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In the present paper, we first introduce the concepts of the L, g-capacity measure
and Lp mixed g-capacity and then prove some geometric properties of L, g-capacity
measure and a L, Minkowski inequality for the g-capacity for any fixed p > 1 and

g > n. As an application of the L, Minkowski inequality mentioned above, we
establish a Hadamard variational formula for the g-capacity under p-sum for any
fixed p > 1 and g > n, which extends results of Akman et al. (Adv. Calc. Var. (in
press)). With the Hadamard variational formula, variational method and L,
Minkowski inequality mentioned above, we prove the existence and uniqueness of the
solution for the L, Minkowski problem for the g-capacity which extends some
beautiful results of Jerison (1996, Acta Math. 176, 1-47), Colesanti et al. (2015,
Adv. Math. 285, 1511-588), Akman et al. (Mem. Amer. Math. Soc. (in press)) and
Akman et al. (Adv. Calc. Var. (in press)). It is worth mentioning that our proof of
Hadamard variational formula is based on L, Minkowski inequality rather than the
direct argument which was adopted by Akman (Adv. Calc. Var. (in press)).
Moreover, as a consequence of L, Minkowski inequality for g-capacity, we get an
interesting isoperimetric inequality for g-capacity.
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1. Introduction

A non-empty compact, convex subset of R"™ with non-empty interior is called a
convex body. Let K™ be the set of all convex bodies of R™ and K be the set of all
convex bodies of R™ containing the origin in their interior.

The support function hg : R™ — R of a convex body 2 is defined as follows:

ha(u) = sup z - u,Vu € R".
EISY)

For any nonnegative real numbers «, 3 and any convex bodies 2y and s, the
Minkowski linear combination of €23 and €25 is defined by:

a4+ Qs ={ax+ Py :x € O,y € N}
The support function of af); + €2 is given by
haq,+p0, = ahg, + Bha,. (1.1)
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Inversely, the Minkowski linear combination af)y + 3 is also defined by (1.1)
(see Schneider [58]).

For a smooth convex domain 2 of R™, the Gauss map go(z) € S*~! is the unique
unit outer normal vector at z for any x € 9. From a well-known result of Aleksan-
drov, convex function is twice differentiable almost everywhere (see Schneider [58]
or Evans—Gariepy [31]). Therefore, for a convex body € of R™ without the assump-
tion of smoothness, the Gauss map gq of ) is well-defined a.e. on 92 with respect
to (n — 1)-dimensional Hausdorff measure. Let 2 be a convex body of R" and gq
be the Gauss map of ). The reverse Gauss map 951 : SP=1 = 99 is defined by:

95 (B) = {x € 9Q : go(x) is well-defined and gq(z) € E}

for any set £ CS"'. If E is a Borel set, then go'(E) is H" !-measurable
(see Schneider [58] or Colesanti et al. [29]).
The volume V of convex body Q € Kf can be described by

1

V@) =1 [ ot

where gq is the Gauss map on Q and H"~! is the (n — 1)-dimensional Hausdorff
measure.

The sur face area measure Sy o of Q € K is a Borel measure on the unit sphere
S"~! defined by the following beautiful formula,

d
7V Q@+ t)]—0 = / ha, (ga(x))dH" ! = / ha, (9a(ra(6))) dS1,q(6),
a0 gn—1
(1.2)
for any Q; € K where gq is the Gauss map and rq is the radial map on €2 defined

in §2 (see Schneider [58]). From the definition of the surface area measure Sp o of
Q, we see that

SLQ(E):/ dSLQ(Q):/ dH" ! (1.3)
E 90 (E)

for any Borel set £ C S*~1. If we multiply by 1/n on integral on the right-hand
side of (1.2), we have the well-known Minkowski’s mixzed volume of Q and Qy,
Vi1 (€, ),

Va(@0) = = [ hoy (a0 (ra(©) d510(0), (1.4

n

(see Schneider [58]). The relationship between volume and mized volume can be
described by the following well-known inequality.
The classical Minkowski inequality: For any Q1,Q € K, we have

Via(9Q1,9Q) = VIV (Q)VY™(Qy), (1.5)

equality in (1.5) holds if and only if Q1 and Qo are homothetic.
The classical Minkowski problem can be stated as follows:
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The classical Minkowski Problem: Given a positive finite Borel measure p
on the unit sphere S, under what necessary and sufficient conditions does there
exist a unique(up to a translation) convexr body 2 of R™ such that S1.0 = u?

Minkowski [54, 55|, Aleksandrov [1-3] and Fenchel-Jessen [32] showed that

THEOREM A.1. Let p be a positive and finite Borel measure on the unit sphere
S"~1. Then there exists a unique (up to a translation) convexr body Q € K& such
that S1.0 = p if and only if p satisfies the following two conditions:

(A.1.1) the measure p is not concentrated on any closed hemisphere, that is,

inf/ (e-8)5 du(8) >0,
Snfl

ecSn—1
where (e - 0)4 = max{e - 6,0}.

(A.1.2) the centroid of the measure 1 is at the origin, that is,

/S edu(e) =0,

The uniqueness of solution of classical Minkowski problem followed from the
Minkowski inequality (1.5) directly. Comparing to the uniqueness, the existence of
solution of classical Minkowski problem seems to be more complicated and more
interesting.

Minkowski, Aleksandrov and Fenchel-Jessen adopted the powerful variational
argument to solve the problem. More precisely, they first transformed the solvability
of the classical Minkowski problem into the solvability of an associated variational
problem and then proved that the variational problem had a solution. In particular,
Minkowski dealt with the original problem for discrete measure and extended the
result to the measures whose density function is continuous via the approximation
argument. Aleksandrov and Fenchel-Jessen extended the results of Minkowski to
arbitrary Borel measure on the unit sphere S*~!'. The details can be found in
pp. 317-320 of Aleksandrov [4], pp. 108-112 of Aleksandrov [3], pp. 121-131 of
Bonnesen—Fenchel [12], pp. 60-67 of Busemann [16], pp. 75-86 of Bakelman [8],
pp. 22-32 of Pogorelov [57] and pp. 455-459 of Schneider [58].

A basic but important property of the surface area measure is its weak continuity
in the sense of Hausdorff metric (see p. 510 of [23] or pp. 208-223 of [58]). This
means that we can solve the Minkowski problem in the smooth frame and then
achieve the goal via the approximation argument. This route was adopted by Cheng
and Yau [23] for the classical Minkowski problem and Jerison [45] for a Minkowski-
type problem.

In smooth frame, the classical Minkowski problem can be formulated as follows.
Let Q be a C*“smooth and strictly convex domain of R", (that is 9 is C%%-
smooth and the Gauss curvature K (z) > 0 for any x € 99), it follows from (1.3)
that

Sl,Q(E)ZLQI(E) dJ:/E%dez/Edet(hij(9)+6ijh(6‘))d9 (1.6)
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for any Borel set £ C S"~! where h is the support function of €2, h;; is the second-
order covariant derivatives of h on S"~! and §;; is the Kronecker delta. We let
f € C*(S"1) be the density function of the positive Borel measure y on the unit
sphere S~ for some « € (0,1), that is,

W(E) = [E £(6)d6 (L.7)

for any Borel set E C S*"!. From (1.6) and (1.7), we can see that, in order to
solve the Minkowski problem, it suffices to analyse the existence and uniqueness of
convex solution for the following Monge-Ampeére equation,

det(hy; (0) + 6;;h(0)) = £(60),¥0 € SV (1.8)

There are many beautiful results in this direction, see for example Lewy [50], Niren-
berg [56], Cheng—Yau [23], Pogorelov [57] and Caffarelli [17-20]. Moreover, apart
from the existence and uniqueness of solution for the Minkowski problem, we also
get the following regularity result from the studies of [18,19,23,50,56,57].

THEOREM A.2. Let f be the positive density function of the Borel measure j1 on
the unit sphere S"~1, that is du(0) = f(0)d0 and infgegn—1 f(0) > 0. Let Q € Ky
such that S1.q = p. If f € CH*(S"71), the boundary of Q is of C*+2< class.

After the great studies of Minkowski, Aleksandrov, Fenchel, Jessen, Lewy, Niren-
berg, Cheng—Yau and Caffarelli, there are many subsequent researches in this topic.
On the one hand, similar problems have been solved for other important geometric
measures in convex geometry, such as curvature measure, dual curvature measure
and their L,’s generalizations, see for example [10,11,14,15,22,24,25,27,34
36,36,38,40-44,44,48,51-53,59,63, 64].

In order to formulate the so-called L,, version of the classical Minkowski problem,
we need to state the L, versions of mixed volume and surface area measure.

We first recall the L, surface area measure and L, mixed volume proposed
by Lutwak [51]. The well-known p-sum of Firey [33] for p > 1 was formulated as
follows. We let ©; and Q9 be two convex bodies of R" and hq, be the support
function of Q;(i = 1,2) respectively. For any nonnegative real number «, 3, the
p-linear combination of hg, and hq, is defined by

hag 4,00, = (ahfy + Bh )P,

In particular, when p = 1, Firey’s p-linear combination is the classical Minkowski
linear combination. The convex body with support function hag,+,s0, is denoted
by af)1 +, 0 (see Schneider [58]). In [51], Lutwak proposed the p-sum of a
support function hg, to a convex body ; and a continuous function f, which
is defined by:

Bt 2 hg, tptf = (hgl _,_tfp)l/p.

for any sufficiently small real number ¢. In particular, if f is a support function of
a convex body Q(f) and ¢ > 0, we see that h,, = ha, v, ta(s)- In the same paper,
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Lutwak also built up the following Hadamard variational formula,

GV @l = [ (a0, (70, 0 0, (s (9)) 4510, 6)

for any convex bodies {21,y € K. This leaded him to introduce the so-called L,
sur face area measure Sy o of a convex body €2 and L, mixed volume V), 1 of two
convex bodies, which are defined as follows:

dS, o = hy P dSi o (1.9)
and

1
Vor(@0,92) = - [ I, (g0, (ray (6))) 45,0, 0
S§n—1

provided the right-hand side of (1.9) is a finite measure. In particular, if p = 1, the
L, sur face area measure Sp o and L, mized volume V1 are the classical sur face
area measure and mized volume defined in (1.2) and (1.4). For any fixed p > 1,
by the definition of L, mized volume and Holder inequality, Lutwak [51] proved
the following interesting inequality.

L, Minkowski inequality for volume: For any fized p > 1 and Q1,8 € K,
we have

Vo1 (Q, Qo) = VITP/M(Q)VP/™(Qy), (1.10)

equality in (1.10) holds if and only if Q1 and Qo are dilatates.

Lutwak [51] proposed the following L, Minkowski problem:

The L, Minkowski problem. For any fived p > 1, given a finite Borel measure
@ on the unit sphere S"~, under what necessary and sufficient conditions does there
exist a unique convex body ) of R™ such that Sp.o = n?

In the same paper, Lutwak [51] gave a positive answer to the L, Minkowski
problem for any fixed p > 1 and p # n when p is even and satisfies (A.1.1). Later,
Lutwak and Oliker [52] resolved the L, Minkowski problem via the method of
continuity. As the consequence of the main result of [52], Lutwak—Oliker built up
a regularity result for the solution to the L, Minkowski problem. Moreover, Chou
and Wang [27] extended their result to more general p via the theory of PDEs. One
of the beautiful results of Lutwak—Oliker and Chou—Wang can be stated as follows:

THEOREM A.4. For any fixed p > —n. Let f be the positive density function
of the Borel measure i on the unit sphere S*~1, that is du(0) = f(0)dé and
infgegn—1 f(0) > 0. Let Q € K such that S, o = p. If f € CH*(S"1), the boundary
of Q is of C*+2 class.

For more results about the regularity result to the L, Minkowski problem readers
can be referred to Chou and Wang [27], Bianchi et al. [9] and Bianchi et al. [10].

On the other hand, similar problems have also been solved for other impor-
tant Borel measures in physics, such as Harmonic measure, capacity measure,
A-capacity measure, the first Dirichlet eigenvalue measure and the torsion
measure of the Laplacian and some of their L, generalizations, see for example
[65-7,26,28-30,39,45-47,62, 65].

https://doi.org/10.1017/prm.2020.57 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2020.57

1252 7. Chen

To the best knowledge of the author, there is no research on the L, Brunn-
Minkowski theory for g-capacity for any fixed p > 1 and ¢ > n. This leads us to
focus on the L, Brunn-Minkowski theory for g-capacity for any fixed p > 1 and
q > n in the present paper.

From the analysis of classical Brunn—Minkowski theory, we can see that impor-
tant concepts in this topic are the surface area measure, volume, mixed volume
and Minkowski inequality. This means that we need to formulate the so-called L,
g-capacity measure, L, mixed g-capacity and associated Minkowski inequality.

We first recall the g-capacity, mized q-capacity and g-capacity measure for any
fixed ¢ > n. Let Q be a convex domain of R™ and Ug be the unique solution of the
following problem:

{AqUQ =0,z € R"\Q,

Ua =0,z € 0Q,Uq(z) ~ |z|@ ™/ as |z| — oo, (1.11)

that is Ug is the so-called ¢-Green function on R™\$2 whose pole is at infinity. From
a result of Akman et al. [6], we see that
Ua(z) - F(z) — a,
as |x| — oo where a is a constant depending only on the convex domain € and
F(x) ~ |z|(a—m)/(a=1),
The g-capacity C(Q2) of €2 is defined as follows:
C(Q) £ (—a)?t.

Akman et al. [6] formulated the following beautiful formulas:

1 —1
Lea-n(g,) = 4 / sy (9520 (re (8))) A4S 1 (0)
q q—n Jsn-1

and

d1
7670V + 1)y :é e (90, (re, (0))) xS g, (0 (1.12)

for any convex bodies €y, Q; € Kf and

Hi g, (E) = / VU | TR
9o, (

for any Borel set E C S"~! (see (10.37) of p. 57 and (10.2) of p. 49 of [6]). Combining

(1.12) and the definition of the surface area measure Sy q, we say uS o is the

g-capacity measure of a convex domain €)y. The so-called mized g-capacity Cy 1 of
Qo and € can be defined by:

-1
Cr1(Q0, Q) £ Z_ n/s » ha, (g0, (ra, (0))) dus g, (6).

Combining the definition of the mixed g¢-capacity and an interesting Brunn—
Minkowski inequality proved by Akman et al. [6], we have the following interesting
inequality:
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Minkowsk:i inequality for q-capacity: For any fitedn > 2, ¢ > n and 21, €
g, we have

Cra(Q, Q) > Cl/(q D—1/(g— n)( 1)01/(‘1_")(92), (1.13)

equality in (1.13) holds if and only if Q1 and Qo are homothetic.

For any fixed p > 1, adopting a similar argument of Lutwak [51], if we replace
the Minkowski linear combination by the Firey’s p-linear combination in (1.12), it
is easy to see that

1 _
dtqcl/(q D (Q +p t)|i—0 = 1;/ 1, (90, (ra, (0))hg.F (9o, (ra, () dis o, (6)

Sn—l

(1.14)
for any two C?“-smooth and strictly convex bodies Q1,Qs € K. By the weak
continuity of the g-capacity measure proved by Akman et al. in [6] in the sense
of Hausdorff metric, we can extend formula (1.14) to the general convex bodies
Q1,Qy € Kj without the assumption of smoothness via the approximation argu-
ment. Thus, we define the so-called L, g-capacity measure ug,QI and L, mized
g-capacity Cp 1 by:

C A pl—p C
dﬂpﬂl - h91 dul,fh

and

qg—1
Cpa(21,9) = 0= Jos 8, (g0, (re, (0))) dus$ o, (0) (1.15)

for all Q1,9 € KF. In particular, if 2 is C*“-smooth and strictly convex, it is easy
to see that

Mo (E) = /E WPV U (g7 (0))]% det(hi; (60) + 6i;h(0)) dO

for any Borel set E C S"~! where g=!(#) = Vh(0). That is, L, g-capacity measure
,ug’Q is absolutely continuous with respect to spherical Lebesgue measure and its
density function is

WPV Ua(g ™" (0))]7 det(hij(0) + 6i;1(0))

provided € is C%“-smooth and strictly convex.
The main results of the present paper can be stated as follows:

THEOREM 1.1. For any ﬁmed n = >1 and g > n, any {Q;}2, € Ki and any
fized i € {0,1,...}, we let ,u o, be the Lp q-capacity measure of €; and hQ be the
support function of ;. Then the following statements hold:

(a) “zca,Qo is absolutely continuous with respect to the surface area measure Si .

(b) if Q; — Qo in the sense of Hausdorff metric as i — oo, then

C C
Hp.; = Hp,.Qg

weakly as i — o0.
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(¢) For any Qy € K{, Mg,ﬂo s not concentrated on any closed hemisphere, that
18,

inf / (e 0) S o, (6) > 0,
eeSm—1 Jon—1 ’

where (e - 0)+ = max{e-6,0}.

THEOREM 1.2. For any fited n>2, p=1, ¢>n and Q1,09 € Ky, we let
Cp1(21,89) be the L, mized q-capacity of 1 and Qa. Then, the following
statements hold:

(a)
Cp1(D1,Q0) > écl/(qfl)fp/(qfn) (Ql)C”/(q*”)(QQL (1.16)
equality in (1.16) holds if and only if Q1 and Qo are homothetic.
(b) if p>1 and
Cp1(21,2) =C,1(022,9Q), VQeKky,
then, Q1 = Q.

With theorem 1.2, we have the following isoperimetric inequality, which has
independent interests.

COROLLARY 1.3. For any fixedn =2, p>1, ¢ >n and Q € Ki, we have

1/(qg—1)—p/(g—n) q(g—1) c
¢/ (a=N=r/la=m) () < @ )T (B Jons dpy 0 (0), (1.17)

equality in (1.17) holds if and only if Q is a ball of R™ where By is the unit ball of
R™.

We let O (S"71) be the set of positive continuous functions on the unit sphere
S"~1. For any f € C;(S"1), the so-called Aleksandrov body €2 associated with
the function f is defined by:

Qf = ﬂ {z eR" :z-u< f(u)}
uesSn—1

From the Minkowski inequality (1.16) and the upper-lower limit argument, we
have,

THEOREM 1.4. For any fited n > 2, p > 1, ¢ > n. Let hq be the support function
of a convex body Q € K. For any f € C(S"™1) and sufficiently small t, we let Q¢
be the Aleksandrov body associated with the function ho +,tf. Then,

d1 _ 1
G @0 = [ O al0).
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REMARK 1.5. If p=1 and f is a support function of convex body ¢, theorem 1.4
was proved by Akman et al. [6] via the so-called direct argument.

Now, we propose the following L, Minkowski problem:

The L, Minkowski problem for q-capacity. For any fixedn > 2, ¢ > n and
p > 1, given a positive and finite Borel measure ju on the unit sphere S"~', under
what necessary and sufficient conditions does there exist a unique convex body ) of
R™ such that Mg,g =u?

The last result of the present paper is,

THEOREM 1.6. For any fixed n > 2, g > n and p > 1. Let u be a positive and finite
Borel measure on the unit sphere S*~1 satisfying (A.1.1). Then there exists a unique
convex body §) € K such that ,ug@ = .

REMARK 1.7. If 1 < ¢ <n, the L, Minkowski problem for the g-capacity can be
referred to Borell [13], Jerison [46], Caffarelli et al. [21], Colesanti et al. [29],
Akman et al. [5], Hong et al. [39], Zou and Xiong [65] and Xiong et al. [62].

The paper is organized as follows: §2 is devoted to some knowledges about
g-capacity. In § 3, we show the proof of theorems 1.1, 1.2, corollary 1.3, theorems 1.4
and 1.6.

2. Some preliminaries

Section 2 is devoted to some basic knowledges.
For any 2 € K, the radial function of 2 pq : R"\{O} — R is defined as follows:

oa(z) =max{\: \x € Q}, Vae O\{O}. (2.1)
The radial map of Q rq : S*~1 — 90 is defined as follows:
ra(f) = 0a(0)d, VO eS"T (2:2)

that is, rq(60) is the unique point on 9 satisfying the direction Orq(#) is parallel
to the direction 6. It follows from p. 336 of [43], we have,

ha(v) = S;lp 1(u “v)oa(uw), YveSt (2.3)
u€sn-
and
1
0a(u) ~ uestr ha(v)’
Let 21 and Q5 be two convex bodies of R™ and B™ be the unit ball of R™, the
Hausdorfl distance d(€21, Q) between Q1 and s is defined as follows:

Yu e S"L, (2.4)

d(Ql, Qg) = HllIl{)\ > 0: Ql g QQ + )\Bn, QQ Q Ql + AIBTL} (25)

where B™ is the unit ball of R™. We let C'; (S"~1) be the set of positive continuous
functions on the unit sphere S*~1.
From (2.2), (2.4) and (2.5), it is easy to see that,
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LEMMA 2.1. For any fized i € {0,1,2,...}, let hq, be the support function of Q; €
Ky and d(92;,80) be the Hausdorff distance between ; and Q. Then d(£;,Q0) — 0
as i — oo if and only if

sup |hq, (u) — ho,(u)] — 0
u€eS™—1t

as i — oo. If in addition hg, € C(S"71), then d(Q4,Q) — 0 as i — oo if and

only if
sup |QQ7, (U) - Qﬂo(u” —0
uesSn—1
or
sup |rQi (u) — T (u)‘ —0
uesSn—1
as 1 — 00.

The following convergence lemma is due to Aleksandrov (see p. 102 of [3]).

LEMMA 2.2 (Aleksandrov’s convergence lemma). For any fized i € {0,1,2,...}, we
assume that h; € C(S"~ 1) and let Q; be Aleksandrov body associated with the
function h; and d be the Hausdorff distance. If

h; — ho, uniformly on S"~*
as i — oo, then d(;,Q0) — 0 as i — oo.

The following lemma is due to Aleksandrov, see also Jerison [46] or Colesanti
et al. [29]. A direct proof can be referred to lemma 2.9 of Huang et al. [43] and
lemma 2.1 mentioned above.

LEMMA 2.3. For any Q2 € K, we let pa, rq and hq be the radial function, radial
map and support function of Q0 respectively. We also let

06,(0)
ha(ga(ra(9)))

for any 0 € S*~1. Then, the following statements hold:

Ja(0) =

(a) Jo is defined H" '-a.e. on S*™1 and there exists a positive constant c,
depending only on the inner radius and the diameter of Q, such that

0<c ' <Jg(d) <c< oo
for H" ‘-a.e. § € S" 1.
(b) Let f:0Q — R be H" -integrable. Then,

(z)do = fra(0))Jao(0)do.
a0 sn-1
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(c) Suppose that there exists a sequence {€;}32, C K§ such that Q; — Qq in the
sense of Hausdorff distance as i — oo. We let

_ 06, (0)
ha, (9, (re,(6)))
where pq,, ro, and hq, be the radial function, radial map and support function

defined on Q; respectively. Then, for sufficiently large i, Jqo, is bounded from
above and below, uniformly with respect to 0 and i, and

JQi — JQO

for almost every 6 € S*~1 as i — oo with respect to the spherical Lebesgue
measure.

For any fizedi € {0,1,...}, we suppose Q; € K and we let Ug, be the g-Green
function of R™\Q; whose pole is at infinity. We also denote

o;' ()

for any fized i € {0,1,...}. For any Q € 0%, the so-called non-tangential
cone T'(Q) is defined by:

[(Q) ={yeQ:|y—Q[ <bd(y,00)}

for some constant b.
The following lemma is due to Akman et al. [6].

LEMMA 2.4. For any {$2;}32, C K, we let d be the Hausdorff distance. For any
fizedi € {0,1,...}, let hq,, ga, and rq, the support function, Gauss map and radial
map on §; respectively and let Ug, be q-Green function on R™\; whose pole is at
infinity. We also let H; be the function defined in (2.6), C(£2;) and qu be the q-
capacity and the q-capacity measure on ); respectively, then the following statements
hold:

(a) For any Qo C K&, there exists a set Ey C 0Qq such that H" 1 (Ey) =0 and
for any Q € 00\ E2 and x € T'(Q), the non-tangential limit

lim M erists,
r—Q 871@

we denote the limit by OUq, (Q)/0nq(= —|VUq,(Q)]).

(b) For any fized g1 > q, there exists a positive constant ¢, depending only on the
diameter and the inner radius of Qq, such that

/ IVUq, | do < c.
000
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(¢) If d(Q4,Q0) — 0 as i — oo, then
NfQ - Miﬂo

weakly as i — 00.

(d) C(-) is homogeneous of order g —n. That is,

C(t€20) = t77"C(S0)

for any t > 0.

(e) C(-) is translation invariant. That is,

C(Qo + z0) = C(Qp) Vap € R™,

for any Qo € Kf.

(f) If d(2,) — 0 as i — oo, then

71— 00

(2)

d1

G+ )= [ ol (e ()7 (6) 06
Sn—l

(h) For any t € [0,1], we have
CH=m (10 + (1 — 1)) = tC 4= (Q)) + (1 — )Y@ (Qy),  (2.7)

equality in (2.7) holds if and only if Q1 and Qo are homothetic. Equivalently,
we have the following statement: for any t € [0, 1], we have

Cl/(q—n)(Q1 ) > Cl/(q_”)(Q1) + tCl/(q_")(Qz)a (2.8)

equality in (2.8) holds if and only if Q1 and Qo are homothetic.
Adopting some similar arguments of Jerison [46], Colesanti et al. [29], Lewis
and Nystrom [49] and Akman et al. [6], we have,

LEMMA 2.5. For any {Q;}52, C Ki and any fived i € {0,1,...}, we let H; be the
function defined in (2.6), if Q; — Qo in the sense of Hausdorff metric as i — oo,
then

[ 1) - m0)jd6 - 0
Snfl
as i — 00.

REMARK 2.5.1. If ¢ = n, lemma 2.5 was proved by Xiao [61] or its early version
in arXiv [60] (see (v) of theorem 4.2 in p. 966 of [61] or (v) of Theorem 6.2 in p.
20 of [60]). It is easy to see that the proof of lemma 2.5 between the case ¢ > n
and ¢ = n is the same and their crucial ingredients are the conformal invariance
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of g-Laplace operator and the boundary behaviour of ¢-Green function. Since the
boundary behaviour of ¢-Green function was given by Akman et al. [6] and the
proof of lemma 2.5 can be referred to Colesanti et al. [29], Lewis and Nystrom [49]
and Xiao [60,61], we omit the details here.

For any f e C.(S"!), the so-called Aleksandrov body associated with the
function f is defined by:

Q= () {zeR":2-0< f(0)}.
fesn—1

For any fixed p > 1 and f € C(S"™!), we define a functional G : C (S"~1) x
R™ +— R as follows:

G, () = [ f7O)diiy 0, (6). (2.9)

Moreover, for any fixed Q € K, the support function of convex body €2 is denoted
by hq. We define a functional F : Kff — R as follows:

F@ = [ Heaue) (2.10)

for any fixed Borel measure y on the unit sphere S*~!. We let hq ; be the support
function of Q¢ and

£ ={0eS" L hb (0) £ f7(0)}.

From a result of Aleksandrov, & is a set of measure zero on S”~! with respect to
the spherical Lebesgue measure (see p. 411 of [58] or p. 143 of [51]). Then, we have,

LEMMA 2.6. For any p>1, ¢ >n and any f € C(S"1), we let Mg’g be the L,
q-capacity measure, G and F be the functionals defined in (2.9) and (2.10) respec-
tively. Suppose that Q¢ is the Aleksandrov body associated with the function f,
then

111 _a-1
() = LG, (1)

and

F@) = [ a0,

3. Final proofs of the main results

Section 3 is devoted to the proof of theorems 1.1, 1.2, corollary 1.3, theorems 1.4
and 1.6.
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Proof of theorem 1.1.  (a) Since hg, € C4(S"™1), it follows from the compactness
of S"~! that there exists a constant ¢ > 0 such that

0<c!'<hg(0) <c<oo, VOecS" L.

This, together with lemma 2.4(b) and Holder inequality, implies that

HouB) = [ H VU [T
9o, (F)
g

<P |VUq, |9 dH™ !

—HE)

I\

1/q1 1-1/q1
clp(/ |VUq, |19 dH”l) (/ dH"1>
oo (B) oo (B)

20

1—1/Q1
<c</ dH"—l) =S o/ (E).
. :
gQO (E)

for any ¢; > 1 and any Borel set E C S*~!. Therefore, we have
S190(B) = 0= pij o, (E) =0

for any Borel set E C S"~ !, which implies the desired conclusion of (a).

(b) To get the conclusion of (b), it suffices to show that

[ 10a0 0~ [ 10a80,0 )

as i — oo for any f € C(S*71). Indeed, for any Qg € Kf, it follows from the
definition of the L, g-capacity measure and lemma 2.3 that

£(0) g 0,(0) = / F (9620 (ry (0))he,” (90 (raq (6))) Hi (6) 49

S’nfl S’n*l
(3.2)
for any f € C(S"™1). We let
hi() = ha,(-), h(-) = hay(-), ri(-) = re,(),r(-) = ra,(") (3.3)

and
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It follows from (3.2), (3.3) and (3.4) that

FO)E g, / F(0) Ay g, (0 >‘

Sn—1

= Fai(6))h; " (i(9))H] (6) A8

S§n—1

- (@) P (a(0)) HE(0) de‘

Sn—1

< /Sn*l(f(ai(e)) — f((8)))h} P (a(8) HE(0) d@‘ (3.5)
| [, F@@) B (@i(6) = (@ (O) H (0) dg‘
| OO0 aa(0)) ~ B al0)) H ) d0’
| L Fa @ a0 (B 6) ~ H(6) d9’.

Since d(£2;,Q0) — 0 as i — oo, we see that

r; — r uniformly on §"~!

g;i — g a.e. on S" 1
and thus
@ —a ae. onS"! (3.6)

with respect to the spherical Lebesgue measure as i — oc. Since f € C(S"~1),
we see that

flo) — f(a) a.e. onS"* (3.7

as i — oo. Since h € O (S"1), it follows from the compactness of S*~! that
there exists a positive constant ¢y such that

0<cy'< inf h(u)< sup h(u) <co. (3.8)

uesSn—1 weSn—1

This implies that

0<cy < inf A'7P(u)< sup h'P(u) <! (3.9)
uesSn—1 uesSn—1
and thus,
hP(a()) < ey P (3.10)

for almost every 0 € S"~! and any fixed p > 1 with respect to the spheri-
cal Lebesgue measure. This, together with (3.7), (3.10), lemma 2.4(b), and
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Lebesgue dominated convergence theorem, implies that

‘ /S,Jf (@i(0)) = f(a(0)h'P(a(0) Hi(0)d0] =0 (3.11)

as ¢ — 00.
From (3.7), we see that there exists a constant ¢, independent of ¢, such that

[flai(0)] < e (3.12)

for almost every § € S*~!. This imply that

[ 5@t (o) = n o) 0) o

) (3.13)
e sup b7 () hP ) g, (577,
ue n—1
Lemma 2.1 and the assumption that
d(Q;,Q) — 0

as ¢ — oo imply that

sup |hi(u) — h(u)] — 0 (3.14)

uesn—1
as ¢ — oo. This implies that
sup |W? (u) — hP7L(u)] — 0 (3.15)

uesSn—1

as i — oo for any fixed p > 1. Since h € C(S"™1), it follows from (3.14) that
there exists a positive constant c¢;, independent of 7 such that

0< et <hilu) <o (3.16)
and thus
0<e; P<h™Pw)<E™, Yuest? (3.17)
for any fixed ¢ € {1,2,...} and p > 1. (3.15), (3.9) and (3.16) imply that

sup |h; P(u) — R'P(u)| — 0 (3.18)

uesSn—1

as ¢ — oo for any fixed p > 1. From (3.6) and (3.18), we see that

hl7P (o) — h'P(y) ae. on S, (3.19)

K2

as 1 — oo for any fixed p > 1 with respect to the spherical Lebesgue mea-
sure. Since d(€2;,Qp) — 0 as i — oo, it follows from the weak continuity
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of g-capacity measure and lemma 2.4(b) that there exists a constant c,
independent of i, such that
HI(#)do < ¢ (3.20)
§n—1

for any fixed i € {1,2,...,00}. Equations (3.12), (3.19) and (3.20) yield that

‘ /S F(ea(0) (h! P (0s(0)) — B P (0 (0))) HA(O) O] — 0 (3.21)

as 7 — oo for any fixed p > 1.
From (3.6), (3.9) and lemma 2.1, we see that

h'*P(a;) — h'7P(a) a.e. on S"F (3.22)

with respect to the spherical Lebesgue measure as i — oo. It follows from
(3.12), (3.20), (3.22) and Lebesgue dominated convergence theorem that

‘ s f(@i(0))(h'P(ai(8)) — h'~P(a(0))) H}(6) de‘ —0 (3.23)

as i — oo for any fixed p > 1.
Equations (3.12), (3.10) and lemma 2.5 yield that

‘ /SH Flai ()R P (a(0))) (HE(0) — HI(0)) de‘ ~0 (3.24)

as 7 — oo for any fixed p > 1.
Putting (3.11), (3.21), (3.23) and (3.24) into (3.5), we obtain (3.1). This is
the desired conclusion of (b).

(¢) For any Qg € K, we let Ry be the diameter of the domain Qy. We first
suppose that 2y € K is smooth. Adopting a similar idea of lemma 2.18 of
Colesanti et al. [29], we can show that there exists a constant ¢, depending
only on ¢ and n such that

[VUay(@)] > £, Var € 0%, (3.25)

where Ug, is the ¢-Green function of R™\Qy whose pole is at infinity. For the
general convex domain 2y without the assumption of smoothness, we consider
a smooth sequence {§2;}2°, C Ky such that

2 — Qo (3.26)

as i — oo in the sense of Hausdorff metric. For any fixed 7 € {0, 1,...}, we let
R; be the diameter of ;. We can see that

lim R, = Ry >0

11— 00
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and

sup |hq,(u) — hg,(u)] — 0
uesn—1

as i — 00. Since hg, € C(S"71), it follows from the compactness of S"~!
that there exists a constant ¢ > 0 such that

0<ct<hg(f) <c<oo, VOecS" L

This means that there exists a positive constant ¢, independent of 7, such that

uesn—1

min {Riq, inf h;lp(u)} >c

for sufficiently large i due to the facts: Ry > 0 and hgq, € C;(S"~1). There-
fore,

[ e 0o ®) = [ (e 0)ht VU, "0, (6) 0
Snfl Sn—l

> min{R7Y, inf hiP(u)) / (c-0), Jo,(0)d0
Snfl

u€eSn—1t

> C/Sn_l(e -0)4+Jq,(60)dé
(3.27)

for any e € S*~! and sufficiently large i. For any fixed e € S*~!, we define a
function fy : S"~!' — R as follows:

fo(0) = (e-0), = max{e-0,0}, VOecS" '
It is easy to see that
foeC(S™h. (3.28)

We conclude from (3.27), (3.28), the weak continuity of L, g-capacity measure
/”Lg,ﬂ and the weak continuity of surface area measure that

| (e 0t @) = tim [ (e-0)u0,0)

1—00 fon—1

> ¢ lim (e-0)+Jq,(0)do

71— 00 gn—1

(3.29)
> c/SH(e 0) 4 Jo, (0)d6

> inf/ (e-0) 4 Jo, (0)d0
S’nfl

eeSn—1

for any e € S*~1. It follows from lemma 2.3 that

eeSn—1

inf / (c-0)1Jo, (6)d0 > 0.
gn—1
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Putting this into (3.29), we get

inf / (e- 0)+d,ug,90 >c inf / (e-0)1Jq,(0)do > 0.
§n—1 S§n—1

eesn—1 eeSn—1

This implies the desired conclusion of (c¢) and this completes the proof of
theorem 1.1. O

Now, we give the proof of theorem 1.2.
Proof of theorem 1.2. We first show (a). For any Q;, Qs € K and any s > 0, we let
f(s) =M= (Q + sQ,) — Y @(Qy) — sCV @) (Qy).

Tt follows from lemma 2.4(h) that f(s) is a non-negative function for any s € [0, 1]
and f(0) =0, and thus

d
6| _ 20

This implies that
L1, + s0a)]imy > €V (@), (3.30)
From the definition of mixed g-capacity, we have
Cr1(,Q) > écl/@—l)—l/(q—")(Ql)cl/<q—")(92). (3.31)

Next, we extend (3.31) to its L, version via the Holder inequality. We let go, and
ro, be the Gauss map and radial map on €2; and we also denote

o1 =g, 0TQ,- (3.32)

For any fixed p > 1, it follows from the definition of C; 1, Cy4,1 and Hélder inequality
that

—1
Cra(Qu, ) = / has (0 (6)) Ay g, (6)
q —nNn §n—1

= [ he e @R aO)E 01 (9) du 0, 0

q—n
q— 1 c 1/p
(I [ @) agao)
q—n Jgn—1
i1 . (b-1)/p
(220 [ty aisa,0))
q—n Jgn-1

1\ @D/
- () Cp/lp(QhQ2)C(P—1)/((q—1)P)(Q1).
q :
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This and (3.31) imply that

1-p
0ot (1, Q0) > (;) €7 (0, 2)C0 P/ (D ()

> }Cl/@fl)fp/(qfn)(Ql)cp/mfn)(%). (3.33)
q

Since t? is a strictly convex function on (0, o) for any fixed p > 1, following a similar
idea of theorem 9.1.4 of Schneider [58], we can see that the equality in (3.33) holds
if and only if ; and Qy are dilates. This completes the proof of part (a).

Now, we show part (b). We first claim that

C() =C() (3.34)
provided
Cp1(21,Q2) =Cp1(02,), VQ e K. (3.35)
We first take 2 = in (3.35) and it follows from the definition of L, mixed
g-capacity that

1
—CY () = Cp i (1, ) = Cpp (Qa, Q1)

q
> éCl/(q_l)_p/(q_")(QQ)CP/(Q_")(QQ.
From this, we know
ct/la=D=r/la=n)(Q,) < ¢t/ a==p/la=n) (). (3.36)

We then take @ = 5 in (3.35) and we get,
ct/la=D=r/la=n)(Q,) > ¢t/ a==p/la=m) (). (3.37)

From (3.36) and (3.37), we get
cH/la=D=p/la=n)(Q,) = ¢/(a=D=p/la=n) ()

and thus we get (3.34) due to 1/(¢—1) —p/(qg—n)#0. This is the desired
conclusion of the claim.
It follows from the definition of L, mixed ¢-capacity and (3.34) that

Cp,1 (€11, Q2) = Cp1 (€2, 22)

_ Love-ng,)
q

_ Levta=n-s/ta-n) (0, cr/a=m) (qy) (3.38)
q

= L eva-n—pia=m (g, )cr/ta-m (q,).
q

This means that the equality in (3.33) holds provided the assumption (3.35) holds.
It follows from the conclusion of part (a) that €7 and Q9 are dilates. Noting that
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C is homogeneous of order ¢ — n, it follows from (3.34) that €7 = Q. This is the
conclusion of part (b). This completes the proof of theorem 1.2. O

Now, we give the proof of corollary 1.3.

Proof of corollary 1.3. We let B,.(0) be a ball of R, whose centre is the origin and
radius is 7. For any €2 € K, it follows from theorem 1.2 that

Cp1 (9, B,(0) > lcl/(q—l)—p/(q—n)(Q)Cz)/(q—n) (B,(0))
‘ (3.39)
> I el/a=1=p/(a=n) ()cP/ (=) (B, (0))
q

since C is a homogeneous functional of order ¢ — n. From the definition of the L,
mixed g-capacity, we can see that

a2 B:0) = 2007 [ i alo)

q—n

This, together with (3.39), implies that

a—1)—p/(q—n qg—1)
cY/a=D=p/(a=n)(Q) < e (B0)) /Sn_1 du$ o (0). (3.40)

Noting that the equality in (3.40) holds if and only if the equality in (3.39) holds,
it follows from theorem 1.2 that the equality in (3.39) holds if and only if Q is a
ball of R™. This completes the proof of corollary 1.3. O

Now, we are in a position to prove theorem 1.4.

Proof of theorem 1.4. The proof is based on the L, Minkowski inequality for
g-capacity and the upper-lower limit argument. Without any special statement,
we always assume that p > 1. Since hg, € C4(S"" 1), for any f e C(S*1) and
sufficiently small ¢, we see that

hpt = hay +p tf = (B, + )P € CL(S™). (3.41)
We let €, ; be the Aleksandrov body associated with the function A, ¢, that is,
Qpr= [{z €R" 120 < hyu(0)}.
fest

From the L, Minkowski inequality for g-capacity, we see that

(VY Q) = Cpa (Dt Q)

1C1/(q D=p/la=n)(Q, ) (CP/(@=m)(Q, ;) — CP/ (a7 (Qy))
Cp,1 (0, Qpyt) — Cl/ 971 ()

1cl/q 1)—p/(a— (o) (CP/ (e n)( 4 — cr/a=m)(Qy)).

(3.42)
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We also denote
gp(t) _ Cp/(q*n)(Qp,t).

On the one hand, we conclude from (3.42) that

imi —1)— -n p(t)—gp(0
I?Eé‘lf %Cl/(q 1)—p/(q )(vat)w >
lim sup 1€/ (a=D=p/(a=n) () 2)=92(0) 7,
t—0+ q t
where
1 V(e=1(Q ) — O, 0
I :hminf( /a)C (Qp,t) = Cp1 (e, 0)’
t—0t+ t
Qp, Q2 —(1 1/(¢=1)(Q)
Iy = lim sup Cp,1(S20,2p¢) — (1/9)C ()
t—0t+ t
Now, we claim that
b=l [0 d0,0)

Indeed, it follows from the definition of support function that

h, . (0) < hp(0), VYOS
for sufficiently small ¢. It follows from (3.46) that

p __nP P _ P
lim sup 71191” oy i
t—0t t—0t

< lim sup p’tfﬂo = fP, uniformly on S"%.

This and Lebesgue dominated convergence theorem yield that

Iy — lim sup Cet(Q0: %) = (1/9)C/ 70 ()

t—0+ t

= lim sup Cp1 (0, 2p1) — Cp1 (€0, )
t—0+ t

P P

. qg—1 h, (0) —ho, () .

=1 p. J 0
1tri(s)1+1p qg—n /Sn—l t Hp,0,(0)
. q—1 / hy +(0) — h’éo ) . .

<l d 0
lg?)ljrlp q -—n Sn—1 t HP,QQ( )

_a-1 /S 044 0, 0)

qg—n
Moreover, it follows from the definition of &, that

hpt — ha,, uniformly on S™~*
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as t — 0. From lemma 2.1, we can see that
Qpt = Qg (3.50)

as t — 0 where Qy,, is the Aleksandrov body associated with the function hq,.
Since hq, is the support function of €y, we have

Qo = Qg
(see pp. 1562-1563 of [29]). Combining this and (3.50), we see that
Qpr — Qo (3.51)
as t — 0. From (3.51) and theorem 1.1, we have
Ko, = Hy.0 (3.52)
weakly as t — 0. Lemma 2.6 and (3.52) yield that

ll — liminf (1/q)cl/(q71) (Qp,t) B Cp,l(Qp,ta QO)

t—0t t

— fimin ((¢—1)/(g—n))Ga, ,(hpt) = Cp1(2p,t,20)

t—0t t

g1 hye = hg
= liminf £ /SM Wt 2o du g, ,(9) (3.53)

1
| o, 0

i [ P00

q—n

Equations (3.48) and (3.53) imply that

(I/Q)Cl/(qil)(ﬂp,t) — Cp,l(Qp,h QO) Cp,l(QOa Qp,t) — (1/‘1)0(90)

lim inf

= lim sup

t—0+ t t—0+ t
q—1
S e RGO

This is the desired conclusion of the claim.
It follows from (3.51) and lemma 2.4 (f) that

lim C(Qp.0) = lim C(p) = C(S). (3.54)
From (3.43)—(3.45) and (3.54), we obtain
1 “1)—p/(g-n . gp(t) —gp(0)  q—1
S pl ()t p(t) : p(0) _ L 00,0, 355)

On the other hand, adopting a similar argument, we also see that

L o1/(a-1)-p/(a—n) o gp(t) —gp(0) g1 / c
- n Q 1 = P . X
. ($20) lim ; e (0) dps o, (0).  (3.56)
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Combining (3.55) and (3.56), we have

Lo1/(a=1-p/ta=m) () iy I = 90(0) _ g1 i C
qc (o) lim ; =0 s £7(0) dps o, (0).

This, together with the definition of g,, implies that

cY/(a=D=1(Qq) d 1
—_— = C(Q = - P(9) du€ ., (0 ,
q(q—l) dt ( P’t) —o p/sn—1f ( ) /u’p,Qg( )
that is,
d1 1
Zol/a=1) —_— PO)dul (, ().
3¢ 0| =2 a0
This is the desired conclusion of theorem 1.4. O

The remaining part of this section is devoted to the proof of theorem 1.6. For any
fixed positive, finite Borel measure p on the unit sphere S*~!, we let the functional
F be the functional defined in (2.10). We also let

M={QeKy: hqgeC (S*),C(Q) =1}
and consider the following variational problem:
mS = inf{F(K) : K € M}. (3.57)

LEMMA 3.5. For any fired n > 3 and p > 1, we assume that there exists a domain
Qo € M such that

F(Q) = m§,. (3.58)
Then,
qlg— DF () ¢
qg—n ’uIHQo = K. (359)
If we let
o (g = VF(Q)\ T
‘T q—n )
we have

1S 1000 = I (3.60)
Proof. 1t follows from the definition of M and the assumption that Qy € M that
ha, € C(S™71).
For any f € C(S"!) and sufficiently small ¢,
B = (hy, +1f7)17 € C(8"7).

We let €, ; the Aleksandrov body associated with h,, ;. Since €2y is the minimizer of
mg, it follows from the method of Lagrange multiplier that there exists a constant
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Bo, such that

d
&f(gpj) bl (361)

t=0

d
= o 3;C( %)

t=0
where fy is the so-called Lagrange multiplier. From lemma 2.6, we see that

F@) = [ .0 aufo)
This implies that
d d
Bl = — h? . (0) du(0
§F 0| =g [ e

Tt follows from theorem 1.4 and C(€p) = 1 that

d _alg—1) .
a =0 P Snfljp(e)d“pxm(el (3.63)

Putting (3.62) and (3.63) into (3.61), we get

Bo PO Ao 0) = [ 17(0)du(d).

POn—1 Jsn—1 §n—1
This implies that

F(Qp,e) = fP(0) du(0). (3.62)

t=0 §n—t

C(Qp,t)

Boq(q — 1
O(p>uf7,90 = p (3.64)

due to the arbitrariness of f. Recalling the definition of F and the fact

1 1 _ qg—1
= e/, = / R? duf o (0),
o= 0@ = [ 0,0
we have
Bog(g — 1) c Bolg —n)
o) = [ (o) = PED [ hg g (0) = 21
Combining this and (3.64), we get
q(g —1)F(0) ¢
q_—nﬂp,go = M- (3.65)
From the standard analysis, we see that
Mg,tQO = t(Q*")/(Q*l)*P‘up’QO (366)
for any t > 0. Therefore, if we take
. (g = DF () \ T
0 — q—n )
it follows from (3.65) and (3.66) that
Mg,toﬂo = M.
This implies that o)y is the desired convex body. This completes the proof of
lemma 3.5. (]
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LEMMA 3.6. For any fixed n > 3 and p > 1, we let p be a positive and finite Borel
measure on the unit sphere S*=1 satisfying (A.1.1). Then there exists a convex body
Qo € M such that

F(Q) =ms = inf{F(K) : K € M}. (3.67)

The proof of lemma 3.6 will be postponed and now, we are in a position to
complete the proof of theorem 1.6.

Final proof of theorem 1.6. The proof of the existence part of theorem 1.6 fol-
lows from lemmas 3.5 and 3.6. Now, it suffices to prove the uniqueness part of
theorem 1.6. Indeed, if there exist two €2,y € K such that Mg,ﬂl = ,ug,% =p, it
follows from the definition of Cp ; that

Ca(@.9) = [ WS, 0) = [ Hhduga,0) = Cpa(@2,)

for any Q € K. Then, following from theorem 1.2(b), we can see that

Q1 = Q.
This completes the proof of the uniqueness part of theorem 1.6 and completes the
proof of theorem 1.6. O
We let
fo=max{£,0) 4= [ du0) A= wf [ (0 auo). (309
gn—1 gesn—1 Jgn-1

Now, we divide the proof of lemma 3.6 into following two lemmas.

LEMMA 3.7. For any fizedn > 3 andp > 1, we let { P; }j’;l be a minimizing sequence
of the extremal problem (3.57), op, be the radial function of P; and Ay, Ao be defined
in (3.68). Then there exists a constant ¢ = c¢(n, Ay, As), independent of j, such that

0<R; = ,Hax, op, 0) <c (3.69)

for any fized j € {1,2,...}.

Proof. For any fixed j € {1,2,...}, it follows from the definition of the radial func-
tion gp, that op, is a continuous function on §"~!. By the compactness of ",
we see that the following extremal problem

R; = 916%%)_(1 op 9) (3.70)

is achieved and we let the maximizer of R; be v;. By the definition of R;, we get
[0, Rjv;] € P;
and thus
(Rj0-vj)+ = (0- Rjuj)+ < hpy(0), VOeS™
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due to the definition of hp,. It follows from Holder inequality, the definition of F
and the monotonicity of ¢P that

mas ([ mouna) <[ modwe)
<A [ a0 = 47 F(E)

Since

lim F(P;) = m&

J—00 P’
we see that
(2mS AT~ )V/p
Ay

for sufficiently large j. This implies that there exists a positive constant c,
independent of j, such that

0< R; <

0< Ry < c(mf, Ay, Ag)

for any fixed j € {1,2,...}. This is the desired conclusion of the lemma 3.7.
Let {P;}32, be a minimizing sequence of the extremal problem (3.57), for any
fixed 7, it follows from the well-known John’s lemma that

n3%E, C P C&; (3.71)

where &; is the ellipsoid of minimum volume containing P; centred at the centre of
mass of P; (see p. 29 of Gutiérrez [37]). Without loss of generality, we may denote
&; as follows:

)

bn,j > bn—l,j =2 blyj‘ (372)

With lemma 3.7 and the definition of b, ;, we have,

2
L
2 .

J

Ej:{x:(xl,xg,...,xn)ER":Zb
i=1 i

where {b; ; }1; satisfy

COROLLARY 3.8. For any fized j, let {b; ;}7_, be a sequence defined in (3.72). Then
there exists a constant c, independent of j, such that

bnj <c< o0 (3.73)
for any fixed j.

Combining the boundary behaviours of ¢-Green function established by Akman
et al. [6] and adopting a similar blow-up argument, we have the following
lemma.
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LEMMA 3.9. For any fized j, let {b; ;}I'; be a sequence defined in (3.72). Then
there exists a constant ¢, independent of j, such that

bl,j >c> 0
for any fixed j.
|

Since the proof lemma 3.9 can be referred to Hong et al. [39], we omit the proof
here.
Now, we are ready to give the proof of lemma 3.6.

Proof of lemma 3.6. Let {P; }‘;‘;1 be a minimizing sequence of the extremal problem
(3.57). It follows from corollary 3.8, lemma 3.9 and Blaschke’s selection theorem
(see theorem 1.8.7 of Schneider [58]) that there exists a convex body €2 € Kf such
that, up to a subsequence,

P; — Qg (3.74)
in the sense of Hausdorff metric as j — oo. It follows from 2.1 that
th — hq,
and thus
h’;aj — hgo

uniformly on S"~! as j — oo for any fixed p > 1. From the definition of F, we have,
lim F(P;) = F(Qo).
j—oo

It is easy to see that

ha, € C+(S"™1) (3.75)
due to hp, € C(S"™') and 3.9. It follows from (3.74) and 2.5(f) that
j—oo

We conclude from (3.75) and (3.76) that
Qg € M.
Summing up, we have,
F(Q) =inf{F(K): K € M}.
This completes the proof of lemma 3.6. O
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