.1. There is an �-model of CD-PB in which ATR0 fails.

Theorem 1.2. There is an �-model of L�1,�-CA in which CD-PB fails. In fact,
HYP is such an �-model.

This establishes that CD-PB is located in the general vicinity of the theories of
hyperarithmetic analysis, a mostly linearly ordered collection of logical principles
which are strong enough to support hyperarithmetic reduction, but too weak to
imply the existence of jump hierarchies (Figure 1). With the exception of Jullien’s
indecomposability theorem [10], no theorems of ordinary mathematics are known
to exist in this space. The only known statement of hyperarithmetic analysis that is
not linearly ordered with the others is the arithmetic Bolzano-Weierstrass theorem
(see [3,6]). Now, CD-PB is not a theory of hyperarithmetic analysis because it does
not hold inHYP. However these theories of hyperarithmetic analysis are the closest
principles to CD-PB that have already been studied.
To elaborate on the factors preventing to CD-PB from being a theory of hyper-
arithmetic analysis, we prove the following generalization of Theorem 1.2 above,
establishing that hyperarithmetic generics must appear in any �-model of CD-PB.

Theorem 1.3. IfM is an �-model of CD-PB, then for any Z ∈ M , there is a
G ∈M that is Δ11(Z)-generic.
As an application, we use CD-PB to analyze the theorem Borel-DRT3� , whose
statement contains no concept of mathematical logic apart from that of Borel sets.
(The statement of this theorem can be found in Section 8.) We show that, under
appropriate formalization,Borel-DRT3� is strictly weaker thanATR0 and shares some
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properties with the theories of hyperarithmetic analysis. It is left open whether
Borel-DRT3� is a statement of hyperarithmetic analysis.

Theorem 1.4. For any finite � ≥ 2, the principle Borel-DRT3� is strictly implied by
ATR0. Any �-model of Borel-DRT3� is closed under hyperarithmetic reduction.

The first section gives the preliminaries. In Section 2 we give the definition of a
completely determined Borel code and prove its basic properties. In Section 3 we
construct an �-model to separate CD-PB from ATR0. In Section 4 we develop the
machinery of decorating trees which will be used in Sections 5 and 6. In Section
5, we prove that CD-PB does not hold in HYP. In Section 6, we prove Theorem
1.3. This is a strictly stronger theorem than the one proved in Section 5, but also
a bit longer to prove, so Section 5 could be regarded as a warm-up. In Section 7
we give an application to the Borel dual Ramsey theorem. Section 8 contains open
questions.
The authors would like to thank Julia Knight and Jindra Zapletal for helpful
discussions on this topic, and the anonymous referee for many suggestions which
have made the arguments clearer and more accessible.

§2. Preliminaries.
2.1. Notation, Borel sets, and Borel codes. We typically denote elements of �<�

by �, �, and elements of 2<� by p, q. We write � � � to indicate that � is an initial
segment of �, with ≺ if � �= �. We may also use this notation to indicate when a
finite string is an initial segment of an infinite string. For p ∈ 2<�, the notation [p]
refers to the set {X ∈ 2� : p ≺ X}. The empty string is denoted by �. A string
with a single component of value n ∈ � is denoted by 〈n〉. String concatenation is
denoted by ���. Usually we write ��n instead of the more technically correct but
uglier ��〈n〉.
If U is a set of strings (for example, a tree or a coded open subset of 2�), and �
is any string, we write ��U to mean {��� : � ∈ U}. If T is a tree and � ∈ T , we
write T� to mean {� : ��� ∈ T}.
TheBorel subsets of a topological space are the smallest collection which contains
the open sets and are closed under complements and countable unions (and thus
countable intersections).
A Borel code is a well-founded tree T ⊆ �<� whose leaves are labeled by basic
open sets or their complements and whose inner nodes are labeled by ∪ or ∩. The
Borel set associated to a Borel code is defined by induction, interpreting the labels in
the obviousway. AnyBorel set can be represented this way, by applyingDeMorgan’s
laws to push any complementation out to the leaves.
We use standard recursion-theoretic notation. The eth Turing functional is
denoted Φe . A pair of natural numbers (n,m) is coded as a single natural num-
ber 〈n,m〉 via a canonical computable bijection between N and N × N. Although
this notation 〈n,m〉 could also refer to a string with two elements, context will make
it clear which type is meant.

2.2. Reverse mathematics. We assume the reader is familiar with the program of
reverse mathematics. The standard reference on this subject is [15]. Here we just
recall that the principle of arithmetic transfinite recursion is formulated as follows:
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If X ∈ 2� codes a linear order on some subset of N, let <X denote that linear order
and (abusing notation) let X also denote the domain of the linear order. Assuming
there is a linear order X in the context, given Y ∈ 2� and a ∈ X , we let Ya
denote {〈n, b〉 ∈ Y : b <X a}. Given an arithmetic predicate φ(n,Z), we define the
predicateHφ(X,Y ) as follows:

Hφ(X,Y ) ≡ X is a linear order and Y = {〈n, a〉 : a ∈ X and φ(n,Y a)}.
The principle ATR0 is a scheme ranging over arithmetic formulas φ, which states
that for each such φ, if X is a well-order, then there is a Y such that Hφ(X,Y ).
Using ACA0, one can show that such Y is unique. For details, see [15, Section V.2].
In the special case where φ(n,Z) is the jump operator, that is φ(n,Z) ≡ n ∈ Z′,
then any Y satisfyingHφ(X,Y ) is called a jump hierarchy on X .
The principle of effective transfinite recursion is defined almost the same as ATR0,
but using Δ01 formulas instead of arithmetical formulas. In [5] it is shown that
effective transfinite recursion also goes through in ACA0.
Both ATR0 and effective transfinite recursion are used to define objects by recur-
sion along a well-orderX . If we only want to use induction to verify some arithmetic
property of a family of objects indexed by X , the principle of arithmetic transfinite
induction is used and this principle also holds in ACA0 ([15, Lemma V.2.1]).
In reverse mathematics, the role of an ordinal is played simply by a well-founded
linear order. For certain of our constructions it is convenient to have a more struc-
tured well-order for which the operation of finding a successor is effective. For that
reason we also use the terminology of Kleene’s O, which is briefly reviewed in the
next section.

2.3. Ordinal notations and pseudo-ordinals. We assume the reader is familiar
with ordinal notations and pseudo-ordinals. A standard reference is [14]. Here we
give just a brief summary of the concepts and techniques that we use. Recall that
Kleene’s O, denoted O, is a Π11-complete subset of � consisting of notations for all
the computable ordinals, where 1 denotes the ordinal 0, 2a denotes the successor
of the ordinal denoted by a, and 3 · 5e denotes the limit of the ordinals denoted
by Φe(n), provided that Φe is total and for all n, Φe(n) <∗ Φe(n + 1) (where <∗
is the transitive closure of the relation defined by 1 <∗ x if x �= 1, x <∗ 2x , and
Φe(n) <∗ 3 · 5e). The notation≤O refers to the relation <∗ restricted to O.
To avoid excessive repetition of the phrase “denoted by”, henceforth we will
conflate ordinals with their notations. A given ordinal may have many notations,
but for each such notation a, {b ∈ O : b <O a} is linearly ordered by ≤O, so
canonical names for the ordinals below a are implied by the choice of a. We will
also write a + k for the kth successor of a (instead of the technically accurate but
more cumbersome tower of exponentials) and a − k for its kth predecessor when
this exists. Although a is technically an element of �, it would never make sense to
add or subtract an ordinal using the usual addition on the natural numbers, so this
should not create confusion. Also, sometimes we will take a fixed but unspecified
number of successors of a, and the result is denoted a +O(1).
The set {b ∈ O : b <O a} is c.e. uniformly in a, because the relation <∗ is a c.e.
relation. Throughout, we let p denote the computable function such that for each
a ∈ �, we haveWp(a) = {b ∈ � : b <∗ a}.
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The definition ofO also relativizes to any oracleX , producing a Π11(X )-complete
set OX with the same properties as above.
The basic tool for working with ordinal notations is effective transfinite recur-
sion, which suffices to define a large swath of important constructions involving
ordinal notations. These constructions also relativize (in reverse mathematics this
corresponds to allowing a real parameter appear in the formula φ). Here are two
examples which are used in this article. (Ranked formulas of L�1,� are defined in
the next subsections.)

Proposition 2.1. Given an oracle X , an ordinal a ∈ OX and a number x ∈ �,
there is an a-ranked formula of L�1,� which holds exactly if x ∈ HXa , where HXa
denotes the unique jump hierarchy (relative to X ) on the well-orderWX

p(a).

Proof. The existence of a formula of L�1,� defining membership in H
X
a follows

directly from effective transfinite recursion applied to the definition ofHXa . The fact
that the formula can be a-ranked uses the normal form theorem for simplifying
expressions involving bounded quantifiers. These simplifications can be carried out
effectively. �
Proposition 2.2. Given an X -computable linear order L, there is a number a such
that L is well-founded if and only if a ∈ OX . Furthermore, if L is ill-founded, any
descending sequence inWX

p(a) uniformly computes a descending sequence in L.

Proof. The first statement above is a special case of [14, Lemma 4.3]. The second
statement is true for the construction in [14], but not explicitly stated there. So for
the reader’s convenience here is an alternative construction which establishes both
parts of the proposition.
LetL′ denote the linear orderwith order type 1+L+1.Without loss of generality,
the least element of L′ is 0 and the greatest element of L′ is 1. Define a function e :
L′ → � as follows. Let e(0) = 1 (the latter being the code for ordinal 0). For k ∈ L′

and n ∈ �, let h(k, n) denote the <L′ -greatest element among {j ≤ n : j <L′ k}.
Then for k ∈ L′ with k �= 0, define e(k) by effective transfinite recursion as follows.

ΦXe(k)(n) =

{
n (i.e., the nth successor of 0) if h(k, n) = 0,
3 · 5e(h(k,n)) + n otherwise.

Then let a = e(1). It is routine to show that e : (L,<L) → (WX
p(a), <∗) is order-

preserving. Also, the order type ofWX
p(a) is� ·(1+L), with e providing a selector for

each �-chain inWX
p(a). If L is well-founded, induction along L shows that a ∈ OX .

On the other hand, e and its inverse (the inverse being applied to the �-chains of
WX
p(a)) provide an effective correspondence between any descending sequences in L
and inWX

p(a). �
Kleene’s O also has a Σ11 supersetO∗, defined as the intersection of all X ∈ HYP
such that 1 ∈ X , a ∈ X =⇒ 2a ∈ X , and

∀n[Φe(n) ∈ X and Φe(n) <∗ Φe(n + 1)] =⇒ 3 · 5e ∈ X.
Observe also thatO is contained in O∗ (the definition of O is the same, except that
to getO we quantify over allX rather than just those inHYP). Then, sinceO∗ is Σ11,
it must be a proper extension ofO, and thus there must be elements in a ∈ O∗ \ O.
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Such elements are called pseudo-ordinals. For all such a, Wp(a) is an ill-founded
linear ordering without hyperarithmetic descending sequences, and hence must be
isomorphic to �ck1 + �

ck
1 ·Q + � for some computable ordinal � (see [8, Theorem

1.8]). In particular, for every pseudo-ordinal a and every actual ordinal � < �ck1 ,
there exists some b <∗ a which denotes � .
We will frequently use the following facts about pseudo-ordinals: any function
onO defined by effective transfinite recursion withHYP parameters is also defined
on all of O∗ and any arithmetic properties of the resulting objects also hold for
all of O∗, provided those properties are proved by induction. These facts follow
from the more general [8, Corollary 1.6], but they can also be easily seen in our
reverse mathematics context, using the fact that effective transfinite recursion and
arithmetic transfinite induction hold inHYP, butHYP believes all pseudo-ordinals
are ordinals.

2.4. Alternating and ranked trees. The following definition of a ranking for a tree
is looser than given by some authors. We only require that the notations decrease,
rather than the strong requirement that 	(�) = supn(	(�

�n) + 1). Additionally,
it is technically convenient for us to assume that leaves have the smallest possible
rank, but nothing serious hinges on this.

Definition 2.3. If T ⊆ �<� is any tree and 	 : T → O∗, we say that 	 ranks
T if

(1) for all � and n such that ��n ∈ T , we have 	(��n) <∗ 	(�) and
(2) for each leaf � ∈ T , 	(�) = 1.
If T is ranked by 	 and 	(�) = a, we say that T is a-ranked by 	.

If T is a ranked tree and the name of the ranking function is not explicitly given,
then its name is 	T .
Trees appear for us in two contexts: as codes for formulas of L�1,� and codes for
Borel sets. In both cases, interior nodes are labeled with one of {∩,∪}. The nicest
codes alternate these.

Definition 2.4. If T ⊆ �<� is a tree with a labeling function � then we say (T, �)
alternates if for every ��n ∈ T , we have �(�) �= �(��n).
The main point about alternating trees is that it is always safe to assume that we
have them. If we start with a labeled, a-ranked tree, we can effectively transform it
into an alternating a-ranked tree, with no effect on the logic of the tree (assuming
that whatever model we are working in does not contain any paths, if the tree is
truly ill-founded).
One small technical detail about this effective transformation will be used later,
so we give the transformation explicitly. The definition is by effective transfinite
recursion on the rank of the tree. Given an a-ranked tree T with a ∪ at the root,
define

Alternate(T ) = {�} ∪
⋃

�∈A(T )
〈n�〉�Alternate(T�),

where A(T ) is the collection of all � ∈ T such that � is not a ∪, but each � ≺ � is a
∪ and where � �→ n� is a computable injection from �<� to �; define the operation
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analogously when T has a ∩ at the root and of course the operation does nothing
to a leaf. We see that this operation is just rearranging some subtrees by breaking
them apart and reattaching them to a higher-ranking parent than their original
attachment. The rank of any node in Alternate(T ) is inherited from its rank in the
original tree. Observe that every level-one subtree of the alternated tree (that is,
every subtree of the form Alternate(T )〈n�〉) is the alternating version of a subtree
of a single level-one subtree (namely T〈�(0)〉) of the original tree. In other words,
the process of making a tree alternate may break apart level-one subtrees, but never
mixes them together.

2.5. Borel sets in reverse mathematics. In reverse mathematics, open subsets of
2� are represented by sets of strings p ∈ 2<�. If U is such a code, we will abuse
notation and writeX ∈ U to mean that for some p ∈ U , p ≺ X . This is in addition
to also sometimes speaking of the strings p ∈ U . Context will tell which usage is
meant.
For arbitrary Borel sets, we will make a more careful distinction between code
and object. We restrict attention to Borel subsets of 2� . A clopen subset C of 2� is
represented by an element of � which canonically codes a finite subset F ⊆ 2<� .
As above, for X ∈ 2�, we say X ∈ C if and only if p ≺ X for some p ∈ F . A
code for C as a clopen set gives more information about C than an open code for
the same set because the number of elements of F is computable from the code.
Effectively in a standard code for a clopen set, one can find a standard code for its
complement.
We take the following as the definition of a (labeled) Borel code in reverse
mathematics.

Definition 2.5. A labeled Borel code is a well-founded tree T ⊆ �<� , together
with a function � whose domain is T , such that if � is an interior node, �(�) is either
∪ or ∩ and if � is a leaf, �(�) is a standard code for a clopen subset of 2�.
We call this a labeled Borel code instead of a Borel code because we have added
a labeling function to the original definition to improve readability.1 If �(�) = ∪
we may simply say “� is a union node” and similarly for ∩. We will also usually
suppress mention of � , in an abuse of notation.
If T is a labeled Borel code and X ∈ 2�, the existence of an evaluation map is
used to determine whether X is in the set coded by T .

Definition 2.6. If T is a labeled Borel code and X ∈ 2� , an evaluation map for
X ∈ T is a function f : T → {0, 1} such that
1The original definition of a Borel code in reverse mathematics [15] is a well-founded tree T such that

for exactly onem ∈ �, 〈m〉 ∈ T .
Some conventions are then adopted: if 〈m〉 ∈ T is a leaf, then T represents a clopen set coded

by m according to a standard computable look-up; if 〈m〉 is not a leaf, then T represents a union or
intersection according to the parity of m, and the sets to be thus combined are those coded by the
subtrees Tn = {〈n〉�� : 〈m, n〉�� ∈ T}. Classically, one can translate easily between this definition
and the definition of Borel code given above, but one direction of the translation requires ACA0 because
one cannot effectively determine when a node is a leaf. All the principles considered in this article will
implyACA0 overRCA0, so nothing will be muddled, but for the sake of fastidious readers, we will always
call these labeled Borel codes to acknowledge the distinction.
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• If � is a leaf, f(�) = 1 if and only if X is in the clopen set coded by �(�).
• If � is a union node, f(�) = 1 if and only if f(��n) = 1 for some n ∈ �.
• If � is an intersection node, f(�) = 1 if and only if f(��n) = 1 for all
n ∈ �.

We say that X is in the set coded by T , denoted X ∈ |T |, if there is an evaluation
map f for X in T such that f(�) = 1.

Note that X ∈ |T | is a Σ11 statement. Because evaluation maps are naturally
constructed by arithmetic transfinite recursion, ATR0 proves that if T is a Borel
code and X ∈ 2� , there is an evaluation map f for X in T . Furthermore, ACA0
proves that if an evaluation map exists, then it is unique. For detailed proofs, see
[15, Chapter V.3].
Becausewe are considering these definitions in the context of reversemathematics,
there will sometimes be an ill-founded T which a model thinks is well-founded. In
these cases, the statement X ∈ |T | is meaningful inside the model, or in the context
of a proof inside second order arithmetic, but is not meaningful outside a model.
However, the criteria defining what it means to be an evaluation map are absolute,
so we can and will construct evaluation maps on ill-founded but otherwise coherent
labeled Borel codes. If T is ill-founded, we will never use the notation |T | outside
of a model. But if T is well-founded, then every X has a unique evaluation map in
T . In that case we give the notation “|T |” the obvious meaning of

{X : the unique evaluation map f for X in T satisfies f(�) = 1}
when we refer to it outside the context of a model.
Operations on Borel sets are carried out easily. Observe that the operation which
corresponds to complementation on a labeled Borel code is primitive recursive: just
swap all the∪ and∩ labels and replace every clopen leaf labelwith its complementary
label.

Definition 2.7. If (T, �) is a labeled Borel code, let (T, �c) denote the labeled
Borel code whose tree is the same and whose labeling �c is complementary to � as
described above.

Continuing the abuse of notation, if T is used to refer to some (T, �), then Tc will
be shorthand for (T, �c). Observe that RCA0 proves that if T is a labeled Borel code,
then Tc is a labeled Borel code. Similarly, if (Tn)n∈� is a sequence of labeled Borel
codes, in RCA0 we can construct a code for the intersection or union of these sets
in the obvious effective way, and RCA0 will prove that the result is a labeled Borel
code.

2.6. On the maxim that “Borel sets need ATR0”. Because making meaning out
of a standard (labeled) Borel code requires evaluation maps to be around, ATR0 is
typically taken as the base theory when evaluating theorems involving Borel sets.
Even when ATR0 is not taken as the base theory, theorems involving Borel sets tend
to imply ATR0. The probable reason for this was observed in [5].

Theorem 2.8 ([5]). In RCA0, the statement “For every Borel code T , there exists
X such that X ∈ |T | or X ∈ |Tc |” implies ATR0.
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The strength comes from the fact that this statement is asserting the existence of
an evaluation map for X in T . If f is an evaluation map for X in T , then 1− f is
an evaluation map for X in Tc .2

Restatement (of Theorem 2.8). The statement “For every Borel set, either it or
its complement is nonempty” is equivalent to ATR0 over RCA0.

This can make the reverse mathematics of some standard theorems about Borel
sets feel rather empty. Here is an example. Recall that a set A ⊆ 2� has the property
of Baire if it differs from an open set by a meager set. That is, there are open sets U
and {Dn}n∈� such that each Dn is dense, and for all X ∈ ∩nDn, X ∈ U ⇔ X ∈ A.
A basic proposition is that every Borel set has the property of Baire, but what is
the strength of that proposition in reverse mathematics? In [5], the relevant notions
were formalized as follows.

Definition 2.9. A Baire code is a collection of open setsU,V, {Dn}n∈� such that
U ∩ V = ∅ and the sets U ∪ V and Dn are dense.
The statement PB below formalizes the proposition “Every Borel set has the
property of Baire.”

Definition 2.10. If T is a Borel code and U,V, {Dn} is a Baire code, we say that
U,V, {Dn} is a Baire approximation to T if for all X ∈ ∩nDn, X ∈ U ⇒ X ∈ |T |
and X ∈ V ⇒ X ∈ |Tc |.
Definition 2.11. Let PB denote the statement “Every Borel code has a Baire
approximation.”

Proposition 2.12. [5] In RCA0, ATR0 is equivalent to PB.
Proof. (⇒) The standard proof uses arithmetic transfinite recursion.
(⇐) If a set has the property of Baire, either it or its complement is nonempty. �
The reverse direction of this proof is highly unsatisfactory. The purpose of this
article is to propose a variant on the definition of a Borel set which avoids this and
similar unsatisfactory reversals to ATR0.

2.7. Some landmarks between ATR0 and JI. We will end up placing a variant of
PB somewhere in a zoo which exists just below ATR0. Much of what is known about
this region concerns theories, such as Δ11-CA0, whose �-models are closed under
join, hyperarithmetic reduction, and not much more.

Definition 2.13. A statement of hyperarithmetic analysis is any statementS such
that

(1) whenever M is an �-model which satisfies S, its second-order part M is
closed under hyperarithmetic reduction.

(2) For every Y , HYP(Y ) is the second-order part of an �-model of S, where
HYP(Y ) = {X : X ≤h Y}.

A theory of hyperarithmetic analysis is any theory which satisfies the same
requirements as above.

2The statement in [5] is for original Borel codes, but the proof of the theorem remains valid for labeled
Borel codes.
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The original definition of a theory of hyperarithmetic analysis, due to Steel [16],
was a theory whose minimum �-model is HYP. The relativized version above
was first explicitly defined in [10]. At the time of Steel’s definition, theories such
as Δ11-CA0 were unrelativized (did not permit real parameters from the model).
However, modern definitions of these theories allow parameters. Therefore, the rel-
ativized definition of theories of hyperarithmetic analysis is the right one formodern
usage.
It would be tempting to hope that there would be some theory of hyperarithmetic
analysis whose �-models are exactly the Turing ideals which are closed under
hyperarithmetic reduction, in analogy to the theorems characterizing the �-models
of RCA0 as the Turing ideals, the �-models of WKL0 as the Scott ideals, and the
�-models ofACA0 as the Turing ideals closed under arithmetic reduction. However,
no such theory can exist.

Theorem 2.14. [17] For every theory T , all of whose �-models are closed under
hyperarithmetic reduction, there is a strictly weaker theory T ′, all of whose �-
models are also closed under hyperarithmetic reduction, and which has more�-models
than T .

Therefore, we are stuck with an infinitely descending zoo of statements/theories
of hyperarithmetic analysis.
One theoryof hyperarithmetic analysis ismost relevant tous.Recall that a formula
ofL�1 ,� is a formula constructed from the usual building blocks of first-order logic,
together with countably infinite conjunctions and disjunctions. In a language which
contains no atomic formulas other than true and false, a formula of L�1 ,� is
just a well-founded tree whose interior nodes are labeled with either ∪ (infinite
disjunction) or ∩ (infinite conjunction), and whose leaves are labeled with either
true or false. An evaluation map for a formula of L�1,� is defined the same as an
evaluation map for an element X in a Borel code T , except that the evaluation map
must satisfy f(�) = 1 if �(�) = true and f(�) = 0 if �(�) =false. A formula of
L�1,� is completely determined if it has an evaluationmap. Classically, every formula
of L�1,� is completely determined, but in weaker theories the witnessing function
could fail to exist. A formula is called true if it has a witnessing function which maps
the formula itself to true.
The following definition and result essentially appear in [10], where L�1,�-CA goes
by the name CDG-CA and is stated in terms of games. The name L�1,�-CA and the
definition given here were introduced in [11].

Definition 2.15 (similar to [10]). The principle L�1,�-CA is this statement: If
{φi : i ∈ N} is a sequence of completely determined L�1,� formulas, then the set
X = {i : φi is true} exists.
Theorem 2.16 (essentially [10]). The principle L�1,�-CA is a statement of
hyperarithmetic analysis.

2.8. Genericity. The concept of genericity stems directly from category; a suf-
ficiently generic member of a set which has the property of Baire has individual
behavior that agrees with the behavior of a comeager set of reals. In this subsec-
tion we introduce the terminology around genericity and provide proofs of several
folklore results which will be needed later.
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A predicate P(X ) is called computable if there is a Turing functional Δ such that
for allX ∈ 2� , Δ(X ) halts andoutputstrueor falseaccording to the truth value of
P(X ). A relativized formula of L�1 ,� is a formula of L�1,� for which the leaves bear
computable predicates instead of simply true or false. Using the compactness
of 2� to translate between clopen sets and {X : Δ(X ) = true}, it is immediate
that the set of X which satisfy a given relativized formulas of L�1,� are exactly the
members of the Borel set coded by essentially the same formula. If such a formula
φ is computable, a-ranked, and has a union at the root, then {X ∈ 2� : φ(X )} is a
Σ0a set and the formula is called a Σ

0
a formula. Of course, the input to the formula

could also be a natural number, in which case it defines a Σ0a subset of �.
If S ⊆ 2� is a set of strings, a real X is said to meet S if for some p ∈ S, p ≺ X ,
while X is said to avoid S if some p ≺ X has no extension in S. The set S is
dense if every p ∈ 2<� can be extended to meet it. A real X is called a-generic if
X meets or avoids every Σ0a set of strings. The following propositions, which taken
together informally assert that set of strings which force a Σ0a statement is Σ

0
a , are

folklore.

Proposition 2.17. Uniformly in a code for a Σ0a set A, there is a Σ
0
a code for an

open set U , as well as a uniform sequence of Σ0a codes for dense open setsDn such that
for all X ∈ ∩kDk , we have X ∈ A if and only if X ∈ U .
Proof. This is a straightforwardeffectivization of the usual proof that every Borel
set has the property of Baire.
The result is immediate if a is the 0 ordinal (in which case all sets described are
clopen). Suppose that it holds for all b <∗ a. We have A = ∪nAn where each An is
Π0bn for some bn <∗ a. Apply the induction hypothesis to the complements Acn to
get a sequence of open setsUn and a double sequence of dense open setsDn,k , where
each Un and Dn,k have a Σ0bn code, and any X ∈ ∩kDn,k is in Acn if and only if it is
inUn . Define Vn to be the interior ofUcn . Then each Vn is uniformly Σ

0
bn+1
and thus

Σ0a . We can let U = ∪nVn and let the sequence of dense open sets include all sets
Dn,k , as well as sets of the formUn ∪Vn. Suppose that X meets all these dense sets.
TheX ∈ A exactly if X ∈ An for some n, which happens exactly ifX �∈ Un for some
n. Since X ∈ Un ∪ Vn, this is true exactly when X ∈ Vn for some n, equivalently
when X ∈ U . �
Proposition 2.18. If φ(X, q) is a Σ0a formula, there is a Σ

0
a formulaR(q) such that

for all a-generic reals X ,

{q : φ(X, q)} = {q : ∃nR(X � n, q)}
Proof. By the previous proposition, uniformly in q there is a code for a Σ0a set
Uq ⊆ 2<� and a sequence of Σ0a sets Dk ⊆ 2<� such that each Dk is dense and for
any X that meets each Dk , X meets Uq if and only if φ(X, q). Thus R(r, q) can be
taken to be ∃p(p ∈ Uq and p ≺ r). �
Now we review some notions from higher genericity. We assume a general famil-
iarity with hyperarithmetic theory and refer the reader to [14] for definitions and
details. For G ∈ 2� , it is well known that an element X of 2� is Δ11(G) if and only
if it is HYP(G), if and only if there is some b ∈ OG such that X ≤T HGb .
Recall that if Γ is a pointclass, X ∈ 2� is called Γ-generic if X meets or avoids
every open setU with a code in Γ. (We have already seen this in the case Γ = Σ0a .)We
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are interested in Δ11-generics G with the additional property that �
ck
1 = �

G
1 . By [7],

these are precisely the Σ11-generics. However, for our purposes the formal definition
of Σ11-genericity seems less useful than the “Δ

1
1-generic and �

ck
1 -preserving”, and

indeed we never use the equivalence with Σ11-genericity in any way other than as an
(accurate) notational shorthand.
The following three propositions must be folklore, but we give their proofs here.
Recall that A and B are relatively Γ-generic if A is Γ(B)-generic and B is Γ(A)-
generic.

Proposition 2.19. For G0, G1 ∈ 2� , we have G0 ⊕ G1 is Σ11-generic if and only if
G0 and G1 are relatively Σ11-generic.
Proof. Consider the argument in [4, Theorem 8.20.1] (originally due to [18]),
where it is shown that A ⊕ B is n-generic if and only if A and B are relatively n-
generic. Observe that at no point do they make use of the fact that n is finite, and the
same argument goes through if n is replaced with any a ∈ O. (Proposition 2.18 is
used in the a ∈ O case.) Therefore the same argument shows thatA⊕B is a-generic
if and only if A and B are relatively a-generic. Observe that A is Δ11-generic if and
only if A is a-generic for all a ∈ O.
Now suppose thatG0⊕G1 is Σ11-generic. We will show thatG0 is Σ11(G1)-generic.
We have �G0⊕G11 = �ck1 = �

G1
1 , so it suffices to show that G0 is Δ

1
1(G1)-generic,

or equivalently, that G0 is a-generic relative to G1 for all a ∈ O (here we use the
fact that �G11 = �

ck
1 ). This follows from the previous paragraph because G0 ⊕G1 is

a-generic.
On the other hand, if G0 and G1 are relatively Σ11-generic, then in particular
each is Σ11-generic, so �

G0
1 = �

G1
1 = �

ck
1 , and by relative Σ

1
1-genericity, we also

have �G0⊕G11 = �ck1 .
3 Therefore it suffices to show that G0 ⊕ G1 is Δ11-generic, or

equivalently, that it is a-generic for all a ∈ O. This follows because G0 and G1 are
relatively a-generic for all a ∈ O. �
The following two propositions will be used later in a relativized form. To reduce
clutter, we do not write the relativized form, but the reader can verify that all the
arguments relativize.

Proposition 2.20. If G0 ⊕G1 is Σ11-generic, then Δ11(G0) ∩ Δ11(G1) = Δ11.
Proof. If X ∈ Δ11(G0) ∩ Δ11(G1), then since �G01 = �G11 = �ck1 , there are a ∈ O
and indices e and f such that X = Φe(HG0a ) = Φf(H

G1
a ). Consider the set

W = {Y ⊕ Z : Φe(HYa ) = Φf(HZa )}.
This set is Δ11, so it has the property of Baire, and in particular there is a Δ

1
1 open

set V such that every sufficiently generic Y ⊕ Z is an element of V if and only if it
is an element ofW . Here the amount of genericity needed is not full Δ11-genericity,
but rather c-genericity, where c = a + O(1). To see that c-genericity suffices, first
use Proposition 2.1 to write the defining property of W as a c-ranked relativized
formula of L�1 ,�, then apply Proposition 2.18.

3Although [7] does relativize, the conclusions here can be established without using that relativization.
It suffices to show that at least one ofG0, G1 is�ck1 -preserving. Suppose thatG0 computes a linear order
of order type �ck1 . Then {X : X computes a linear order of order type �ck1 } is Δ11(G0) and meager, so
G1 does not belong to it. Thus �

G1
1 = �

ck
1 .
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Since G0 ⊕ G1 is Δ11-generic and in W , it is in V . Let p, q ∈ 2<� be such that
p ≺ G0, q ≺ G1 and p ⊕ q ∈ V . Now let Y be any c-generic, hyperarithmetic
real with p ≺ Y . Then since G1 is Δ11-generic, it is Δ11-generic relative to Y , so in
particular it is c-generic relative to Y . Using the ordinal version of [4, Theorem
8.20.1] a second time, we conclude thatY ⊕G1 is c-generic andmeets V . Therefore,
Y ⊕G1 ∈W , and we obtain a Δ11 formula for X , that is, X = Φe(HYa ). �
Proposition 2.21. Let G0 be Σ11-generic and P a hyperarithmetic predicate. If
there is a Y ∈ Δ11(G0) such that P(Y ) holds, then for all Δ11-generic G1, there is a
Y ∈ Δ11(G1) such that P(Y ) holds.
Proof. Since �ck1 = �

G0
1 , there is some a ∈ O and an index e such that Y =

Φe(HG0a ). Then R(X ) := ∃eP(Φe(HXa )) is a hyperarithmetic predicate that holds
of G0 and holds of p�G0 for any p ∈ 2<� . Therefore, for any Δ11-generic G1, R(G1)
holds. �
Finally, we remark that for any Z, the set of Δ11(Z)-generics is Σ

1
1(Z). This is

because

X is Δ11(Z)-generic ⇐⇒ ∀Y ∈ Δ11(Z)[X is 1-generic relative to Y ].

§3. Completely determined Borel codes. We propose the following variation on
the definition of a Borel code. We shall see that when this variant is used, the
unsatisfactory shortcut in Proposition 2.12 vanishes and indeed the reversal no
longer holds.

Definition 3.1. A labeled Borel code T is called completely determined if every
X ∈ 2� has an evaluationmap in T . A completely determined Borel code is a labeled
Borel code that is completely determined.

Whenwe formalize statements in reversemathematics, in order to not conflictwith
existing convention, we will say completely determined Borel set to indicate when the
formalized version of the statement should call for a completely determined Borel
code.
The following facts are immediate.

Proposition 3.2. In RCA0,

(1) If T is a completely determined Borel code, then Tc is also a completely
determined Borel code.

(2) For every completely determined Borel set A and X ∈ 2� , either X ∈ A or
X �∈ A.

With only a slight amount of effort, we also have the following.

Proposition 3.3. In RCA0, ifA is a completely determined Borel set and h : 2� →
2� is continuous, then h−1(A) is a completely determined Borel set.

Proof. Let T be a completely determined Borel code and h : 2� → 2� a contin-
uous function. Then h is encoded by a sequence of pairs (p1, q1), (p2, q2) . . . from
2<� × 2<� , which are compatible in the sense that p � p′ =⇒ q � q′ whenever
(p, q), (p′, q′) are in h. If (p, q) is in h, it means that p ≺ X implies that q ≺ h(X ).
For h to be well defined, we must have that for each X , there are arbitrarily long
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q for which q ≺ h(X ). Define S by starting with S = T and modifying each leaf
� ∈ T as follows:
(1) In S, � is a union.
(2) For each n, ��n ∈ S and is a leaf.
(3) If U is the clopen set attached to � in T , let ��n be labeled with a code for
the clopen subset of h−1(U ) defined by

∪{[pi ] : (pi , qi) ∈ h, i < n, [qi ] ⊆ U}.
We claim that S is completely determined and X ∈ |S| if and only if h(X ) ∈ |T |.
Let f be an evaluation map for h(X ) in T . We claim that f can be extended to an
evaluation map for X in S by adding f(��n) = 1 if and only if X is in the clopen
set attached to ��n in S. One only needs to check that the logic of the evaluation
map is correct at each � which was a leaf in T . �
The fact that Borel sets are closed under countable union, which was trivial
using the standard definition of a Borel set, has quite some power for completely
determined Borel sets.

Proposition 3.4. In RCA0, the statement “A countable union of completely
determined Borel sets is a completely determined Borel set” is equivalent to
L�1,�-CA.

Proof. If {Tk : k ∈ N} are completely determined Borel codes and T = {�} ∪
{〈k〉�� : � ∈ Tk}, we claim that, assuming L�1,�-CA, T is completely determined.
Fixing X , let φk,� be the formula obtained by replacing each clopen set at each
leaf of Tk� by true or false according to whether X is in each clopen set. Any
evaluation map for X in Tk can be restricted to an evaluation map for X in Tk� ,
which is an evaluationmap forφk,� , so all these formulas are completely determined.
One obtains an evaluation map for X in T by letting f(�) = 1 if and only if φk,� is
true, and then nonuniformly filling in f(�) to its unique correct value.
Conversely, if {φk : k ∈ N} are completely determined, these formulas can be
modified at the leaves to become completely determined Borel codes Tk for ∅ or
2� according to whether they are true or false. Defining T as above, any evaluation
map f for T satisfies f(〈k〉) = 1 if and only if φk is true. �
Now we consider the completely determined variant of PB.

Definition 3.5. Let CD-PB be the statement “Every completely determined
Borel set has the property of Baire.”

Our main question is: what is the reverse mathematics strength of CD-PB?

Proposition 3.6. In RCA0, CD-PB implies L�1,�-CA.

Proof. Any sequence {φk : k ∈ N} of completely determined formulas of L�1 ,�
can be modified at the leaves to produce a sequence of completely determined
Borel codes which code either [0k1] or ∅ depending on whether φk is true or false.
The union of these remains completely determined because each X passes through
at most one of these sets. Any Baire approximation to ∪k:φk is true [0k1] computes
{k : φk is true}. �
This places CD-PB somewhere in the general area of ATR0 and the theories of
hyperarithmetic analysis. If CD-PB were equivalent to L�1,�-CA, our variant would

https://doi.org/10.1017/jsl.2019.64 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.64


180 ERIC P. ASTOR ET AL.

be subject to the same kinds of critique that we made of the original definition (all
the strength of the theorem coming essentially from Proposition 3.4). However, it
turns out CD-PB is equivalent to none of the principles mentioned so far.
When considering how to show that CD-PB is strictly weaker than ATR0, it is
informative to consider the usual proof that everyBorel set has the property of Baire.
This proof uses arithmetic transfinite recursion on the Borel code of the given set. It
constructs not only a Baire code for the given set, but also Baire codes for all Borel
sets used to build up the given one. Below, we give the name Baire decomposition
to this extended object that ATR0 would have created. Superficially, CD-PB would
seem weaker than the statement “every completely determined Borel set has a
Baire decomposition”, and one might wonder whether the additional information
in the Baire decomposition carries any extra strength. The purpose of the rest of
this section is to show that it does not (Proposition 3.8) and to mention exactly
how a Baire approximation is constructively obtained from a Baire decomposition
(Proposition 3.9). The point is that any model separating CD-PB from ATR0 will
need anothermethod of producing an entire Baire decomposition, not just the Baire
approximation.

Definition 3.7. Let T be a completely determined Borel code. A Baire decom-
positon for T is a collection of open sets U� and V� for � ∈ T such that for each
� ∈ T and each p ∈ 2<� ,
(1) U� ∪ V� is dense and U� ∩ V� = ∅,
(2) if � is a leaf, then U� is dense in the clopen set C coded by �(�) and V� is
dense in Cc ,

(3) if � is a union node, then U� is dense in
⋃
n U��n and

⋃
n U��n is dense in

U� ,
(4) if � is an intersection node, thenV� is dense in

⋃
n V��n and

⋃
n V��n is dense

in V� .

Proposition 3.8 (ACA0). CD-PB implies that every completely determined Borel
set has a Baire decomposition.

Proof. Let T be a completely determined Borel code. Informally, we partition
the space into countably many disjoint clopen pieces (plus one limit point) and put
an isomorphic copy of the set coded by T� in the �th piece. Then we show that
a Baire approximation to this disintegrated set can be translated back to a Baire
decomposition for the original set coded by T .
More formally, for any p ∈ 2<�, let T [p] denote the labeled Borel code for

{p�X : X ∈ |T |}. This is an effective operation on codes. Recall that each leaf codes
a clopen set by a finite list F ⊆ 2<�. By replacing each such F with {p�q : q ∈ F },
we achieve the desired effect.
For any � ∈ �<� , let ��� be a which codes � in a canonical way. Define S to be
the labeled Borel code

S = {�} ∪ {����� : � ∈ T� [0	�
1], � ∈ T},
where � is a ∪ and all other labels are inherited from the T� [0	�
1]. Then S is
completely determined: for any X , if X = 0� , then the identically zero map is
an evaluation map for X ; if X = 0n1�Y , then if f is an evaluation map for Y
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in T and n = ���, an evaluation map g for X in S can be defined by letting
g(�����) = f(���) on

{����� : � ∈ T� [0	�
1]},
g(�) = f(�) and g identically zero elsewhere. Therefore, for all Y and �,

0	�
1�Y ∈ |S| ⇐⇒ Y ∈ |T� |.
Now suppose that (U,V, {Dk}k∈�) is a Baire approximation for S. Then define
U� = {q : 0	�
1�q ∈ U} andV� = {q : 0	�
1�q ∈ V }. We claim that (U�,V�)�∈T
is a Baire decomposition for T . Property (1) of a Baire decomposition is clear.
For property (2), this follows because if [q] is contained in the clopen set |T� |,
suppose for contradiction that there is r extending q with [0	�
1�r] ⊆ V . Then for
all X ∈ [r], we have X ∈ |T� | and thus 0	�
1�X ∈ U , a contradiction. Therefore
V� ∩ [q] = ∅, so U� is dense in [q]. A similar argument applies to establish that V�
is dense in [q] if [q] is contained |Tc� |. For property (3), letting � be a union node
and p ∈ 2<� , we will show that U� is dense in [p] if and only if ∪nU��n is dense
in [p]. Suppose that ∪nU��n is not dense in [p]. Let q extend p such that for all
n, U��n ∩ [q] = ∅. Then define Y so that q ≺ Y and the following collection of
comeager events occur:

(i) For all n, Y ∈ V��n.
(ii) For all n, 0	�

�n
1�Y ∈ ∩kDk .
(iii) Y ∈ U� ∪V� .
(iv) 0	�
1�Y ∈ ∩kDk .

The first comeager event guarantees that Y ∈ V��n for all n. Together with second
comeager event this implies that 0	�

�n
1�Y �∈ |S|, and therefore Y �∈ |T��n|.
Therefore, Y �∈ |T� |. In the third dense event, if we had Y ∈ U� , the fourth
comeager event would imply that Y ∈ |T� |; therefore it must be that Y ∈ V� , and
soU� is not dense in [p]. On the other hand, ifU� is not dense in [p], then assuming
∪nU��n is dense in [p] leads to a contradiction, for we may similarly define Y to
meet V� ∩ [p] and ∪nU��n , while also satisfying (ii) and (iv).
The proof of (4) is similar to the proof of (3). �
Turning a Baire decomposition into a Baire approximation involves extracting the
comeager set on which the approximation should hold. The following proposition
gives a canonical sequence of dense open sets which suffices for this.

Proposition 3.9 (ACA0). Let T be a completely determined Borel code and
(U�,V�)�∈T be a Baire decomposition for T . Let {Dn}n∈� consist of the following
dense open sets:
(1) U� ∪ V� for � ∈ T ,
(2) V� ∪

⋃
n U��n for � ∈ T a union node, and

(3) U� ∪
⋃
n V��n for � ∈ T an intersection node.

Then, (U�,V�, {Dn}n∈�) is a Baire approximation for T .
Proof. The properties of a Baire decomposition suffice to ensure that
(U�,V�, {Dn}n∈�) is a Baire code. We must show that if X ∈ ∩nDn, then
X ∈ U� =⇒ X ∈ |T | and X ∈ V� =⇒ X ∈ |T |c . Fix X ∈ ∩nDn. We prove by
arithmetic transfinite induction that for all � ∈ T , if X ∈ U� then X ∈ |T� | and if
X ∈ V� then X ∈ |Tc� |. This holds when � is a leaf.
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If � is a union node, suppose X ∈ U� . Then X �∈ V� , but X ∈ V� ∪
⋃
n U��n,

so X ∈ U��n for some n. Then the induction hypothesis gives us X ∈ |T��n|, so
X ∈ |T� | since � is a union node.
On the other hand, ifX ∈ V� , let p ≺ X be such that p ∈ V� . ThenU� ∩ [p] = ∅,
so ∪nU��n ∩ [p] = ∅. Recall that U��n ∪ V��n is dense by definition. So for each
n, V��n is dense in [p]. Therefore, X meets each V��n, so by induction X ∈ |Tc��n|
holds for all n. Therefore, X ∈ |Tc� |.
The case where � is an intersection node is similar. �

§4. CD-PB does not imply ATR0. Our non-ATR0 method of producing a Baire
decomposition involves polling sufficiently generic X to see whether they are in or
out of a given set. For our purposes, sufficiently generic means Σ11-generic.
Let G =

⊕
i Gi be a Σ

1
1 generic. LetM =

⋃
n Δ
1
1(
⊕
i<n Gi). This is the model

which will be used to separate CD-PB and ATR0. But first, some lemmas.
Lemma 4.1. M |= L�1 ,�-CA. Furthermore, whenever F ⊆ � is finite and the
completely determined sequence of formulas {φk : k ∈ N} is in Δ11(

⊕
i∈F Gi), we also

have

{k : φk is true inM} ∈ Δ11
(⊕
i∈F
Gi

)
.

Proof. We begin with three facts. First, applying Proposition 2.19 to the decom-
position G =

⊕
i∈F Gi ⊕

⊕
i �∈F Gi , we conclude that

⊕
i �∈F Gi is Σ

1
1(
⊕
i∈F Gi )-

generic.
Second, fix j �∈ F . Applying Proposition 2.19 to G = Gj ⊕

⊕
i �=j Gi , we have

that Gj is Σ11(
⊕
i �=j Gi)-generic and hence Gj is Σ

1
1(
⊕
i∈F Gi )-generic.

Third, fix j0, j1 �∈ F with j0 �= j1. By the same argument, we have that Gj0 is
Σ11(Gj1 ⊕

⊕
i∈F Gi )-generic and that Gj1 is Σ

1
1(Gj0 ⊕

⊕
i∈F Gi)-generic. By Propo-

sition 2.20 relativized to
⊕
i∈F Gi , it follows that Δ

1
1(Gj0 ⊕

⊕
i∈F Gi ) ∩ Δ11(Gj1 ⊕⊕

i∈F Gi ) = Δ
1
1(
⊕
i∈F Gi).

We now apply Proposition 2.21 relativized to
⊕
i∈F Gi . Fix j �∈ F and k ∈ �.

Since
⊕
i �∈F Gi is Σ

1
1(
⊕
i∈F Gi)-generic, Gj is Σ

1
1(
⊕
i∈F Gi)-generic and there is

a Δ11(G) evaluation map for φk , it follows that φk is completely determined in
Δ11(Gj ⊕

⊕
i∈F Gi ). Because this holds for any j �∈ F , φk is completely determined

inΔ11(
⊕
i∈F Gi) by the third fact above. Since L�1,�-CA is a theory of hyperarithmetic

analysis, the conclusion follows. �
Proposition 4.2. M �|= ATR0.
Proof. Let a∗ ∈ O∗. ThenM believes that a∗ is an ordinal. For if there were a
Δ11(G)-computable descending sequence in a

∗, then for some b ∈ O (here we use the
fact that �ck1 = �

G
1 ) the statement R(X ) : “H

X
b computes a descending sequence

in a∗” is a hyperarithmetic predicate which holds of G . As R holds of p�G for any
p ∈ 2� , the set of X for which R holds is comeager (since each p�G is Σ11-generic,
there can be no p which forces ¬R(X ), therefore the set of p which force R(X ) is
dense). Furthermore, R(X ) is Σ0

b+O(1), so R(X ) holds for anyX which is b +O(1)-
generic. There is a hyperarithmetic such X . But then HXb is also hyperarithmetic,
contradicting that a∗ has no hyperarithmetic descending sequence. So a∗ is well
founded, according toM.
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For contradiction, suppose there were a jump hierarchy on a∗ in Δ11(G). Then
for some b ∈ O, R(X ) := “HXb computes a jump hierarchy on a∗” is again a
Σ0
b+O(1) predicate, where R holds of G . (Recall that being a jump hierarchy on a

∗ is
just a Π02 property.) Arguing as above, hyperarithmetically in any b +O(1)-generic
X , we would have a jump hierarchy on a∗, which is impossible since a∗ has no
hyperarithmetic jump hierarchy. �
Below, the way thatM can produce a Baire decomposition without resorting
to arithmetic transfinite recursion is by polling a sufficiently generic element Gi
about whether p�Gi ∈ |T | while varying p ∈ 2<� to get a complete picture of the
comeager behavior of T .

Theorem 4.3. There is an �-model of CD-PB that does not satisfy ATR0.

Proof. LetM be as above. Let T ∈ M be a labeled Borel code which is com-
pletely determined in M . We consider the case where T ∈ Δ11; the case where
T ∈ Δ11(

⊕
i<n Gi) follows by relativization. Since T is completely determined, for

each Gi and each p ∈ 2<� , the statements p�Gi ∈ |T� | can be understood as a
completely determined formulas of L�1,� (by replacing the leaves of T� with 0 or 1
according to whether p�Gi is in those sets). These formulas are uniformly Δ11(Gi ).
Therefore, by Lemma 4.1, we have

{(�, p) : p�Gi ∈ |T� |} ∈ Δ11(Gi).
Therefore, for each i , Δ11(Gi ) contains the sequence (U

i
� , V

i
�)�∈T defined by

Ui� = {p : ∀q � p, q�Gi ∈ |T� |}, V i� = {p : ∀q � p, q �∈ Ui�}.
We claim that for each i �= j and for each � ∈ T , the collections

(Ui���, V
i
���)�∈T� , (Uj��� , V

j
���)�∈T�

areBaire decompositions forT� and are equal. Theproof (for fixed i, j) is carried out
inside ofM by arithmetic transfinite induction on the rank of � in T . Specifically,
we claim that

(1) If � is a leaf, then Ui� = the clopen set coded by � and V� = (U
i
�)
c .

(2) If � is a union node, then for all p ∈ 2<� , p ∈ Ui� if and only if
⋃
n U

i
��n is

dense in [p].
(3) If � is an intersection node, then for all p ∈ 2<�, p ∈ V i� if and only if⋃

n V
i
��n is dense in [p].

(4) Uj� = Ui� (and thus V
j
� = V i�).

Note that the definition of theV i� in terms ofU
i
� guarantees thatU

i
� ∪V i� is dense

and Ui� ∩ V i� = ∅, and the remaining parts of the claim suffice to establish that we
have a Baire decomposition.
When � is a leaf, it is clear that Ui� and U

j
� consist of precisely those p such that

[p] is contained in the clopen set coded by �(�).
Now fix an interior node �. By induction, we can assume that for all � ∈ T
properly extending �, condition (4) holds, so we drop the superscripts and denote
these open sets by U� and V� . Since Properties (1)–(3) hold for 	 extending such
�, we have that (U	,V	)	∈T� are a Baire decomposition for T� . We let Dm,� denote
the canonical sequence of dense open sets from Proposition 3.9 corresponding to
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this Baire decomposition. Since (Dm,�)m ∈ Δ11(Gi) ∩ Δ11(Gj), so by Proposition
2.20, (Dm,�)m ∈ Δ11. Therefore, for all p ∈ 2<� , we have p�Gi , p�Gj ∈ ∩mDm,� .
Therefore, if p�Gi ∈ U�, then p�Gi ∈ |T� |, and if p�Gi ∈ V�, then p�Gi �∈ |T� |,
and the same holds for Gj .
Suppose that � is a union node. To prove (⇒) in (2), fix q ∈ Ui� . We need to
show that {r ∈ 2<� : q�r ∈ ⋃

n U��n} is dense. For a contradiction, suppose
[q�r0] ∩

⋃
n U��n = ∅ for some fixed r0. To obtain a contradiction, we will show

that for all n, we have q�r�0 Gi �∈ |T��n|. Since � is a union node, it follows that
q�r�0 Gi �∈ |T� | contradicting the fact that q ∈ Ui� .
Fix n and let � = ��n. Since � properly extends �, we have that q�r�0 Gi ∈⋂
m Dm,� by the comments two paragraphs above. Since U� ∪ V� is dense but U� ∩
[q�r0] = ∅, it follows that V� is dense in [q�r0] and therefore q�r�0 Gi ∈ V� . From
q�r�0 Gi ∈

⋂
m Dm,� and q

�r�0 Gi ∈ V�, it follows that q�r�0 Gi �∈ |T� | as required to
complete the contradiction.
To prove (⇐) in (2), assume that ⋃n U��n is dense in [q]. We need to show that
q ∈ Ui� . Fix r0 ∈ 2<�. Since ⋃n U��n is dense in [q], it is also dense in [q�r0].
By the induction hypothesis and Proposition 2.20,

⋃
n U��n is Δ

1
1. Let A = {� :

∃n (q�r�0 � ∈ U��n)}.A is dense and is Δ11. Therefore,Gi meets the set A. Fix � ∈ A
such that � ≺ Gi and fix n such that q�r�0 � ∈ U��n. Then q�r�0 Gi ∈ U��n. So, as
noted above, q�r�0 Gi ∈

⋂
m Dm,��n and so q

�r�0 Gi ∈ |T��n|. As r0 was arbitrary,
this shows that q ∈ Ui� .
The exact same argument shows that (2) is also satisfied when i is replaced by
j. Therefore, Ui� and U

j
� are described by exactly the same condition, so they are

equal.
Finally, let � be an intersection node. First, consider the direction (⇐) of (3):
Suppose that q �∈ V i� and fix r0 such that q�r0 ∈ Ui� .We will show that q�r0 ∈ U��n
for all n, so

⋃
n V��n is not dense in [q] (it is disjoint from [q

�r0]).
Fixing n, consider an arbitrary string p extending q�r0. Since q�r0 ∈ Ui� , we
know that p�Gi ∈ |T� |. Since � is an intersection node, it follows that p�Gi ∈
|T��n|. Since p was an arbitrary string extending q�r0, this implies q�r0 ∈ U��n as
required to complete this direction of (3).
To prove (⇒) in (3), assume ⋃n V��n is not dense in [q]. We need to show that
q �∈ V i� . Fix r0 such that [q�r0]∩

⋃
n V��n = ∅. Therefore, for each n,U��n is dense

in [q�r0].
Fix an arbitrary string p extending q�r0. We claim that for all n, we have p�Gi ∈
U��n. First, note thatU��n is dense in [p] and that by the induction hypothesis and
Proposition 2.20, U��n is Δ11. We shift U��n to a set A = {� : p�� ∈ U��n} which
is dense and Δ11, so Gi meets A. Let � ∈ A be such that � ≺ Gi . Then, p�� ∈ U��n
and so p�Gi ∈ U��n . Furthermore, as noted above, since p�Gi ∈

⋂
m Dm,��n, it

follows that p�Gi ∈ |T��n|. Since this property holds for each n and since � is an
intersection node, it follows that p�Gi ∈ |T� |. The string p extending q�r0 was
arbitrary, so by the definition of Ui� , we have q

�r0 ∈ Ui� , and therefore q �∈ V i� to
complete the proof of (3).
We have actually proved a little more. Inspecting the argument for (⇒) in (3), we
see that whenever [q] ∩ ⋃n V��n = ∅, we have q ∈ Ui� ; inspecting the argument
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for (⇐) in (3), we see that whenever q ∈ Ui� , we have [q] ∩
⋃
n V��n = ∅. This

gives a definition of Ui� that does not depend on i , and indeed the arguments above
could be repeated exactly for Uj� . Therefore, Ui� = U

j
� in the case where � is an

intersection as well.
We conclude that (U�,V�)�∈T is a Baire decomposition for T , and so T has a
Baire approximation inM . ThereforeM satisfies CD-PB but not ATR0. �

§5. Decorating trees. In order to show that CD-PB is strictly stronger than
L�1,�-CA, we need to make some techniques for building nonstandard Borel codes
in a way that ensures they are completely determined.
A nonstandard Borel code is a code that is not actually well-founded, but which
the model thinks is well-founded. These fake codes are essential for the strength of
CD-PB. If a Borel code is truly well-founded, then it has a Baire code which is hyper-
arithmetic in itself. Since any �-model of L�1,�-CA is closed under hyperarithmetic
reduction, L�1,�-CA alone would be enough to guarantee the Baire code exists in
the case when the Borel code is truly well-founded (at least in �-models). So now
we are going to describe how to construct a nonstandard Borel code which makes
every effort to be completely determined.
If we make a Borel code T which is not well-founded, the most likely scenario is
that it is also not completely determined. This is because, in general, it might take a
jump hierarchy the height of the rank of T in order to produce an evaluation map.
So in this section, we show how to add “decorations” to the tree, which shortcut
the logic of the tree to make sure that for a small set of X , there is an evaluation
map for X in the decorated tree. In Section 6, “small” is countable, and in Section
7, “small” is meager. This comes at the cost of trashing any information about
whether X was in the original set, but if that set had a Baire approximation, then
its decorated version should have the same Baire approximation, since the set of X
whose membership facts were overwritten is small. We use this to show that if the
model satisfies CD-PB, then the “small” set cannot be the entire second-order part
of the model.
Suppose that we have a partial computable function h which maps a number
b ∈ O∗ to a pair of b-ranked labeled trees (Pb,Nb). We do not mind if h happens
to also make some outputs for b �∈ O∗.
The intention is that when b ∈ O, anyX ∈ |Pb |∪ |Nb | will have an approximately
HXb -computable evaluationmap in the decorated tree, andX will be in the decorated
tree ifX ∈ |Pb | and out of the decorated tree ifX ∈ |Nb |. (In practice we will always
have |Pb | ∩ |Nb | = ∅.)
The operationDecorate is defined below using effective transfinite recursion (with
parameter<∗; see comment in the next paragraph), and therefore is well defined on
a-ranked trees T for all a ∈ O∗,T . This is because the effective transfinite recursion
can be carried out in HYP(T ) with the same result.
Note that as it is defined here, Decorate is not quite a computable operation.
That is because the relation <∗ is only c.e., not computable. To make Decorate
computable, one should replace 〈2b + 1〉 below with 〈2〈b, s〉 + 1〉, where s is the
stage at which we learn that b <∗ 	T (�). This has no effect on the logic of the tree,
but does result in excessive notational clutter. The reader who prefers a computable
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operation could replace 〈2b + 1〉 everywhere with the more complicated expression
above. For our purposes, it is perfectly fine that Decorate is computable relative
to the parameter <∗ (a linear order which is itself ∅′-computable). In any case,
all results of this section do relativize and they will later be used in a relativized
form.

Definition 5.1. The operation Decorate is defined as follows. The inputs are an
a-ranked labeled tree T and a partial computable function h as above.

Decorate(T, h) = {�} ∪
⋃

〈n〉∈T
〈2n〉�Decorate(T〈n〉, h)

∪
⋃

b<∗	T (�)

〈2b + 1〉�Decorate(Qb, h),

where Qb = Pb if � is a ∪ in T , and Qb = Ncb if � is a ∩ in T .
The rank and label of � in Decorate(T, h) are defined to coincide with the rank
and label of � in T . The ranks and labels of the other nodes in Decorate(T, h) are
inherited from Decorate(T〈n〉, h) or Decorate(Qb, h) as appropriate.

Since Pb and Nb are b-ranked, Decorate(T, h) satisfies the local requirements on
a ranking. So if T is a-ranked, so is Decorate(T, h).
Similarly, if T and each Pb and Nb are alternating, and each Pb and Nb have an
intersection or leaf at their root, then Decorate(T, h) will also be alternating. (Note
that in this case, Ncb has a union at its root.)
The following is the essential feature of a decorated tree.

Proposition 5.2. If � ∈ Decorate(T, h) has rank b, then for all d <∗ b,

Decorate(T, h)��〈2d+1〉 = Decorate(Qd , h),

where Qd = Pd or Ncd as appropriate.

Proof. By induction on the length of �, if � ∈ Decorate(T, h), then there is some
tree S such that Decorate(T, h)� = Decorate(S, h). The rank of � in Decorate(T, h)
coincides with the rank of � in S, and this rank is b. Therefore, by the definition of
Decorate(S, h), we have Decorate(S, h)〈2d+1〉 = Decorate(Qd , h). �
Definition 5.3. A nice decoration generator is a partial computable function
which maps any b ∈ O∗ to alternating, b-ranked trees (Pb,Nb), where each Pb and
Nb have an intersection or a leaf at their root.

Lemma 5.4. Let h be a nice decoration generator. Suppose b ∈ O and suppose that
X �∈ |Pd |∪ |Nd | for any d <∗ b. Then for any b-ranked tree T ,X ∈ |Decorate(T, h)|
if and only if X ∈ |T |.
Proof. By induction on b. Since b ∈ O, T is truly well-founded, so there is a
unique evaluation map f for X in T . Furthermore, for each d <∗ b, there are
unique evaluation maps gP,d , gN,d for X in Decorate(Pd , h) and Decorate(Ncd , h).
Consider the function g : Decorate(T, h)→ {0, 1} defined by

g(�) =

{
f( �2 ) if each component of � is even,
gQ,d (�1) if � = ��0 〈2d + 1〉��1 and each component of �0 is even,
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where the division �/2 is taken componentwise, and where Q is either P or N
depending on whether �0 is a union or intersection in Decorate(T, h).
Since g(�) = f(�), it is enough to show that g is an evaluation map for X
in Decorate(T, h). Clearly g satisfies the logic of the tree at leaves and at nodes
which have an odd component. Consider � ∈ Decorate(T, h) where � is a ∪ and
all components of � are even. By induction, since Pd is a d -ranked tree, X ∈
|Decorate(Pd , h)| if and only if X ∈ |Pd |. By hypothesis, X �∈ |Pd |, so gP,d (�) = 0,
so by Proposition 5.2, g(��〈2d +1〉) = 0. Therefore, the nodes of this form can be
ignored: we have

∃m(g(��m) = 1) ⇐⇒ ∃n(g(��〈2n〉) = 1) ⇐⇒ f(�/2) = 1

so g(�) takes the correct value. The argument if � is a ∩ is similar, except that as
X �∈ |Nb |, we have X ∈ |Ncb |, and therefore gN,d (�) = 1, meaning that nodes of the
form ��〈2d + 1〉 can be safely ignored when taking an intersection. �
Lemma 5.5. Let a ∈ O∗ and b ∈ O with b <∗ a. Let T be an alternating, a-ranked
tree and let h be a nice decoration generator. Suppose X ∈ |Pb | ∪ |Nb |. Then
(1) X has a unique evaluation map in Decorate(T, h).
(2) This evaluation map is HX⊕T

b+O(1)-computable.
(3) If b is<∗-minimal such thatX ∈ |Pb |∪|Nb |, and b <∗ 	T (〈n〉) for all 〈n〉 ∈ T ,
and g is the unique evaluation map for X in Decorate(T, h), then
(a) X ∈ |Pb | \ |Nb | =⇒ g(�) = 1,
(b) X ∈ |Nb | \ |Pb | =⇒ g(�) = 0.

Proof. It suffices to show all three parts in the case when b is <∗-minimal such
that X ∈ |Pb | ∪ |Nb |.
We prove (1) and (2) by showing that for each � ∈ Decorate(T, h), there is
only one possible value for g(�) for any evaluation map g for X in Decorate(T, h)
and that HX⊕T

b+O(1) suffices to compute this value. Since these unique values satisfy
the internal logic of the tree (which the reader can verify from the description
below), they constitute an evaluation function forX in Decorate(T, h), proving (1)
and (2).
To show that there is only one possible value for g(�), we break into cases
depending on the rank and label of � in Decorate(T, h) and on whether X ∈ |Pb |
or X ∈ |Nb |. Note that HX⊕Tb can uniformly determine the appropriate case for
each �.

Case 1. Suppose 	(�) ≤∗ b. Since b ∈ O, Decorate(T, h)� is truly well-founded.
Therefore, there is a unique evaluationmapf forX in Decorate(T, h)� and we have
g(�) = f(�). The map f is uniformly HX⊕T

b+O(1)-computable.

Case 2. Suppose b <∗ 	(�), � is a union node in Decorate(T, h) and X ∈ |Pb |.
In this case, we claim that g(�) = 1. By Proposition 4.2, all nodes extending
��〈2b + 1〉 have rank b or less. Therefore, there is a unique evaluation map f on
Decorate(T, h)��〈2b+1〉 and so g(��〈2b + 1〉) = f(�). By Lemma 4.4, X ∈ |Pb |
implies f(�) = 1. Therefore, g(��〈2b + 1〉) = 1 and because � is a union node,
g(�) = 1.

Case 3. Suppose b <∗ 	(�), � is an intersection node in Decorate(T, h) and
X ∈ |Pb |. Since Decorate(T, h) is alternating, each node ��m is either a union
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node or a leaf. If 	(��m) ≤∗ b, then the value of g(��m) is fixed as in Case 1.
If b <∗ 	(��m), then g(��m) = 1 as in Case 2. Together, these values determine
g(�) uniquely. HX⊕Tb suffices to compute the values of g(��m) and it takes one
extra jump to determine if g(��m) = 1 for all m, and hence determine g(�).

Case 4. Suppose b <∗ 	(�), � is an intersection node in Decorate(T, h) and
X ∈ |Nb |. An analogous argument to Case 2 shows that g(�) = 0.
Case 5. Suppose b <∗ 	(�), � is a union node in Decorate(T, h) and X ∈ |Nb |.
This case is analogous to Case 3 and the unique value of g(�) can be determined
with one extra jump.

These cases are exhaustive, but if |Pb | ∩ |Nb | �= ∅, then more than one case can
apply. However, if X ∈ |Pb | ∩ |Nb |, the cases are compatible. In this degenerate
situation, we have that for any � such that b <∗ 	(�), g(�) = 1 if � is a union
node and g(�) = 0 if � is an intersection node. This completes the proof of (1)
and (2).
For (3), if X ∈ |Pb | \ |Nb |, and if � is ∪, then g(�) = 1 just as above. But if � is ∩,
then we claim that for each m, g(〈m〉) = 1. (Note that neither � nor 〈m〉 can be a
leaf in T because b <∗ a and the hypothesis on part (3) specifies that b <∗ 	T (〈m〉)
for each m.) If m = 2n for some 〈n〉 ∈ T , or if m = 2d + 1 for some d >∗ b, then
because b <∗ 	T (〈n〉) for all n, and each 〈m〉 is a union, again we have g(〈m〉) = 1
for such m. In the remaining case, when m = 2d + 1 with d ≤∗ b, then since b is
minimal such thatX ∈ |Pb | ∪ |Nb |, andX �∈ |Nb |, we haveX ∈ |Ncd |. So by Lemma
5.4, X ∈ |Decorate(Ncd , h)|, so g(〈2d + 1〉) = 1. Since g(〈m〉) = 1 for all m, we
have g(�) = 1 as well. A complementary argument establishes (3b). �

§6. CD-PB does not hold in HYP. We now show that CD-PB is not a theory
of hyperarithmetic analysis by showing that CD-PB fails in the �-model HYP. In
brief, we let Ea code a canonical universal Σ0a set. Applying this definition also to
pseudo-ordinals a∗, we make a computable code for the set⋃

b<∗a∗
|Eb | ∩ {X : b is least s.t. X ≤T Hb}.

We decorate the code to give eachHb-computable set anHb-computable evaluation
map. Then we argue that the result is a code whichHYP thinks is well-founded and
completely determined, but which can have noHYP Baire approximation.

Theorem 6.1. CD-PB does not hold in HYP.

Proof. Using Proposition 2.1, there is a computable procedure which, on inputs
a ∈ O, e ∈ N, p ∈ 2<� , outputs an index for a 2a-ranked computableL�1,� formula
Fa,e,p, which holds true if and only if p ∈WHa

e . Transform each formula Fa,e,p into
a Borel code by swapping false for ∅, and true for [0e1�p]. Then take the union
of all of these, obtaining a code Ea of rank a +O(1) such that for all a ∈ O,

|Ea | =
⋃

e,p : p∈WHa
e

[0e1�p].

For any pseudo-ordinal a∗,Wp(a∗) is not well-founded, but it has no hyperarithemtic
descending sequence, so HYP believes Wp(a∗) is well-founded. Then HYP also
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believes that Eb is well-founded for any b <∗ a∗, because Eb is (b +O(1))-ranked,
so any path through Eb would reveal a descending sequence in Wp(a∗). We may
assume that Eb are alternating and (b +O(1))-ranked for all b ≤∗ a∗. For the sake
of a later application of Lemma 5.5, note that we can also assume that the rank of
Ea∗ is a successor, so of the form 2x for some x, and that for each 〈n〉 ∈ Ea∗ , the
rank of 〈n〉 in Ea∗ is x.
Similarly, there is a computable procedure which, for each b ∈ O, outputs a
(b +O(1))-ranked Borel code Sb such that

|Sb | = {X ∈ 2� : X ≤T Hb and for all c <∗ b,X �≤T Hc}.
We think ofSb as coding a slice ofHYP. Just as forEb , we have that for any b <∗ a∗,
HYP thinks that Sb is well-founded.
For each b <∗ a∗, define Pb and Nb so that they are alternating, and

|Pb | = |Sb | ∩ |Eb |, |Nb | = |Sb | ∩ |Ecb |.
Observe that Pb andNb can be both (b + k)-ranked, where k is some fixed finite
ordinal. Let h be the functionwhich, on input b, outputsPb = Pb−k andNb = Nb−k

if the operation b − k can be performed, and outputs a degenerate b-ranked tree
coding the empty set, if b is less than k successors from a limit ordinal.
We claim thatDecorate(Ea∗ , h) is completely determined inHYP. Observe that h
is a nice decoration generator. LetX ∈ HYP. Then there is some b ∈ O with b <∗ a
such that X ≤T Hb . Since a∗ is a pseudo-ordinal, b + O(1) <∗ a∗ is satisfied. By
the choice of b we have X ∈ |Sb | = |Pb+k | ∪ |Nb+k |. Therefore, by Lemma 5.5, X
has a HYP evaluation map. Therefore, Decorate(Ea∗ , h) is completely determined
in HYP.
Suppose for contradiction that Decorate(Ea∗ , h) has a HYP Baire approxima-
tion. Let b ∈ O with b <∗ a∗ andwith the Baire approximation (U,V, {Dn}n∈�) ≤T
Hb . By the recursion theorem, there is an index e such that

WHb
e = {p : 0e1�p ∈ V },

whereHb is used to compute V . Choose p with 0e1�p ∈ U ∪V , this is possible as
U ∪ V is dense. Let X ∈ HYP be such that
(1) 0e1�p ≺ X
(2) X ≤T Hb but X �≤T Hc for any c <∗ b,
(3) X ∈ Dn for all n.
This is possible because the Dn, and the dense sets which need to be met to avoid
being computed byHc for c <∗ b, are uniformly Hb-computable.
Now b + k is least such that X ∈ |Pb+k | ∪ |Nb+k | = |Sb |. By Lemma 5.5,
X ∈ |Decorate(Ea∗ , h)| if and only if X ∈ |Eb |. Because X meets each Dn and
U ∪ V , by the definition of a Baire code, we have X ∈ |Decorate(Ea∗ , h)| if and
only if X ∈ U . To establish the contradiction, it suffices to show that X ∈ |Eb | if
and only if X ∈ V .
Observe X ∈ |Eb |, if and only if, for some q extending p, we have 0e1�q ≺ X
and q ∈ WHb

e . But this happens if and only if for some such q, we have
0e1�q ∈ V . �
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§7. CD-PB implies HYP generics exist in �-models. The next theorem shows
that CD-PB implies the existence of hyperarithmetic generics in �-models. In short,
ifM has Z but no Δ11(Z)-generics, there is a pseudo-ordinal a

∗ whichM thinks is
well-founded. This pseudo-ordinal can be used to construct a code for the following
subset ofM , where Eb denotes a code for a universal ΣZb set:⋃

b<∗a∗
|Eb | ∩ {X : b is least s.t. X is not generic relative toHZb }.

After decorating this code, it becomes completely determined for every non-Δ11(Z)-
generic. If this code has a Baire decomposition, meeting the associated dense sets
creates a Δ11(Z)-generic.

Theorem 7.1. IfM is an �-model which satisfies CD-PB, then for every Z ∈ M,
there is a G ∈ M such that G is Δ11-generic relative to Z.

Proof. Let M be the second-order part of an �-model which satisfies CD-PB.
Then by Proposition 3.6, whenever Z ∈ M , we also have that HZb ∈ M for every
b ∈ OZ .
Case 1. Suppose M is a �-model (that is, for every tree T ∈ M , if M |=
“T is well-founded”, then T is truly well-founded). Let Z ∈ M . Because {G :
G is Δ11(Z)-generic} is a Σ11(Z) set, the Z-computable tree corresponding to the
Σ11(Z) statement “there is a Δ

1
1(Z)-generic” has a path inM , and that path computes

a Δ11(Z)-generic G . Therefore, the theorem holds whenM is a �-model.

Case 2. Suppose that there is some tree S ∈M whichM believes is well-founded,
but in reality is ill-founded. Let Z ∈M , and without loss of generality assume that
Z ≥T S (without this assumption we find a Δ11(Z⊕S)-genericG , but suchG is also
Δ11(Z)-generic). By Proposition 2.2, there is a Z-computable function which, given
the index of a truly well-founded Z-computable linear order, outputs an element
of OZ which bounds its order type. Applying that function to the Kleene-Brouwer
ordering on S produces a pseudo-ordinal a∗ ∈ O∗,Z such thatWZ

p(a∗) is not truly
well-founded, but it has no descending sequence inM .
Relativize the definitions of<∗, ranked trees, Decorate, and Lemmas 5.4 and 5.5
to Z. Note that because M is hyperarithmetically closed, all the evaluation maps
provided by relativized versions of Lemmas 5.4 and 5.5 are inM .
As in the previous theorem, there is a Z-computable procedure which maps any
b ∈ OZ to an alternating code Eb of rank b +O(1) such that

|Eb | =
⋃

e,r : r∈WHZ
b

e

[0e1�r].

Further, using Proposition 2.1, there areZ-computable procedures which map each
b ∈ OZ to a code Sb of rank b +O(1) such that
|Sb | = {X ∈ 2� : X is not 1-generic relative toHZb ,

but for all c <Z∗ b, X is 1-generic relative toH
Z
c },

and alternating codes Pb and Nb of rank b such that

|Pb | = |Sb−O(1)| ∩ |Eb−O(1)|, |Nb | = |Sb−O(1)| ∩ |Ecb−O(1)|,
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(and for b that are withinO(1) of a limit ordinal,Pb andNb are degenerate b-ranked
trees coding the empty set as before).
Let us be a little more specific and say that the code for Pb is made exactly as one
would expect: it is Alternate(P′

b), where

P′
b = {�} ∪ 〈0〉�Sb−O(1) ∪ 〈1〉�Eb−O(1),

the root � is a ∩ of rank b in P′
b , and all other ranks and labels are inherited from

their respective subtrees. We remark that because the root of P′
b is a ∩, the root of

Eb+O(1) is a ∪, and Eb+O(1) is already alternating, we have (Pb)〈1〉 = Eb−O(1).
Because the outputs of Proposition 2.1 are well defined for all b ∈ OZ , so also
are the codes Pb and Nb . Also, for any b <Z∗ a

∗,M believes these codes to be well
founded because they are b-ranked.
Let h be the name of the nice decorating function mapping b to (Pb,Nb), and
consider the code T := DecorateZ(Ea∗ , h). Observe that since � in Ea∗ is a ∪, we
know that � in T is a ∪.
If T is not completely determined, let G ∈ M be such that G does not have an
evaluation map in T . We claim that G is Δ11(Z)-generic. If G is not Δ

1
1(Z)-generic,

then there is some least b ∈ OZ with b <Z∗ a∗ such that G is not 1-generic relative
to HZb . Then we would have G ∈ |Sb |, and therefore by Lemma 5.5, G would have
an evaluation map in T .
IfT is completely determined, then sinceMmodelsCD-PB, let (U�,V�)�∈T ∈M
be a Baire decomposition for T . Let {Di}i<� ∈ M be the associated sequence of
dense sets as in Proposition 3.9. For any p ∈ 2<� , define Di,p = {q : p�q ∈ Di}.
We claim that anyG ∈ ∩i,pDi,p is Δ11(Z)-generic. For this we argue that every dense
open B ∈ Δ11(Z) actually contains Di,p for some i, p. Let b ∈ OZ and e be such
that B = WHZb

e . Then T〈2(b+O(1))+1〉 = Decorate(Pb+O(1), h), where |Pb+O(1)| =
|Sb | ∩ |Eb |. Therefore, there is some � ∈ T such that T� = Decorate(Eb, h). Since
Eb has a union at the root, this � is a union. Let p = 0e1. We claim that D�,p ⊆ B,
where D� = ∪mU��m ∪ V� . Let q be such that p�q ∈ D� . To finish the proof, we
need to show that [q] ⊆ B.
For the remainder of this proof, any X which meets the following conditions will
be called sufficiently generic:

• X ∈ ∩iDi , and
• X is 1-generic relative toHZ

b+O(1).

Observe that for every r ∈ 2<� , there is a sufficiently generic X ∈ M with r ≺ X .
Also, observe that for all such X and all codes R which are c-ranked for some
c ≤∗ b +O(1), the second condition implies that c,X and R satisfy the conditions
of Lemma 5.4, and so X ∈ |Decorate(R, h)| if and only if X ∈ |R|. Finally, by
Proposition 3.9, for all sufficiently generic X and all � ∈ T , we haveX ∈ |T� | if and
only if X ∈ U� .
If X is sufficiently generic and p�q ≺ X , then X ∈ p�B, and so X ∈ |Eb |, and
so by Lemma 5.4, X ∈ |Decorate(Eb, h)| = |T� |. Therefore, it is impossible that
X ∈ V� , so we conclude p�q ∈ U��m for somem. Therefore, for sufficiently generic
X with p�q ≺ X , we have X ∈ |T��m|.
If m = 2c + 1 for some c ≤∗ b + O(1), then T��m = Decorate(Pc, h). But for
any sufficiently generic X , we have X �∈ |Pc |, so this case is impossible. Therefore,
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m = 2n for some 〈n〉 ∈ Eb . It follows from the definition of Decorate that T��m =
Decorate((Eb)〈n〉, h). So for sufficiently generic X with p�q ≺ X , we have X ∈
|(Eb)〈n〉|.
Now we will use a property of the codes Eb which follows from how they are
defined at the beginning of the proof of Theorem 6.1. The code Eb was obtained as
the union of many codes Fb,e,r , at whose leaves the only options are [0e1�r] or ∅. The
codeEb was also postprocessed so that it would be alternating, but while this process
can break up the first-level subtrees Fb,e,r, it can never combine them together. (See
the discussion at the end of Section 2.4 for details.) Therefore, for every 〈n〉 ∈ Eb ,
there is an r such that whenever 〈n〉�� ∈ Eb is a leaf, its attached clopen set is either
[0e1�r] or ∅. Fixing r associated to n = m/2 for them found above, we observe that
an evaluation map on (Eb)〈n〉 that works for one Y ∈ [0e1�r] works for all such Y ,
and we conclude that |(Eb)〈n〉| is equal to either ∅ or [0e1�r]. It must be the latter
because X ∈ |(Eb)〈n〉| for all sufficiently generic X with p�q ≺ X . It follows that
[r] ⊆ B. Furthermore, any sufficiently generic X that does not extend p�r must be
out of |(Eb)〈n〉|, so it must be that [q] ⊆ [r]. Therefore, [q] ⊆ B, as desired. �

§8. Application to the Borel dual Ramsey theorem. As an application of Theorem
4.3, we identify a natural formulation of the Borel dual Ramsey theorem for 3
partitions and � colors (Borel-DRT3�) as a principle which lies strictly below ATR0,
but all of whose �-models are closed under hyperarithmetic reduction.
Theorem 8.1 (Borel dual Ramsey theorem, [2]). For every Borel �-coloring of the
set of partitions of � into exactly k pieces, there is an infinite partition p of � and
a color i < � such that every way of coarsening p down to exactly k pieces is given
color i .
Since the set of partitions of � into exactly k pieces can be coded naturally as a
Borel subset of k�, a natural way to formulate the hypotheses of the above theorem
is roughly “Whenever there are Borel codes T1, . . . , T� such that for every X ∈ k�,
we have X ∈ | ∪i<� Ti |, . . . ” (See below for a precise formalization).
Therefore, the Borel dual Ramsey theorem has a natural formulation in terms
of completely determined Borel sets. In [5, 12], it was shown that a solution to
Borel-DRTk� can in general be obtained by a two-step process:

(1) Use the fact that every Borel set has the property of Baire to come up with a
Baire approximation to each color in the given coloring.

(2) Apply a purely combinatorial principle CDRTk� to a coloring of (k − 1)<�
obtainable from the Baire approximation from (1).

If we represent the coloring in the natural way described below, then CD-PB can
be used to carry out (1). It was known to Simpson (see [5]) that CDRT3� follows
from Hindman’s Theorem (HT), which follows from ACA+0 by [1]. Therefore, the
following natural formalization ofBorel-DRT3� follows fromCD-PB+ACA+0 .Wefirst
give the formalization of the space of k-partitions of �, and then the formalization
of Borel-DRT3� .

Definition 8.2 (Partitions of �, [5]). In RCA0, a partition of � into exactly k
pieces is a function p ∈ k� such that p is surjective, and for each i < k − 1,

min{n : p(n) = i} < min{n : p(n) = i + 1}.
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A partition of � into infinitely many pieces is a surjective function p ∈ �� which
satisfies the above condition for each i ∈ �.

The set of partitions described above is an open subset of k� representable in
RCA0 by a completely determined Borel code, as the reader can verify. (For the case
k = 3, the set in question is the union of the sets Oa,b introduced at the start of the
proof of Theorem 8.5.) Let P3 denote this completely determined Borel code in the
case k = 3.

Definition 8.3 (FormalBorel dualRamsey theorem for 3 partitions and � colors).
In RCA0, Borel-DRT

3
� is the principle which states:Whenever T0, . . . , T�−1 are Borel

codes such that for all X ∈ |P3|, we have X ∈ |⋃i<� Ti |, then there is an infinite
partition p of � and a color i < � such that whenever X ∈ |P3|, X ◦ p ∈ |Ti |.

We would like to say the hypotheses of the theorem imply that the {Ti}i<� are all
completely determined. This is not quite true (perhaps X ∈ |Ti | is not completely
determined for someX �∈ |P3|). However, a small modification of the existing codes
makes them completely determined.

Lemma 8.4. (ACA0) Suppose that S is a completely determined Borel code and T
is a Borel code. Suppose that for all X ∈ |S|, there is an evaluation map for X in T .
Then there is a completely determined Borel codeR such that for all X ∈ |S|, we have

X ∈ |T | ⇐⇒ X ∈ |R|.
Proof. Let R be obtained from T by replacing each leaf � in T with the inter-
section of S and the clopen set coded by �(�) in T . If X ∈ |S|, then an evaluation
map forX in R is obtained by starting with an evaluation map forX in T and then
filling in the evaluation map for X ∈ |S| at all the places where S appears in R.
If X ∈ |Sc |, an evaluation map for X in R is obtained by filling in all the original
nodes of T with 0, filling in the evaluation map for X in S at all the places where
S appears in R, and filling in the correct values on the remaining leaves which were
copied from T .
(Note: it does not work to let R be simply the intersection of S and T , because
the definition of completely determined requires that the entire evaluation map be
filled out, even if most of it is not used.) �
It follows that if (Ti)i<k satisfy the hypotheses of the formal Borel dual Ramsey
theorem above, they can be taken to be completely determined without loss of
generality. Therefore, the discussion preceding the formal definitions proves that
CD-PB+ ACA+0 � Borel-DRT3� over RCA0.
The �-model which was constructed to prove Theorem 4.3 is closed under
hyperarithmetic reduction, and therefore satisfies ACA+0 as well as CD-PB. There-
fore, Borel-DRT3� holds in this model, while ATR0 does not. This shows that the
formulation of Borel-DRT3� discussed here is strictly weaker than ATR0.
On the other hand, we have the following, which essentially follows from a more
detailed version of the analysis in Section 4 of [5].

Theorem 8.5. Let � ∈ � with � ≥ 2. Every�-model ofBorel-DRT3� is closed under
hyperarithmetic reduction.
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Proof. It suffices to consider the case � = 2. We will first define some important
subsets of 3� . For each a, b with 0 < a < b, let Oa,b be the clopen set given by the
finite collection of strings

Oa,b = {� ∈ 3b+1 : a = min{n : �(n) = 1} and b = min{n : �(n) = 2}}.
Then the set of partitions of � into exactly 3 pieces is given by P3 =

⋃
0<a<b Oa,b .

Let M be the second-order part of an �-model M of Borel-DRT32. We first
show that M satisfies ACA0. Let A ∈ M . Let R be the following labeled Borel
code.4

R =
⋃
0<a<b

⋂
s>b

Ca,b,s where Ca,b,s =

{
Oa,b if A′

b � a = A′
s � a,

∅ otherwise.

Then R is completely determined. For any X ∈ 3�, there is at most one pair a, b
such that X ∈ Oa,b , so an evaluation map for X in R may safely put zeros at every
node of R except for the root and the nodes of the distinguished subtree ∩s>bCa,b,s .
The leaves of that subtree can be X ⊕ A-computably filled out. Then the root of
R and the root of the subtree ∩s>bCa,b,s may be nonuniformly supplied with their
unique correct values.
Exactly as in the proof of [5, Theorem 4.5], we now show that for any infinite
partition p of � which is homogeneous for the coloring defined by |R|, |Rc |, the
principal function of p dominates the least modulus function for A′. For each i ,
let pi = min{n : p(n) = i} (these are the minimum elements of the blocks of
p). First we claim that p is homogeneous for color R. Let s be large enough that
A′
s � p1 = A′ � p1. Let j be large enough that pj > s . Then the coarsening of p
which keeps blocks 1 and j, while collapsing all other blocks in with the zero block,
is an element of R. By similar reasoning, but now looking at the 3-partition of �
obtained from p by keeping the only the i and (i + 1) blocks separate from the 0
block, we have A′

pi+1 � pi = A′ � pi . Thus p ≥T A′. Therefore,M |= ACA0.
Now suppose that A ∈ M and 3 · 5e ∈ OA. Suppose that for all d ≤O 3 · 5e ,
we have HAd ∈ M . Then we claim that HA3·5e ∈ M . By a result of Jockusch [9]
discussed in more detail below, the hyperarithmetic sets are exactly those that can
be computed from sufficiently fast-growing functions. As in [5, Theorem 4.7], we
construct a Borel coloring which forces any solution to Borel-DRT32 to compute a
sufficiently fast-growing function. To prove the associated Borel code is completely
determined, we need a more detailed analysis than what was given in [5].
More specifically, Jockusch’s result has plenty of uniformity: there are computable
functions h and k such that for all d ∈ OA, whenever g : � → � dominates the
increasing function

fd (n) := Φ
HAd
h(d)(n),

we have

Φk(d)(A⊕ g) = HAd .
4We use standard computability-theoretic notation: for any s ∈ N, letA′

s denote {x < s : ΦAx,s (x) ↓},
and for any X let X � s denote the string � of length s describing the characteristic function of X on
{0, . . . , s − 1}.
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(To get this from the proof of [9, Theorem 6.8], apply [13, Exercise 16–98] to
conclude that the sets HAd are in fact uniformly Turing equivalent to implicitly
Π01(A)-definable functions fd .)
Uniformly in d ∈ OA and a, b,∈ �, and A, there are Borel codes Ca,b,d of
well-founded rank d +O(1) such that

Ca,b,d =

{
Oa,b if b ≥ fd (a).
∅ otherwise.

The uniformity follows from the existence of h above and the A-uniformity of
producing a formula of L�1,� to assess facts aboutH

A
d (Proposition 2.1).

For each n < �, let dn = Φe(n). Now let R be the labeled Borel code

R =
⋃
0<a<b

⋂
i≤a
Ca,b,di .

For any X ∈ 3�, there is at most one pair of a, b such that X ∈ Oa,b , so as above,
any evaluation map for X in R can safely fill in zeros everywhere except for the
root of R and the distinguished subtree rooted at ∩i≤aCa,b,di . This subtree has well-
founded rank da+O(1), so the unique evaluationmap on it isHAda+O(1)-computable.
BecauseHAd ∈M for all d ≤O 3 · 5e , this evaluation map exists inM . Therefore,R
is completely determined inM .
Now let p ∈ M be any infinite partition of � which is a solution to Borel-DRT32
for the coloring |R|, |Rc |. Define, for each i ,

pi = min{n : p(n) = i}.
Continuing to copy the proof of [5, Theorem 4.5], for every 0 < s < t, consider the
coarsening Xs,t of p obtained by keeping the s and t blocks of p and collapsing all
other blocks to 0. Since t can be chosen arbitrarily large, for every s there is a t such
that

Xs,t ∈
⋂
i≤ps
Cps ,pt ,di

and therefore P3 ◦ p is monochromatic for color R, and s < t implies that for
all i ≤ ps , we have pt ≥ fdi (ps). Therefore, p computes a sequence of functions
{gi : i ∈ �} such that for all i and n, gi(n) ≥ fdi (n). (Given i and n, let s be large
enough that i, n ≤ ps , and output ps+1.) Therefore, A⊕ p computes⊕

i

Φk(di )(A⊕ gi ) =
⊕
i

HAdi = H
A
3·5e ,

as was needed. �
We end this section with a question about robustness. The formalization of

Borel-DRT32 given above is one we find quite natural. However, another possible
way to state the hypothesis of this theorem would be “Whenever there are Borel
codes T1, . . . , T� such that for every X ∈ k�, there is an i such that X ∈ |Ti |, . . . .”
The subtle difference lies in the fact that if X ∈ | ∪i<� Ti |, the evaluation map for
X in that code must also prove that X ∈ |Ti | or X ∈ |Tci | for each i < � . In the
slight variant just mentioned, it is enough to know that for some i , X ∈ Ti (and
possibly have no information about X in the codes Tj for j �= i). This variant does
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not, at least on its face, lead to any conclusion about whether, or in what sense, any
of the Ti must be completely determined.

Question 1. How robust is the given formalization of Borel-DRT32? In particular,
is it equivalent to the variant described above?

§9. Questions. Several directions of further questions immediately suggest them-
selves. Most results here concern �-models. It is not immediately clear how to
formalize the statement “for every Z, there is a Δ11(Z)-generic” in reverse mathe-
matics. Once a reasonable reversemathematics way of formalizing these principles is
established, it would be natural to ask how these principles are related to principles
about (completely determined) Borel sets.
In the context of �-models, there are some gaps remaining. For example, we
have seen that every �-model of CD-PB models L�1 ,�-CA and the existence of Δ

1
1

generics.

Question 2. Suppose M ⊆ 2� is closed under join, satisfies L�1,�-CA, and for
every Z ∈ M , there is a G ∈ M that is Δ11(Z)-generic. Does it follow thatM |=
CD-PB?

One way that the above question could have a negative answer would be if
CD-PB implied some theory of hyperarithmetic analysis strictly stronger than
L�1 ,�-CA.

Question 3. Which theorems of hyperarithmetic analysis are implied by CD-PB,
and which are incomparable with it?

We built an �-model of CD-PB by adjoining many mutually Σ11-generics.

Question 4. Does every �-model of CD-PB contain a Σ11-generic?

Whether in�-models or full reverse mathematics, many other theorems involving
Borel sets may now have interesting reverse mathematics content when considering
their completely determined versions. We leave the similar analysis of “Every com-
pletely determined Borel set is measurable” to future work. We mention that the
statement “Every completely determined Borel set has the perfect set property” is
equivalent to ATR0, because “Every closed set has the perfect set property” already
implies ATR0 by [15, V.5.5], so here the way of defining a Borel set does not add
additional strength.
Turning now to Borel-DRT3� , we have seen that any �-model of it is closed under
hyperarithmetic reduction.

Question 5. Is Borel-DRT3� a theory of hyperarithmetic analysis?

For any instance of Borel-DRT3� that is truly well-founded, there is a solution
hyperarithmetic in the instance. However, we do not know anything about the
complexity of solutions to nonstandard instances of Borel-DRT3� . In particular, we
do not know if Borel-DRT3� holds in HYP.
Finally, there is the issue of robustness. There are some possible variations on
what could be considered as an evaluation map. For example, a weaker version of
an evaluation map would be a partial function f :⊆ T → {0, 1} such that f(�)
is defined; and whenever � ∈ T is a ∪, and f(�) = 1, there is an n such that
f(��n) = 1; and whenever � ∈ T is a ∩ and f(�) = 1, for all n, ��n ∈ T implies
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f(��n) = 1; and similarly for whenf(�) = 0. Such a partial function has a natural
interpretation as a winning strategy in the game in which one player tries to prove
that a real is in the given Borel set while another player tries to prove that it is out.
We have used the longer name “completely determined Borel set” for our notion
in order to reserve the term “determined Borel set” for this variant. We did not
investigate, but it would be interesting to know, the extent to which the results of
this article are robust under this and other variations on when we consider Borel set
to be well defined in reverse mathematics.
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