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SUMMARY
We present BioBug, a bionic cognitive response navigation algorithm for mobile robots based on
neuroethology principles. It includes a biological antenna model for environment perception and an
improved Bug algorithm for motion planning and control. The biological antenna model delineates
the interested sensing areas, and thus decreases the computational burden. Then, this obtained
environment stimulation is responded to generate the corresponding walking behavior according
to BioBug. Simulations and experiments have been carried out in different conditions of obstacle
density and boundary shape through algorithm comparisons. Compared with the competitors,
BioBug is characterized by not only a smaller path length, but also shorter time for obstacle escape.
The results demonstrate the practicality, environment robustness, and obstacle avoidance efficiency
of the algorithm.

KEYWORDS: Bug algorithm; Autonomous navigation; Mobile robot; Biological antenna; Cognition;
Bionics.

1. Introduction
Autonomous navigation of automated mobile robots (AMRs) and automated guided vehicles (AGVs)
in unknown environments basically requires finding a safe path from a starting position to a
target position without human intervention. Many navigation algorithms emerge in this research,
e.g., artificial potential field (APF) method,1 vector field histogram (VFH),2 fuzzy logic control
approach,3 behavior control method,4 neural network algorithm,5 genetic algorithm,6 Bug algorithm,
etc. As a famous reactive algorithm, the prototype Bug algorithm was firstly proposed by Lumelsky
et al. in 1987,7,8 and later extended to an algorithm cluster in order to improve navigation path
in aspects of safety, efficiency, smoothness, and so on. Some representatives include Bug1,9

Bug2,9 VisBug,10 DistBug,11 TangentBug,12 Rev,13 CautiousBug,14 MRBUG,15 ABUG,16 etc. The
fundamental characteristic of the Bug algorithm cluster is embodied in its motion manner, in which
the whole collision-free path of the robot is combined by two basic motion modes, namely, motion
toward the target and obstacle-boundary following if any.17

The Bug algorithm cluster is characterized by easy implementation and inherent convergence, at
least in theory. However, in majority of actual cases, it is a theoretical algorithm rather than a practical
algorithm because the required obstacle rounding capability is usually utopian with respect to real
environments and real robots with multi-source noises. It is indicated that the challenging points of
designing a practical Bug algorithm are to propose operable mechanisms of obstacle rounding and
switching conditions of the two motion modes. This work also tries to make a contribution in this
aspect, based on bionic inspirations from neuroethology and cognitive science.

Similar to the cognitive response activity of living beings, robot reactive navigation is also an
iterative process of obtaining and understanding environment information (perception), generating
corresponding motion strategies and realizing them under control (motion planning and control).18,19

Based on the practices, in the last decade or so, the principles of neuroethology and cognition have
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been successfully applied in some of these aspects through structural and functional imitation. For
example, in ref. [20], a real-time neuronal model and a distributed adaptive control framework are
used in map-less autonomous navigation of a mobile robot to perform a foraging task. On its basis,
a navigator is designed in ref. [21] by mimicking the neural mechanisms of insect navigation and
enables the robot to learn the reliability of landmarks using an expectation reinforcement method. In
experiments, this navigator generates analogous navigational behavior with real ants. In ref. [22], a
quadruped robot is equipped with an artificial neural system with a central pattern generator (CPG)
to accomplish adaptive dynamic walking with medium forward speed on outdoor irregular terrains.

In this work, we propose a robot cognitive response navigation algorithm—BioBug. It is featured
as an overall biomimetic design by endowing bionic mechanisms to the complete navigation process
rather than only a part of it as usual, e.g., in refs. [20–22]. In Section 2, a biological antenna model
is established for environment perception. Based on it, four types of cognitive response walking
behaviors (Moving forward, Aimed turning, Avoidance turning and Arc rounding) are defined in
Section 3.2, and their triggering production rules are discussed in Section 3.3. Further, the overall
navigation algorithm is integrated in Section 3.4, implemented by illustrations in Section 3.5, and
examined by simulations in Section 4 and by experiments in Section 5. The designed algorithm is
competent to overcome the noted defects of previous Bug algorithms in environment robustness and
obstacle avoidance efficiency. It not only adopts Arc rounding explicitly as the obstacle rounding
mechanism, but also extends the basic motion modes of the Bug algorithm cluster by two kinds
of spot turning, namely, Aimed turning and Avoidance turning. The latter is beneficial to take into
account the physical dimensions and view field limitations of the robot, which was generally ignored
in previous Bug algorithms.

2. Robot Biological Antenna Model
The robot biological antenna model is established to understand sensory information for environment
perception in this section. Here, “biological antennas” in different types denote the surrounding areas
of the robot in specific shapes. If sensor readings are located in these zones, they are used to recognize
the internal and external environment, mainly the distribution of local obstacles and the motion state
of the robot itself.23,24 The acquired information is further used in obstacle avoidance and autonomous
navigation.

A laser range finder and motor encoders of two driving wheels are the major sensors relevant to the
biological antenna model (See Section 5.1 for the complete list of sensors). The scanning data of the
laser rangefinder are recorded as (di,φi)T in the polar coordinate system or (xi, yi)Tin the Cartesian
coordinate system, where i denotes their serial numbers. The minimum distance di is denoted by
dmin. The motor encoders record the equivalent movement distances, denoted by sl and sr , of the two
driving wheels in the current walking behavior. They are further coupled in Eq. (1) to calculate the
linear and angular displacements of the robot, denoted by s and θ , by ignoring the slip of the wheels.
Then, they could be accumulated to calculate (joint with other sensors like GPS, etc.) the current
position of the robot, denoted by X, if the starting position S is provided as a priori knowledge.

s = (sl + sr )
/

2 and θ = (sr − sl)
/
b, (1)

where sl, sr , s, and θ are always initialized to zero while switching walking behaviors.
Figure 1 shows the established robot biological antenna model, in which the shape of the robot

is simplified into its circumcircle with a radius Rr . Some system constants are given as: Rmax, the
maximum detection range of the laser rangefinder; b, the wheel track; dw, the diameter of the wheels;
and c, the width of the wheels. Three types of biological antennas are designed, consisting of (1) two
semi-annular antennas Dngs and Dngb in front (with radii of Rs and Rb respectively), (2) a wide-area
antenna Lng in directly ahead (united by a rectangle in size of 2Rs-by-a and a semi-circle with a
radius of Rs), and (3) two rectangular antennas Wngl and Wngr overlapping the planar projections
of the driving wheels (in size of dw-by-c).

For their functions, Dngs and Dngb are used to detect the nearest obstacle point within the 180°
field of view of the laser rangefinder, in which Rs > Rr is set to avoid the risk of collisions and
Rs < Rb is set to improve robustness as a Schmitt trigger design (see Section 3.2 for details). Wngl

and Wngr are used to record sl and sr for localization in real time. Lng is used to detect the nearest
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Fig. 1. The established robot biological antenna model.
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Fig. 2. Robot cognitive response to biological antenna information for obstacle avoidance.

obstacle point within the field of view of the laser rangefinder in directly ahead. It is helpful, from
plane geometry, to determine the maximum safe forward movement distance smax, given by

smax = min

{
di sin(φi) −

√
R2

s − d2
i cos2(φi)

}
(i = 1, · · · , n), (2)

where n denotes the number of obstacle points detected by the laser rangefinder that are located in
the range of Lng; i denotes the serial numbers of these points.

This model is feasible to process a large amount of navigation information, including, S, the starting
position of the robot; T, its target position (provided as a priori knowledge in this work); X, its current
position; (xr, yr , θr )T, its current pose; dXT , the distance between X and T; θXT , the direction angle of
the vector �XT ; dmin, the minimum obstacle distance within the field of view of the laser rangefinder;
s and θ , the linear and angular displacements of the robot in the current walking behavior; and smax,
its maximum safe forward movement distance. After sampling at every time, each biological antenna
updates its information of the corresponding area, as well as the above navigation information.

Based on the above design, the established model is characterized by two advantages for
environmental perception. One is its rapid processing speed of multi-mode sensor data because only
the specific sensor information within the interested antenna areas is dealt with, and the other is its
real-time memory and update functions of the antenna information and other navigation information.
Therefore, depending on the biological antennas, the robot can obtain some useful environment
information for generating the corresponding walking behaviors in navigation.

3. Cognitive Response Navigation Algorithm Based on the Biological Antenna Model

3.1. Philosophy of the cognitive response navigation algorithm
The established cognitive response navigation algorithm belongs to the family of reactive motion
planning algorithms. It responds to the stimulation from the biological antennas in an IF-THEN
manner. For example, see Fig. 2, if the robot detects an obstacle in front with its biological antennas,
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Fig. 3. Robot basic walking behaviors.
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Fig. 4. Four types of cognitive response walking behaviors in navigation.

the walking behavior of Avoidance turning is triggered immediately for avoidance. Therefore, the
navigation process of the robot is actually a process of triggering production rules of different walking
behaviors in a series of IF-THEN manners (See Section 3.3 for details). In the last example of Fig. 2,
through the boundary-following motion, the robot is able to know the general location and size of
surrounding obstacles with the help of biological antennas. Therefore, in the whole process, relevant
system parameters and antenna memories can be revised and updated through learning.

3.2. Robot cognitive response walking behaviors
There are six basic walking behaviors of a mobile robot in general applications, as moving forward
and backward, spot turning to the left and right, and arc rounding to the left and right, as shown in
Fig. 3. Among them, spot turnings can be further distinguished as aimed turnings (to the target) and
avoidance turnings (against to obstacles). Besides, moving backward is forbidden due to the blindness
of the laser rangefinder. Instead, the arcing mechanism is used for obstacle avoidance. As a result, four
types of cognitive response walking behaviors are adopted in this work, as Moving forward, Aimed
turning, Avoidance turning, and Arc rounding, as shown in Fig. 4. Their uses are explained as below
after some notations are defined: meeting points H, the locations where the robot meets obstacles; and
leaving points L, the locations where the robot leaves obstacles after a boundary-following motion.

(1) Aimed turning, which is a spot turning motion to aim at the target T at the starting point S or
leaving points L. The direction of Aimed turning is determined by the minor turning angle principle.
As shown in Fig. 4, if the robot has been located at the starting point S or the leaving point L, Aimed
turning is triggered to aim at the target.
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Fig. 5. (Colour online) The combination of the four types of cognitive response walking behaviors in a series of
IF-THEN manners.

(2) Moving forward, which is a straight-line motion along �XT . Its starting point could be S or
L, and its end point could be H or T (T means the completion of the navigation task). As shown in
Fig. 4, if the robot has aimed at the target at the starting point S or leaving points L, Moving forward
is triggered to approach the target.

(3) Avoidance turning, which is a spot turning motion at H as a preparation of following obstacle
boundaries in the subsequent Arc rounding motion. Avoidance turning is triggered by Dngs detecting
H, and then the robot turns oppositely to the obstacle direction until Dngb is absent of obstacles.
As for the design of Dngs and Dngb, Rs < Rb is required in order to improve system robustness
as a Schmitt trigger design. On the purpose of improving algorithm accuracy and robustness, we do
not simply use �XH to represent the obstacle direction but fuse the information in the area of Dngb.
Suppose m obstacle points are scanned in all by the laser rangefinder in Dngb, compute the arithmetic
mean of their azimuths (with respect to the x-axis direction) in the robot coordinate system, denoted
by φ:

φ = 1

m

m∑
i=1

φi (3)

Then define the following integer variable,

fobt =
{

0, if φ ≤ 90◦;
1, if 90◦ < φ ≤ 180◦.

(4)

Where the integer variable fobt = 0 denotes the obstacles being in the right, and fobt = 1 denotes
left. The integer variable is initialized to fobt = −1 when the robot is located at the starting point S
or the leaving points L. As shown in Fig. 4, if the robot detects an obstacle being in the left by Dngb

at H, turning right is triggered for a preparation of avoidance.
(4) Arc rounding, which is an arc rounding motion with a certain radius to follow obstacle

boundaries. It is triggered after an Avoidance turning motion (but in the opposite direction) until the
escaping conditions are met or another meeting point H is discovered. As shown in Fig. 4, since the
obstacle is in the left, turning right and arcing left are triggered alternately until the robot escapes
from the obstacle.

3.3. Switching of robot cognitive response walking behaviors
The key role of the cognitive response navigation algorithm is to determine switching rules of the
four types of walking behaviors, as shown in Fig. 5. They lay a foundation of realizing complex
navigation motions through a reasonable combination of the four types of walking behaviors in a
series of IF-THEN manners, as illustrated in Fig. 5 from (a) to (f), and explained as below.

(1) Aimed rule, which is used to judge, according to Wngl and Wngr , whether the heading of the
robot is in the direction of �XT during Aimed turning. It is expressed quantitatively as θr = θXT ,
where θr denotes the heading angle of the robot in the global coordinate system and θXT denotes
the azimuth of the target with respect to the robot. If true, the current walking behavior should be
switched to Moving forward, and otherwise the robot maintains the current walking behavior, as
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Fig. 6. (Colour online) The principle of the cognitive response navigation algorithm.

shown in Fig. 5(a). Taking Fig. 4 as an example, if the robot has arrived at the starting position point
S or leaving points L, Aimed turning is triggered until Aimed rule is satisfied.

(2) Meeting rules I & II, which is used to judge, according to Dngs and Dngb, whether the robot
has arrived at H during Moving forward or Arc rounding. It is expressed quantitatively as dmin ≤ Rs .
If true, the current walking behavior should be switched to Avoidance turning, and otherwise the
robot maintains the current walking behavior, as shown in Figs. 5(b) and (c). Taking Fig. 4 as an
example, in the process of Moving forward, if and only if Meeting rule is true, Avoidance turning is
triggered for the preparation of avoidance.

(3) Avoidance rule, which is used to judge, according to Dngb, whether the obstacle has become
invisible for the robot during Avoidance turning. It is expressed quantitatively as dmin ≥ Rb, where
Rb > Rs . If true, the current walking behavior should be switched to Arc rounding, and otherwise the
robot maintains the current walking behavior, as shown in Fig. 5(d). However, if false in a complete
circle of Avoidance turning, it means the robot has trapped among obstacles without a hope of escape.
Thus, the robot stops and the navigation task fails. Taking Fig. 4 as an example, in the process of
Avoidance turning, if and only if Avoidance rule is true, Arc rounding is triggered to follow the
obstacle’s boundary.

(4) Leaving rule, which is used to judge, according to Lng, Wngl and Wngr , whether the robot
has arrived at L during Arc rounding in two sufficient conditions. One is for the final landing in
the quantitative expression of (|θr−θXT | ≤ θε & dXT ≤ smax), the other is for the safety of obstacle
avoidance in the quantitative expression of (|θr−θXT | ≤ θε & smax ≥ sstep, where dXT denotes the
distance between the robot and the target, θε denotes a predefined tolerance of aimed angle, and sstep

denotes a predefined threshold of maximum safe forward movement distance. If any one of them
is true, the current walking behavior should be switched to Aimed turning, and otherwise the robot
maintains the current walking behavior, as shown in Fig. 5(e). However, if both of them are false in
the whole circle of Arc rounding, it means the robot has trapped among obstacles without a hope of
escape. Thus, the robot stops and the navigation task fails. Taking Fig. 4 as an example, in the process
of Arc rounding, if and only if Leaving rule is true, Aimed turning is triggered to aim at the target.

(5) Target rule, which is to judge, according to Wngl and Wngr , whether the robot has approached
the target T during Moving forward. It is expressed quantitatively as dXT ≤ dε, where dε denotes a
predefined tolerance of target distance. If true, the robot fires the landing procedure (see in Fig. 6),
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and otherwise it maintains the current walking behavior, as shown in Fig. 5(f). Taking Fig. 4 as an
example, in the process of Moving forward, if and only if Meeting rule is always false and finally
Target rule is true, the landing procedure is fired to land the target.

3.4. The principle of the cognitive response navigation algorithm
This subsection integrates the production rules of walking behavior switching and forms the complete
cognitive response navigation algorithm—BioBug. Its principle is depicted in Fig. 6, in which (a)
shows the philosophy of cognitive response navigation in a series of IF-THEN manners (see in Fig. 5),
and (b) shows the algorithm flowchart. The biological antenna model delineates the interested sensing
areas for environment perception, and then this obtained environment stimulation is responded to
generate corresponding cognitive response walking behaviors according to their switching rules. The
complete steps of BioBug are given with pseudocodes in Algorithm 1.

Evidently, in the whole process of navigation, the four types of walking behaviors keep retentive
and coherent. If and only if a certain switching rule is satisfied, the corresponding cognitive response
walking behavior is triggered immediately; otherwise, the robot maintains the current walking
behavior.

Algorithm 1 BioBug: The cognitive response navigation algorithm
Parameters:fobt ∈ {−1, 0, 1 }

Step 0: Initializations
Step 1: Motion toward to the target
Step 2: Obstacle-boundary following

0) Set X = S, T and fobt = −1, and initialize main algorithm parameters
1) if (X = S OR X = L)

Aimed turning is triggered
if (Aimed rule is true)

Moving forward is triggered
if (Meeting rule is true)

goto Step 2
else if (Meeting rule is FALSE AND Target rule is true)

Landing procedure is fired until T is reached, and the algorithm stops
end

end
end

2) if (Meeting rule is true)
Avoidance turning is triggered
if (Avoidance rule is true)

Arc rounding is triggered
if (Meeting rule is true)

goto Step 2
else if (Leaving rule is true)

goto Step 1
end

end
end

3.5. Implementation of the cognitive response navigation algorithm
The implementation of applications of the cognitive response navigation algorithm is illustrated in two
scenarios, in which the obstacle has a linear boundary and an arbitrary shaped boundary respectively.
Figure 7 records the navigation track of the robot in the first scenario, SH1H2H3LT . The robot starts
moving from S and detects an obstacle at the first meeting point H1. It thus stops to execute Avoidance
turning until Avoidance rule is satisfied. As a result, Arc rounding is triggered until the robot arrives
at a second meeting point H2. It stops and switches to Avoidance turning again. Then, as Avoidance
turning and Arc rounding are executed alternately, the robot passes another meeting point H3 and
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Fig. 7. Robot navigation track in linear obstacle-boundary following.

Fig. 8. Robot navigation track in arbitrary shaped obstacle-boundary following.

arrives at the leaving point L. Since no more obstacles are detected, the robot finally lands at T after
an Aimed turning behavior and a Moving forward behavior.

The Arc rounding motions are given particular concerns. For their lengths, the linear obstacle
boundary causes all arcs except the last one are in the same length, given by |Ĥ1H2| = |Ĥ2H3|. For
their number, it is negatively correlated to the arcing radius Ra . The influence of Ra can be described
briefly as, a smaller value will cause Arc rounding motions restarted frequently; instead, a larger
value is easy to make the robot ignore the gaps between obstacles and thus, trapped in blind areas.
Therefore, it should be determined by trade-off according to the size of the robot and the density
of obstacles, but at least guaranteeing Ra > Rb to keep algorithm stability. Further, it will be online
modified according to the real environment through learning in practice.

Figure 8 records the navigation track of the robot in the second scenario, SH1H2LT. It is also made
up by walking behaviors of Aimed turning, Moving forward, Avoidance turning, and Arc rounding.
This example reveals Arc rounding is a feasible way for obstacle boundary following with robustness
to their shapes (and arrangements, see Section 5.2). The practicality of the algorithm is presented
once again.

4. Simulations of the cognitive response navigation algorithm
One of the most challenging fields in motion planning is to find shorter paths in less time. Although
the first objective of the motion planner is to find to a free path to the target, that is, avoiding
obstacle collision, the second objective will be to decrease the length of the path and the time that
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Fig. 9. Paths for BioBug and two types of classic Bug algorithms by simulations.

Table I. Values of main algorithm parameters of BioBug in simulation.

Parameter name Notation Value

Radius of robot circumcircle Rr 200 mm
Radius of antenna Dngs Rs 400 mm
Radius of antenna Dngb Rb 420 mm
Radius of Arc rounding motions Ra 450 mm
Leaving threshold sstep 200 mm
Target distance tolerance dε 100 mm
Aimed angle tolerance θε 2◦
Speed of Moving forward motions vr,f 200 mm/s
Speed of Arc rounding motions vr,a 100 mm/s
Angular speed of spot turning ωr,s 0.45 rad/s

the planner finds the path. The performance of the proposed algorithm BioBug was compared with
the two types of classic Bug algorithms, Bug2 and Rev, by simulations, as shown in Fig. 9. The
simulation environment is constructed in MATLAB 7.1 in Windows 7 using non-optimized code. The
hardware consists of an Intel(R) Core(TM) i3 CPU with 2.53 GHz. The main parameters of BioBug
in simulation are shown in Table I.

Figure 10 presents path lengths for the above three Bug algorithms intuitively. The path length of
Rev is much smaller than that of Bug2 because the shortest viewpoint is being searched in Rev in real
time. Compared with the competitors, BioBug, which adopts Arc rounding as an obstacle rounding
mechanism, harvested not only a smaller path length, but also shorter time for obstacle escape.

5. Robot cognitive response navigation experiments

5.1. Experiment system
The experiment scene is shown in Fig. 11, consisting of a real mobile robot system, a piece of corridor
sized 6 m by 4 m and several bins in regular shapes (as obstacles). The real robot system equips an
airborne control computer, a pair of differential driving wheels and a variety of sensors, including
a SICK LMS200 laser rangefinder, two driving motor encoders, a sonar ring, a digital compass, a
GPS, etc. The field of view of the laser rangefinder is 0 ∼ 8m in distance and 0 ∼ 180◦ in angle with
resolutions of 10 mm and 0.5◦ respectively. The motor encoders, digital compass and GPS are used
for robot self-positioning.

Main algorithm parameters are assigned values in Table II in the following considerations: the
smaller sstep enables the robot to escape obstacles easily; the moderate speeds, vr,f , vr,a and ωr,s ,
can offset the negative impacts of the limited communication speed and thus, benefit the real-time
performance of the algorithm; as well, the radii, Rs, Ra and Rb, are expected to make a balance
among the properties of navigation rapidity, obstacle sensitivity, and motion safety.
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Fig. 10. (Colour online) Path lengths for BioBug and two types of classic Bug algorithms.

Fig. 11. (Colour online) The experiment scene.

Table II. Values of main algorithm parameters.

Parameter name Notation Value

Radius of robot circumcircle Rr 250 mm
Radius of antenna Dngs Rs 480 mm
Radius of antenna Dngb Rb 500 mm
Radius of Arc rounding motions Ra 520 mm
Leaving threshold sstep 200 mm
Target distance tolerance dε 180 mm
Aimed angle tolerance θε 2.5◦
Speed of Moving forward motions vr,f 100 mm/s
Speed of Arc rounding motions vr,a 50 mm/s
Angular speed of spot turning ωr,s 0.243 rad/s

5.2. Experiments and discussions
Three kinds of navigation experiments are conducted corresponding to different densities of obstacles
through BioBug and the two types of classic Bug algorithms, Bug2 and Rev. The navigation algorithm
codes are written in Visual C++. In each experiment, the position and pose of the robot are recorded
in real-time with the navigation process, and finally the path is figured with Origin 8.0 for post
processing and result analyzing. The paths of the two types of classic Bug algorithms and BioBug
are shown in Fig. 12, in which (a) & (b) & (c) for a single obstacle, (d) & (e) & (f) for sparse
obstacles and (g) & (h) & (i) for dense obstacles, and the path lengths for those three Bug algorithms
corresponding to different densities of obstacles are show in Fig. 13. For the last experiment adopting
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Fig. 12. (Colour online) Paths for Bug algorithms corresponding to different densities of obstacles.

BioBug algorithm, its living information of the navigation process is also supplemented by video
screenshots, as shown in Fig. 14.

For the comparison of BioBug algorithm itself, different densities of obstacles are decorated as
shown in Figs. 12 (c) & (f) & (i). In the environment of a single obstacle, as shown in Fig. 12(c), the
navigation path is similar to the simulation result in Fig. 7. Their minor differences are sourced from
system noises in experiment. For example, the lag of updating sensor readings causes a (limited)
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Fig. 13. (Colour online) Path lengths for Bug algorithms corresponding to different densities of obstacles.

Fig. 14. (Colour online) Video screenshots of the robot navigation process with dense obstacles.

displacement of the leaving point L. This error is compensated by executing Aimed turning before
Moving forward. Further, the robot also completes the navigation tasks with obstacles in increased
numbers. Comparing Figs. 12(f) and (i), the robot passes through the gap between Obstacle 1 and
Obstacle 2 in the early stage of both experiments. Differently, in (f), after the robot escapes the
influence of Obstacle 2, it aims at and moves toward to the target without other obstructions; instead,
in (i), it encounters Obstacle 3 and Obstacle 4. Since the gap between Obstacle 3 and Obstacle 4 is
wider than that between Obstacle 2 and Obstacle 3, the robot selects the larger one but ignores the
smaller one. As noted before, the sensitivity of the robot to narrow gaps is determined by the arcing
radius Ra .

For qualitatively evaluating the segmented arcings-based obstacle-boundary following mechanism
of BioBug, the paths are smooth and close to obstacle boundaries in all experiments in Fig. 12. This
reflects its efficiency for obstacle avoidance and robustness to application environments.

For quantitative evaluation of BioBug, see Table III, turning number and route length are employed
as algorithm performance indices. They both increase with the density of obstacles. For the turning
numbers, in detail, they are counted at the positions S, H1, H2, H3, and L in Fig. 12(c), at S, H1, L1, H2

and L2 in Fig. 12(f), and at S, H1, L1, H2, H3, L2, H4, and L3 in Fig. 12(i). In addition, the numbers
of robot cognitive response walking behaviors with respect to different densities of obstacles are
counted in Table IV. It must be helpful to understand the navigation process in Fig. 14.
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Table III. Algorithm performance indices corresponding to different densities of obstacles.

Performance index A single obstacle Sparse obstacles Dense obstacles

Turning number 5 5 8
Arc rounding length (m) 1.905 2.309 2.585

Table IV. Statistics of robot cognitive response walking behaviors with respect to different
densities of obstacles.

Behaviors

Types Aimed turning Moving forward Avoidance turing Arc rounding

A single obstacle 2 2 3 3
Sparse obstacles 3 3 2 2
Dense obstacles 4 4 4 4

In the comparison study with other Bug algorithms, the two types of classic Bug algorithms, Bug2
and Rev, were selected as the representatives for result discussion and performance analysis. In the
environment of a single obstacle in Fig. 12 from (a) to (c), the most prominent advantage of BioBug
is a shorter time of escaping from the obstacle. As shown in Fig. 12(b), in Rev, the robot selects from
the right to avoid the obstacle because the shortest viewpoint is searched in real-time. Therefore, as
shown in Fig. 13, the path length for Rev in a single obstacle is a little smaller than that of Bug2
and BioBug. In the environment of sparse obstacles in Figs. 12 from (d) to (f), the robot is able to
find a free path to the target through any of the above mentioned algorithms. Due to the specificity
of Arc rounding, the path length of BioBug in sparse obstacles is a little larger than that of Bug2 and
Rev, as shown in Fig. 13. However, in the environment of dense obstacles in Figs. 12 from (h) to (i),
owing to shorter time for obstacle escape, the path length of BioBug is much smaller than that of
Bug2 and Rev, as shown in Fig. 13. Therefore, through BioBug, the robot can find a free path in less
time. The environment robustness and obstacle avoidance efficiency of the algorithm are verified by
experiments once again.

6. Conclusions
(1) In this work, a cognitive response navigation algorithm for mobile robots is proposed. It endows

bionic mechanisms from neuroethology and cognitive science to the complete navigation process
including environment perception as well as motion planning and control.

(2) For environment perception, a biological antennas model is designed to handle sensor readings
only in the interested areas of the local environment. As it discards a large amount of irrelevant
information, it takes an advantage in processing speed on the basis of feasibility in navigation.

(3) For motion planning and control, an improved Bug algorithm is developed to respond
to environment stimulation and generate corresponding walking behaviors. It enhances
practicability of the Bug algorithm cluster in two aspects: one is proposing a definite obstacle
rounding mechanism, i.e., Arc rounding; and the other is extending the basic motion modes by
two kinds of spot turning, i.e., Aimed turning and Avoidance turning, to fit for the practical
constraints in robot physical dimensions, field of view, and system noises.

(4) The above design ideas are supported by simulations and experiments conducted in different
conditions of obstacle density and boundary shape. An ongoing research is evolving this reactive
bionic navigation algorithm to a hybrid deliberative/reactive algorithm to process environment
identification and motion planning and control in different levels.
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