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We discuss the emergence of common mathematical patterns governing the timing and

severity of insurgent and terrorist attacks, across geographic scales and including cyberspace.

We present mathematical models that provide a generative explanation of these patterns.

Despite wide variations in the underlying settings and circumstances, the ubiquity of these

patterns suggests there is a common way in which groups of humans fight each other. Our

empirical findings follow from the analysis of myriad state-of-the-art datasets with resolution

at the level of individual attacks, while our mathematical modelling involves numerical and

analytical solutions of fission–fusion dynamics together with progress curve analysis.

Key words: Modelling and interdisciplinarity; Behavioural and social sciences; Applications

in sciences

1 Introduction

Attacks by insurgents and terrorists are, almost by design, supposed to surprise their

enemy and impact public opinion. Surprise is a particularly important tool since insurgent

and terrorist organizations are typically much smaller and weaker than the state that

they want to attack, hence they would likely experience heavy losses if they were to

confront their opponent in any open or obvious way. This feature, coupled with the wide

diversity of possible conflict terrains, conditions and causes, makes it counter-intuitive to

expect attacks to follow any common pattern. Indeed typical time-series of attacks look

completely random to the eye. As we show in this paper, however, universal patterns do

emerge.

The statistical analysis of conflict data – in particular through body counts – dates

back one hundred years to Richardson [1]. Trained as a physicist, Richardson analysed

compilations of casualty data across many different wars [1]. Around the same time,

mathematical modelling of the underlying conflict dynamics began to be developed by

Lanchester and others, based on mass-action differential equations [2]. However, both
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these studies suffered from a lack of availability of spatiotemporal data concerning

individual attacks on a daily scale, thereby putting beyond reach any rigorous mathemat-

ical modelling of the event-level fluctuations within a given conflict or terrorist campaign.

Though estimates might have been known for entire conflicts (e.g. World War II) or

specific battles, the fluctuations across day-to-day skirmishes were not. This situation

has recently changed, however, due to the explosion in conflict coverage by the media

and Non-Government Organizations together with academic projects aimed at logging

event-level casualties at the highest possible resolution.

This paper uses generative mathematical models to interpret certain statistical patterns

observed in insurgent, terrorist and cyber-attacks across different geographic settings

including cyberspace. Both the mathematical modelling and the empirical statistical ana-

lysis draw on approaches used within the physics community [3–10]. They complement

the exciting hotspotting approaches recently developed in the mathematical criminology

field [12–15], which have also been applied to insurgency dynamics [12, 13]. They are

also consistent with recent developments in the social science and complex systems lit-

erature [16–43]. The empirical results cross a wide range of geographical scales – from

municipalities up to entire continents across the globe, and with great diversity in terms of

terrain, underlying cause, socioeconomic and political setting, cultural and technological

background. Casualty data are drawn from all available sources, including academia, non-

government organizations and official government records. The following steps summarize

our methodology: (i) Identify systematic behaviours in the ongoing timelines of attacks

within a given insurgent conflict or terrorist campaign. (ii) Quantify the resulting stylized

statistical facts. (iii) Develop generative mathematical models of the underlying dynamics

which are minimal and yet which are able to reproduce these observed statistical features.

The broader implication of our findings is that irrespective of the underlying circum-

stances and locations, groups of humans tend to “do” insurgency and terrorism in a

surprisingly generic way across different geographic scales, including cyberspace. Hence,

this work provides a link to the universality uncovered in non-violent human group

activities including traffic and stock market trading [27,44,45]. The results, narrative and

discussions in this paper draw heavily on Refs. [28, 29, 46, 47].

2 Background

Within a given insurgent conflict, terrorist or cyber campaign, the observable output from

an attack at time t can in principle be represented as a vector xi(t) whose elements

might describe the number of casualties for each population type at place i, and the

different weapon types used. In line with military nomenclature, we refer to the insurgent,

terrorist or cyber-attacking population as Red, even though they may be a heterogeneous

collection of fighters, and we refer to the state (e.g. coalition military or security force) as

Blue. Non-participating civilians are referred to as Green.

Our data sources are a mix of real-time media databases, official (government and

non-governmental organization) reports and academic studies [47]. For the insurgent

conflicts, our sources include the Uppsala Conflict Data Program, icasualties.org, Marc

Herold of the University of New Hampshire and the ITERATE terrorism database.

Our Iraq data also amalgamates three separate data sets: Iraq Body Count, ITERATE
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and icasualities.org. Sierra Leone data comes from Macartan Humphreys of Columbia

University. Malcolm Sutton is the source of the data for the Northern Ireland conflict,

having himself built on a large number of sources. Data for the Peruvian conflict derives

from the Truth and Reconciliation Committee. The Colombian Conflict Database was

provided kindly by the Conflict Analysis Resource Center [48]. The Spanish and American

civil war data came from the work of Ron Francisco at the University of Kansas.

Comparative results for sexual violence against women come from Ref. [49] while suicides,

accidents, homicides etc. were obtained from analysing the data of Medicina Legal in

Colombia. In terms of terminology, we adopt the language in which a cell is a cluster of

a few Red agents (e.g. insurgents) which carries out a given attack, and organization is

the entire Red outfit – even though we stress that we do not want to assign any specific

organizational capabilities, or assume that Red is necessarily well organized, or following

a hierarchy. Indeed, as we will show, one of the implications of our work is that the cells

are loose and transient in terms of their operational activity. This is likely why they are

so hard to track.

To date, the mathematical models of human conflict that have been proposed in the

literature tend to resemble predator-prey models which themselves are akin to a chemical

reaction between two reagents, e.g. Red and Blue. These models’ dynamics are usually

evaluated in the form of continuous differential equations in order to obtain partially

analytic results, or through computationally intensive cellular automata or individual-

based models on some kind of fixed grid such as a static spatial network or checker-

board [50, 51]. Beyond the few-particle limit, mean-field mass action equations including

Lotka–Volterra can provide reasonable qualitative descriptions of the average behaviour,

i.e. dNR(t)/dt = f(NR(t), NB(t)) and dNB(t)/dt = g(NR(t), NB(t)), where NR(t) and NB(t) are

the Red and Blue population’s strength at time t. However, actual insurgent conflicts and

terrorist campaigns feature a number of complications that challenge such mathematical

models. In particular, the following features arise, each of which is addressed in the

mathematical models that we present in subsequent sections: (1) The classic image

of a battle being fought between two well-regimented armies lining up at dawn on

opposite sides of a field or plain, does not describe the fragmented, fluid situation of

modern insurgencies [16–18], either in the real or cyber worlds. Instead, Red is likely

to show significant intra-population group (e.g. cluster) formation which can change

unexpectedly over time as in the animal world [24]. Though it is possible to generalize

mass-action predator-prey equations to mimic such dynamical grouping effects, such

generalizations present a dilemma of how to choose an appropriate functional response

term for f(NR(t), NB(t)) and g(NR(t), NB(t)). (2) Broadcasting communications now exist

in which events and images can be portrayed almost instantly to a broad sector of

the global population, enabling Red to almost instantaneously learn what has, and is,

happening locally, nationally and internationally and hence adapt quickly. (3) Personal

media resources such as Facebook and Twitter, together with emails and texts, mean that

fighters (and potential fighters) who are separated across different streets, or towns, or

countries, or continents, can be connected together within a second – and hence they can

coordinate their actions such that they begin to behave as one quasi-coherent group (or

“cell”), even though they may never have met each other and may even be geographically

located on separate continents. As a corollary, the members of such a cell – who may not
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be physically connected, but whose actions are somehow coordinated through the use of

technology – may suddenly lose their collective coherence (e.g. loss of communications, or

loss of trust) meaning that the cell has effectively fragmented abruptly. At the press of a

button on a cellphone keyboard or touch of a keystroke, they instantaneously disappear

into the background noise generated by everyday human activities. Given this, the vision

that we adopt of the complex interactions within Red, and between Red, Blue and Green

is that of a complex ecology whose dynamics and internal interactions may change

and adapt over time, with adaptation–counter-adaptation and communication via some

underlying dynamical network. This view is in accordance with the state-of-the-art view

of modern violent gangs proposed by Felson [52], and the descriptions of insurgencies

by Kilcullen, Robb and Kenney [16–18]. Our mechanistic approach is also remarkably

consistent with current thinking in the social sciences – in particular, analytical sociology

as developed by Hedstrom [53].

3 Attack severity: Coalescence–fragmentation model

Our analysis across datasets for different conflicts reveals no evidence for a strong

systematic correlation between the severity of fatal events and their timing. This is

consistent with reports from other researchers [8] and means that we can analyse the

severity of fatal events separately from their timing. As a result, we have found that the

event severity distribution is essentially stationary throughout the main portion of each

conflict, while the timing of individual events is a non-stationary process with periods of

initial escalation or de-escalation. We therefore analyse severity by aggregating all events

across the main portion of each conflict, checking that the choice of window does not

affect our conclusions. Given the ubiquity of power-law forms in other complex systems

involving human collective activity, we focus on analysing the extent to which power-laws

provide a good fit to the tail of the severity distribution.

The events listed in most databases of insurgent conflicts comprise primarily civilian

casualties (i.e. Green) that were inflicted by Red – irrespective of whether the underlying

event was an attack by Red on Blue, or an attack by Red on Green to force them to

cooperate, for example. Furthermore, the nature of insurgent war means that the number

of civilian casualties is typically far larger than that of Red or Blue. Empirically, it should

therefore make little difference if one analyses just Green casualties inflicted by Red, or

Green and Blue combined. We have checked that this is indeed the case for our results in

Figure 1 where the distinction is known. To simplify our explanatory mathematical model

for the results in Figure 1, we therefore regard the casualties in each event as representing

an imprint of the strength of the Red cell that is involved in the event. When it comes to

the event timing, most events are actually attacks initiated by Red directly against Blue

– or directly against Green, which in turn means against Blue since it is Blue who are

supposed to protect Green. Red, Blue and even Green will in general adapt and counter-

adapt to differing degrees and in different ways over time to initiate or prevent Red’s next

attack, however this becomes too complex to analyse without detailed information about

each side’s daily activities. Hence, we will discuss the timing of attacks (Section 4) in

terms of an ongoing struggle between Red and Blue’s adaptation and counter-adaptation.

In essence, we therefore assume that Green is a passive entity that has no dynamics itself
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Figure 1. (A) Results of power-law fitting procedure for the tail of the distribution for the

severity (i.e. number of casualties) per event (attack). See inset in (C). Each data-point shows

the best-fit α value and the goodness-of-fit parameter p for the distribution of events (attacks)

occurring in a particular department during Colombia’s ongoing narco-guerilla war. The state-

of-the-art fitting procedure is described and referenced in Ref. [47]. (B) Results for high-profile

modern conflicts across the world, including Iraq. (C) Results for countries across a given continent

(Africa). (D) Comparative results for conventional wars and other forms of human violence. Inset

shows Provisional Irish Republican Army (PIRA)’s operational network in South Armagh [47]. The

theoretical value α = 2.5 which is shown by dashed horizontal line, emerges from the vanilla version

of our theory derived in the text. Purple ring shows value for all interstate wars from 1860–1980.

Green ring is value for entire Africa database. Black triangle shows value for global terrorism

attacks. A goodness-of-fit less than 0.05 implies that it is unlikely that the data have a power-law

tail (see red-shaded area). One-sided struggles such as natural deaths and suicides, do not show the

power-law tail pattern. The darker the colour of each data-point, the larger the total number of

victims (i.e. more total casualties). Data drawn and adapted from Ref. [47].

either in terms of grouping or strategy and instead simply soaks up the impact of the

attacking Red. We must wait for data to become available in the future concerning what

precisely Red, Blue and Green are doing on the daily scale in the lead-up to each event,

in order to go beyond this approximation.

Figure 1 summarizes our findings for the severity distribution from applying a state-

of-the-art maximum likelihood fitting procedure for a power-law s−α to the tail in the

distribution of the severity of individual events within a given conflict; s is the severity

of an individual event which, in the case of violent conflict, is the number killed or
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Figure 2. Illustration of the dynamical grouping featured in our model of Red (i.e. coalescence–

fragmentation dynamics). Each Red cell has a strength (i.e. insurgent members, equipment, inform-

ation) representing the typical number of people that the cell will kill in an attack. Red has overall

strength N which we take for simplicity as a constant, distributed into dynamically evolving cells

with time-varying size, number and composition. In the illustration, the strength is represented by

the number of shadows (i.e. number of people that cell will likely kill in an attack). Total number

of cells Ng(t) varies with time such that Ng(t) � 1 (i.e. the smallest number of cells is when every

object belongs to this same cell) and Ng(t) � N (i.e. the largest number of cells is when every object

is isolated). In this illustration, the number of cells of a given size s at this timestep t, prior to frag-

mentation of the cell of size 3 into 3 cells of size 1, is ns=1(t) = 0, ns=2(t) = 1, ns=3(t) = 2, ns=4(t) = 0,

ns=5(t) = 1, ns�6(t) = 0. The total number of insurgents is N =
∑

s ns(t) = 1 × 2+2 × 3+1 × 5 = 13.

The number of cells Ng(t) = 4. Following fragmentation, N = 13 but Ng(t) = 6.

injured in an attack; α is the power-law exponent; p is the goodness-of-fit; M is the

normalizing factor. Most of the severity distributions from insurgent conflicts and ter-

rorism in Figure 1, approximate to a power law and have a corresponding power-law

exponent around 2.5.

Our explanatory model of this 2.5 power-law result is shown schematically in

Figure 2. Here, we motivate its mechanisms and then solve analytically its most ba-

sic version, noting that we have shown numerically that the 2.5 value is remarkably

robust to generalizations [33]. It builds on two key mechanisms within Red: Coalescence

and fragmentation. The coalescence process mimics the situation in which two Red cells, or

individuals in these cells, initiate a communications link between them of arbitrary range,

for example a mobile phone call. The two cells therefore tend to coordinate their actions

from then on. Indeed, the individual agents need not know each other, or be physically

present in the same place. The long-range nature of the coupling makes it a reasonable

description for physical insurgencies using modern communications in real space, as well

as cells acting in cyberspace – or any mix of the two [18]. Indeed, the language of what
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is a cell and what is a group becomes irrelevant since the mechanistic operational details

are now very similar. The fragmentation process may arise for a number of social or

situational reasons, from breakdown in trust within a Red cell [16] through to detection

of imminent danger by a Red cell [18, 24]. It is well documented that groups of objects

(e.g. animals, people) may suddenly scatter in all directions (i.e. complete fragmentation)

when its members sense danger, simply out of fear [24] or in order to confuse a pred-

ator [24]. Or they may fragment following a clash in which the cell perceives that it is

losing. The precise details of these mechanisms do not matter since they tend to give

similar empirical distributions. The interactions in our model are distance-independent as

in Ref. [5], since we are interested in systems where messages can be transmitted over

arbitrary distances and hence mimic modern human communications. We stress that these

mechanisms are consistent with observed animal anti-predator behaviours [11, 24] and

also those of criminal gangs [16,18,52]. The resulting coalescence–fragmentation process is

consistent with observations of insurgent and terrorist structures as fragmented, transient

and evolving [17,19]. As Gambetta states: [16] “.... contrary to widespread belief, criminal

groups are unstable.” Further support is provided by Kenney’s narrative [18]: “To protect

themselves from the police, trafficking enterprises often compartment their participants

into loosely coupled networks and limit communication between nodes”; “Trafficking

networks . . . are light on their feet. They are smaller and organizationally flatter”; “In

progressive-era New York, according to historian Alan Block, cocaine trafficking was

organized by different networks of criminal entrepreneurs who formed, reformed, split,

and came together again as opportunity arose and when they were able”; “loose collection

of cells containing relatively small number of cell workers”; “Abu Sayyaf . . operates as

a decentralized network of loosely coupled groups that conduct bombings, kidnappings,

assassinations and other acts of political violence in pursuit of a common goal . . ”.

Kenney also highlights the close connection of traffickers to terrorists: “Al Qaeda share

numerous similarities with drug-trafficking enterprises” [18]. The inset in Figure 1(D) for

the Provisional Irish Republican Army shows further support, since it shows a similarly

decentralized, clustered structure consistent with jihadist operational networks and other

covert networks such as online gold farmers [47]. We note that in both the empirical

Provisional Irish Republican Army network and our model, a link simply denotes some

coordinated activity, but is not necessarily related to spatial proximity or acquaintance.

The above empirical observations suggest that the internal coherence of a Red pop-

ulation of strength N (equivalent to N agents) should be represented as a dynamically

evolving soup of cells with sporadic coalescence and fragmentation events. Within each

cell, the component entities have a strong intra-cell coherence. Between cells, the inter-cell

coherence is weak. At time t, we imagine picking an agent i at random – or equivalently,

a cell is randomly selected with probability proportional to size. We let si be the strength

(i.e. size) of the cell to which this agent belongs. With probability νfrag, the coherence of a

given cell fragments completely into si cells of size one. If it does not fragment, a second

cell is randomly selected with probability again proportional to size – or equivalently,

another agent j is picked at random. With probability νcoal, the two cells then coalesce,

by which we mean that they develop a common “coherence” in terms of their thinking or

activities. Analysis of a simple version of this model was completed earlier by d’Hulst and

Rodgers [4], and real-world applications have focused on financial markets – however
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the derivation below features general values νfrag and νcoal. The Master Equations are as

follows: The equation for the number of cells (i.e. clusters) of strength (i.e. size) s for s � 2

and s = 1 are respectively:

∂ns
∂t

=
νcoal

N2

s−1∑
k=1

knk(s − k)ns−k − νfragsns

N
− 2νcoalsns

N2

∞∑
k=1

knk, (3.1)

∂n1

∂t
=

νfrag

N

∞∑
k=2

k2nk − 2νcoaln1

N2

∞∑
k=1

knk . (3.2)

Here, νcoal and νfrag are the probabilities per timestep (i.e. rates) of coalescence of two cells,

or fragmentation of a cell, respectively. Terms on the right-hand side of equation (3.1)

represent all the ways in which ns can change. Note that the second term on the right-hand

side in equation (3.2) includes the coalescence of a 1-agent cell with other 1-agent cells.

Strictly, we should remove the self-interaction term since a single agent cannot coalesce

with itself, however such a modification can be neglected to a good approximation since

n1 is large. To simplify the limits of the sums, we extend the upper limit to infinity even

though ns = 0 for s > N. In the steady state

sns =
νcoal

(νfrag + 2νcoal)N

s−1∑
k=1

knk(s − k)ns−k, s � 2, (3.3)

n1 =
νfrag

2νcoal

∞∑
k=2

k2nk . (3.4)

We now solve these equations using the generating function approach, by considering

explicitly the function

G[y] =

∞∑
k=0

knky
k = n1y +

∞∑
k=2

knky
k ≡ n1y + g[y], (3.5)

where y is a parameter and g[y] governs the cell size distribution nk for k � 2. Multiplying

equation (3.3) by ys and then summing over s from 2 to ∞, yields

g[y] =
νcoal

(νfrag + 2νcoal)N
G[y]2, (3.6)

i.e.

g[y]2 −
(
νfrag − 2νcoal

νcoal
N − 2n1y

)
g[y] + n2

1y
2 = 0 . (3.7)

From equation (3.5), g[1] = G[1] − n1. Solving for g[1]

g[1] =
νcoal

νfrag + 2νcoal
N, (3.8)

hence

n1 = N − g[1] =
νfrag + νcoal

νfrag + 2νcoal
N . (3.9)
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Substituting this into equation (3.7) yields

g[y]2 −
(
νfrag + 2νcoal

νcoal
N − 2N(νfrag + νcoal)

νfrag + 2νcoal
y

)
g[y] +

(N(νfrag + νcoal))
2

(νfrag + 2νcoal)2
y2 = 0 . (3.10)

We can then go ahead and solve this quadratic for g[y]

g[y] =
(νfrag + 2νcoal)N

4νcoal

(
2 − 4(νfrag + νcoal)νcoal

(νfrag + 2νcoal)2
y − 2

√
1 − 4(νfrag + νcoal)νcoal

(νfrag + 2νfrag)2
y

)
, (3.11)

which has the expanded form

g[y] =
(νfrag + 2νcoal)N

2νcoal

∞∑
k=2

(2k − 3)!!

(2k)!!

(
4(νfrag + νcoal)νcoal

(νfrag + 2νcoal)2
y

)k

. (3.12)

If we then go ahead and compare with the definition of g[y] in equation (3.5), this shows

that

ns =
(νfrag + 2νcoal)N

2νcoal

(2s − 3)!!

s(2s)!!

(
4(νfrag + νcoal)νcoal

(νfrag + 2νcoal)2

)s

. (3.13)

Next, we employ Stirling’s series

ln[s!] =
1

2
ln[2π] +

(
s +

1

2

)
ln[s] − s +

1

12s
− · · · . (3.14)

This means that for s � 2

ns ≈
(

(νfrag + 2νcoal)e
2

23/2
√

2πνcoal

) (
4(νfrag + νcoal)νcoal

(νfrag + 2νcoal)2

)s
(s − 1)2s−3/2

s2s+1
N, (3.15)

which in turn implies that

ns ∼
(
νs−1
coal(νfrag + νcoal)

s

(νfrag + 2νcoal)2s−1

)
s−5/2. (3.16)

In the limit s � 1, this becomes formally equivalent to

ns ∼ exp(−s/s0)s
−5/2, (3.17)

where

s0 = −
[
ln

(
4(νfrag + νcoal)νcoal

(νfrag + 2νcoal)2

)]−1

(3.18)

characterizes the exponential cut-off which appears at very high s [56]. Note that for

large cell sizes (i.e. large s such that s ∼ O(N)), the power law behaviour is masked by

the exponential function. Hence, the equilibrium state for the distribution of cell sizes

is a power-law with exponent α ∼ 5/2 = 2.5, together with an exponential cut-off. The

fact that the interactions are effectively distance-independent as far as equation (3.1)

is concerned, captures the fact that we wish to model human systems, where messages

can be transmitted over arbitrary distances (e.g. modern human communications). Our
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justification for choosing a cell with a probability which is proportional to its size, is as

follows: A cell with more members has more chances of initiating an event. It will also

be more likely to find members of another cell more frequently, and hence be able to

synchronize with them – thereby synchronizing the two cells. We note that this model also

offers, as a by-product, an explanation for Richardson’s finding [1] that the distribution

of approximately 103 gangs in Chicago, and in Manchoukuo in 1935, separately followed

a truncated power-law with α ≈ 2.3.

Following recent empirical findings linking size to lethality [57], we then take a Red

cell’s strength (size) as proportional to the severity of an event in which it participates. We

then assume that the probability that a given Red cell is involved in a given event is set by

exogenous factors – in other words, being in the right place at the right time. Therefore,

the shape of the distribution of event severities can be mimicked by randomly picking

cells and setting the severity equal to the cell strength. As a result, the tail distributions

for the event severities and the cell strength will be approximately the same. We have

therefore reproduced the observation in Figure 1 that the distribution of severities has an

approximate power-law tail s−α with α ≈ 2.5.

We might wonder if this coalescence–fragmentation model falls down on the basis that

an approximate power-law severity distribution apparently exists from the outset of the

empirical dataset for each terrorist organization [8] and yet the coalescence–fragmentation

process may need time to converge to its steady-state power-law distribution [58]. However,

this is not the case. First, the N initial members can be coalescing and fragmenting before

any violent event is undertaken – indeed, there are many examples of underground

organizations who spend years evolving without any known violent activity. No external

event may be observed, but there is still a dynamical network of groups evolving in the

background [59]. Any such organization will undoubtedly already have several existing

clusters of contacts, hence it is not the case that the distribution has to build up from all

isolated agents. A nascent insurgent or cyber group could be created effectively instantly

from such an existing structure. Second, numerical simulations show that the fat-tailed

distribution does indeed develop very quickly in our model, even if we start with isolated

agents. Third, it is highly unlikely that starting from day one of a given organization,

all fatal events are recorded in a database. The alternative candidate model proposed

in Ref. [7] is a combination of phenomenological broad-brush factors which happen to

give a power-law, but without any specific justification for yielding the observed exponent

value of 2.5. Instead, the parameters [7] need to be picked in order to obtain the observed

power-law exponent value of 2.5. In reality, a continuum of values – including values

well away from 2.5 – are just as likely within that model [7]. Moreover, there is little

quantitative evidence to support such an alternate mechanism – for example, studies of

Provisional Irish Republican Army show that variations in the number of actors can be

largely unrelated to variations in the lethality at the level of the entire organization.

4 Attack timing: The dynamical Red Queen model

Following Ref. [28], we now analyse the timing of attacks in terms of a generic arms-

race struggle of adaptation and counter-adaptation between Red and Blue. We consider

Red (e.g. insurgents) as continually wanting to cause damage to Blue (e.g. kill coalition
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Figure 3. Timing of one-sided everyday human activities. There is no Blue opponent to prevent

task completion. No clear pattern emerges in (B) or (C) between the progress curve parameters

β and τ1 across individuals. (A) Fitting procedure. Schematic timeline of successive events (i.e.

successive completions of task) shown as vertical bars. (B) Results for individuals searching Internet

sites. (C) Summary of empirical results in the literature for other individual tasks. Data from

Refs. [55] and [54] and adapted from Ref. [47].

military). With all other things being kept equal, then Red would like to complete

successful attacks as quickly as possible so that successive successful attacks become more

frequent. We therefore analyse the times for successive fatal days for Blue, finding that

they follow an approximate power-law progress curve τn = τ1n
−β [28]. Here, τn is the time

between the (n − 1)th and nth fatal day, τ1 is the time between the first two fatal days,

and β describes the subsequent escalation (or de-escalation). A fatal day is one in which

Red activity produces at least one death.

We calculated the best-fit power-law progress curve parameters β and τ1 for each

geographical region. Figure 3 shows results from the psychology and organizational

literature [54, 55] of what one would expect if the relationship between β and τ1 for
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Figure 4. Linear dependence emerges between β and log τ1 for Red attacks in Afghanistan (solid

blue line on a semi-log plot). Results are shown for individual Afghanistan provinces (blue squares)

for fatal attacks by insurgents (Red) on coalition military (Blue). Green-dashed line shows value

β = 0.5 for random walk (see Figure 5) in which there are no correlations in the dynamics of R.

Results for global terrorist attacks also shown (dark diamond is deduced from the best-fit progress

curve for global terrorist group activity when averaged over all attacks while the light diamond

is an alternative estimate where β and τ1 are calculated directly by inserting the time intervals

between initial attacks into the progress curve formula). Blue triangle shows the results of analysis

of Hezbollah suicide attacks, while the white triangle is for suicide attacks within Pakistan (data

from cpost.uchicago.edu/). Adapted from Ref. [28].

Red–Blue events followed that of individuals – more specifically, if the dynamics of events

emerging from Red–Blue dyads followed the known patterns of behaviour of individuals.

In such studies, an individual successfully completes a task that is repeated, just as

successive Red attacks imply that Red has managed to carry out a fatal attack against

Blue, i.e. Blue has not managed to stop the attack or prevent fatalities. The tasks did

not change over time, and hence the situations are akin to Blue not counter-adapting to

resist the next attack. Figure 3(B) shows that there is a lack of any monotonic dependence

between β and τ1 for humans completing cyber tasks, specifically the navigation of

different websites. In Figure 3(C), individuals repeatedly completed tasks such as proof-

reading, solving a puzzle, or purchasing something online. Again, each subject exhibits

his/her own β and τ1. This lack of any generic dependence between β and τ1 in Figures

3(B) and (C) is no surprise given the heterogeneity of individual humans. By complete

contrast, Figure 4 shows that for the recent two-sided insurgent conflict in Afghanistan,

an unexpected linear relationship emerges between β and log τ1 for different geographical

regions within the same conflict. This linearity even extends to a specific weapon type i.e.

fatalities caused by Improvised Explosive Devices (IEDs) [28].

We now explain this emergence of a so-called progress curve τn = τ1n
−β for the trend

in the timing of attacks leading to Figure 4, using a dynamical version of the Red Queen

evolutionary race [28] shown schematically in Figure 5. Further, empirical support is

provided by the broad range of insurgent conflicts shown in Figure 6. Our model shown

in Figure 5 defines R to be the lead of the Red Queen (e.g. local insurgency) over the

Blue King (e.g. coalition military) opponent, i.e. strategic advantage in an arms race.
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Figure 5. Dynamical Red Queen model for the Red–Blue struggle. Red (e.g. insurgent) advantage

R is represented as a vector in a multi-dimensional space whose axes may represent technolo-

gical, psychological, social, cultural or behavioural factors. R follows a stochastic walk in this

D-dimensional space. Using known results from statistical physics, exact results can be obtained for

β under different conditions of correlation etc. within the walk.

R would more generally be a high-dimensional vector since strategic advantage may

involve multiple factors, e.g. training, knowledge of local geography etc. but for simplicity,

here we represent it as a scalar and therefore restrict ourselves to a one-dimensional

advantage, though we stress that the mathematical nature of multi-dimensional random

walks means that our analysis has general validity. In the well-known Red Queen story,

she runs as fast as she can in order to stay at the same place, implying that Blue is

instantaneously and perfectly counter-adapting to any Red advance, such that they are

always neck and neck, i.e. R = 0 for all time. Such instantaneous and perfect counter-

adaptation is however not possible in practice. Indeed, the complicated adaptation–

counter-adaptation dynamics resulting from sporadic changes in the numbers of troops

and insurgents, changes in their experience and gathered information, changes in local

sentiment or changes in their available weaponry and skills, imply that the temporal
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Figure 6. Linear dependence between β and log τ1 for a wide variety of insurgent conflicts. Various

best-fit lines are shown as a guide. For a given symbol (right panel), each data-point shows (τ1, β)

on a semi-log plot, where these (τ1, β) values are obtained from fitting the trend in inter-event

times (lower inset) within a conflict. Red star-shape shows the result from analysis of a dataset

containing terrorism attacks aggregated across the globe, and is consistent with the broad mass of

geographically-specific points. The black oval ring shows the example of Magdalena, Colombia,

and illustrates how places that are geographically distant and hence seemingly unrelated, can have

conflicts with very similar dynamics, i.e. they have similar β and log τ1 values. These results are

insensitive to whether fatal days are counted as (C) days where Red causes civilian (Green) casualties

or (G) days where Red causes state security (Blue) casualties. Data-points adapted from Ref. [47].

evolution of R will appear so complex as to be considered random to the eye. This

motivates us to model the complex, jerky walk that R undergoes, as a stochastic diffusion

process. This means in turn that our statistical results do not require knowledge about

the precise mechanism causing a given change in R, nor its value.

A coin-toss process is particularly simple to analyse for R. With an outcome of Tails

decreasing R and Heads increasing it, R obeys a random walk. R is Red’s lead and

hence its instantaneous advantage over Blue, therefore it makes sense to use R as a proxy

for the instantaneous rate of fatal days inflicted by Red. As R moves toward zero or

becomes negative, the time interval between subsequent fatal days diverges. Provinces

in which R is always positive therefore have frequent fatal attacks by Red and show

up in Figure 4, while provinces in which R is always negative will not. We expect that

any significant changes in R (positive or negative, large or small) occur around days

in which Red manages to inflict a fatal attack: Insurgents have by definition become
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successful at that moment and so this may stimulate a further increase in their strategic

advantage R, while Blue’s loss may stimulate an effective counter-adaptation effort and

hence reduce R. This means that R is predominantly a function of n (i.e. R(n)). A known

mathematical result for large n is that the typical magnitude of R after n steps is given

by its root-mean-square value |R(n)|rms ∼ nβ , where β = 0.5 for any diffusion process in

which the changes in R(n) are independent and their distribution has finite variance, even

if the changes in R(n) do not have the same size. If steps in R(n) have the same size,

this result is equivalent to the statement from elementary statistics that the variance of

the sum of uncorrelated variables is equal to the sum of the variances. Statistical physics

shows that for more general stochastic walks with implicit correlations between changes

in R(n), Red’s advantage and hence the rate of Red attacks will vary as |R(n)|rms ∼ nβ

with β � 0.5. The time between attacks will hence vary as |R(n)|−1
rms ∼ n−β . By definition

this is τn.

Therefore, we have derived mathematically the observed empirical result that τn ∝ n−β

and hence τn = τ1n
−β . For a wide range of possible correlations within R(n), it is known

that 0 < β < 1.5 in agreement with Figures 4 and 6. If Blue’s counter-adaptation is

completely absent or inadequate, R persistently increases at every step n and hence

|R(n)|rms ∼ n meaning that β ≈ 1. This is analogous to Red moving forward at constant

velocity while Blue is left stuck at the starting line. If Red gains momentum, R may

even start accelerating and hence β > 1 as observed for a few points in Figures 4 and

6. Effective Blue counter-adaptation to each Red advance means, by contrast, that R

stays close to zero: Therefore, |R(n)|rms will be of order 1 (i.e. n0) and hence β ≈ 0. It is

only in the idealized – and highly unrealistic – case where Blue’s counter-adaptation is

instantaneous and perfect, that R will always be exactly zero. Similarly, it is only if Blue

proactively produces its own advances that R could become permanently negative and

therefore that geographical area has no attacks.

The unweighted linear least-squares approach used to fit the trend in log τn versus log n

for each point in Figures 4 and 6, provides an unbiased best estimate in the limit that the

residuals approach statistical i.i.d. status (independent and identically distributed). This

does indeed turn out to be a good approximation in our study, allowing us to propose a

failure process to model the dynamics leading up to each attack. Specifically, our empirical

analysis has shown that the error (i.e. fluctuations) in the underlying τn values have a

crudely multiplicative form, like a failure process, implying that

τn = Xτ1n
−β, (4.1)

where X is a multiplicative noise process of the form X =
∏Y

y (1 + εy) and where {εy}
are drawn from a random distribution with finite variance. Each fatal Red attack can

therefore be seen as a failure process in which a set of Y processes need to go “wrong” in

order that Red can create its next fatal attack. Taking the logarithm of both sides yields

log τn =

Y∑
y

{log (1 + εy)} + log τ1 − β log n. (4.2)
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Using the well-known result that log(1 + εy) ≈ εy when εy 
 1 yields

log τn =

Y∑
y

εy + log τ1 − β log n, (4.3)

meaning that a plot of log τn versus log n will produce a scatter of points around the

straight line

log τn = log τ1 − β log n, (4.4)

with residuals that are sums of {εy}. We have verified empirically that the distribution of

the residuals is approximately Gaussian with no serial correlations, consistent with such

i.i.d. variables and hence supporting our identification of a progress curve to describe the

trend in attack timings in Figures 4 and 6.

Using this dynamical Red Queen model, we can therefore interpret and compare the

entire spectrum of observed β values for different provinces, and also different terrorism

domains, in an intuitive and unified way using language concerning the relative advantage

between Red and Blue. Most importantly, this broad-brush Red Queen model does not

require knowledge of specific adaptation or counter-adaptation mechanisms, and therefore

avoids issues such as changes in technology, learning, skill-set, or insurgent membership

(i.e. composition, numbers or numbers of cells). It also removed any need to know the

hearts and minds of local residents. Instead, a change in Red’s lead R might result from

a conscious or unconscious adaptation by Red, or by Blue, or both – for example, there

may be an increase in Red numbers because of a conscious recruitment campaign or

simply due to bad press involving Blue’s activity. Likewise, R may change due to a surge

in Blue’s numbers or strength, or a change in its tactics or defences. It does not matter:

The precise cause for changes in R does not affect the validity of our theory. The fact that

the relationships in Figures 4 and 6 are linear, suggests an intriguing coupling between the

way in which Red and Blue are fighting in each region. If the dynamics were completely

independent within each separate geographic area in a given conflict, the corresponding

(β, τ1) points could in principle lie scattered anywhere in the plane in Figures 4 and 6.

If they were identical, they would lie on top of each other. However, the fact that they

follow a linear relationship, suggests the existence of a weak coupling between them. The

precise origin and nature of such a coupling awaits a future detailed mathematical model.

Figure 7 shows this same analysis applied to the timing of cyber attacks [60]. We

extracted the data for the cyber-attacks from the February 2013 report by MANDIANT

on cyber attacks by a suspected Chinese group (Red) against national infrastructure

sectors (Blue). As confirmed by Figure 7(A), no pattern appears when the timing of the

attacks is randomized – yet a clear linear relationship emerges for the actual attack data,

just as in Figures 4 and 6 for insurgent and terrorist attacks. This suggests that the pattern

that we observe in the timing of attacks and their potential escalation and de-escalation is

indeed general to real-world insurgencies, to terrorism campaigns, and to cyber-terrorism.

We await data on future cyber-attacks to further test this finding concerning the timing

pattern, as well as data on the severity of cyber-attacks to compare with Figure 1.
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Figure 7. Results from analysis of the timing of cyber-attacks by a suspected Chinese group

(Red) against national infrastructure sectors (Blue). Underlying data taken from the February 2013

report of MANDIANT [60]. The analysis performed on the timing of attacks and the resulting

plot are exactly the same as Figures 3, 4 and 6. Each point denotes a unique sector of national

cyber-infrastructure. (A) Results for randomized attack times. (B) Results for actual attack times.

Data-points taken from Ref. [47].

5 Conclusions

We have been able to present a modelling approach to human conflict in two largely

separate stages for the severity and timing respectively of attacks. This is justified because

of the lack of strong correlations between the severity of attacks and their timing. For the

attack severity, we provided a mathematical model of Red’s internal dynamics comprising

dynamically evolving cells in a loose and sporadically-changing structure. For the attack

timing, our dynamical Red Queen theory described the timing of fatal events [28].

Various practical implications follow from our work. Let us suppose that violent events

begin to emerge in a given region, and that they appear to follow a crude power-law

distribution with slope similar to 2.5. The inference is then that Red operates with a

similar delocalized cluster structure to our model. Even in the absence of any observed

events, the generality of the results in Figure 1 suggests that the distribution of any

future events will follow a similar form. Using this power-law form, one can calculate the

expected number of casualties in a future attack to be approximately [(α− 1)/(α− 2)]smin

with smin being the cut-off in the maximum-likelihood fit. Another consequence of our

model and in particular the coalescence–fragmentation process, is that a lone-wolf actor

is only truly alone for short periods of time. This is again consistent with recent field

studies, and the equations can be used to estimate how long ago contact was made with

other Red clusters. Turning to the timing of attacks, let us suppose some sporadic attacks

have been observed in a given location or sector in the real or online world. If successive

time-intervals between attacks follow the trend τ1n
−β , the suggestion is that they are all

generated by a single Red–Blue process. Assuming Red dominates the Red–Blue dynamic,
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this implies a single attacking Red entity. Suppose that attacks then emerge in different

locations or sectors: If an approximate linear relationship then emerges between β and τ1

as in Figure 4, this suggests that the same Red is operating in these different places.

Our final comment concerns a comparison to results for street gangs and cyber-gangs,

specifically the empirical distributions for Long Beach street gang sizes and online guild

sizes for World of Warcraft that we published in Ref. [35]. We had found that the empirical

distributions were not power-law like – however, this difference can be explained by the

fact that our analysis had considered the time-averaged membership of online guilds and

gangs, as well as street gangs, as opposed to the number of objects who happen to be

coordinated (e.g. online, or on the street) at any given time as in the present paper. The

latter is likely to vary rapidly and spontaneously every day as members come online or

onto the street, however the underlying membership would be expected to change more

slowly over timescales of months. In addition, when individuals leave a street gang or an

online guild, it is unlikely that this happens because the entire gang or guild is disbanding

– hence, the fragmentation process in our model would not be applicable. Instead, it is

known that fragmentation processes involving the partial dismantling of a large cell into

just a few randomly chosen splinter-cells tend to generate non-power-law distributions,

as indeed we observed for street gangs and online guilds in Ref. [35].
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