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In the present paper, we first introduce the concepts of the Lp q-capacity measure
and Lp mixed q-capacity and then prove some geometric properties of Lp q-capacity
measure and a Lp Minkowski inequality for the q-capacity for any fixed p � 1 and
q > n. As an application of the Lp Minkowski inequality mentioned above, we
establish a Hadamard variational formula for the q-capacity under p-sum for any
fixed p � 1 and q > n, which extends results of Akman et al. (Adv. Calc. Var. (in
press)). With the Hadamard variational formula, variational method and Lp

Minkowski inequality mentioned above, we prove the existence and uniqueness of the
solution for the Lp Minkowski problem for the q-capacity which extends some
beautiful results of Jerison (1996, Acta Math. 176, 1–47), Colesanti et al. (2015,
Adv. Math. 285, 1511–588), Akman et al. (Mem. Amer. Math. Soc. (in press)) and
Akman et al. (Adv. Calc. Var. (in press)). It is worth mentioning that our proof of
Hadamard variational formula is based on Lp Minkowski inequality rather than the
direct argument which was adopted by Akman (Adv. Calc. Var. (in press)).
Moreover, as a consequence of Lp Minkowski inequality for q-capacity, we get an
interesting isoperimetric inequality for q-capacity.
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1. Introduction

A non-empty compact, convex subset of R
n with non-empty interior is called a

convex body. Let Kn be the set of all convex bodies of R
n and Kn

0 be the set of all
convex bodies of R

n containing the origin in their interior.
The support function hΩ : R

n �→ R of a convex body Ω is defined as follows:

hΩ(u) = sup
x∈Ω

x · u,∀u ∈ R
n.

For any nonnegative real numbers α, β and any convex bodies Ω1 and Ω2, the
Minkowski linear combination of Ω1 and Ω2 is defined by:

αΩ1 + βΩ2 = {αx + βy : x ∈ Ω1, y ∈ Ω2}.
The support function of αΩ1 + βΩ2 is given by

hαΩ1+βΩ2 = αhΩ1 + βhΩ2 . (1.1)
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1248 Z. Chen

Inversely, the Minkowski linear combination αΩ1 + βΩ2 is also defined by (1.1)
(see Schneider [58]).

For a smooth convex domain Ω of R
n, the Gauss map gΩ(x) ∈ S

n−1 is the unique
unit outer normal vector at x for any x ∈ ∂Ω. From a well-known result of Aleksan-
drov, convex function is twice differentiable almost everywhere (see Schneider [58]
or Evans–Gariepy [31]). Therefore, for a convex body Ω of R

n without the assump-
tion of smoothness, the Gauss map gΩ of Ω is well-defined a.e. on ∂Ω with respect
to (n − 1)-dimensional Hausdorff measure. Let Ω be a convex body of R

n and gΩ

be the Gauss map of Ω. The reverse Gauss map g−1
Ω : S

n−1 �→ ∂Ω is defined by:

g−1
Ω (E) = {x ∈ ∂Ω : gΩ(x) is well-defined and gΩ(x) ∈ E}

for any set E ⊆ S
n−1. If E is a Borel set, then g−1

Ω (E) is Hn−1-measurable
(see Schneider [58] or Colesanti et al. [29]).

The volume V of convex body Ω ∈ Kn
0 can be described by

V (Ω) =
1
n

∫
∂Ω

hΩ(gΩ(x))dHn−1

where gΩ is the Gauss map on Ω and Hn−1 is the (n − 1)-dimensional Hausdorff
measure.

The surface area measure S1,Ω of Ω ∈ Kn
0 is a Borel measure on the unit sphere

S
n−1 defined by the following beautiful formula,

d
dt

V (Ω + tΩ1)|t=0 =
∫

∂Ω

hΩ1(gΩ(x))dHn−1 =
∫

Sn−1
hΩ1(gΩ(rΩ(θ))) dS1,Ω(θ),

(1.2)

for any Ω1 ∈ Kn
0 where gΩ is the Gauss map and rΩ is the radial map on Ω defined

in § 2 (see Schneider [58]). From the definition of the surface area measure S1,Ω of
Ω, we see that

S1,Ω(E) =
∫

E

dS1,Ω(θ) =
∫

g−1
Ω (E)

dHn−1 (1.3)

for any Borel set E ⊆ S
n−1. If we multiply by 1/n on integral on the right-hand

side of (1.2), we have the well-known Minkowski’s mixed volume of Ω and Ω1,
V1,1(Ω,Ω1),

V1,1(Ω,Ω1) =
1
n

∫
Sn−1

hΩ1(gΩ(rΩ(θ))) dS1,Ω(θ), (1.4)

(see Schneider [58]). The relationship between volume and mixed volume can be
described by the following well-known inequality.

The classical Minkowski inequality: For any Ω1,Ω2 ∈ Kn
0 , we have

V1,1(Ω1,Ω2) � V 1−1/n(Ω1)V 1/n(Ω2), (1.5)

equality in (1.5) holds if and only if Ω1 and Ω2 are homothetic.
The classical Minkowski problem can be stated as follows:
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The classical Minkowski Problem: Given a positive finite Borel measure μ
on the unit sphere S

n−1, under what necessary and sufficient conditions does there
exist a unique(up to a translation) convex body Ω of R

n such that S1,Ω = μ?
Minkowski [54,55], Aleksandrov [1–3] and Fenchel–Jessen [32] showed that

Theorem A.1. Let μ be a positive and finite Borel measure on the unit sphere
S

n−1. Then there exists a unique (up to a translation) convex body Ω ∈ Kn
0 such

that S1,Ω = μ if and only if μ satisfies the following two conditions:

(A.1.1) the measure μ is not concentrated on any closed hemisphere, that is,

inf
e∈Sn−1

∫
Sn−1

(e · θ)+ dμ(θ) > 0,

where (e · θ)+ = max{e · θ, 0}.
(A.1.2) the centroid of the measure μ is at the origin, that is,

∫
Sn−1

ξ dμ(ξ) = O.

The uniqueness of solution of classical Minkowski problem followed from the
Minkowski inequality (1.5) directly. Comparing to the uniqueness, the existence of
solution of classical Minkowski problem seems to be more complicated and more
interesting.

Minkowski, Aleksandrov and Fenchel–Jessen adopted the powerful variational
argument to solve the problem. More precisely, they first transformed the solvability
of the classical Minkowski problem into the solvability of an associated variational
problem and then proved that the variational problem had a solution. In particular,
Minkowski dealt with the original problem for discrete measure and extended the
result to the measures whose density function is continuous via the approximation
argument. Aleksandrov and Fenchel–Jessen extended the results of Minkowski to
arbitrary Borel measure on the unit sphere S

n−1. The details can be found in
pp. 317–320 of Aleksandrov [4], pp. 108–112 of Aleksandrov [3], pp. 121–131 of
Bonnesen–Fenchel [12], pp. 60–67 of Busemann [16], pp. 75–86 of Bakelman [8],
pp. 22–32 of Pogorelov [57] and pp. 455–459 of Schneider [58].

A basic but important property of the surface area measure is its weak continuity
in the sense of Hausdorff metric (see p. 510 of [23] or pp. 208–223 of [58]). This
means that we can solve the Minkowski problem in the smooth frame and then
achieve the goal via the approximation argument. This route was adopted by Cheng
and Yau [23] for the classical Minkowski problem and Jerison [45] for a Minkowski-
type problem.

In smooth frame, the classical Minkowski problem can be formulated as follows.
Let Ω be a C2,α-smooth and strictly convex domain of R

n, (that is ∂Ω is C2,α-
smooth and the Gauss curvature K(x) > 0 for any x ∈ ∂Ω), it follows from (1.3)
that

S1,Ω(E) =
∫

g−1
Ω (E)

dσ =
∫

E

1
K(θ)

dθ =
∫

E

det(hij(θ) + δijh(θ)) dθ (1.6)
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for any Borel set E ⊆ S
n−1 where h is the support function of Ω, hij is the second-

order covariant derivatives of h on S
n−1 and δij is the Kronecker delta. We let

f ∈ Cα(Sn−1) be the density function of the positive Borel measure μ on the unit
sphere S

n−1 for some α ∈ (0, 1), that is,

μ(E) =
∫

E

f(θ) dθ (1.7)

for any Borel set E ⊆ S
n−1. From (1.6) and (1.7), we can see that, in order to

solve the Minkowski problem, it suffices to analyse the existence and uniqueness of
convex solution for the following Monge–Ampère equation,

det(hij(θ) + δijh(θ)) = f(θ),∀θ ∈ S
n−1. (1.8)

There are many beautiful results in this direction, see for example Lewy [50], Niren-
berg [56], Cheng–Yau [23], Pogorelov [57] and Caffarelli [17–20]. Moreover, apart
from the existence and uniqueness of solution for the Minkowski problem, we also
get the following regularity result from the studies of [18,19,23,50,56,57].

Theorem A.2. Let f be the positive density function of the Borel measure μ on
the unit sphere S

n−1, that is dμ(θ) = f(θ) dθ and infθ∈Sn−1 f(θ) > 0. Let Ω ∈ Kn
0

such that S1,Ω = μ. If f ∈ Ck,α(Sn−1), the boundary of Ω is of Ck+2,α class.

After the great studies of Minkowski, Aleksandrov, Fenchel, Jessen, Lewy, Niren-
berg, Cheng–Yau and Caffarelli, there are many subsequent researches in this topic.
On the one hand, similar problems have been solved for other important geometric
measures in convex geometry, such as curvature measure, dual curvature measure
and their Lp’s generalizations, see for example [10,11,14,15,22,24,25,27,34–
36,36,38,40–44,44,48,51–53,59,63,64].

In order to formulate the so-called Lp version of the classical Minkowski problem,
we need to state the Lp versions of mixed volume and surface area measure.

We first recall the Lp surface area measure and Lp mixed volume proposed
by Lutwak [51]. The well-known p-sum of Firey [33] for p � 1 was formulated as
follows. We let Ω1 and Ω2 be two convex bodies of R

n and hΩi
be the support

function of Ωi(i = 1, 2) respectively. For any nonnegative real number α, β, the
p-linear combination of hΩ1 and hΩ2 is defined by

hαΩ1+pβΩ2 = (αhp
Ω1

+ βhp
Ω2

)1/p.

In particular, when p = 1, Firey’s p-linear combination is the classical Minkowski
linear combination. The convex body with support function hαΩ1+pβΩ2 is denoted
by αΩ1 +p βΩ2 (see Schneider [58]). In [51], Lutwak proposed the p-sum of a
support function hΩ1 to a convex body Ω1 and a continuous function f , which
is defined by:

hp,t � hΩ1 +p tf = (hp
Ω1

+ tfp)1/p.

for any sufficiently small real number t. In particular, if f is a support function of
a convex body Ω(f) and t � 0, we see that hp,t = hΩ1+ptΩ(f). In the same paper,
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Lutwak also built up the following Hadamard variational formula,

d
dt

V (Ω1 +p tΩ2)|t=0 =
1
p

∫
Sn−1

hp
Ω2

(gΩ1(rΩ1(θ)))h
1−p
Ω1

(gΩ1(rΩ1(θ))) dS1,Ω1(θ)

for any convex bodies Ω1,Ω2 ∈ Kn
0 . This leaded him to introduce the so-called Lp

surface area measure Sp,Ω of a convex body Ω and Lp mixed volume Vp,1 of two
convex bodies, which are defined as follows:

dSp,Ω = h1−p
Ω dS1,Ω (1.9)

and

Vp,1(Ω1,Ω2) =
1
n

∫
Sn−1

hp
Ω2

(gΩ1(rΩ1(θ))) dSp,Ω1(θ)

provided the right-hand side of (1.9) is a finite measure. In particular, if p = 1, the
Lp surface area measure Sp,Ω and Lp mixed volume Vp,1 are the classical surface
area measure and mixed volume defined in (1.2) and (1.4). For any fixed p � 1,
by the definition of Lp mixed volume and Hölder inequality, Lutwak [51] proved
the following interesting inequality.

Lp Minkowski inequality for volume: For any fixed p > 1 and Ω1,Ω2 ∈ Kn
0 ,

we have

Vp,1(Ω1,Ω2) � V 1−p/n(Ω1)V p/n(Ω2), (1.10)

equality in (1.10) holds if and only if Ω1 and Ω2 are dilatates.
Lutwak [51] proposed the following Lp Minkowski problem:
The Lp Minkowski problem. For any fixed p > 1, given a finite Borel measure

μ on the unit sphere S
n−1, under what necessary and sufficient conditions does there

exist a unique convex body Ω of R
n such that Sp,Ω = μ?

In the same paper, Lutwak [51] gave a positive answer to the Lp Minkowski
problem for any fixed p > 1 and p �= n when μ is even and satisfies (A.1.1). Later,
Lutwak and Oliker [52] resolved the Lp Minkowski problem via the method of
continuity. As the consequence of the main result of [52], Lutwak–Oliker built up
a regularity result for the solution to the Lp Minkowski problem. Moreover, Chou
and Wang [27] extended their result to more general p via the theory of PDEs. One
of the beautiful results of Lutwak–Oliker and Chou–Wang can be stated as follows:

Theorem A.4. For any fixed p > −n. Let f be the positive density function
of the Borel measure μ on the unit sphere S

n−1, that is dμ(θ) = f(θ) dθ and
infθ∈Sn−1 f(θ) > 0. Let Ω ∈ Kn

0 such that Sp,Ω = μ. If f ∈ Ck,α(Sn−1), the boundary
of Ω is of Ck+2,α class.

For more results about the regularity result to the Lp Minkowski problem readers
can be referred to Chou and Wang [27], Bianchi et al. [9] and Bianchi et al. [10].

On the other hand, similar problems have also been solved for other impor-
tant Borel measures in physics, such as Harmonic measure, capacity measure,
A-capacity measure, the first Dirichlet eigenvalue measure and the torsion
measure of the Laplacian and some of their Lp generalizations, see for example
[5–7,26,28–30,39,45–47,62,65].
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To the best knowledge of the author, there is no research on the Lp Brunn–
Minkowski theory for q-capacity for any fixed p > 1 and q > n. This leads us to
focus on the Lp Brunn–Minkowski theory for q-capacity for any fixed p > 1 and
q > n in the present paper.

From the analysis of classical Brunn–Minkowski theory, we can see that impor-
tant concepts in this topic are the surface area measure, volume, mixed volume
and Minkowski inequality. This means that we need to formulate the so-called Lp

q-capacity measure, Lp mixed q-capacity and associated Minkowski inequality.
We first recall the q-capacity, mixed q-capacity and q-capacity measure for any

fixed q > n. Let Ω be a convex domain of R
n and UΩ be the unique solution of the

following problem:{
ΔqUΩ = 0, x ∈ R

n\Ω,
UΩ = 0, x ∈ ∂Ω, UΩ(x) � |x|(q−n)/(q−1), as |x| → ∞,

(1.11)

that is UΩ is the so-called q-Green function on R
n\Ω whose pole is at infinity. From

a result of Akman et al. [6], we see that

UΩ(x) − F (x) → a,

as |x| → ∞ where a is a constant depending only on the convex domain Ω and

F (x) � |x|(q−n)/(q−1).

The q-capacity C(Ω) of Ω is defined as follows:

C(Ω) � (−a)q−1.

Akman et al. [6] formulated the following beautiful formulas:

1
q
C1/(q−1)(Ω0) =

q − 1
q − n

∫
Sn−1

hΩ0(gΩ0(rΩ0(θ))) dμC
1,Ω0

(θ)

and
d
dt

1
q
C1/(q−1)(Ω0 + tΩ1)|t=0 =

∫
Sn−1

hΩ1(gΩ0(rΩ0(θ))) dμC
1,Ω0

(θ) (1.12)

for any convex bodies Ω0,Ω1 ∈ Kn
0 and

μC
1,Ω0

(E) =
∫

g−1
Ω0

(E)

|∇UΩ0 |q dHn−1

for any Borel set E ⊆ S
n−1 (see (10.37) of p. 57 and (10.2) of p. 49 of [6]). Combining

(1.12) and the definition of the surface area measure S1,Ω, we say μC
1,Ω0

is the
q-capacity measure of a convex domain Ω0. The so-called mixed q-capacity C1,1 of
Ω0 and Ω1 can be defined by:

C1,1(Ω0,Ω1) � q − 1
q − n

∫
Sn−1

hΩ1(gΩ0(rΩ0(θ))) dμC
1,Ω0

(θ).

Combining the definition of the mixed q-capacity and an interesting Brunn–
Minkowski inequality proved by Akman et al. [6], we have the following interesting
inequality:

https://doi.org/10.1017/prm.2020.57 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2020.57


Lp Minkowski problem for q-capacity 1253

Minkowski inequality for q-capacity: For any fixed n � 2, q > n and Ω1,Ω2 ∈
Kn

0 , we have

C1,1(Ω1,Ω2) � 1
q
C1/(q−1)−1/(q−n)(Ω1)C1/(q−n)(Ω2), (1.13)

equality in (1.13) holds if and only if Ω1 and Ω2 are homothetic.
For any fixed p � 1, adopting a similar argument of Lutwak [51], if we replace

the Minkowski linear combination by the Firey’s p-linear combination in (1.12), it
is easy to see that

d
dt

1
q
C1/(q−1)(Ω1 +p tΩ2)|t=0 =

1
p

∫
Sn−1

hp
Ω2

(gΩ1(rΩ1(θ))h
1−p
Ω1

(gΩ1(rΩ1(θ)) dμC
1,Ω1

(θ)

(1.14)
for any two C2,α-smooth and strictly convex bodies Ω1,Ω2 ∈ Kn

0 . By the weak
continuity of the q-capacity measure proved by Akman et al. in [6] in the sense
of Hausdorff metric, we can extend formula (1.14) to the general convex bodies
Ω1,Ω2 ∈ Kn

0 without the assumption of smoothness via the approximation argu-
ment. Thus, we define the so-called Lp q-capacity measure μC

p,Ω1
and Lp mixed

q-capacity Cp,1 by:

dμC
p,Ω1

� h1−p
Ω1

dμC
1,Ω1

and

Cp,1(Ω1,Ω2) � q − 1
q − n

∫
Sn−1

hp
Ω2

(gΩ1(rΩ1(θ))) dμC
p,Ω1

(θ) (1.15)

for all Ω1,Ω2 ∈ Kn
0 . In particular, if Ω is C2,α-smooth and strictly convex, it is easy

to see that

μC
p,Ω(E) =

∫
E

h1−p|∇UΩ(g−1(θ))|q det(hij(θ) + δijh(θ)) dθ

for any Borel set E ⊆ S
n−1 where g−1(θ) = ∇h(θ). That is, Lp q-capacity measure

μC
p,Ω is absolutely continuous with respect to spherical Lebesgue measure and its

density function is

h1−p|∇UΩ(g−1(θ))|q det(hij(θ) + δijh(θ))

provided Ω is C2,α-smooth and strictly convex.
The main results of the present paper can be stated as follows:

Theorem 1.1. For any fixed n � 2, p � 1 and q > n, any {Ωi}∞i=0 ∈ Kn
0 and any

fixed i ∈ {0, 1, . . .}, we let μC
p,Ωi

be the Lp q-capacity measure of Ωi and hΩi
be the

support function of Ωi. Then the following statements hold:

(a) μC
p,Ω0

is absolutely continuous with respect to the surface area measure S1,Ω0 .

(b) if Ωi → Ω0 in the sense of Hausdorff metric as i → ∞, then

μC
p,Ωi

→ μC
p,Ω0

weakly as i → ∞.
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(c) For any Ω0 ∈ Kn
0 , μC

p,Ω0
is not concentrated on any closed hemisphere, that

is,

inf
e∈Sn−1

∫
Sn−1

(e · θ)+dμC
p,Ω0

(θ) > 0,

where (e · θ)+ = max{e · θ, 0}.

Theorem 1.2. For any fixed n � 2, p � 1, q > n and Ω1,Ω2 ∈ Kn
0 , we let

Cp,1(Ω1,Ω2) be the Lp mixed q-capacity of Ω1 and Ω2. Then, the following
statements hold:

(a)

Cp,1(Ω1,Ω2) � 1
q
C1/(q−1)−p/(q−n)(Ω1)Cp/(q−n)(Ω2), (1.16)

equality in (1.16) holds if and only if Ω1 and Ω2 are homothetic.

(b) if p > 1 and

Cp,1(Ω1,Ω) = Cp,1(Ω2,Ω), ∀ Ω ∈ Kn
0 ,

then, Ω1 = Ω2.

With theorem 1.2, we have the following isoperimetric inequality, which has
independent interests.

Corollary 1.3. For any fixed n � 2, p � 1, q > n and Ω ∈ Kn
0 , we have

C1/(q−1)−p/(q−n)(Ω) � q(q − 1)
(q − n)Cp/(q−n)(B1)

∫
Sn−1

dμC
p,Ω(θ), (1.17)

equality in (1.17) holds if and only if Ω is a ball of R
n where B1 is the unit ball of

R
n.

We let C+(Sn−1) be the set of positive continuous functions on the unit sphere
S

n−1. For any f ∈ C+(Sn−1), the so-called Aleksandrov body Ωf associated with
the function f is defined by:

Ωf =
⋂

u∈Sn−1

{x ∈ R
n : x · u � f(u)}.

From the Minkowski inequality (1.16) and the upper-lower limit argument, we
have,

Theorem 1.4. For any fixed n � 2, p � 1, q > n. Let hΩ be the support function
of a convex body Ω ∈ Kn

0 . For any f ∈ C(Sn−1) and sufficiently small t, we let Ωp,t

be the Aleksandrov body associated with the function hΩ +p tf . Then,

d
dt

1
q
C1/(q−1)(Ωp,t)|t=0 =

1
p

∫
Sn−1

fp(θ)dμC
p,Ω(θ).
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Remark 1.5. If p = 1 and f is a support function of convex body Ωf , theorem 1.4
was proved by Akman et al. [6] via the so-called direct argument.

Now, we propose the following Lp Minkowski problem:
The Lp Minkowski problem for q-capacity. For any fixed n � 2, q > n and

p > 1, given a positive and finite Borel measure μ on the unit sphere S
n−1, under

what necessary and sufficient conditions does there exist a unique convex body Ω of
R

n such that μC
p,Ω = μ?

The last result of the present paper is,

Theorem 1.6. For any fixed n � 2, q > n and p > 1. Let μ be a positive and finite
Borel measure on the unit sphere S

n−1 satisfying (A.1.1). Then there exists a unique
convex body Ω ∈ Kn

0 such that μC
p,Ω = μ.

Remark 1.7. If 1 < q < n, the Lp Minkowski problem for the q-capacity can be
referred to Borell [13], Jerison [46], Caffarelli et al. [21], Colesanti et al. [29],
Akman et al. [5], Hong et al. [39], Zou and Xiong [65] and Xiong et al. [62].

The paper is organized as follows: § 2 is devoted to some knowledges about
q-capacity. In § 3, we show the proof of theorems 1.1, 1.2, corollary 1.3, theorems 1.4
and 1.6.

2. Some preliminaries

Section 2 is devoted to some basic knowledges.
For any Ω ∈ Kn

0 , the radial function of Ω 	Ω : R
n\{O} �→ R is defined as follows:

	Ω(x) = max{λ : λx ∈ Ω}, ∀x ∈ Ω\{O}. (2.1)

The radial map of Ω rΩ : S
n−1 �→ ∂Ω is defined as follows:

rΩ(θ) = 	Ω(θ)θ, ∀θ ∈ S
n−1, (2.2)

that is, rΩ(θ) is the unique point on ∂Ω satisfying the direction OrΩ(θ) is parallel
to the direction θ. It follows from p. 336 of [43], we have,

hΩ(v) = sup
u∈Sn−1

(u · v)	Ω(u), ∀v ∈ S
n−1 (2.3)

and
1

	Ω(u)
= sup

v∈Sn−1

u · v
hΩ(v)

, ∀u ∈ S
n−1. (2.4)

Let Ω1 and Ω2 be two convex bodies of R
n and B

n be the unit ball of R
n, the

Hausdorff distance d(Ω1,Ω2) between Ω1 and Ω2 is defined as follows:

d(Ω1,Ω2) = min{λ � 0 : Ω1 ⊆ Ω2 + λB
n,Ω2 ⊆ Ω1 + λB

n} (2.5)

where B
n is the unit ball of R

n. We let C+(Sn−1) be the set of positive continuous
functions on the unit sphere S

n−1.
From (2.2), (2.4) and (2.5), it is easy to see that,
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Lemma 2.1. For any fixed i ∈ {0, 1, 2, . . .}, let hΩi
be the support function of Ωi ∈

Kn
0 and d(Ωi,Ω0) be the Hausdorff distance between Ωi and Ω0. Then d(Ωi,Ω0) → 0

as i → ∞ if and only if

sup
u∈Sn−1

|hΩi
(u) − hΩ0(u)| → 0

as i → ∞. If in addition hΩ0 ∈ C+(Sn−1), then d(Ωi,Ω0) → 0 as i → ∞ if and
only if

sup
u∈Sn−1

|	Ωi
(u) − 	Ω0(u)| → 0

or

sup
u∈Sn−1

|rΩi
(u) − rΩ0(u)| → 0

as i → ∞.

The following convergence lemma is due to Aleksandrov (see p. 102 of [3]).

Lemma 2.2 (Aleksandrov’s convergence lemma). For any fixed i ∈ {0, 1, 2, . . .}, we
assume that hi ∈ C+(Sn−1) and let Ωi be Aleksandrov body associated with the
function hi and d be the Hausdorff distance. If

hi → h0, uniformly on S
n−1

as i → ∞, then d(Ωi,Ω0) → 0 as i → ∞.

The following lemma is due to Aleksandrov, see also Jerison [46] or Colesanti
et al. [29]. A direct proof can be referred to lemma 2.9 of Huang et al. [43] and
lemma 2.1 mentioned above.

Lemma 2.3. For any Ω ∈ Kn
0 , we let 	Ω, rΩ and hΩ be the radial function, radial

map and support function of Ω respectively. We also let

JΩ(θ) =
	n
Ω(θ)

hΩ(gΩ(rΩ(θ)))

for any θ ∈ S
n−1. Then, the following statements hold:

(a) JΩ is defined Hn−1-a.e. on S
n−1 and there exists a positive constant c,

depending only on the inner radius and the diameter of Ω, such that

0 < c−1 � JΩ(θ) � c < ∞
for Hn−1-a.e. θ ∈ S

n−1.

(b) Let f : ∂Ω �→ R be Hn−1-integrable. Then,
∫

∂Ω

f(x) dσ =
∫

Sn−1
f(rΩ(θ))JΩ(θ) dθ.
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(c) Suppose that there exists a sequence {Ωi}∞i=0 ⊆ Kn
0 such that Ωi → Ω0 in the

sense of Hausdorff distance as i → ∞. We let

JΩi
(θ) =

	n
Ωi

(θ)
hΩi

(gΩi
(rΩi

(θ)))

where 	Ωi
, rΩi

and hΩi
be the radial function, radial map and support function

defined on Ωi respectively. Then, for sufficiently large i, JΩi
is bounded from

above and below, uniformly with respect to θ and i, and

JΩi
→ JΩ0

for almost every θ ∈ S
n−1 as i → ∞ with respect to the spherical Lebesgue

measure.
For any fixed i ∈ {0, 1, . . .}, we suppose Ωi ∈ Kn

0 and we let UΩi
be the q-Green

function of R
n\Ωi whose pole is at infinity. We also denote

JΩi
(θ) =

	n
i (θ)

hΩi
(gΩi

(rΩi
(θ)))

,Hq
i (θ) = |∇UΩi

(rΩi
(θ))|qJΩi

(θ) (2.6)

for any fixed i ∈ {0, 1, . . .}. For any Q ∈ ∂Ω, the so-called non-tangential
cone Γ(Q) is defined by:

Γ(Q) = {y ∈ Ω : |y − Q| � bd(y, ∂Ω)}

for some constant b.

The following lemma is due to Akman et al. [6].

Lemma 2.4. For any {Ωi}∞i=0 ⊆ Kn
0 , we let d be the Hausdorff distance. For any

fixed i ∈ {0, 1, . . .}, let hΩi
, gΩi

and rΩi
the support function, Gauss map and radial

map on Ωi respectively and let UΩi
be q-Green function on R

n\Ωi whose pole is at
infinity. We also let Hi be the function defined in (2.6), C(Ωi) and μC

1,Ωi
be the q-

capacity and the q-capacity measure on Ωi respectively, then the following statements
hold:

(a) For any Ω0 ⊆ Kn
0 , there exists a set E2 ⊆ ∂Ω0 such that Hn−1(E2) = 0 and

for any Q ∈ ∂Ω0\E2 and x ∈ Γ(Q), the non-tangential limit

lim
x→Q

∂UΩ0(x)
∂n̄Q

exists,

we denote the limit by ∂UΩ0(Q)/∂n̄Q(= −|∇UΩ0(Q)|).
(b) For any fixed q1 > q, there exists a positive constant c, depending only on the

diameter and the inner radius of Ω0, such that
∫

∂Ω0

|∇UΩ0 |q1dσ � c.
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(c) If d(Ωi,Ω0) → 0 as i → ∞, then

μC
1,Ωi

→ μC
1,Ω0

weakly as i → ∞.

(d) C(·) is homogeneous of order q − n. That is,

C(tΩ0) = tq−nC(Ω0)

for any t > 0.

(e) C(·) is translation invariant. That is,

C(Ω0 + x0) = C(Ω0) ∀x0 ∈ R
n,

for any Ω0 ∈ Kn
0 .

(f) If d(Ωi,Ω0) → 0 as i → ∞, then

lim
i→∞

C(Ωi) = C(Ω0).

(g)

d
dt

1
q
C1/(q−1)(Ω1 + tΩ2)|t=0 =

∫
Sn−1

h2(gΩ1(rΩ1(θ)))H
n
1 (θ) dθ.

(h) For any t ∈ [0, 1], we have

C1/(q−n)(tΩ1 + (1 − t)Ω2) � tC1/(q−n)(Ω1) + (1 − t)C1/(q−n)(Ω2), (2.7)

equality in (2.7) holds if and only if Ω1 and Ω2 are homothetic. Equivalently,
we have the following statement: for any t ∈ [0, 1], we have

C1/(q−n)(Ω1 + tΩ2) � C1/(q−n)(Ω1) + tC1/(q−n)(Ω2), (2.8)

equality in (2.8) holds if and only if Ω1 and Ω2 are homothetic.
Adopting some similar arguments of Jerison [46], Colesanti et al. [29], Lewis
and Nyström [49] and Akman et al. [6], we have,

Lemma 2.5. For any {Ωi}∞i=0 ⊆ Kn
0 and any fixed i ∈ {0, 1, . . .}, we let Hi be the

function defined in (2.6), if Ωi → Ω0 in the sense of Hausdorff metric as i → ∞,
then ∫

Sn−1
|Hq

i (θ) − Hq
0 (θ)|dθ → 0

as i → ∞.

Remark 2.5.1. If q = n, lemma 2.5 was proved by Xiao [61] or its early version
in arXiv [60] (see (v) of theorem 4.2 in p. 966 of [61] or (v) of Theorem 6.2 in p.
20 of [60]). It is easy to see that the proof of lemma 2.5 between the case q > n
and q = n is the same and their crucial ingredients are the conformal invariance
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of q-Laplace operator and the boundary behaviour of q-Green function. Since the
boundary behaviour of q-Green function was given by Akman et al. [6] and the
proof of lemma 2.5 can be referred to Colesanti et al. [29], Lewis and Nyström [49]
and Xiao [60,61], we omit the details here.

For any f ∈ C+(Sn−1), the so-called Aleksandrov body associated with the
function f is defined by:

Ωf =
⋂

θ∈Sn−1

{x ∈ R
n : x · θ � f(θ)}.

For any fixed p � 1 and f ∈ C+(Sn−1), we define a functional G : C+(Sn−1) ×
R

n �→ R as follows:

GΩf
(f) =

∫
Sn−1

fp(θ) dμC
p,Ωf

(θ). (2.9)

Moreover, for any fixed Ω ∈ Kn
0 , the support function of convex body Ω is denoted

by hΩ. We define a functional F : Kn
0 �→ R as follows:

F(Ω) =
∫

Sn−1
hp

Ω(θ) dμ(θ) (2.10)

for any fixed Borel measure μ on the unit sphere S
n−1. We let hΩf

be the support
function of Ωf and

E2 = {θ ∈ S
n−1 : hp

Ωf
(θ) �= fp(θ)}.

From a result of Aleksandrov, E2 is a set of measure zero on S
n−1 with respect to

the spherical Lebesgue measure (see p. 411 of [58] or p. 143 of [51]). Then, we have,

Lemma 2.6. For any p � 1, q > n and any f ∈ C+(Sn−1), we let μC
p,Ω be the Lp

q-capacity measure, G and F be the functionals defined in (2.9) and (2.10) respec-
tively. Suppose that Ωf is the Aleksandrov body associated with the function f ,
then

1
q
C1/(q−1)(Ωf ) =

q − 1
q − n

GΩf
(f)

and

F(Ωf ) =
∫

Sn−1
fp(θ) dμ(θ).

3. Final proofs of the main results

Section 3 is devoted to the proof of theorems 1.1, 1.2, corollary 1.3, theorems 1.4
and 1.6.
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Proof of theorem 1.1. (a) Since hΩ0 ∈ C+(Sn−1), it follows from the compactness
of S

n−1 that there exists a constant c > 0 such that

0 < c−1 � hΩ0(θ) � c < ∞, ∀θ ∈ S
n−1.

This, together with lemma 2.4(b) and Hölder inequality, implies that

μC
p,Ω0

(E) =
∫

g−1
Ω0

(E)

h1−p
Ω0

|∇UΩ0 |q dHn−1

�c1−p

∫
g−1(E)

|∇UΩ0 |q dHn−1

�c1−p

(∫
g−1
Ω0

(E)

|∇UΩ0 |qq1 dHn−1

)1/q1
( ∫

g−1
Ω0

(E)

dHn−1

)1−1/q1

�c

(∫
g−1
Ω0

(E)

dHn−1

)1−1/q1

= cS
1−1/q1
1,Ω0

(E).

for any q1 > 1 and any Borel set E ⊆ S
n−1. Therefore, we have

S1,Ω0(E) = 0 ⇒ μC
p,Ω0

(E) = 0

for any Borel set E ⊆ S
n−1, which implies the desired conclusion of (a).

(b) To get the conclusion of (b), it suffices to show that

∫
Sn−1

f(θ) dμC
p,Ωi

(θ) →
∫

Sn−1
f(θ) dμC

p,Ω0
(θ) (3.1)

as i → ∞ for any f ∈ C(Sn−1). Indeed, for any Ω0 ∈ Kn
0 , it follows from the

definition of the Lp q-capacity measure and lemma 2.3 that

∫
Sn−1

f(θ) dμC
p,Ω0

(θ) =
∫

Sn−1
f(gΩ0(rΩ0(θ)))h

1−p
Ω0

(gΩ0(rΩ0(θ)))H
q
0 (θ) dθ

(3.2)

for any f ∈ C(Sn−1). We let

hi(·) = hΩi
(·), h(·) = hΩ0(·), ri(·) = rΩi

(·), r(·) = rΩ0(·) (3.3)

and

gi(·) = gΩi
(·), g(·) = gΩ0(·), αi(·) = gi(ri(·)), α(·) = g(r(·)). (3.4)
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It follows from (3.2), (3.3) and (3.4) that
∣∣∣∣
∫

Sn−1
f(θ)dμC

p,Ωi
(θ) −

∫
Sn−1

f(θ) dμC
p,Ω0

(θ)
∣∣∣∣

=
∣∣∣∣
∫

Sn−1
f(αi(θ))h

1−p
i (αi(θ))H

q
i (θ) dθ

−
∫

Sn−1
f(α(θ))h1−p(α(θ))Hq

0 (θ) dθ

∣∣∣∣
�

∣∣∣∣
∫

Sn−1
(f(αi(θ)) − f(α(θ)))h1−p(α(θ))Hq

0 (θ) dθ

∣∣∣∣
+

∣∣∣∣
∫

Sn−1
f(αi(θ))(h

1−p
i (αi(θ)) − h1−p(αi(θ)))H

q
i (θ) dθ

∣∣∣∣
+

∣∣∣∣
∫

Sn−1
f(αi(θ))(h1−p(αi(θ)) − h1−p(α(θ)))Hq

i (θ) dθ

∣∣∣∣
+

∣∣∣∣
∫

Sn−1
f(αi(θ))h1−p(α(θ)))(Hq

i (θ) − Hq
0 (θ)) dθ

∣∣∣∣.

(3.5)

Since d(Ωi,Ω0) → 0 as i → ∞, we see that

ri → r uniformly on S
n−1

gi → g a.e. on S
n−1

and thus

αi → α a.e. on S
n−1 (3.6)

with respect to the spherical Lebesgue measure as i → ∞. Since f ∈ C(Sn−1),
we see that

f(αi) → f(α) a.e. on S
n−1 (3.7)

as i → ∞. Since h ∈ C+(Sn−1), it follows from the compactness of S
n−1 that

there exists a positive constant c0 such that

0 < c−1
0 � inf

u∈Sn−1
h(u) � sup

u∈Sn−1
h(u) � c0. (3.8)

This implies that

0 < c1−p
0 � inf

u∈Sn−1
h1−p(u) � sup

u∈Sn−1
h1−p(u) � cp−1

0 (3.9)

and thus,

h1−p(α(θ)) � c1−p
0 (3.10)

for almost every θ ∈ S
n−1 and any fixed p � 1 with respect to the spheri-

cal Lebesgue measure. This, together with (3.7), (3.10), lemma 2.4(b), and
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Lebesgue dominated convergence theorem, implies that
∣∣∣∣
∫

Sn−1
(f(αi(θ)) − f(α(θ)))h1−p(α(θ))Hq

0 (θ) dθ

∣∣∣∣ → 0 (3.11)

as i → ∞.
From (3.7), we see that there exists a constant c, independent of i, such that

|f(αi(θ))| � c (3.12)

for almost every θ ∈ S
n−1. This imply that

∣∣∣∣
∫

Sn−1
f(αi(θ))(h

1−p
i (αi(θ)) − h1−p(αi(θ)))H

q
i (θ) dθ

∣∣∣∣
� c sup

u∈Sn−1
|h1−p

i (u) − h1−p(u)|μC
1,Ωi

(Sn−1).
(3.13)

Lemma 2.1 and the assumption that

d(Ωi,Ω) → 0

as i → ∞ imply that

sup
u∈Sn−1

|hi(u) − h(u)| → 0 (3.14)

as i → ∞. This implies that

sup
u∈Sn−1

|hp−1
i (u) − hp−1(u)| → 0 (3.15)

as i → ∞ for any fixed p � 1. Since h ∈ C+(Sn−1), it follows from (3.14) that
there exists a positive constant c1, independent of i such that

0 � c−1
1 � hi(u) � c1 (3.16)

and thus

0 < c1−p
1 � h1−p

i (u) � cp−1
1 , ∀u ∈ S

n−1 (3.17)

for any fixed i ∈ {1, 2, . . .} and p � 1. (3.15), (3.9) and (3.16) imply that

sup
u∈Sn−1

|h1−p
i (u) − h1−p(u)| → 0 (3.18)

as i → ∞ for any fixed p > 1. From (3.6) and (3.18), we see that

h1−p
i (αi) → h1−p(αi) a.e. on S

n−1, (3.19)

as i → ∞ for any fixed p � 1 with respect to the spherical Lebesgue mea-
sure. Since d(Ωi,Ω0) → 0 as i → ∞, it follows from the weak continuity
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of q-capacity measure and lemma 2.4(b) that there exists a constant c,
independent of i, such that

∫
Sn−1

Hq
i (θ) dθ � c (3.20)

for any fixed i ∈ {1, 2, . . . ,∞}. Equations (3.12), (3.19) and (3.20) yield that
∣∣∣∣
∫

Sn−1
f(αi(θ))(h

1−p
i (αi(θ)) − h1−p(αi(θ)))H

q
i (θ) dθ

∣∣∣∣ → 0 (3.21)

as i → ∞ for any fixed p � 1.
From (3.6), (3.9) and lemma 2.1, we see that

h1−p(αi) → h1−p(α) a.e. on S
n−1 (3.22)

with respect to the spherical Lebesgue measure as i → ∞. It follows from
(3.12), (3.20), (3.22) and Lebesgue dominated convergence theorem that

∣∣∣∣
∫

Sn−1
f(αi(θ))(h1−p(αi(θ)) − h1−p(α(θ)))Hq

i (θ) dθ

∣∣∣∣ → 0 (3.23)

as i → ∞ for any fixed p � 1.
Equations (3.12), (3.10) and lemma 2.5 yield that

∣∣∣∣
∫

Sn−1
f(αi(θ))h1−p(α(θ)))(Hq

i (θ) − Hq
0 (θ)) dθ

∣∣∣∣ → 0 (3.24)

as i → ∞ for any fixed p � 1.
Putting (3.11), (3.21), (3.23) and (3.24) into (3.5), we obtain (3.1). This is
the desired conclusion of (b).

(c) For any Ω0 ∈ Kn
0 , we let R0 be the diameter of the domain Ω0. We first

suppose that Ω0 ∈ Kn
0 is smooth. Adopting a similar idea of lemma 2.18 of

Colesanti et al. [29], we can show that there exists a constant c, depending
only on q and n such that

|∇UΩ0(x)| � c

R0
, ∀x ∈ ∂Ω0, (3.25)

where UΩ0 is the q-Green function of R
n\Ω0 whose pole is at infinity. For the

general convex domain Ω0 without the assumption of smoothness, we consider
a smooth sequence {Ωi}∞i=1 ⊆ Kn

0 such that

Ωi → Ω0 (3.26)

as i → ∞ in the sense of Hausdorff metric. For any fixed i ∈ {0, 1, . . .}, we let
Ri be the diameter of Ωi. We can see that

lim
i→∞

Ri = R0 > 0
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and

sup
u∈Sn−1

|hΩi
(u) − hΩ0(u)| → 0

as i → ∞. Since hΩ0 ∈ C+(Sn−1), it follows from the compactness of S
n−1

that there exists a constant c > 0 such that

0 < c−1 � hΩ0(θ) � c < ∞, ∀θ ∈ S
n−1.

This means that there exists a positive constant c, independent of i, such that

min
{

R−q
i , inf

u∈Sn−1
h1−p

Ωi
(u)

}
� c

for sufficiently large i due to the facts: R0 > 0 and hΩ0 ∈ C+(Sn−1). There-
fore,∫

Sn−1
(e · θ)+dμC

p,Ωi
(θ) =

∫
Sn−1

(e · θ)+h1−p
Ωi

|∇UΩi
|qJΩi

(θ) dθ

� min{R−q
i , inf

u∈Sn−1
h1−p

Ωi
(u)}

∫
Sn−1

(e · θ)+JΩi
(θ) dθ

� c

∫
Sn−1

(e · θ)+JΩi
(θ) dθ

(3.27)

for any e ∈ S
n−1 and sufficiently large i. For any fixed e ∈ S

n−1, we define a
function f0 : S

n−1 �→ R as follows:

f0(θ) = (e · θ)+ = max{e · θ, 0}, ∀θ ∈ S
n−1.

It is easy to see that

f0 ∈ C(Sn−1). (3.28)

We conclude from (3.27), (3.28), the weak continuity of Lp q-capacity measure
μC

p,Ω and the weak continuity of surface area measure that
∫

Sn−1
(e · θ)+dμC

p,Ω0
(θ) = lim

i→∞

∫
Sn−1

(e · θ)+dμC
p,Ωi

(θ)

� c lim
i→∞

∫
Sn−1

(e · θ)+JΩi
(θ) dθ

� c

∫
Sn−1

(e · θ)+JΩ0(θ) dθ

� c inf
e∈Sn−1

∫
Sn−1

(e · θ)+JΩ0(θ) dθ

(3.29)

for any e ∈ S
n−1. It follows from lemma 2.3 that

inf
e∈Sn−1

∫
Sn−1

(e · θ)+JΩ0(θ) dθ > 0.
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Putting this into (3.29), we get

inf
e∈Sn−1

∫
Sn−1

(e · θ)+dμC
p,Ω0

� c inf
e∈Sn−1

∫
Sn−1

(e · θ)+JΩ0(θ) dθ > 0.

This implies the desired conclusion of (c) and this completes the proof of
theorem 1.1. �

Now, we give the proof of theorem 1.2.

Proof of theorem 1.2. We first show (a). For any Ω1,Ω2 ∈ Kn
0 and any s � 0, we let

f(s) = C1/(q−n)(Ω1 + sΩ2) − C1/(q−n)(Ω1) − sC1/(q−n)(Ω2).

It follows from lemma 2.4(h) that f(s) is a non-negative function for any s ∈ [0, 1]
and f(0) = 0, and thus

d
ds

f(s)
∣∣∣∣
s=0

� 0.

This implies that

d
ds

C1/(q−n)(Ω1 + sΩ2)|t=0 � C1/(q−n)(Ω2). (3.30)

From the definition of mixed q-capacity, we have

C1,1(Ω1,Ω2) � 1
q
C1/(q−1)−1/(q−n)(Ω1)C1/(q−n)(Ω2). (3.31)

Next, we extend (3.31) to its Lp version via the Hölder inequality. We let gΩ1 and
rΩ1 be the Gauss map and radial map on Ω1 and we also denote

α1 = gΩ1 ◦ rΩ1 . (3.32)

For any fixed p > 1, it follows from the definition of C1,1, Cq,1 and Hölder inequality
that

C1,1(Ω1,Ω2) =
q − 1
q − n

∫
Sn−1

hΩ2(α1(θ)) dμC
1,Ω1

(θ)

=
q − 1
q − n

∫
Sn−1

hΩ2(α1(θ))h
(1−p)/p
Ω1

(α1(θ))h
(p−1)/p
Ω1

(α1(θ)) dμC
1,Ω1

(θ)

�
(

q − 1
q − n

∫
Sn−1

hp
Ω2

(α1(θ)) dμC
p,Ω1

(θ)
)1/p

·
(

q − 1
q − n

∫
Sn−1

hΩ1(α1(θ)) dμC
1,Ω1

(θ)
)(p−1)/p

=
(

1
q

)(p−1)/p

C1/p
p,1 (Ω1,Ω2)C(p−1)/((q−1)p)(Ω1).
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This and (3.31) imply that

Cp,1(Ω1,Ω2) �
(

1
q

)1−p

Cp
1,1(Ω1,Ω2)C(1−p)/(q−1)(Ω1)

� 1
q
C1/(q−1)−p/(q−n)(Ω1)Cp/(q−n)(Ω2). (3.33)

Since tp is a strictly convex function on (0,∞) for any fixed p > 1, following a similar
idea of theorem 9.1.4 of Schneider [58], we can see that the equality in (3.33) holds
if and only if Ω1 and Ω2 are dilates. This completes the proof of part (a).

Now, we show part (b). We first claim that

C(Ω1) = C(Ω2) (3.34)

provided

Cp,1(Ω1,Ω) = Cp,1(Ω2,Ω), ∀Ω ∈ Kn
0 . (3.35)

We first take Ω = Ω1 in (3.35) and it follows from the definition of Lp mixed
q-capacity that

1
q
C1/(q−1)(Ω1) = Cp,1(Ω1,Ω1) = Cp,1(Ω2,Ω1)

� 1
q
C1/(q−1)−p/(q−n)(Ω2)Cp/(q−n)(Ω1).

From this, we know

C1/(q−1)−p/(q−n)(Ω2) � C1/(q−1)−p/(q−n)(Ω1). (3.36)

We then take Ω = Ω2 in (3.35) and we get,

C1/(q−1)−p/(q−n)(Ω2) � C1/(q−1)−p/(q−n)(Ω1). (3.37)

From (3.36) and (3.37), we get

C1/(q−1)−p/(q−n)(Ω2) = C1/(q−1)−p/(q−n)(Ω1)

and thus we get (3.34) due to 1/(q − 1) − p/(q − n) �= 0. This is the desired
conclusion of the claim.

It follows from the definition of Lp mixed q-capacity and (3.34) that

Cp,1(Ω1,Ω2) = Cp,1(Ω2,Ω2)

=
1
q
C1/(q−1)(Ω2)

=
1
q
C1/(q−1)−p/(q−n)(Ω2)Cp/(q−n)(Ω2)

=
1
q
C1/(q−1)−p/(q−n)(Ω1)Cp/(q−n)(Ω2).

(3.38)

This means that the equality in (3.33) holds provided the assumption (3.35) holds.
It follows from the conclusion of part (a) that Ω1 and Ω2 are dilates. Noting that

https://doi.org/10.1017/prm.2020.57 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2020.57


Lp Minkowski problem for q-capacity 1267

C is homogeneous of order q − n, it follows from (3.34) that Ω1 = Ω2. This is the
conclusion of part (b). This completes the proof of theorem 1.2. �

Now, we give the proof of corollary 1.3.

Proof of corollary 1.3. We let Br(0) be a ball of R
n, whose centre is the origin and

radius is r. For any Ω ∈ Kn
0 , it follows from theorem 1.2 that

Cp,1(Ω, Br(0)) � 1
q
C1/(q−1)−p/(q−n)(Ω)Cp/(q−n)(Br(0))

� rp

q
C1/(q−1)−p/(q−n)(Ω)Cp/(q−n)(B1(0))

(3.39)

since C is a homogeneous functional of order q − n. From the definition of the Lp

mixed q-capacity, we can see that

Cp,1(Ω, Br(0)) =
q − 1
q − n

rp

∫
Sn−1

dμC
p,Ω(θ).

This, together with (3.39), implies that

C1/(q−1)−p/(q−n)(Ω) � q(q − 1)
(q − n)Cp/(q−n)(B1(0))

∫
Sn−1

dμC
p,Ω(θ). (3.40)

Noting that the equality in (3.40) holds if and only if the equality in (3.39) holds,
it follows from theorem 1.2 that the equality in (3.39) holds if and only if Ω is a
ball of R

n. This completes the proof of corollary 1.3. �

Now, we are in a position to prove theorem 1.4.

Proof of theorem 1.4. The proof is based on the Lp Minkowski inequality for
q-capacity and the upper-lower limit argument. Without any special statement,
we always assume that p � 1. Since hΩ0 ∈ C+(Sn−1), for any f ∈ C(Sn−1) and
sufficiently small t, we see that

hp,t = hΩ0 +p tf = (hp
Ω0

+ tfp)1/p ∈ C+(Sn−1). (3.41)

We let Ωp,t be the Aleksandrov body associated with the function hp,t, that is,

Ωp,t =
⋂

θ∈S1

{x ∈ R
n : x · θ � hp,t(θ)}.

From the Lp Minkowski inequality for q-capacity, we see that
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
qC1/(q−1)(Ωp,t) − Cp,1(Ωp,t,Ω0)

� 1
qC1/(q−1)−p/(q−n)(Ωp,t)(Cp/(q−n)(Ωp,t) − Cp/(q−n)(Ω0))

Cp,1(Ω0,Ωp,t) − 1
qC1/(q−1)(Ω0)

� 1
qC1/(q−1)−p/(q−n)(Ω0)(Cp/(q−n)(Ωp,t) − Cp/(q−n)(Ω0)).

(3.42)
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We also denote

gp(t) = Cp/(q−n)(Ωp,t).

On the one hand, we conclude from (3.42) that
⎧⎨
⎩

lim inf
t→0+

1
qC1/(q−1)−p/(q−n)(Ωp,t)

gp(t)−gp(0)
t � l1

lim sup
t→0+

1
qC1/(q−1)−p/(q−n)(Ω0)

gp(t)−gp(0)
t � l2

(3.43)

where

l1 = lim inf
t→0+

(1/q)C1/(q−1)(Ωp,t) − Cp,1(Ωp,t,Ω0)
t

,

l2 = lim sup
t→0+

Cp,1(Ω0,Ωp,t) − (1/q)C1/(q−1)(Ω0)
t

. (3.44)

Now, we claim that

l1 = l2 =
∫

Sn−1
fp(θ) dμC

p,Ω0
(θ). (3.45)

Indeed, it follows from the definition of support function that

hΩp,t
(θ) � hp,t(θ), ∀θ ∈ S

n−1 (3.46)

for sufficiently small t. It follows from (3.46) that

lim sup
t→0+

hp
Ωp,t

− hp
Ω0

t
� lim sup

t→0+

hp
p,t − hp

Ω0

t
= fp, uniformly on S

n−1. (3.47)

This and Lebesgue dominated convergence theorem yield that

l2 = lim sup
t→0+

Cp,1(Ω0,Ωp,t) − (1/q)C1/(q−1)(Ω0)
t

= lim sup
t→0+

Cp,1(Ω0,Ωp,t) − Cp,1(Ω0,Ω0)
t

= lim sup
t→0+

q − 1
q − n

∫
Sn−1

hp
Ωp,t

(θ) − hp
Ω0

(θ)

t
dμC

p,Ω0
(θ)

� lim sup
t→0+

q − 1
q − n

∫
Sn−1

hp
p,t(θ) − hp

Ω0
(θ)

t
dμC

p,Ω0
(θ)

=
q − 1
q − n

∫
Sn−1

fp(θ) dμC
p,Ω0

(θ).

(3.48)

Moreover, it follows from the definition of hp,t that

hp,t → hΩ0 , uniformly on S
n−1 (3.49)
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as t → 0. From lemma 2.1, we can see that

Ωp,t → ΩhΩ0
(3.50)

as t → 0 where ΩhΩ0
is the Aleksandrov body associated with the function hΩ0 .

Since hΩ0 is the support function of Ω0, we have

Ω0 = ΩhΩ0

(see pp. 1562–1563 of [29]). Combining this and (3.50), we see that

Ωp,t → Ω0 (3.51)

as t → 0. From (3.51) and theorem 1.1, we have

μC
p,Ωp,t

→ μC
p,Ω0

(3.52)

weakly as t → 0. Lemma 2.6 and (3.52) yield that

l1 = lim inf
t→0+

(1/q)C1/(q−1)(Ωp,t) − Cp,1(Ωp,t,Ω0)
t

= lim inf
t→0+

((q − 1)/(q − n))GΩp,t
(hp,t) − Cp,1(Ωp,t,Ω0)
t

= lim inf
t→0

q − 1
q − n

∫
Sn−1

hp
p,t − hp

Ω0

t
dμC

p,Ωp,t
(θ)

= lim
t→0

q − 1
q − n

∫
Sn−1

fp(θ) dμC
p,Ωp,t

(θ)

=
q − 1
q − n

∫
Sn−1

fp(θ) dμC
p,Ω0

(θ).

(3.53)

Equations (3.48) and (3.53) imply that

lim inf
t→0+

(1/q)C1/(q−1)(Ωp,t) − Cp,1(Ωp,t,Ω0)
t

= lim sup
t→0+

Cp,1(Ω0,Ωp,t) − (1/q)C(Ω0)
t

=
q − 1
q − n

∫
Sn−1

fp(θ) dμC
p,Ω0

(θ).

This is the desired conclusion of the claim.
It follows from (3.51) and lemma 2.4 (f) that

lim
t→0+

C(Ωp,t) = lim
t→0

C(Ωp,t) = C(Ω0). (3.54)

From (3.43)–(3.45) and (3.54), we obtain

1
q
C1/(q−1)−p/(q−n)(Ω0) lim

t→0+

gp(t) − gp(0)
t

=
q − 1
q − n

∫
Sn−1

fp(θ) dμC
p,Ω0

(θ). (3.55)

On the other hand, adopting a similar argument, we also see that

1
q
C1/(q−1)−p/(q−n)(Ω0) lim

t→0−

gp(t) − gp(0)
t

=
q − 1
q − n

∫
Sn−1

fp(θ) dμC
p,Ω0

(θ). (3.56)
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Combining (3.55) and (3.56), we have

1
q
C1/(q−1)−p/(q−n)(Ω0) lim

t→0

gp(t) − gp(0)
t

=
q − 1
q − n

∫
Sn−1

fp(θ) dμC
p,Ω0

(θ).

This, together with the definition of gp, implies that

C1/(q−1)−1(Ω0)
q(q − 1)

d
dt

C(Ωp,t)
∣∣∣∣
t=0

=
1
p

∫
Sn−1

fp(θ) dμC
p,Ω0

(θ),

that is,

d
dt

1
q
C1/(q−1)(Ωp,t)

∣∣∣∣
t=0

=
1
p

∫
Sn−1

fp(θ) dμC
p,Ω0

(θ).

This is the desired conclusion of theorem 1.4. �

The remaining part of this section is devoted to the proof of theorem 1.6. For any
fixed positive, finite Borel measure μ on the unit sphere S

n−1, we let the functional
F be the functional defined in (2.10). We also let

M = {Ω ∈ Kn
0 : hΩ ∈ C+(Sn−1), C(Ω) = 1}

and consider the following variational problem:

mC
p = inf{F(K) : K ∈ M}. (3.57)

Lemma 3.5. For any fixed n � 3 and p > 1, we assume that there exists a domain
Ω0 ∈ M such that

F(Ω0) = mC
p . (3.58)

Then,

q(q − 1)F(Ω0)
q − n

μC
p,Ω0

= μ. (3.59)

If we let

t0 =
(

q(q − 1)F(Ω0)
q − n

) 1
(q−n)/(q−1)−p

,

we have

μC
p,t0Ω0

= μ. (3.60)

Proof. It follows from the definition of M and the assumption that Ω0 ∈ M that

hΩ0 ∈ C+(Sn−1).

For any f ∈ C(Sn−1) and sufficiently small t,

hp,t = (hp
Ω0

+ tfp)1/p ∈ C+(Sn−1).

We let Ωp,t the Aleksandrov body associated with hp,t. Since Ω0 is the minimizer of
mC

p , it follows from the method of Lagrange multiplier that there exists a constant
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β0, such that

d
dt

F(Ωp,t)
∣∣∣∣
t=0

= β0
d
dt

C(Ωp,t)
∣∣∣∣
t=0

, (3.61)

where β0 is the so-called Lagrange multiplier. From lemma 2.6, we see that

F(Ωp,t) =
∫

Sn−1
hp

p,t(θ) dμ(θ).

This implies that

d
dt

F(Ωp,t)
∣∣∣∣
t=0

=
d
dt

∫
Sn−1

hp
p,t(θ) dμ(θ)

∣∣∣∣
t=0

=
∫

Sn−1
fp(θ) dμ(θ). (3.62)

It follows from theorem 1.4 and C(Ω0) = 1 that

d
dt

C(Ωp,t)
∣∣∣∣
t=0

=
q(q − 1)

p

∫
Sn−1

fp(θ) dμC
p,Ω0

(θ). (3.63)

Putting (3.62) and (3.63) into (3.61), we get

β0

pσn−1

∫
Sn−1

fp(θ) dμC
p,Ω0

(θ) =
∫

Sn−1
fp(θ) dμ(θ).

This implies that

β0q(q − 1)
p

μC
p,Ω0

= μ (3.64)

due to the arbitrariness of f . Recalling the definition of F and the fact

1
q

=
1
q
C1/(q−1)(Ω0) =

q − 1
q − n

∫
Sn−1

hp
Ω0

dμC
p,Ω0

(θ),

we have

F(Ω0) =
∫

Sn−1
hp

Ω0
dμ(θ) =

β0q(q − 1)
p

∫
Sn−1

hp
Ω0

dμC
p,Ω0

(θ) =
β0(q − n)

p
.

Combining this and (3.64), we get

q(q − 1)F(Ω0)
q − n

μC
p,Ω0

= μ. (3.65)

From the standard analysis, we see that

μC
p,tΩ0

= t(q−n)/(q−1)−pμp,Ω0 (3.66)

for any t > 0. Therefore, if we take

t0 =
(

q(q − 1)F(Ω0)
q − n

) 1
(q−n)/(q−1)−p

,

it follows from (3.65) and (3.66) that

μC
p,t0Ω0

= μ.

This implies that t0Ω0 is the desired convex body. This completes the proof of
lemma 3.5. �
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Lemma 3.6. For any fixed n � 3 and p > 1, we let μ be a positive and finite Borel
measure on the unit sphere S

n−1 satisfying (A.1.1). Then there exists a convex body
Ω0 ∈ M such that

F(Ω0) = mC
p = inf{F(K) : K ∈ M}. (3.67)

The proof of lemma 3.6 will be postponed and now, we are in a position to
complete the proof of theorem 1.6.

Final proof of theorem 1.6. The proof of the existence part of theorem 1.6 fol-
lows from lemmas 3.5 and 3.6. Now, it suffices to prove the uniqueness part of
theorem 1.6. Indeed, if there exist two Ω1,Ω2 ∈ Kn

0 such that μC
p,Ω1

= μC
p,Ω2

= μ, it
follows from the definition of Cp,1 that

Cp,1(Ω1,Ω) =
∫

Sn−1
hp

Ω dμC
p,Ω1

(θ) =
∫

Sn−1
hp

Ω dμC
p,Ω2

(θ) = Cp,1(Ω2,Ω)

for any Ω ∈ Kn
0 . Then, following from theorem 1.2(b), we can see that

Ω1 = Ω2.

This completes the proof of the uniqueness part of theorem 1.6 and completes the
proof of theorem 1.6. �

We let

f+ = max{f, 0}, A1 =
∫

Sn−1
dμ(θ), A2 = inf

ξ∈Sn−1

∫
Sn−1

(ξ · θ)+ dμ(θ). (3.68)

Now, we divide the proof of lemma 3.6 into following two lemmas.

Lemma 3.7. For any fixed n � 3 and p > 1, we let {Pj}∞j=1 be a minimizing sequence
of the extremal problem (3.57), 	Pj

be the radial function of Pj and A1, A2 be defined
in (3.68). Then there exists a constant c = c(n,A1, A2), independent of j, such that

0 � Rj = max
θ∈Sn−1

	Pj
(θ) � c (3.69)

for any fixed j ∈ {1, 2, . . .}.

Proof. For any fixed j ∈ {1, 2, . . .}, it follows from the definition of the radial func-
tion 	Pj

that 	Pj
is a continuous function on S

n−1. By the compactness of S
n−1,

we see that the following extremal problem

Rj = max
θ∈Sn−1

	Pj
(θ) (3.70)

is achieved and we let the maximizer of Rj be vj . By the definition of Rj , we get

[0, Rjvj ] ⊆ Pj

and thus

(Rjθ · vj)+ = (θ · Rjvj)+ � hPj
(θ), ∀θ ∈ S

n−1
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due to the definition of hPj
. It follows from Hölder inequality, the definition of F

and the monotonicity of tp that

Rp
jA

p
2 �

( ∫
Sn−1

Rj(θ · vj)+ dμ(θ)
)p

�
(∫

Sn−1
hPj

(θ) dμ(θ)
)p

� Ap−1
1

∫
Sn−1

hp
Pj

(θ) dμ(θ) = Ap−1
1 F(Pj).

Since

lim
j→∞

F(Pj) = mC
p ,

we see that

0 � Rj �
(2mC

pAp−1
1 )1/p

A2

for sufficiently large j. This implies that there exists a positive constant c,
independent of j, such that

0 � Rj � c(mC
p , A1, A2)

for any fixed j ∈ {1, 2, . . .}. This is the desired conclusion of the lemma 3.7.
Let {Pj}∞j=1 be a minimizing sequence of the extremal problem (3.57), for any

fixed j, it follows from the well-known John’s lemma that

n−3/2Ej ⊆ Pj ⊆ Ej (3.71)

where Ej is the ellipsoid of minimum volume containing Pj centred at the centre of
mass of Pj (see p. 29 of Gutiérrez [37]). Without loss of generality, we may denote
Ej as follows:

Ej =
{

x = (x1, x2, . . . , xn) ∈ R
n :

n∑
i=1

x2
i

b2
i,j

� 1
}

where {bi,j}n
i=1 satisfy

bn,j � bn−1,j � · · · � b1,j . (3.72)

With lemma 3.7 and the definition of bn,j , we have,

Corollary 3.8. For any fixed j, let {bi,j}n
i=1 be a sequence defined in (3.72). Then

there exists a constant c, independent of j, such that

bn,j � c < ∞ (3.73)

for any fixed j.

Combining the boundary behaviours of q-Green function established by Akman
et al. [6] and adopting a similar blow-up argument, we have the following
lemma.
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Lemma 3.9. For any fixed j, let {bi,j}n
i=1 be a sequence defined in (3.72). Then

there exists a constant c, independent of j, such that

b1,j � c > 0

for any fixed j.

�

Since the proof lemma 3.9 can be referred to Hong et al. [39], we omit the proof
here.

Now, we are ready to give the proof of lemma 3.6.

Proof of lemma 3.6. Let {Pj}∞j=1 be a minimizing sequence of the extremal problem
(3.57). It follows from corollary 3.8, lemma 3.9 and Blaschke’s selection theorem
(see theorem 1.8.7 of Schneider [58]) that there exists a convex body Ω0 ∈ Kn

0 such
that, up to a subsequence,

Pj → Ω0 (3.74)

in the sense of Hausdorff metric as j → ∞. It follows from 2.1 that

hPj
→ hΩ0

and thus

hp
Pj

→ hp
Ω0

uniformly on S
n−1 as j → ∞ for any fixed p > 1. From the definition of F , we have,

lim
j→∞

F(Pj) = F(Ω0).

It is easy to see that

hΩ0 ∈ C+(Sn−1) (3.75)

due to hPj
∈ C+(Sn−1) and 3.9. It follows from (3.74) and 2.5(f) that

C(Ω0) = lim
j→∞

C(Pj) = 1. (3.76)

We conclude from (3.75) and (3.76) that

Ω0 ∈ M.

Summing up, we have,

F(Ω0) = inf{F(K) : K ∈ M}.
This completes the proof of lemma 3.6. �
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