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ABSTRACT

An optimal reinsurance problem from the perspective of an insurer is studied in
this paper, where an upper limit is imposed on a reinsurer’s expected loss over
a prescribed level. In order to reduce the moral hazard, we assume that both
the insurer and the reinsurer are obligated to pay more as the amount of loss
increases in a typical reinsurance treaty.We further assume that the optimization
criterion preserves the convex order. Such a criterion is very general as most
of the criteria for optimal reinsurance problems in the literature preserve the
convex order. When the reinsurance premium is calculated as a function of the
actuarial value of coverage, we show via a stochastic dominance approach that
any admissible reinsurance policy is dominated by a stop-loss reinsurance or a
two-layer reinsurance, depending upon the amount of the reinsurance premium.
Moreover, we obtain a similar result to Mossin’s Theorem and find that it is
optimal for the insurer to cede a loss as much as possible under the net premium
principle. To further examine the reinsurance premium for the optimal piecewise
linear reinsurance policy, we assume the expected value premium principle and
derive the optimal reinsurance explicitly under (1) the criterion of minimizing
the variance of the insurer’s risk exposure, and (2) the criterion of minimizing
the risk-adjusted value of the insurer’s liability where the liability valuation is
carried out using the cost-of-capital approach based on the conditional value at
risk.

KEYWORDS

Conditional value at risk, convex order, cost of capital,Mossin’s Theorem, stop-
loss reinsurance, two-layer reinsurance.

1. INTRODUCTION

Reinsurance, as one of the important risk management tools, allows an insurer
to cede large losses to a reinsurer and to reduce the insurer’s risk exposure. As a
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result, the insurer will have a manageable insurance portfolio. It also enables the
insurer to free up additional capital to issue more policies. However, the effec-
tive use of reinsurance depends highly on reinsurance designs. It is imperative
to develop an optimal reinsurance scheme for the insurer to minimize its risk
exposure and smooth its surplus.

Since the seminal work of Borch (1960), the study of optimal insur-
ance/reinsurance problems has attracted a lot of attention. Borch (1960) shows
that the stop-loss reinsurance is optimal under the criterion of minimizing the
variance of an insurer’s retained loss when the reinsurance premium is calcu-
lated by the expected value principle. Arrow (1963) considers the criterion that
maximizes the expected utility of the terminal wealth of a risk-averse insurer
but reaches a similar result to Borch (1960). Arrow’s result has been extended
in many papers. See e.g., Raviv (1979), Van Heerwaarden et al. (1989), Gol-
lier and Schlesinger (1996), Young (1999), Cummins and Mahul (2004), Zhou
et al. (2010), and references therein. Recently, due to the popularity of risk mea-
sures in quantifying financial and insurance risks, risk measure-based optimal
reinsurance problems have been studied by many researchers (see Gajek and
Zagrodny, 2004; Balbás et al., 2009; Guerra and Centeno, 2012; Asimit et al.,
2013; Chi and Tan, 2013; Lu et al., 2013 and references therein). A common
characteristic of most of the optimization criteria used in the afore-mentioned
studies is the preservation of the convex order, which may allow the use of a
unified approach to tackle optimal reinsurance problems. See Van Heerwaar-
den et al. (1989) and Gollier and Schlesinger (1996) for unified treatments of
the problems.

In the literature, it is often assumed that the ceded loss from a reinsurance
treaty is smaller than the indemnity. Again, see Borch (1960), Arrow (1963),
Gajek and Zagrodny (2004), Balbás et al. (2009), Bernard and Tian (2009),
Zhou et al. (2010), and references therein. However, as pointed out by Huber-
man et al. (1983), this assumption is insufficient as it neglects the moral hazard
that may arise in a reinsurance treaty. In order to reduce the moral hazard, it is
necessary to require that both the insurer and the reinsurer are obligated to pay
more for a larger loss, as described in Huberman et al. (1983). Mathematically,
it is equivalent to that the ceded loss function is increasing and Lipschitz contin-
uous. In addition, more constraints may be imposed on a reinsurance contract
in practice. For instance, Cummins and Mahul (2004) point out that the real-
world insurance and reinsurance markets typically impose limits on coverage.
For this reason, Zhou and Wu (2008) impose an upper limit on the reinsurer’s
expected loss over a prescribed level, while Cummins and Mahul (2004) and
Zhou et al. (2010) set an upper bound on ceded losses. It is worthwhile noting
that different constraints may lead to different optimal reinsurance policies as
discussed in Chi and Tan (2011). On the other hand, more constraints imposed
on a reinsurance contract may lead to more difficulties in solving the respective
optimal reinsurance problem.

Optimal control theory and calculus of variation are traditional approaches
for the study of optimal reinsurance. See e.g., Cummins and Mahul (2004),
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Gajek and Zagrodny (2004), Zhou and Wu (2008), Balbás et al. (2009), Zhou
et al. (2010), and references therein. However, these methods have two signif-
icant shortcomings. One is that they are inapplicable for certain monotonic
constraints on reinsurance contracts. The other is that they require objective
functions under consideration to be smooth. For instance, in Cummins and
Mahul (2004) the utility function is assumed to be twice differentiable. Thus,
the approaches in these papers can not be applied to optimal reinsurance prob-
lems under a general optimization criterion that is only known to preserve a
stochastic order. On the other hand, a stochastic dominance approach could be
applied to solve optimal reinsurance problems of this kind when the reinsurance
premium only depends on the actuarial value of the coverage. As demonstrated
inGollier and Schlesinger (1996), this approach not onlywidens the accessibility
of Arrow’s result to a large number of criteria but also sheds light on why the
deductible reinsurance is optimal for a risk-averse insurer.

In this paper, we study an optimal reinsurance problem from the perspective
of an insurer and under a general criterion that preserves the convex order. We
extend the studies of VanHeerwaarden et al. (1989) andGollier and Schlesinger
(1996) by imposing an upper limit on a reinsurer’s expected loss above a pre-
scribed level. In order to reduce the moral hazard, we follow Huberman et al.
(1983) to assume that both the insurer and the reinsurer are obligated to pay
more as the amount of loss increases in a typical reinsurance treaty. When the
reinsurance premium depends only on the actuarial value of the coverage, we
show via a stochastic dominance approach that any feasible reinsurance con-
tract is dominated by a stop-loss reinsurance or a two-layer reinsurance, de-
pending upon the level of the reinsurance premium. A surprising finding from
this research is that given a fixed reinsurance premium, the optimal reinsurance
policy is independent of the form of the criterion.Moreover, we obtain a similar
result to Mossin’s Theorem, and find that it is optimal for the insurer to cede a
loss as much as possible under the net premium principle. To further examine
the reinsurance premium for the optimal piecewise linear reinsurance policy, we
assume the expected value premium principle and derive the optimal reinsur-
ance explicitly under (1) the criterion of minimizing the variance of the insurer’s
risk exposure, and (2) the criterion of minimizing the risk-adjusted value of the
insurer’s liability where the liability valuation is carried out using the cost-of-
capital approach and the capital at risk is calculated by conditional value at risk.

The rest of the paper is organized as follows. In Section 2, we introduce the
reinsurance model and its optimization criterion. In Section 3, we show that
any admissible reinsurance policy is dominated by a stop-loss reinsurance or a
two-layer reinsurance depending on the amount of the reinsurance premium,
and obtain a similar result to Mossin’s Theorem. To illustrate the applicability
of the results established in Section 3, we assume the expected value premium
principle, and derive the optimal reinsurance policy explicitly under the crite-
rion of minimizing the variance of an insurer’s risk exposure in Section 4 and
the criterion of minimizing the risk-adjusted value of an insurer’s liability in
Section 5. Finally, some concluding remarks are given in Section 6.
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2. MATHEMATICAL DESCRIPTION OF A REINSURANCE MODEL

Suppose that X denotes the amount of loss an insurer faces over a given time
period. We assume X is a nonnegative random variable defined on a probability
space (�,F , P) with cumulative distribution function FX(x) = P(X ≤ x), x ≥
0. Insurability implies that the mean of the loss 0 < E[X] < ∞. An optimal
reinsurance problem concerns with an optimal partition of X into two parts:
f (X) and Rf (X), where f (X), satisfying 0 ≤ f (X) ≤ X, represents the portion
of the loss that is ceded to a reinsurer and Rf (X) = X− f (X) is the loss retained
by the insurer. The functions f (x) and Rf (x) are usually called the ceded and
retained loss functions, respectively. In order to reduce the moral hazard, we
assume that both the insurer and the reinsurer are obligated to pay more when
the amount of loss increases in a typical reinsurance treaty. In other words, both
f (x) and Rf (x) are increasing functions. As shown in Chi and Tan (2011), this
monotonic property is equivalent to

0 ≤ f (x2) − f (x1) ≤ x2 − x1, ∀ 0 ≤ x1 ≤ x2, (2.1)

and hence f (x) is Lipschitz continuous.

Similar to that in Zhou and Wu (2008), we assume the reinsurance premium is
a function of the net premium. More precisely, let π(·) represent a reinsurance
premium principle, then we have

π(Y) = h(E[Y]) for any nonnegative random variable Y,

where h(·) is a strictly increasing function with h(0) = 0 and h(y) ≥ y. If h(y) =
y, we recover the net premium principle. If h(y) = (1 + ρ)y for some positive
safety loading ρ, we recover the expected value premium principle. Further, let
Lf (X) be the net loss to the reinsurer. That is,

Lf (X) = f (X) − π( f (X)). (2.2)

Denote by Tf (X) the total risk exposure of the insurer, and it is easy to see

Tf (X) = Rf (X) + π( f (X)).

As mentioned earlier, the real-world insurance and reinsurance markets typi-
cally impose limits on coverage. Hence, we assume that in addition to reducing
the moral hazard, the ceded losses are subject to the reinsurer’s risk tolerance.
In particular, the reinsurer wants to restrict the risk exposure by imposing an
upper limit on its expected loss over a threshold. Mathematically, it may be
expressed as

E

[(
Lf (X) − L0

)
+
]

≤ ε (2.3)

for a threshold of L0 > 0 and an upper bound of ε ≥ 0, where (x)+ � max{x, 0}.
If ε ≥ E[(X − L0)+], the above constraint is redundant, and the problem has
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been analyzed in Van Heerwaarden et al. (1989). For this reason, we assume

0 ≤ ε < E[(X− L0)+].

When ε > 0, (2.3) coincides with the constraint in Zhou andWu (2008); if ε = 0,
it is equivalent to Lf (X) ≤ L0, a.s., which is assumed in Zhou et al. (2010). The
set of admissible ceded loss functions is now given by

C �
{
0 ≤ f (x) ≤ x : f satisfies constraints (2.1) and (2.3)

}
. (2.4)

The optimization criterion we are choosing is only based on the convex order.
Specifically, we let �(Y) be an objective function to optimize, and assume that
it preserves the convex order (cx), i.e.,

�(Y1) ≤ �(Y2), if Y1 ≤cx Y2,

where Y1 ≤cx Y2 if and only if

E[Y1] = E[Y2] and E[(Y1 − d)+] ≤ E[(Y2 − d)+], for any real number d.

(2.5)
For the convex order and its properties, see Shaked and Shanthikumar (2007).
We are seeking the optimal reinsurance scheme f such that

min
f∈C

�(Tf (X)). (2.6)

This criterion is very general, and many optimization criteria for reinsurance
models including themaximization of the expected utility of the terminal wealth
of a risk-averse insurer, theminimization of the variance of an insurer’s total risk
exposure, the minimization of the insurance premium, to name a few, are special
cases.

3. OPTIMAL REINSURANCE POLICIES

In this section, we investigate the optimization problem described in Section 2.
The optimal reinsurance scheme is identified using a stochastic dominance ap-
proach, and especially it is derived explicitly for the net premium principle.

To proceed, we define

dX(t) � inf {d ≥ 0 : E[(X− d)+] ≤ t} , t ≥ 0, (3.1)

where inf ∅ = ∞. Moreover, let

M � {0 ≤ μ ≤ E[X] : E[(X− (dX(ε) − L0 − h(μ))+)+] ≥ μ or w(μ) ≥ 0},
(3.2)

https://doi.org/10.1017/asb.2013.28 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2013.28


108 Y. CHI AND X.S. LIN

where

w(μ) �
∫ h(μ)+L0

0
SX(t)dt − μ + ε. (3.3)

Here, SX(t) � 1− FX(t). Also denote the layer of reinsurance loss Y between a
and b where 0 ≤ a < b as

L(a,b](Y) � min {(Y− a)+, b − a} = (Y− a)+ − (Y− b)+. (3.4)

In order to solve the optimal reinsurance problem (2.6), we need the following
lemma.

Lemma 3.1. For any 0 ≤ μ ≤ E[X], define a piecewise linear reinsurance policy

fμ(x) �
{

(x− dX(μ))+, E

[(
X− (dX(ε) − L0 − h(μ))+

)
+
]

≥ μ;
L(aμ,aμ+L0+h(μ)](x) + (x− dX(ε))+, otherwise,

(3.5)
where 0 ≤ aμ ≤ dX(ε) − L0 − h(μ) is determined by solving the equation

E[ fμ(X)] = μ. Then the following three conditions are equivalent:
(i) μ is a member of setM; (ii) fμ is well defined; and (iii) fμ is admissible, i.e.,
fμ ∈ C.

Proof. First, we show that μ ∈ M if and only if fμ(x) is well de-
fined, which is further equivalent to the existence of aμ. Specifically, if
E

[
(X− (dX(ε) − L0 − h(μ))+)+

]
< μ, (3.5) implies the existence of aμ is equiv-

alent to that equation

M(a) �
∫ a+h(μ)+L0

a
SX(t)dt − μ + ε = 0, 0 ≤ a ≤ dX(ε) − h(μ) − L0 (3.6)

has solutions. Obviously, M(a) is a decreasing function with

M (dX(ε) − h(μ) − L0) = E [(X− (dX(ε) − h(μ) − L0))+] − μ < 0.

Thus, equation (3.6) has solutions if and only if w(μ) = M(0) ≥ 0.
Next, if fμ ∈ C, the existence of fμ would imply μ ∈ M. On the other

hand, if μ ∈ M, the previous analysis implies that fμ is well defined and is an
increasing and Lipschitz continuous function. Thus, to show fμ ∈ C, it is only
necessary to prove that fμ(x) satisfies the constraint (2.3). The proof is divided
into three cases:

(i) If μ = 0, we have fμ(X) = 0, a.s. and obviously (2.3) is satisfied;
(ii) If E

[
(X− (dX(ε) − L0 − h(μ))+)+

] ≥ μ > 0, (3.1) implies

dX(μ) ≥ dX(ε) − L0 − h(μ).
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In this case, the definition of fμ(x) in (3.5) implies

E[( fμ(X) − h(μ) − L0)+] ≤ E[((X− (dX(ε) − L0 − h(μ)))+ − h(μ) − L0)+]

≤ E[(X− dX(ε))+] ≤ ε.

(iii) Otherwise, E
[
(X− (dX(ε) − L0 − h(μ))+)+

]
< μ. It follows from (3.5)

that
E[( fμ(X) − h(μ) − L0)+] = E[(X− dX(ε))+] ≤ ε.

Collecting all the above arguments yields that fμ ∈ C if and only if μ ∈ M.
The proof is finally complete. �

With the help of the above lemma, we obtain the main result of this paper in the
following theorem.

Theorem 3.1. For any admissible policy f ∈ C, let μ = E[ f (X)], then fμ exists
and the inequality

�(Tfμ(X)) ≤ �(Tf (X)) (3.7)

holds. As a result, we have

min
f∈C

�(Tf (X)) = min
μ∈M

�(Tfμ(X)). (3.8)

In other words, the optimal reinsurance policy is of the piecewise linear form de-
fined in (3.5).

Proof. For any ceded loss function f ∈ C with μ = E[ f (X)], define

xf � inf {x ≥ 0 : f (x) ≥ L0 + h(μ)} .

As 0 ≤ f (x) ≤ x, we know from the above definition that xf ≥ L0 + h(μ).
Recall that f (x) is increasing and Lipschitz continuous as stated in (2.1). We

can construct a ceded loss function

f1(x) �
{

(x− d0)+ + L0 + h(μ), x > xf ;
f (x), 0 ≤ x ≤ xf ,

where d0 ≥ xf is determined by E[ f1(X)] = μ. It follows from E[ f (X)] =
E[ f1(X)] = μ that

E[(Lf1(X) − L0)+] = E[(X− d0)+] = E[( f (X) − L0 − h(μ))+] ≤ ε, (3.9)

where Lf (X) is defined in (2.2) and the last inequality is implied by (2.3). We
thus have f1 ∈ C.

Building upon f1(x), we construct another ceded loss function

f2(x) � L(a, a+L0+h(μ)](x) + (x− d0)+, x ≥ 0,
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where a ∈ [0, xf − L0 − h(μ)] is determined by E[ f2(X)] = μ. It is easy to
see that f2 satisfies (2.1). Moreover, the definition of f2(x), together with (3.9),
implies

E[(Lf2(X) − L0)+] = E[(X− d0)+] ≤ ε.

Thus, we have f2 ∈ C.
Using (2.1) again, it is easy to see that Rf (x) up-crosses Rf1(x) and Rf1(x)

up-crosses Rf2(x).
1 Consequently, it follows from Lemma 3 in Ohlin (1969) that

Rf2(X) ≤cx Rf1(X) ≤cx Rf (X). (3.10)

We now proceed to show the existence of fμ and compare the reinsurance
scheme fμ with f2. The following analysis is divided into two cases:

(i) If E
[
(X− (dX(ε) − L0 − h(μ))+)+

] ≥ μ, we have fμ(x) = (x− dX(μ))+.
It is easy to see from (2.1) and Lemma 3 in Ohlin (1969) that Rfμ(X) ≤cx
Rf2(X).

(ii) Otherwise,E
[
(X− (dX(ε) − L0 − h(μ))+)+

]
< μ. Noting thatE[ f2(X)] =

μ, we have
a + L0 + h(μ) < dX(ε) ≤ d0,

where the last inequality is implied by (3.9). Therefore, for this case, fμ(x)
in (3.5) is well defined with a ≤ aμ ≤ dX(ε) − L0 − h(μ). Furthermore, it is
easy to see that Rf2(.) up-crosses Rfμ(.) such that Rfμ(X) ≤cx Rf2(X).

Collecting all the above arguments, together with Lemma 3.1 and (3.10), yields
μ ∈ M and

Tfμ(X) = Rfμ(X) + h(μ) ≤cx Tf (X).

Recall that �(.) preserves the convex order. Then we have (3.7). Furthermore,
using Lemma 3.1 again, we have { fμ : μ ∈ M} ⊂ C and hence (3.8) holds. The
proof is finally complete. �

Noting that the reinsurance premium is a function of the net premium, the above
result shows that under a fixed reinsurance premium, any feasible reinsurance
policy is dominated by a stop-loss reinsurance policy or a two-layer reinsurance
policy, depending upon the level of the reinsurance premium, and the optimal
reinsurance policy does not depend on the specific form of the objective func-
tion �. Since our criterion is more general than the maximization of the ex-
pected utility of the terminal wealth of a risk-averse insurer, we generalize the
results in Proposition 3 in Zhou andWu (2008) and Proposition 1 in Zhou et al.
(2010). Furthermore, our proof uses a constructive approach that providesmore
insights on why the piecewise linear reinsurance policy is optimal than the tradi-
tional methods such as the optimal control theory and the calculus of variation.

By the above theorem, the analysis of optimal reinsurance model (2.6) is simpli-
fied to solving an optimization problem of one variable in (3.8). Intuitively, the
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optimal fμ would rely on the specific form of the objective function �. Surpris-
ingly, we find that it is not the case under the net premium principle as in the
following proposition.

Proposition 3.1. When the reinsurance premium is calculated by the net premium
principle, i.e., h(x) = x, the optimal ceded loss function for the reinsurance model
(2.6) is given by

f ∗(x) =
{
x, E[X] ≥ dX(ε) − L0;
L(0, μ∗+L0](x) + (x− dX(ε))+, otherwise, (3.11)

where μ∗ is determined by E[ f ∗(X)] = μ∗.

Proof. Since h(x) = x, we have that E[(X − (dX(ε) − L0 − h(μ))+)+] ≥ μ is
equivalent to φ(dX(μ)) ≥ dX(ε) − L0, where

φ(d) � d +
∫ ∞

d
SX(t)dt, d ≥ 0.

It is easy to see that φ(d) is an increasing continuous function on R+. Thus, if
E[X] ≥ dX(ε) − L0, we have

φ(d) ≥ φ(0) = E[X] ≥ dX(ε) − L0, ∀d ≥ 0.

In this case, Lemma 3.1 implies fμ(x) = (x− dX(μ))+ for any 0 ≤ μ ≤ E[X].
Further, it follows from Lemma A.2 in Chi (2012) that

Tfμ(X) = L(0,dX(μ)](X) − E[L(0,dX(μ)](X)] + E[X]

is increasing of dX(μ) in the convex order. Recall that �(.) preserves the convex
order. Then it follows from (3.8) that f ∗(x) = x is a solution to the optimal
reinsurance problem (2.6) under the net premium principle.

If E[X] < dX(ε) − L0, for any dX(μ) ≥ dM where

dM � inf {d ≥ 0 : φ(d) ≥ dX(ε) − L0} ,

we have φ(dX(μ)) ≥ dX(ε) − L0. Then it follows from Lemma 3.1 that fμ(x) =
(x− dX(μ))+. Using a similar analysis, we have

�(TfμM(X)) ≤ �(Tfμ(X)), ∀0 ≤ μ ≤ μM,

where μM � E[(X − dM)+]. Consequently, the minimum of �(Tfμ(X)) would
appear on μ ≥ μM in this case.

Further, when μ > μM, we have E[(X− (dX(ε)−L0 −h(μ)))+] < μ. Hence,
if w(μ) ≥ 0 where w(μ) is defined in (3.3), Lemma 3.1 implies

fμ(x) = L(aμ,aμ+L0+μ](x) + (x− dX(ε))+
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and equality E[ fμ(X)] = μ leads to

∫ aμ+L0+μ

aμ

SX(t)dt = μ − ε. (3.12)

We demonstrate that Rfμ(X) − E[Rfμ(X)] is decreasing in the convex order.
Specifically, according to (2.5), it suffices to show that for any μ1 > μ2 > μM,

ψ(μ1, t) ≤ ψ(μ2, t), ∀t ∈ R (3.13)

holds true, where

ψ(μ, t) � E[(Rfμ(X) − E[Rfμ(X)] − t)+]

=

⎧⎪⎨
⎪⎩
0, t ≥ dX(ε) − L0 − E[X];∫ dX(ε)

t+E[X]+L0
SX(y)dy, aμ+μ − E[X] ≤ t < dX(ε)−L0−E[X];∫ ∞

t+E[X]−μ
SX(y)dy− μ, t < aμ + μ − E[X].

Taking the derivative of aμ with respect to μ in (3.12) yields

∂aμ

∂μ
= − FX(aμ + L0 + μ)

SX(aμ) − SX(aμ + L0 + μ)
, a.s.

Then aμ + μ is decreasing in μ. Thus, the proof of (3.13) can be divided into
three cases as follows.

(i) If t ≥ aμ2 + μ2 − E[X], we have ψ(μ1, t) − ψ(μ2, t) = 0;
(ii) If aμ1 + μ1 − E[X] ≤ t < aμ2 + μ2 − E[X], we have

ψ(μ1, t) − ψ(μ2, t) = −
∫ t+E[X]+L0

t+E[X]−μ2

SX(y)dy+ μ2 − ε

≤ −
∫ aμ2+μ2+L0

aμ2

SX(y)dy+ μ2 − ε = 0,

where the inequality is derived by the fact t < aμ2 +μ2 −E[X] and the last
equality is implied by (3.12);

(iii) If t < aμ1 + μ1 − E[X], we have

ψ(μ1, t) − ψ(μ2, t) =
∫ t+E[X]−μ2

t+E[X]−μ1

SX(y)dy− (μ1 − μ2) ≤ 0.

As a consequence, noting that Tfμ(X) = Rfμ(X) − E[Rfμ(X)] + E[X], we have
that the minimum of �(Tfμ(X)) is attainable at μ = μ∗, where

μ∗ = max{μM ≤ μ ≤ E[X] : w(μ) ≥ 0}.
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The remaining task is to show aμ∗ = 0. Since ∂aμ

∂μ
≤ 0, it suffices to prove that

equation
w(μ) = 0, μM ≤ μ ≤ E[X] (3.14)

has a solution. Specifically, since it is assumed that E[X] < dX(ε) − L0, then
we have w(E[X]) = − ∫ dX(ε)

E[X]+L0
SX(t)dt < 0. On the other hand, if dM < ∞, the

definition of dM implies

aμM = dX(μM) = dX(ε) − L0 − μM,

then w(μM) ≥ ∫ aμM+μM+L0

aμM
SX(t)dt + ε − μM = 0; otherwise, we have μM = 0

such that w(μM) > 0. Recall that w(μ) is a decreasing continuous function
for h(x) = x. Then equation (3.14) has solutions. The final result follows from
Theorem 3.1 and the proof is complete. �

Note that the condition E[X] ≥ dX(ε) − L0 is equivalent to

E
[
(X− E[X] − L0)+

] ≤ ε.

Hence, under this condition, the full reinsurance is feasible. By the above propo-
sition, the optimal reinsurance strategy for the insurer is to cede the full loss to
the reinsurer under the net premium principle, which is consistent withMossin’s
Theorem (Mossin, 1968). Further, if the full reinsurance becomes inadmissible,
the above proposition shows that it remains optimal for the insurer to cede a
loss as much as possible. As a by-product, the above proof provides an example
to illustrate that fμ may be nonexistent for some 0 ≤ μ ≤ E[X]. Specifically, if
E[X] < dX(ε) − L0, noting that μ∗ = sup {0 ≤ μ ≤ E[X] : μ ∈ M} < E[X], fμ
is not well defined for any μ∗ < μ ≤ E[X] according to Lemma 3.1.

It is obvious that μ∗ is a function of the threshold L0 and the upper bound
ε. It is interesting to carry out sensitivity analysis to explore the effect of these
two factors on the optimal reinsurance scheme.

Proposition 3.2. μ∗ is strictly increasing and concave in both L0 and ε.

Proof. If E[X] < dX(ε) − L0, noting that E[ f ∗(X)] = μ∗ in Proposition 3.1, we
have ∫ μ∗+L0

0
SX(t)dt = μ∗ − ε.

Taking the derivatives of μ∗ with respect to L0 and ε yields

∂μ∗

∂L0
= 1

FX(μ∗ + L0)
− 1 > 0, a.s. and

∂μ∗

∂ε
= 1

FX(μ∗ + L0)
> 1, a.s.

Moreover, it follows from the above equation that both ∂μ∗
∂L0

and ∂μ∗
∂ε

are
decreasing in L0 and ε respectively, and hence μ∗ is concave in L0 and ε. The
proof is thus complete. �
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FromProposition 3.1, we have a clear picture on the optimal reinsurance scheme
under the net premium principle. Generally speaking, the insurer will cede a
loss as much as possible. The above proposition further indicates that when the
reinsurer increases its risk tolerance, i.e., increasing the value of L0 or ε, for the
expected tail loss, the insurer would cede more loss. However, when we move
away from the net premium principle, the specification of the optimization cri-
terion is needed. In the next two sections, we discuss two risk measure-based
criteria when the expected value premium principle is considered.

4. MINIMAL VARIANCE CRITERION

Theorem 3.1 shows that any feasible reinsurance policy is suboptimal to a piece-
wise linear reinsurance policy that is in the form of stop-loss or two-layer de-
pending upon the level of the reinsurance premium. In this and next sections,
we further derive the optimal piecewise linear reinsurance policy under some
specific form of the objective function.

The criterion under consideration in this section is to minimize the variance
of an insurer’s risk exposure, as variance is a commonly used risk measure in
insurance to quantify the fluctuation risk. This criterion has been considered in
several papers on optimal reinsurance models. See Borch (1960) and Kaluszka
(2001) for example. We assume that the reinsurance premium is calculated by
the expected value principle, i.e., h(x) = (1 + ρ)x, where ρ > 0 is the relative
safety loading. Hence, the optimal reinsurance problem (2.6) has the objective
function

�(Y) = var(Y),

where var(Y) is the variance of the loss Y. We have the following result.

Proposition 4.1. Under the criterion of minimizing the variance of an insurer’s
risk exposure, when the reinsurance premium is calculated by the expected value
principle, the optimal ceded loss function for the reinsurance model (2.6) is given
by

f ∗(x) =
{
x, (1 + ρ)E[X] + L0 ≥ dX(ε);
L(0,(1+ρ)μ̃+L0](x) + (x− dX(ε))+, otherwise,

(4.1)
where

μ̃ � max
{
0 ≤ μ ≤ E[X] : E[L(0,(1+ρ)μ+L0](X)] = μ − ε

}
. (4.2)

Proof. It is easy to see that

E[(X− (dX(ε) − L0 − (1 + ρ)μ))+] ≥ μ if and only if ν(dX(μ)) ≥ 0 (4.3)
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for any 0 ≤ μ ≤ E[X], where

ν(d) � d + (1 + ρ)

∫ ∞

d
SX(t)dt + L0 − dX(ε), d ≥ 0. (4.4)

If ν(0) ≥ 0, i.e., (1+ρ)E[X]+L0 ≥ dX(ε), then Lemma 3.1 implies that f (x) = x
is a feasible ceded loss function, and we have Tf (X) = (1 + ρ)E[X] such that
var(Tf (X)) = 0. Consequently, f (x) = x is the optimal ceded loss function in
this case.

If ν(0) < 0, when dX(ε) < ∞, it is easy to see that equation

ν(d) = 0, 0 ≤ d < ∞ (4.5)

has a unique solution dν as ν(d) is a convex function. For dX(ε) = ∞, we let
dν = ∞. Thus, we have ν(d) > 0 for d > dν and ν(d) < 0 for d < dν . Hence,
for any 0 ≤ μ ≤ E[(X − dν)+], we have ν(dX(μ)) ≥ 0 and Lemma 3.1 implies
fμ(x) = (x− dX(μ))+. In this case, we obtain

var(Tfμ(X)) = var
(L(0,dX(μ)](X) − E[L(0,dX(μ)](X)]

)
.

Since the variance preserves the convex order, it follows from LemmaA.2 in Chi
(2012) that

var(Tfμ(X)) ≥ var(TfE[(X−dν )+ ](X)).

On the other hand, if E[(X−dν)+] ≤ μ ≤ E[X], it follows from Lemma 3.1 that

fμ(x) = L(aμ,aμ+(1+ρ)μ+L0](x) + (x− dX(ε))+, if w(μ) ≥ 0, (4.6)

where w(μ) is given in (3.3) and 0 ≤ aμ ≤ dX(ε) − (1+ ρ)μ − L0 is determined
by ∫ aμ+(1+ρ)μ+L0

aμ

SX(t)dt − μ + ε = 0. (4.7)

Simple calculation leads to

∂aμ

∂μ
= (1 + ρ)SX(aμ + (1 + ρ)μ + L0) − 1

SX(aμ) − SX(aμ + (1 + ρ)μ + L0)
, a.s. (4.8)

and

P(Rfμ(X) > t) =
⎧⎨
⎩
0, t ≥ dX(ε) − (1 + ρ)μ − L0;
SX((1 + ρ)μ + L0 + t), aμ ≤ t < dX(ε)−(1+ρ)μ − L0;
SX(t), t < aμ.
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Further, it is well known thatE[X2] = 2
∫ ∞
0 tSX(t)dt andE[Rfμ(X)] = E[X]−μ.

Then we have

∂var(Tfμ(X))

∂μ
= −2aμ − 2(1 + ρ)

∫ dX(ε)

aμ+(1+ρ)μ+L0

SX(t)dt + 2(E[X] − μ)

= −2
∫ aμ

0
FX(t)dt − 2ρ

∫ dX(ε)

aμ+(1+ρ)μ+L0

SX(t)dt ≤ 0, a.s.

where the second equality is obtained by (4.7). Consequently, if ν(0) < 0, the
optimal ceded loss function is fμ̂(x) in the form of (4.6), where

μ̂ � max
{
μ ∈

[
E[(X− dν)+], E[X]

]
: w(μ) ≥ 0

}
.

Finally, it is easy to see that w(μ) for h(x) = (1+ρ)x is a concave function with

w(E[X]) < 0 and w(E[(X−dv)+]) ≥
∫ dX(ε)

dv

SX(t)dt−E[(X−dv)+]+ε = 0.

Thus, μ̃ defined in (4.2) exists and μ̂ = μ̃ and the proof is complete. �

The above proposition shows that the optimal reinsurance policy under themin-
imal variance criterion is similar to that in Proposition 3.1. Specifically, if the
full reinsurance is admissible, then the optimal strategy for an insurer is to cede
the full loss; otherwise, the insurer cedes the loss as much as possible.

In the following, we present an example in which we consider two loss distri-
butions with the samemean and variance: one is a Pareto and hence heavy tailed
and the other is a Gamma and light tailed. We identify the optimal reinsurance
policy for each distribution and examine the impact of the tail heaviness on the
optimal policy.

Example 4.1. Suppose that the threshold L0 = 20 and the relative safety loading
ρ = 10%.

(i) Let a loss random variable X follow a Pareto distribution with probability
density function

p1(x) = 3 × 106

(x+ 100)4
, x > 0. (4.9)

Then we have

SX(t) = 106/(t + 100)3, E[X] = 50, var(X) = 7500

and dX(μ) = 103√
2μ

− 100, ∀0 < μ ≤ 50.

The following analysis is divided into two cases: the upper bound ε = 0 and
ε = 10.
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• If ε = 0, we have (1+ρ)E[X]+L0−dX(ε) = −∞. By solving the equation

E
[L(0, (1+ρ)μ+L0](X)

] = μ, 0 ≤ μ ≤ E[X],

we have μ̃ = 28.01.
• If ε = 10, we have (1+ ρ)E[X]+ L0 − dX(ε) = 175 − 103/

√
2ε < 0. By

solving the equation

0 =
∫ (1+ρ)μ+L0

0
SX(t)dt + ε − μ, ε ≤ μ ≤ E[X], (4.10)

we have μ̃ = 41.86.
Consequently, Proposition 4.1 implies that the optimal reinsurance scheme un-
der the criterion of minimizing the variance of an insurer’s risk exposure is given
by

f ∗(x) =
{L(0, 50.81](x), ε = 0;
L(0, 66.05](x) + (x− 123.61)+, ε = 10.

(ii) If the loss X follows a Gamma distribution with probability density function

p2(x) = 1

150
1
3 �( 13 )

x− 2
3 e− x

150 , x > 0, (4.11)

where �(t) �
∫ ∞
0 xt−1e−xdx, t ≥ 0, then it has both the same mean and vari-

ance as that of the Pareto distribution given in (4.9). While SX(t) and dX(μ)

have no explicit expressions under the Gamma distribution, they can be calcu-
lated numerically via the function

Ga,b(t) =
∫ t

0

1
ba�(a)

xa−1e−x/bdx, t ≥ 0 (4.12)

for a > 0, b > 0, and many softwares such as Excel and Matlab have package
for Ga,b(t). In particular, we have SX(t) = 1 − G 1

3 ,150(t) and

E[(X− t)+] =
∫ ∞

t
(y− t)p2(y)dy = 50

(
1 − G 4

3 ,150(t)
)

− t
(
1 − G 1

3 ,150(t)
)

(4.13)
for t ≥ 0.

• If ε = 0, we have dX(ε) = ∞ such that (1 + ρ)E[X] + L0 − dX(ε) < 0.
By solving the equation

μ =
∫ (1+ρ)μ+L0

0
SX(t)dt

= 50 × G 4
3 ,150((1 + ρ)μ + L0) + ((1 + ρ)μ + L0)

×
(
1 − G 1

3 ,150((1 + ρ)μ + L0)
)
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for 0 ≤ μ ≤ E[X], we have μ̃ = 19.68.
• If ε = 10, we have dX(ε) = 161.33 by solving ε = E[(X− dX(ε))+] with
the help of (4.13). Then (1 + ρ)E[X] + L0 − dX(ε) = 75 − dX(ε) < 0.
Similarly, solving equation (4.10) numerically, we have μ̃ = 34.24.

As a consequence, Proposition 4.1 implies that the optimal reinsurance
scheme under the criterion of minimizing the variance of an insurer’s risk
exposure is given by

f ∗(x) =
{L(0, 41.65](x), ε = 0;
L(0, 57.66](x) + (x− 161.33)+, ε = 10.

From the above numerical results, we find that when ε = 0, it is optimal for an in-
surer to cede all the loss with an upper limit. Moreover, when the loss distribution
changes from the light tailed to the heavy tailed, the coverage limit increases by
more than 20% and from 41.65 to 50.81. On the other hand, when ε = 10, it is op-
timal for the insurer to retain a layer of loss with the retention larger than the mean
of loss for both loss distributions. Moreover, when the Gamma loss distribution is
changed to the Pareto distribution, the layer is compressed and the insurer would
retain less loss. Consequently, we can conclude that the optimal reinsurance policy
is sensitive to the tail of a loss distribution and to the reinsurer’s risk tolerance.

In this section, we study optimal reinsurance problem (2.6) under the criterion
of minimizing the variance of an insurer’s risk exposure. However, in practice,
an insurer often tries to not only reduce the risk exposure but also to seek the
higher profit. Therefore, the insurer may want to make a trade-off between the
loss it cedes and the premium it would like to pay. For this reason, the criterion
of only minimizing the variance of risk exposure might not be most desirable.
In the next section, we will study this optimal reinsurance problem using an
alternative but interesting criterion.

5. MINIMIZATION OF RISK-ADJUSTED LIABILITY

Recently, the cost-of-capital approach was introduced by the Swiss insurance
supervisor(see Swiss Federal Office of Private Insurance (2006)) to assess an
insurer’s liability. Under such an approach, the risk-adjusted value of the in-
surer’s liability, which is also known as a market-consistent price of liability, is
composed of two parts: best estimate and risk margin. The best estimate is rep-
resented by the expected liability, E[Tf (X)], and the insurer is required to hold
additional capital to partly cover the unexpected loss, Tf (X) − E[Tf (X)], the
difference between the risk and its expectation. The unexpected loss is usually
quantified by the value at risk (VaR) or the conditional VaR (CVaR) . VaR and
CVaR can be defined formally as follows:
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Definition 5.1. The VaR of a random variable Z at a confidence level 1− α where
0 < α < 1 is defined as

VaRα(Z) � inf{z ∈ R : P(Z> z) ≤ α}. (5.1)

Based upon the definition of VaR, CVaR of Zat a confidence level 1−α is defined
as

CVaRα(Z) � 1
α

∫ α

0
VaRs(Z)ds. (5.2)

From the above definition of VaRα(Z), we have

VaRα(Z) ≤ z if and only if SZ(z) ≤ α (5.3)

for any z ∈ R. Moreover, for any increasing continuous function H(x), we have
(see theorem 1 in Dhaene et al. (2002))

VaRα(H(Z)) = H(VaRα(Z)). (5.4)

It is well known that VaR is not a coherent risk measure as it fails to satisfy the
sub-additive condition.On the other hand, CVaR is a coherent riskmeasure and
hence is widely used in industry. We refer to Artzner et al. (1999) and Föllmer
and Schied (2004) for more detailed discussions on the properties of VaR and
CVaR.

Due to the nice properties of CVaR, it is employed to calculate the capital at
risk in this paper, i.e.,

CVaRα

(
Tf (X) − E[Tf (X)]

)
.

In practice, the return from a capital investment is much smaller than that re-
quired for shareholders. We denote by δ ∈ (0, 1) the return difference, which is
known as the cost-of-capital rate. The risk margin is now set to be the product
of the cost-of-capital rate and the capital at risk. Consequently, using L f (X) to
denote the risk-adjusted value of the insurer’s liability, we have

L f (X) = E[Tf (X)] + δ × CVaRα

(
Tf (X) − E[Tf (X)]

)
. (5.5)

The optimal reinsurance model in this section is now formulated by

min
f∈C

L f (X). (5.6)

It is worthwhile noting that Chi (2012) similarly studies this optimal reinsurance
problem except that his discussion does not take into account the reinsurer’s risk
constraint.

Proposition 5.1. When the reinsurance premium is calculated by the expected
value principle, the optimal ceded loss function for the reinsurance model (5.6)
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is given by

f ∗(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if α ≥ δ
δ+ρ

;(
x− VaR δ

δ+ρ
(X)

)
+

, if α < δ
δ+ρ

and ν
(
VaR δ

δ+ρ
(X)

)
≥ 0;(

x− d+
ν

)
+ , if α < δ

δ+ρ
, ν

(
VaR δ

δ+ρ
(X)

)
< 0

and dX(ε) ≤ VaRα(X),

(5.7)
where ν(d) is defined in (4.4) and

d+
ν � sup

{
d ≥ VaR δ

δ+ρ
(X) : ν(d) ≤ 0

}
. (5.8)

Proof.As pointed out in Föllmer and Schied (2004), CVaR preserves the convex
order. Then Theorem 3.1, together with theorem 6.1 in Van Heerwaarden et al.
(1989), implies

min
μ∈M

L fμ(X) = min
f∈C

L f (X) ≥ min
d≥0

L(x−d)+(X), (5.9)

whereM and fμ(x) are given in (3.2) and (3.5), respectively.
For any 0 ≤ d ≤ VaRα(X), it follows from (5.4) that

CVaRα((X− d)+) = 1
α

∫ α

0
(VaRs(X) − d)+ds = CVaRα(X) − d.

On the other hand, for any d > VaRα(X), we have

CVaRα((X− d)+) = 1
α

∫ 1

0
(VaRs(X) − d)+ds = 1

α
E[(X− d)+],

where the last equality is derived using the fact that X and VaRU(X) have the
same distribution. Here, U is the uniform random variable on (0, 1). Conse-
quently, we get

L(x−d)+ (X) − (1 − δ)E[X] =
{

δd + (ρ + δ)
∫ ∞
d SX(t)dt, 0 ≤ d ≤ VaRα(X);

δCVaRα(X) + (ρ + δ − δ
α
)
∫ ∞
d SX(t)dt, d > VaRα(X).

(5.10)

If α ≥ δ
δ+ρ

, it follows from the above equation that L(x−d)+(X) is decreasing in
d for d ≥ VaRα(X). Moreover, for 0 ≤ d < VaRα(X), we have

∂L(x−d)+(X)

∂d
= (δ + ρ)

(
δ

δ + ρ
− SX(d)

)
≤ (δ + ρ)

(
δ

δ + ρ
− α

)
≤ 0, a.s.

(5.11)
where the first inequality is derived by (5.3). In this case, as 0 ∈ C, (5.9) implies
that f (x) = 0 is a solution to the optimal reinsurance model (5.6).
If α < δ

δ+ρ
, a similar analysis leads to

L(x−d)+(X) ≥ L(x−VaR δ
δ+ρ

(X))+(X), ∀d ≥ 0.
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The following analysis is divided into two cases:

(i) If ν(VaR δ
δ+ρ

(X)) ≥ 0, Lemma 3.1 together with (4.3) implies (x −
VaR δ

δ+ρ
(X))+ ∈ C, then it follows from (5.9) that f (x) = (x−VaR δ

δ+ρ
(X))+

is the optimal ceded loss function in this case.
(ii) If

ν(VaR δ
δ+ρ

(X)) < 0 and dX(ε) ≤ VaRα(X),

noting that ν(d) defined in (4.4) is a convex function with ν(∞) = ∞, we
have ν(d+

v ) = 0 and

ν(d)

{≤ 0, d−
v ≤ d ≤ d+

v ;
> 0, otherwise,

where
d−

v � inf
{
0 ≤ d ≤ VaR δ

δ+ρ
(X) : ν(d) ≤ 0

}
. (5.12)

In this case, Lemma 3.1 and (4.3) imply

fμ(x) = (x− dX(μ))+, ∀μ > E[(X− d−
ν )+] or μ ≤ E[(X− d+

ν )+].

As d−
ν ≤ VaR δ

δ+ρ
(X) < d+

ν , it follows from (5.10) and (5.11) that L fμ(X) ≥
L f

E[(X−d−
ν )+ ]

(X) for any μ ≥ E[(X − d−
ν )+] and minμ≤E[(X−d+

ν )+] L fμ(X) =
L f

E[(X−d+
ν )+ ]

(X). Consequently, the minimum value of L fμ(X) must appear

on
[
E[(X− d+

ν )+], E[(X− d−
ν )+]

]
.

Further, for μ ∈ M and ν(dX(μ)) ≤ 0, fμ(x) is given in (4.6) where aμ +
(1 + ρ)μ + L0 ≤ dX(ε) ≤ VaRα(X), then simple calculation leads to

L fμ(X) − (1 − δ)E[X] = δCVaRα(X) + (ρ + δ)μ − δCVaRα( fμ(X))

= δdX(ε) − δL0 + ρ(1 − δ)μ,

which is increasing in μ. Thus, the minimum of L fμ(X) is attainable at
μ = E[(X − d+

ν )+]. As a consequence, f (x) = (x − d+
ν )+ is a solution to

optimal reinsurance model (5.6) in this case.

�

We now proceed to study the optimal reinsurance model (5.6) for the case:

α < δ/(δ + ρ), ν
(
VaR δ

δ+ρ
(X)

)
< 0 and VaRα(X) < dX(ε). (5.13)

Using a similar proof to that of Proposition 5.1, we have

min
f∈C

L f (X) = min
E[(X−d+

v )+ ]≤μ≤E[(X−d−
v )+ ]

μ∈M

L fμ(X), (5.14)
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where fμ(x) is given in (4.6) and d+
v and d−

v are defined in (5.8) and (5.12) respec-

tively. Further, for μ ∈ M ∩
[
E[(X− d+

v )+], E[(X− d−
v )+]

]
, simple calculation

leads to

L fμ (X) − (1 − δ)E[X] (5.15)

= δCVaRα(X) + (ρ + δ)μ − δCVaRα( fμ(X))

=

⎧⎪⎨
⎪⎩

δCVaRα(min{X, dX(ε)}) − δL0 + ρ(1 − δ)μ, aμ + (1 + ρ)μ + L0 ≤ VaRα(X);
δCVaRα(X) + (ρ + δ − δ

α
)μ, aμ ≥ VaRα(X);

δ
α

E[X] + (ρ + δ − δ
α
)μ + δ

(
aμ − ∫ aμ

0 SX(t)dt/α
)

, aμ < VaRα(X) < aμ + (1 + ρ)μ + L0.

It is easy to see from the above equation that L fμ(X) increases in μ for aμ +
(1 + ρ)μ + L0 ≤ VaRα(X) and decreases in μ for aμ ≥ VaRα(X) under the
assumption (5.13). However, it is unclear for aμ < VaRα(X) < aμ + (1+ρ)μ+
L0. Thus, it seems impossible to derive the optimal reinsurance explicitly for this
case, and we resort to numerical analysis in the following example.

Example 5.1. In addition to the assumptions in Example 4.1, we further assume

δ = 6% and α = 5%,

then we have α < δ
δ+ρ

. In this example, we investigate the optimal reinsurance
problem (5.6) when a loss X follows a heavy-tailed distribution or a light-tailed
distribution.

(i) Let the loss X follow a Pareto distribution with probability density function
(4.9). Then we have

VaRα(X) = 100/ 3
√

α − 100 = 171.44, dX(ε) = 103/
√
2ε − 100

and ν(d) in (4.4) can be rewritten as

ν(d) = d + 55 × 104/(100 + d)2 − 103/
√
2ε + 120.

We analyze the optimal reinsurance policies for two cases: ε = 10 and ε = 0.
• If ε = 0, we have dX(ε) = ∞ > VaRα(X) and ν(d) < 0 for any 0 ≤ d <

∞, then 0 = d−
v < d+

v = ∞ and (5.13) is satisfied. By (4.3),μ ∈ M if and
only if

∫ (1+ρ)μ+L0

0 SX(t)dt ≥ μ − ε, which is equivalent to 0 ≤ μ ≤ 28.01.
Thus, (5.14) implies that it is only necessary to investigate the optimal
fμ(x) in (4.6) over [0, 28.01]. Further, for each μ ∈ [0, 28.01], we could
derive the aμ numerically from (4.7). Consequently, we have⎧⎨

⎩
aμ + (1 + ρ)μ + L0 ≤ VaRα(X), μ ≥ 1.2;
aμ > VaRα(X), μ < 0.95;
aμ ≤ VaRα(X) < aμ + (1 + ρ)μ + L0, otherwise

and the minimum of L fμ(X) is attainable at μ = 1.18 and aμ = 151.95.
Thus, the optimal ceded loss function for the reinsurance model (5.6) is
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given by
f ∗(x) = L(151.95, 173.25](x).

• If ε = 10, we have dX(ε) = 123.61 < VaRα(X) and ν(VaR δ
δ+ρ

(X)) =
−36.33 < 0. Further, it follows from (5.8) that d+

v = 88.05. In this case,
Proposition 5.1 implies that the optimal ceded loss function for the rein-
surance model (5.6) is given by

f ∗(x) = (x− 88.05)+.

(ii) Let the loss X follow a Gamma distribution with probability density function
(4.11). Using the function Ga,b(x) in (4.12), we have

VaRα(X) = 220.99 and VaR δ
δ+ρ

(X) = 30.18.

• If ε = 0, we have dX(ε) = ∞ such that ν(d) < 0 for any 0 ≤ d < ∞,
then (5.13) is satisfied and 0 = d−

v < d+
v = ∞. Similarly, we can show

that M = [0, 19.68]. Further, for any μ ∈ [0, 19.68], we can derive aμ

numerically using (4.7). Consequently, we have⎧⎨
⎩
aμ + (1 + ρ)μ + L0 ≤ VaRα(X), μ ≥ 1.17;
aμ > VaRα(X), μ < 0.97;
aμ ≤ VaRα(X) < aμ + (1 + ρ)μ + L0, otherwise

and the minimum of L fμ(X) is attainable at μ = 1.15 and aμ = 201.68.
Thus, the optimal ceded loss function is given by

f ∗(x) = L(201.68, 222.94](x).

• If ε = 10, we have dX(ε) = 161.32 < VaRα(X) and ν(d) in (4.4) can be
rewritten by

ν(d) = d + 1.1 × E[(X− d)+] − 141.32,

where E[(X − d)+] is given in (4.13). Consequently, we have
ν(VaR δ

δ+ρ
(X)) = −73.45 < 0 and d+

v = 126.4 according to (5.8).
In this case, it follows from Proposition 5.1 that the solution to the
optimal reinsurance model (5.6) is given by

f ∗(x) = (x− 126.4)+.

In summary, when the upper bound ε is set to be 10, the stop-loss reinsurance is
optimal under the reinsurance model (5.6) in contrast to the optimality of two-
layer reinsurance under the minimal variance criterion. Further, in this case, the
insurer would cede more risk for a Pareto loss distribution than for a Gamma loss
distribution even though both loss distributions have the same mean and variance.
On the other hand, when ε = 0, the numerical result shows that the insurer would
cede a higher layer for the Gamma distribution than for the Pareto distribution.
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For these reasons, we could say that the loss tail heaviness plays an important role
in optimal reinsurance design for an insurer.

6. CONCLUDING REMARKS

In this paper, we consider an optimal reinsurance problem under a criterion
that preserves the convex order, when the reinsurance premium is a function of
the net premium and the ceded loss is subject to the restriction that reduces the
moral hazard and to an upper limit on the reinsurer’s expected tail loss.We show
via a stochastic dominance approach that any feasible reinsurance contract is
dominated by a stop-loss policy or a two-layer reinsurance policy, depending
upon the amount of reinsurance premium. Themain contributions of this paper
are three-fold. First, we extend Arrow’s result in Zhou andWu (2008) and Zhou
et al. (2010) to a broader class of criteria including minimizing the variance and
the risk-adjusted value of the insurer’s liability, and intuitively explain why the
piecewise linear reinsurance policy is optimal. Second, we complement the study
of optimal reinsurance problems in Van Heerwaarden et al. (1989) and Gollier
and Schlesinger (1996) by showing that the stochastic dominance approach re-
mains powerful even when an upper limit of the reinsurer’s expected tail loss is
imposed. Third, we obtain a generalizedMossin’s Theorem and study the effect
of the reinsurer’s risk constraint on the optimal reinsurance design under the
net premium principle.

We recognize the shortcomings that the optimal reinsurance model in this
paper assumes a specific reinsurance premium principle and the reinsurer’s risk
constraint is in the formof the expected tail loss.We intend to extend ourwork in
this paper to incorporate other premiumprinciples and other types of reinsurer’s
risk constraints in future research.
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NOTE

1. An increasing function g1(x) is said to up-cross an increasing function g2(x), if there exists
an x0 ∈ R such that {

g1(x) ≤ g2(x), x < x0;
g1(x) ≥ g2(x), x > x0.
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