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Abstract

Maternal antenatal depression strongly influences child mental health but with considerable inter-individual variation that is, in part, linked
to genotype. The challenge is to effectively capture the genotypic influence. We outline a novel approach to describe genomic susceptibility
to maternal antenatal depression focusing on child emotional/behavioral difficulties. Two cohorts provided measures of maternal depres-
sion, child genetic variation, and child mental health symptoms. We constructed a conventional polygenic risk score (PRS) for attention-
deficit/hyperactivity disorder (ADHD) (PRSADHD) that significantly moderated the association between maternal antenatal depression and
internalizing problems at 60 months ( p = 2.94 × 10−4, R2 = .18). We then constructed an interaction PRS (xPRS) based on a subset of those
single nucleotide polymorphisms from the PRSADHD that most accounted for the moderation of the association between maternal antenatal
depression and child outcome. The interaction between maternal antenatal depression and this xPRS accounted for a larger proportion of
the variance in child emotional/behavioral problems than models based on any PRSADHD ( p = 5.50 × 10−9, R2 = .27), with similar findings
in the replication cohort. The xPRS was significantly enriched for genes involved in neuronal development and synaptic function. Our study
illustrates a novel approach to the study of genotypic moderation on the impact of maternal antenatal depression on child mental health and
highlights the utility of the xPRS approach. These findings advance our understanding of individual differences in the developmental origins
of mental health.
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In this Special Issue article on “Early Adversity, Stress and
Neurobehavioral Development” we focus on adversity during
one of the most dynamic epochs of human brain development,
the antenatal period. Children exposed to antenatal maternal
depression are at greater risk for childhood mental disorders
(O’Donnell, Glover, Barker, & O’Connor, 2014; Pearson et al.,
2013). However, the effect of maternal antenatal depression on
child mental health shows considerable inter-individual variation
such that we currently lack the ability to identify the children at
greatest risk (Plomin & Simpson, 2013), which precludes targeted
intervention. Here, we seek to better describe the interplay

between maternal antenatal depression and child genomic varia-
tion to understand the prenatal origins of individual differences
in neurobehavior and mental health.

There is now considerable evidence for the importance of
genotypic variation as a moderator of the impact of early life
adversity on neurodevelopmental outcomes as well as the treat-
ment outcomes of interventions (e.g., Belsky et al., 2009; Brody,
Yu, & Beach, 2015; Cicchetti, Toth, & Handley, 2015; Ellis,
Boyce, Belsky, Bakermans-Kranenburg, & van IJzendoorn, 2011;
Manuck & McCaffery, 2014; Rutter, 2007; van Ijzendoorn &
Bakermans-Kranenburg, 2015). Several candidate gene analyses
(e.g., brain-derived neurotrophic factor [BDNF], catechol-
O-methyltransferase [COMT], dopamine receptor D4 [DRD4],
solute carrier family C6, member 4 [SLC6A4]) suggest child
genetic variation may moderate the associations between multiple
forms of antenatal maternal “distress” and child emotional/behav-
ioral development (Babineau et al., 2015; Graffi et al., 2017;
O’Donnell, Glover, Holbrook, & O’Connor, 2014; O’Donnell
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et al., 2017). Some of these associations have been replicated
in independent samples (e.g., O’Donnell et al., 2017). However,
the single candidate gene-by-environment (GxE) approach suffers
from well-documented limitations (see Border et al., 2019;
Duncan, Pollastri, & Smoller, 2014; Ficks & Waldman, 2009 for
discussion) and commonly accounts for only a small proportion
of the variance in complex phenotypes (O’Donnell et al., 2017;
Sullivan, Daly, & O’Donovan, 2012; Visscher, Hill, & Wray,
2008). Likewise, previous studies have not examined the nature
of the interaction between maternal antenatal depression and
child genotype. A subgroup of children, carrying specific geno-
types, may be more vulnerable to the effects of antenatal maternal
depression; that is, a diathesis–stress model. Alternatively, in chil-
dren carrying the same genotype, the presence or absence of
maternal antenatal depression may associate with increased or
decreased risk of disorder, respectively; that is, a differential sus-
ceptibility model (Belsky, 1997; Belsky, Bakermans-Kranenburg,
& van IJzendoorn, 2007; Belsky et al., 2009; Belsky, Pluess, &
Widaman, 2013; Pluess & Belsky, 2009; Roisman et al., 2012).
A more thorough understanding of the nature of the interaction
between maternal antenatal depression and child genetic variation
may help better predict who is likely to benefit from intervention
programs that target maternal antenatal depression to improve
child outcome. These intervention programs thus far show mod-
est effects on measures of child neurodevelopment (Goodman,
Cullum, Dimidjian, River, & Kim, 2018).

Large-scale initiatives such as the Psychiatric Genomics
Consortium and the Social Science Genetic Association
Consortium are beginning to define the genetic architecture of indi-
vidual differences in complex phenotypes (Rietveld et al., 2013;
Sullivan et al., 2018), including child neurodevelopmental dis-
orders such as attention-deficit/hyperactivity disorder (ADHD)
(Demontis et al., 2019; Martin et al., 2018; Neale et al., 2010). For
example, ADHD shares genetic risk factors with at least four
other common psychiatric disorders – depression, schizophrenia,
autism, and bipolar disorder (Cross-Disorder Group of the
Psychiatric Genomics Consortium, 2013). These findings suggest
that genetic variants associated with ADHD may have pleiotropic
effects on psychopathology as well as specific predictive value
for ADHD (Brikell et al., 2020; Du Rietz et al., 2018;
Martin, Hamshere, Stergiakouli, O’Donovan, & Thapar, 2014;
Stergiakouli et al., 2015, 2017). This hypothesis is also supported
by clinical observations that find childhood ADHD to be comorbid
with a range of childhood mental disorders (Biederman, Newcorn,
& Sprich, 1991), as well as the heterotypic continuity observed
across common childhood-onset mental disorders (Shevlin,
McElroy, & Murphy, 2017).

Existing genome-wide association studies (GWAS) typically
identify a large number of genetic variants, each with a small
effect on disease risk. A polygenic risk score (PRS) represents
an aggregate score of the additive effects of a number of single
nucleotide polymorphisms (SNPs) that collectively contribute to
the genomic risk for a given phenotype (Wray, Goddard, &
Visscher, 2007; Wray et al., 2014). These scores can be used to
segregate cases from controls and provide a relatively simple mea-
sure of the direct effects; that is, main effects of genomic variation
for risk of a given disorder (Brikell et al., 2020; Cross-Disorder
Group of the Psychiatric Genomics Consortium, 2013;
Groen-Blokhuis et al., 2014; Martin et al., 2014; Stergiakouli
et al., 2015, 2017). Few studies have examined how variation
across the genome (genomic variation) may moderate the impact
of maternal antenatal depression on child outcomes and no study

to date has examined if the effects of maternal antenatal depres-
sion on child mental health symptoms are moderated by genomic
variation in the child (although see Pearson et al., 2016, Qiu et
al., 2017; Sfelinioti & Livaditis, 2017).

One of the challenges of using PRS in GxE designs is the
inherent “main effects” bias within PRS: these scores are based
on SNPs with main effects on a given phenotype and only a sub-
set of these SNPs may contribute to any interaction effect.
Alternatively, quantifying interaction effects between a predictor
of interest and each SNP within the human genome, a so-called
Genome-wide × Environment interaction analysis, requires very
large cohorts (Dunn et al., 2016; Van der Auwera et al., 2018).
We propose an alternative approach, one that refines a conven-
tional PRS to retain only those SNPs that interact with an expo-
sure of interest to predict an outcome of interest. We refer to these
novel genomic predictors as interaction PRS (xPRS). In this study,
we highlight the utility of xPRS to better understand individual
differences in the impact of maternal antenatal depression on
child emotional/behavioral difficulties in two independent
cohorts.

Method and materials

Cohorts

Cohort 1
The Maternal Adversity, Vulnerability and Neurodevelopment
(MAVAN) project is a longitudinal birth cohort in Montreal
and Hamilton, Canada that examines the influence of the early
environment on child development (O’Donnell et al., 2014). We
used a subsample (n = 187) of 496 mother–child dyad partici-
pants in MAVAN for which complete data were available for
child genotyping, maternal mental health, and child mental
health outcomes (an overview of this cohort is provided in
O’Donnell et al., 2014). Institutional approval for this study was
obtained from the Douglas Hospital Research Centre, Montreal
and St. Joseph Healthcare, Hamilton (protocol number
IUSMD-03-45/IUSMD-06-09).

Cohort 2
The “Basal Influences on Baby Development” (in Dutch: “Basale
Invloeden op de Baby Ontwikkeling” – BIBO) study is an ongoing
longitudinal community-based birth cohort in the Netherlands
(see Beijers, Jansen, Riksen-Walraven, & de Weerth, 2010 for
more information). Measures of maternal mental health, child
outcomes, and child genetic variation were available on 132 chil-
dren. Institutional approval for the BIBO cohort was obtained
from the Faculty of Social Sciences of Radboud University
(#ECG300107).

Child mental health

Child mental health symptoms were assessed via maternal report
using the Child Behavior Checklist (CBCL) at 60 months postpar-
tum (Achenbach, 1991). The total score was further refined to
describe internalizing or externalizing symptoms. Internalizing
problems included emotional reactive symptoms, anxious/
depressed symptoms, somatic complaints, and withdrawn behav-
iors. The externalizing problems included inattention and aggres-
sive behaviors. In the BIBO cohort, the Dutch CBCL (Verhulst,
Akkerhuis, & Althaus, 1985) was completed by mothers at 72
months postpartum. The internalizing problems included
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anxious/depressed symptoms, somatic complaints, and with-
drawn behaviors. The externalizing problems included delinquent
and aggressive behaviors.

Maternal depression

Mothers in the MAVAN cohort completed the Center for
Epidemiologic Studies Depression Scale (CES-D) (Radloff,
1977) to assess symptoms of depression. CES-D scores were
available during the third trimester of pregnancy (CES-Dpre)
and at 12 months (CES-D12mths) and 60 months postpartum
(CES-D60mths). In the BIBO cohort, maternal depression was
assessed using the Dutch version of the Edinburgh Postnatal
Depression Scale (EPDS) (Cox, Holden, & Sagovsky, 1987; Pop,
Komproe, & van Son, 1992) during the third trimester of preg-
nancy (EPDSpre) and at 72 months postpartum (EPDS72mths).

Genotyping, quality control, and imputation

We used the PsychChip (v1) or PsychArray (v1.1) (Illumina, Inc.)
to assess genomic variation in children within the MAVAN
cohort. Samples with low call rates (<90%) and probes with low
sample call rates (<95%) or that deviated from Hardy–
Weinberg equilibrium ( p < 1 × 10−11) were removed during qual-
ity control. Genome-wide imputation was performed using the
Sanger Imputation Service (McCarthy et al., 2016) on autosomal
SNPs with minor allele frequency (MAF) ≥ 5%. The Haplotype
Reference Consortium (release 1.1) was used as the reference
panel (McCarthy et al., 2016). Imputed SNPs with low imputation
accuracy (info score≤ 0.8), multi-allelic SNPs, and palindromic
SNPs were removed prior to PRS computation. Overall,
17,703,929 autosomal SNPs were available for our analyses.

We used the Infinium Global Screening Array (Illumina, Inc.)
to assess genomic variation in children within the BIBO cohort.
Samples and probes with low call rates <95%, deviated from
Hardy–Weinberg equilibrium ( p < 1 × 10−20), or MAF < 5%
were removed during quality control. We used the Sanger
Imputation Service (McCarthy et al., 2016) to impute autosomal
SNPs against the Haplotype Reference Consortium (release 1.1)
providing 23,037,776 autosomal SNPs for our analyses.

Conventional polygenic risk score calculation

PRSs are derived using a count function of risk alleles with each
allele weighted by its association with the risk of disorder (Chen
et al., 2018). These effect-size estimates and associated summary
statistics are provided by an independent, existing GWAS. PRSs
for ADHD (PRSADHD) were computed using the summary statis-
tics from a GWAS of ADHD by the Psychiatric Genomics
Consortium (Neale et al., 2010) and not the more recent GWAS
of ADHD carried out by Demontis et al. (2019). We chose this
approach based on findings from the MAVAN cohort, which
revealed a stronger prediction of an objective measure of child
ADHD using a PRS based on the findings from the Neale et al.
study (Demontis et al., 2019; Neale et al., 2010) (See
Supplementary Appendix A: Figure S1). All subsequent analyses
focus on PRSADHD informed by the findings from Neale et al.
(2010). SNPs were pruned using the p value informed clumping
function in PLINK 1.9 (Chang et al., 2015), which removed
SNPs in high linkage disequilibrium (r2 > .2) across a 500 kilobase
regions, retaining a single sentinel SNP for a given region (Neale
et al., 2010). PRSADHD was computed at p value thresholds between

0.01 and 1.00 at intervals of 0.01 using PRS-on-Spark (Chen et al.,
2018) and adjusted for measures of population stratification (see
Supplementary Appendix A: Supplementary Methods and
Figure S2) (Patterson, Price, & Reich, 2006; Price et al., 2006).

Statistical analysis

All statistical analyses were performed using R (https://cran.r-pro-
ject.org). CBCL and CES-D scores in MAVAN were square-root
transformed and the CBCL scores in BIBO were log transformed
to satisfy assumptions for linear regression analysis.

Conventional PRS and child mental health
We defined the “Best-Fit” child PRSADHD as the PRSADHD (at a
given p value threshold) that interacted with maternal CES-Dpre

to account for the largest proportion of variance (i.e., highest
R2) in child outcome (see Equation 1). All models of child emo-
tional/behavioral problems were adjusted for concurrent maternal
depressive symptoms to avoid potential bias in the report of child
outcomes (van der Toorn et al., 2010). The addition of gender to
the model did not improve model fit and was not considered in
subsequent analyses (see Supplementary Appendix A for further
information).

Best-Fit Model:

CBCL � PRSADHD + CES-Dpre + PRSADHD × CES-Dpre + CES-D60mths (1)

Interaction polygenic risk scores and child outcomes
We used linear models (Equation 2) to identify individual SNPs
(SNPi…j) within the Best-Fit PRSADHD that moderate the associ-
ation between maternal CES-Dpre and child outcome:

Single SNP Interaction Model:

CBCL � SNPi...j + CES-Dpre + SNPi...j × CES-Dpre + CES-D60mths (2)

Interaction PRS (xPRS)
Next, we constructed a novel PRS based on SNPs that moderate
the association between maternal CES-Dpre and child outcome,
which we term an interaction PRS (xPRS). We generated xPRS
at a range of p value thresholds (i.e., the p value for the interaction
term between each SNP and CES-Dpre from Equation 2) such that
distinct xPRS consisted of different numbers of SNPs. Likewise,
each SNP within the xPRS was weighted by the ADHD-associated
effect-size estimates from the discovery GWAS (Neale et al.,
2010). Finally, xPRSs were adjusted for population stratification.
In line with our analyses of the conventional PRSADHD, we exam-
ined the interaction between maternal CES-Dpre and xPRS calcu-
lated at a range of thresholds ( p≤ .01- p≤ 1.00). We defined the
“Best-Fit” xPRS as the xPRS that moderated the association
between maternal CES-Dpre and child CBCL scores and
accounted for the largest proportion of the variance in the child
outcome (see Equation 3):

Best-Fit xPRS Model:

CBCL � xPRS+ CES-Dpre + xPRS× CES-Dpre + CES-D60mths (3)

SNPs that contributed to the Best-Fit xPRS in MAVAN were
used to compute the xPRS in the BIBO cohort and the resulting
xPRS was adjusted for population stratification.
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xPRS Replication (BIBO):

CBCL � xPRS+ EPDSpre + xPRS× EPDSpre + EPDS72mths (4)

Cross-validation analysis
We performed a leave-one-out cross-validation (LOOCV) in
MAVAN using the caret package in R (Kuhn, 2008). We com-
pared the predictive accuracy of three separate models: Model 1:
a main effects model (see Equation 5), which simply tested the
predictive accuracy of an additive model that considered
CES-Dpre, CES-D60mths and child PRSADHD to predict child
CBCL scores; Model 2: an interaction model (equivalent to
Equation 1) and Model 3: an xPRS interaction model (equivalent
to Equation 3). Root-mean-square error (RMSE) was used to
measure the average prediction error across models.

LOOCV Main effects:

CBCL � PRSADHD + CES-Dpre + CES-D60mths (5)

Diathesis–stress versus differential susceptibility models of child
outcome
We calculated three different metrics that can be used to evaluate
if an interaction supports a diathesis–stress or differential suscept-
ibility model (Roisman et al., 2012). These metrics included the
regions of significance (RoS), the proportion of interaction
(PoI), and the percentage affected (PA) index. RoS refer to the
range of values of the predictor (i.e., maternal antenatal symptoms
of depression) where the outcomes (i.e., child mental health
symptoms) are significantly different between those scoring
high or low on the moderator (i.e., child xPRS). Differential sus-
ceptibility is supported if the upper and lower bound of the RoS
fall within two standard deviations of the mean of the predictor.
The PoI measures the total area between the lines of an interac-
tion plot above the cross-over point. PoI values ranging from
0.40–0.60 support differential susceptibility, while a value of
0.00 provides clear evidence of diathesis–stress. Finally, the PA
refers to the percentage of individuals within the cohort who
fall above the cross-over point for a given interaction plot.
Differential susceptibility is supported if the PA is greater than
16% (Roisman et al., 2012).

Enrichment analysis

We mapped SNPs from our Best-Fit xPRS to their corresponding
genes and performed gene ontology (GO) enrichment analysis
using MetaCore® (Thomson Reuters). The genes identified from
SNPs within the conventional child PRSADHD were set as the
background gene list for this analysis. We only reported the sig-
nificant (False Discovery Rate≤ 5%) top-ranked biological pro-
cesses and cell components from this analysis.

Results

Demographics

Table 1 shows the demographic information as well as the mater-
nal and child measures for each cohort.

Maternal antenatal depression and child mental health

We examined the correlation between child CBCL scores at 60
months and predictors of interest (Table 2). Maternal depression

symptom scores across all time points were consistently associated
with child internalizing, externalizing, and total problem scores
(Table 2). CBCL scores did not differ between boys and girls
(total problems: t (185) =−0.129, p = .90; internalizing problems:
t (185) =−0.381, p= .70; externalizing problems: t (185) = 0.482, p= .63).

Moderation by PRSADHD

Child PRSADHD (at p value thresholds p≥ .01) moderated the
association between maternal CES-Dpre and CBCL total problem

Table 1. Cohort demographics. Mean and standard deviations are presented

Cohort 1 MAVAN Cohort 2 BIBO

N 187 132

Ethnicity

Caucasian 82% 100%

Mixed Caucasian 11%

Non-Caucasian 7%

Child Gender (female %) 52% 47%

Maternal age at birth (years) 30.7 ± 4.9 32.8 ± 3.9

Maternal depressive symptomsa

Pregnancy 11.7 ± 9.4 5.3 ± 3.9

12 months postpartum 10.2 ± 8.4 N/A

Child’s mid-childhood 10.1 ± 8.2 4.0 ± 3.1

CBCL at mid-childhood

Total score 27.1 ± 18.2 10.6 ± 7.4

Internalizing score 8.3 ± 6.6 4.1 ± 3.9

Externalizing score 9.4 ± 6.9 6.5 ± 5.0

aMaternal symptoms of depression were measured using Center for Epidemiologic Studies
Depression Scale (CES-D: MAVAN) or the Edinburgh Postnatal Depression Scale (EPDS: BIBO).
MAVAN = Maternal Adversity, Vulnerability and Neurodevelopment; BIBO = Basal Influences
on Baby Development” (in Dutch: “Basale Invloeden op de Baby Ontwikkeling” – BIBO)

Table 2. Correlations between child mental health symptoms at 60 months
and predictors of interest in the Maternal Adversity, Vulnerability and
Neurodevelopment (MAVAN) cohort

Total
problems

Internalizing
problems

Externalizing
problems

CES-Dpre

(n = 187)
rp = .260
p = 3.18 × 10−4

rp = .252
p = 5.14 × 10−4

rp = .147
p = .04

CES-D12mths

(n = 180)
rp = .287
p = 9.50 × 10−5

rp = .180
p = .02

rp = .299
p = 4.58 × 10−5

CES-D60mths

(n = 187)
rp = .387
p = 4.39 × 10−8

rp = .316
p = 1.06 × 10−5

rp = .351
p = 8.39 × 10−7

Maternal smoking
(n = 186)

rs =−.019
p = .80

rs = .010
p = .90

rs =−.025
p = .73

Maternal alcohol use
(n = 185)

rs =−.020
p = .79

rs = .071
p = .33

rs =−.045
p = .54

Child birthweight
(n = 187)

rp =−.060
p = .42

rp =−.100
p = .17

rp =−.021
p = .78

Child gender
(n = 187)

rs = .021
p = .78

rs = .035
p = .64

rs =−.038
p = .60

Maternal depression scores during pregnancy (CES-Dpre), at 12 months (CES-D12mths), and at
60 months (CES-D60mths) were significantly correlated with child internalizing, externalizing
and total problem scores. rp/rs = Pearson/Spearman correlation coefficients.
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scores (Figure 1 and Supplementary Appendix A Figure S3).
There was a significant interaction between child PRSADHD and
maternal CES-Dpre scores in prediction of internalizing problems,
but not externalizing problems (see Figure 1 and Supplementary
Appendix A Figure S3). An interaction model that considered
maternal antenatal depressive symptoms and a PRSADHD at
p value threshold of p = .27 accounted for the largest proportion

of variance in child internalizing symptoms (R2 = .18, F (4,182) =
9.97, p = 2.55 × 10−7; Figures 2 and Supplementary Appendix
A Figure S3). This Best-Fit PRSADHD consisted of 59,683 indepen-
dent SNPs. Children with a higher PRSADHD born to women with
higher symptoms of antenatal depression had a greater number of
internalizing symptoms (interaction term: beta = 0.283, p = 2.94 ×
10−4; Figure 3). To test if this finding was robust, we considered
potential interactions between our exposure (maternal antenatal
depressive symptom scores), our moderator (PRSADHD) and all
covariates in our model following recommendations by Keller
(2014). Our results were largely unchanged (see Supplementary
Appendix A: Tables S1 and S2).

Moderation by xPRS

Child PRSADHD significantly moderated the association between
maternal symptoms of antenatal depression and child CBCL
problem scores. We then sought to create a PRS specific for this
interaction effect. We thus examined the interaction between
maternal antenatal depressive symptom scores and each SNP
within our Best-Fit PRSADHD (PRSADHD p value threshold =
0.27, with 59,683 SNPs) and generated xPRS at a number of
different p value thresholds (ranging from p≤ .01 to p≤ 1.00,
see Method). An xPRS generated from SNPs with an interaction
p value ≤0.14 (13,835 SNPs) accounted for the largest proportion
of variance in child outcomes consisted of (R2 = .272, F (4,182) =
17.036, p = 6.96 × 10−12; Figure 4b) and was deemed the Best-Fit
xPRS. In contrast, an xPRS generated from SNPs with an interac-
tion p value ≤ 0.05 (i.e., SNPs with a significant interaction term,
n = 6,711 SNPs) accounted for a much smaller proportion of the
variance in child internalizing symptoms (R2 = .221, F (4,182) =
12.87, p = 3.00 × 10−9), highlighting the increased predictive
power of the Best-Fit xPRS, which included nominally significant
SNPs and SNPs with more modest interaction effects.

Figure 1. p value curve plot for models testing the interaction between child polygenic risk scores for attention-deficit/hyperactivity disorder (PRSADHD) and mater-
nal antenatal depression in the prediction of child outcomes. Child PRSADHD (generated at p value thresholds ≥0.01) moderate the association between maternal
antenatal depression and child total problems (black line) and internalizing problems (gray line) but not externalizing problems (light gray line). Horizontal lines
correspond to p = .05 (solid line), p = .01 (dashed line), p = .001 (dotted line).

Figure 2. Variance explained (R2) by models considering interactions between child
polygenic risk scores for attention-deficit/hyperactivity disorder (PRSADHD) and mater-
nal antenatal depression in the prediction of child internalizing problems. The label
at p = .27 indicates the PRSADHD p value threshold that explains the highest propor-
tion of variance in child internalizing symptoms (i.e., the Best-Fit PRSADHD).
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Children with a higher xPRS born to women with a higher
antenatal depressive symptom score had a greater number of in-
ternalizing problems (interaction term: beta = 0.335, p= 5.50 × 10−9;
Figure 5).

Model prediction

We used a leave-one-out cross-validation to compare the predic-
tive accuracy of competing models of child internalizing

Figure 3. The Best-Fit polygenic risk score for
attention-deficit/hyperactivity disorder (PRSADHD)
significantly moderates the relationship between
maternal antenatal depression and child internaliz-
ing problems. Maternal symptoms of depression
(CES-D scores) predict higher internalizing symp-
toms in children with higher ADHD polygenic risk
scores (visualized using a median split). Regions of
significance are depicted outside the vertical dotted
lines. CBCL = Child Behavior Checklist, CES-D =
Center for Epidemiologic Studies Depression Scale.

Figure 4. Interaction-based polygenic risk score (xPRS) model selection. p value curve plot of models testing the interaction between xPRS at different p value
thresholds and maternal antenatal depression in the prediction of child internalizing problems (a). R2 curve plot of models testing the interaction between
xPRS at different p value thresholds and maternal antenatal depression in the prediction of child internalizing problems (b). The label and point indicate the
xPRS p value threshold that accounted for the largest proportion of variance (i.e., the Best-Fit xPRS). Horizontal lines correspond to p = .05 (solid line), p = .01
(dashed line), p = .001 (dotted line).
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symptoms: Model 3, which considered main effects and an inter-
action term between CES-Dpre and the xPRS outperformed all
other models (Table 3).

Replication analyses

Ninety-six per cent (n = 13,252) of SNPs from the Best-Fit xPRS
in the MAVAN sample were available for analysis in the BIBO
cohort. In the BIBO cohort the child xPRS significantly moder-
ated the association between maternal depressive symptom scores
in pregnancy and child internalizing symptoms at 72 months in
the BIBO cohort (beta = 0.02, p = .02), consistent with our find-
ings in the MAVAN cohort. The association between maternal
EPDSpre scores and child internalizing problems was more pro-
nounced in children with a higher xPRS (Figure 6).

Differential susceptibility versus diathesis–stress

Table 4 provides RoS, PoI, and PA estimates from prediction
models of child internalizing symptoms in the MAVAN
(Models A and B) and BIBO (Model C) cohorts. In the
MAVAN cohort, the interaction between maternal antenatal
symptoms of depression and (a) child PRSADHD or (b) child
xPRS provide greater evidence for differential susceptibility
than a diathesis–stress model. Specifically, the RoS fall within
two standard deviations of mean maternal CES-Dpre scores,
the PoI is closer to 0.40 (than 0.00) and the PA is greater than
16%. In the BIBO cohort, the RoS and PA provide support for
differential susceptibility. For example, the PA is above 16%
and the lower bound of the RoS falls within two standard devi-
ations of mean antenatal EPDS scores, while the upper bound
falls just outside of this two standard deviation range (13.74
vs. 13.04). In contrast, the PoI value in the BIBO cohort (0.06)
suggests the relationship between maternal antenatal symptoms
of depression, child xPRS and child internalizing symptoms is
better explained by a diathesis–stress model.

Gene ontology of xPRS

Our xPRS analysis identifies SNPs that significantly moderate
the association between maternal mental health and child behav-
ioral problems. We interrogated our xPRS by mapping the xPRS
SNPs to genes and examining biological functions associated
with these genes. This analysis provides insight into candidate
neural processes that lie along the pathway linking maternal ante-
natal mental health to child behavioral problems. Enrichment
analysis of the SNPs comprising the Best-Fit xPRS showed a
highly significant enrichment for genes associated with synaptic
functions and neuronal development (Supplementary Appendix
A: Table S3 and Figure S4). The top ten enriched GO cellular

Figure 5. The Best-Fit interaction-based polygenic
risk score (xPRS) significantly moderates the rela-
tionship between maternal antenatal depressive
symptoms and child internalizing problems.
Maternal symptoms of depression (CES-D scores)
predict higher internalizing symptoms in children
with a higher xPRS (visualized using a median
split). Regions of significance are depicted outside
the vertical dotted lines. CBCL = Child Behavior
Checklist, CES-D = Center for Epidemiologic Studies
Depression Scale.

Table 3. Leave-one-out cross-validation analyses

Model RMSE R2

Model 1

CBCLINT∼ PRSADHD + CES-Dpre + CES-D60mths 1.042 .082

Model 2

CBCLINT∼ PRSADHD + CES-Dpre + PRSADHD ×
CES-Dpre + CES-D60mths

1.016 .128

Model 3

CBCLINT∼ xPRS + CES-Dpre + xPRS × CES-Dpre +
CES-D60mths

0.953 .230

Competing prediction models of child internalizing symptoms from the Child Behavior
Checklist (CBCLINT) were compared using two measures of model fit: the total proportion of
variance explained (R2) and the root-mean-square error (RMSE). CES-D = Center for
Epidemiological Studies Depression. xPRS = Interaction polygenic risk score.
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components can be localized to the “postsynapse” (GO:0098794;
p = 5.84 × 10−10) and “dendrite” (GO:0030425; p = 8.97 × 10−10).
In addition, genes identified within the xPRS are involved in a
number of biological processes related to neurogenesis (“genera-
tion of neurons” GO:0048699; p = 9.74 × 10−12) and cell projec-
tion (“regulation of plasma membrane bounded cell projection
organization” GO:0120035; p = 1.64 × 10−9).

Discussion

The impact of maternal antenatal mental health on child emo-
tional/behavioral outcomes is well documented (Gentile, 2017;
Goodman et al., 2011; Meaney, 2018; O’Donnell et al., 2014;
Pearson et al., 2013) as are the individual differences observed
with such effects. A detailed systematic review revealed that the
association between maternal depression and child behavioral
problems, while highly reliable across studies, is generally modest
(Goodman et al., 2011). Our findings are consistent with the idea
that child genotype is an important source of variation. The

challenge is that of capturing this genotypic variation beyond
proof-of-principal studies with candidate genes. The use of
PRSs has provided one approach; however, PRSs are based on
genetic main effects, while clinical phenotypes inevitably
derive from GxE interactions. PRSs may thus be of limited
value for analyses of genotypic moderation of early life adversity
(Peyrot et al., 2018 and see below). We outline a novel
approach, an interaction-based PRS (xPRS) that better describes
child genomic susceptibility to maternal antenatal depression
than the conventional PRS approach. We thus leveraged
insights from a large-scale GWAS of child neurodevelopment
to better understand the individual differences in the impact of
maternal antenatal depression on child mental health. In
doing so, we find convergent evidence for differential suscep-
tibility in the prediction of child internalizing symptoms as a
function of child genomic variation and maternal antenatal
depression.

Our findings further underscore the importance of considering
child genotype when describing the impact of maternal antenatal
mental health on child development (Grizenko et al., 2012;
O’Donnell et al., 2017; O’Donnell & Meaney, 2017; Thompson
et al., 2014). Our approach moves beyond candidate gene analyses
to consider genetic variants across the genome, prioritizing SNPs
identified by a GWAS of child neurodevelopment (Neale et al.,
2010). A small number of previous studies used a genome-wide
data on genomic variation to understand how prenatal exposures
shape child neurodevelopment (e.g., Qiu et al., 2017; Silveira et al.,
2017, 2018). Qiu et al. (2017) report that a child’s PRS for major
depressive disorder (MDD) moderates the association between
maternal antenatal depression and amygdala volume in neonates
from two independent cohorts. Silveira et al. (2017) show that
child genomic variation (SNPs in genes co-expressed with the sero-
tonin transporter) moderates the effect of prenatal adversity on child
development, an effect that was not observed when using a candidate

Figure 6. The interaction between child xPRS and
maternal antenatal symptoms of depression (EPDS
scores) in the prediction of child internalizing prob-
lems in the BIBO cohort. Regions of significance are
depicted outside the vertical dotted lines. CBCL =
Child Behavior Checklist, Edinburgh Postnatal
Depression Scale (EPDS).

Table 4. Analysis of the interactions for the Best-Fit polygenic risk score (PRS)
interaction models for internalizing problems (CBCLINT) and the replicated
findings

Model RoS PoI PA (%)

A (2.29, 4.02) 0.34 57

B (2.91, 3.91) 0.39 61

C (2.20, 13.74) 0.06 70

Model A (MAVAN) = CBCLINT∼ PRSADHD + CES-Dpre + PRSADHD × CES-Dpre + CES-D60mths

Model B (MAVAN) = CBCLINT∼ xPRS + CES-Dpre + xPRS × CES-Dpre + CES-D60mths.
Model C (BIBO) = CBCLINT∼ xPRS + EPDSpre + xPRS × EPDSpre + EPDS72mths.
RoS = regions of significance fall below (lower bound) or above (upper bound) the reported
interval; PoI = proportion of interaction; PA = percentage affected.
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gene approach. In adults, analyses that consider the interaction of
environmental exposures and PRSs show mixed results. Peyrot
et al. (2014) find that a PRS for MDD significantly moderates the
association between childhood trauma and risk of MDD; individuals
with a higher PRS for MDD exposed to childhood trauma show
higher rates of MDD. Mullins et al. (2016) observe an interaction
between childhood trauma and a PRS for MDD but in the opposite
direction; that is, a higher genetic risk predicts lower risk of MDD in
individuals with a history of childhood trauma. A larger meta-
analysis, which includes both cohorts, finds no significant interaction
between childhood trauma and a PRS for MDD in the prediction of
MDD (Peyrot et al., 2018). The authors conclude that such inconsis-
tent findings may arise when SNPs that do not moderate the associ-
ation between childhood maltreatment and risk for MDD are
included in a conventional PRS.

Our xPRS approach specifically addresses the issue raised by
Peyrot et al. (2018): we focused our xPRS on SNPs that moderate
the association between maternal antenatal depressive symptoms
and child outcome. The xPRS moderated the relationship between
maternal antenatal depressive symptom scores and child internal-
izing problems to a greater extent than the conventional PRS for
ADHD (i.e., PRSADHD). Specifically, the model using the Best-Fit
xPRS explained an additional 9.2% of the variance in child inter-
nalizing symptoms than a model using the Best-Fit PRSADHD. We
also replicated this finding in an independent cohort. Our xPRS
approach adds to a growing number of studies that outline
novel approaches to integrate PRS in genome by environment
analyses (see Hüls, Ickstadt, Schikowski, & Krämer, 2017a; Hüls
et al., 2017b; Lin, Huang, Liu, Tsai, & Kuo, 2018).

Our xPRS enrichment analyses reveal candidate gene networks
related to neuronal/synaptic function that may moderate the asso-
ciation between maternal antenatal depressive symptoms and
child mental health outcomes (see Supplementary Appendix B:
Supplementary Data). Qiu et al. (2017) also observe significant
enrichment of genes associated with synaptic function within
their genetic predictor (a PRS for MDD). Similarly, Poelmans,
Pauls, Buitelaar, and Franke (2011) conclude that the top-ranked
ADHD-associated genes in previous GWAS literature encode pro-
teins involved in neurite outgrowth, while Hayman and
Fernandez (2018) report that ADHD-associated genes contribute
to synaptic function. These findings and others (see Franke,
Neale, & Faraone, 2009; Lesch et al., 2008) converge on the role
of dendritic spine formation/plasticity in GWASs of child
neurodevelopment.

Our conventional PRS (PRSADHD) and the xPRS were
informed by a GWAS of child ADHD (Neale et al., 2010).
However, both the conventional ADHD PRS and the xPRS
moderated the effects of maternal antenatal depressive symp-
toms on child internalizing rather than externalizing symp-
toms. This finding could, in part, reflect differences between
the cohorts used in the current analysis and the cohorts
included in the original GWAS. Importantly, the children
included in the original GWAS of ADHD were older (10.5
years) than the children included in the current analysis (5–6
years of age), an age when child psychopathology becomes
more clearly differentiated. Our findings may also reflect the
heterotypic continuity observed between internalizing symp-
toms in early childhood and later symptoms of ADHD
(Finsaas, Bufferd, Dougherty, Carlson, & Klein, 2018).
Alternatively, it is possible that genetic risk factors for
ADHD may not be diagnosis specific. In an analysis of over
13,000 children, Brikell et al. (2020) found that a PRS for

ADHD was more closely associated with a general factor for
child psychopathology than for specific symptoms of hyperac-
tivity/impulsivity. These findings suggest that GWAS of
ADHD, and genetic predictors based on such GWAS, may be
informative for understanding a broader range of child mental
health phenotypes. This is a potentially fruitful focus for future
analyses with appropriately large data sets and breadth of out-
comes. Likewise, it will be interesting to analyze the degree to
which an xPRS specific for a certain early life adversity is pre-
dictive for other forms of adversity.

Our xPRS analyses provided greater evidence for differential
susceptibility than diathesis–stress. Children with higher xPRS
showed the highest and the lowest number of internalizing
symptoms contingent on level of exposure to maternal depres-
sion in pregnancy. Conversely, children with lower xPRS showed
similar internalizing symptoms irrespective of the levels of ante-
natal maternal depression. Our results are consistent with find-
ings of other GxE analyses of emotional/behavioral outcomes,
which suggest “vulnerability” genetic risk factors may be better
conceptualized as “plasticity” factors (Belsky et al., 2007;
Belsky et al., 2009). Our findings suggest that the children
most at risk for adverse mental health outcomes may be the
same children who would benefit the most from targeted inter-
ventions to improve maternal antenatal mental health.
Genetically-informed analyses of trials designed to improve
antenatal maternal mental health are required to test this
hypothesis.

One limitation of our study was the sample size of our cohorts.
Nevertheless, the effect size of the interaction between xPRS and
antenatal maternal depressive symptoms is moderate (Cohen’s
f2 = 0.21). This allowed us to detect a significant moderation effect
in distinct cohorts from Canada (MAVAN) and the Netherlands
(BIBO). We note that both of these cohorts are predominantly
Caucasian. Validation of the xPRS approach in more diverse
samples is required. Similarly, future studies will determine if
the moderating influence of xPRS on the relationship between
maternal antenatal depression and child outcome is stable or
dynamic across different developmental stages.

Another potential limitation of the current study is our focus
on a subset of SNPs identified from a GWAS of child ADHD. It is
plausible that there are additional SNPs, not identified from
GWAS of ADHD, that moderate the impact of maternal antenatal
depression on child outcome and have not been considered in our
xPRS. While we acknowledge the potential utility of genome-wide
SNP by environment interaction analyses (see Arnau-Soler et al.,
2019; Bentley et al., 2019), we were not powered to perform such
an analysis. Alternatively, xPRS provides a GWAS-informed
approach that is suitable for use in community cohorts, which
place a greater emphasis on clinical and environmental phenotyp-
ing than sample size. Initiatives such as the Psychiatric Genomics
Consortium (Sullivan et al., 2018), PhenX (Hendershot et al.,
2015), and the National Institutes of Health-funded
Environmental influences on Child Health Outcomes (ECHO)
program (Gillman & Blaisdell, 2018), which harmonize genetic
and clinical measures across cohorts, may facilitate future
genome-wide SNP by environment interaction analyses.

Conclusion

There are considerable individual differences in the effects of
maternal antenatal depression on child outcome. We describe a
novel approach, xPRS, to better describe the genomic basis for
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variation in developmental outcomes associated with early life
adversity. Individual differences in susceptibility complicate the
development and assessment of interventions targeted solely on
the basis of environmental exposures. While PRSs alone are likely
to be inadequate, they do provide a pool of genomic variants asso-
ciated with clinical outcomes of interest and are thus a useful tool
for the development of genomic measures. This more targeted
GxE approach may better identify children at risk for adverse
mental health outcomes following exposure to specific forms of
adversity, such as antenatal maternal depression, which in turn
may inform targeted prevention/intervention efforts through
identification of the most vulnerable children.

Supplementary Material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0954579420001418.
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