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We prove that a class of A-stable symplectic Runge–Kutta time semi-discretizations
(including the Gauss–Legendre methods) applied to a class of semilinear Hamiltonian
partial differential equations (PDEs) that are well posed on spaces of analytic
functions with analytic initial data can be embedded into a modified Hamiltonian
flow up to an exponentially small error. Consequently, such time semi-discretizations
conserve the modified Hamiltonian up to an exponentially small error. The modified
Hamiltonian is O(hp)-close to the original energy, where p is the order of the method
and h is the time-step size. Examples of such systems are the semilinear wave
equation, and the nonlinear Schrödinger equation with analytic nonlinearity and
periodic boundary conditions. Standard Hamiltonian interpolation results do not
apply here because of the occurrence of unbounded operators in the construction of
the modified vector field. This loss of regularity in the construction can be taken care
of by projecting the PDE to a subspace in which the operators occurring in the
evolution equation are bounded, and by coupling the number of excited modes and
the number of terms in the expansion of the modified vector field with the step size.
This way we obtain exponential estimates of the form O(exp(−c/h1/(1+q))) with
c > 0 and q � 0; for the semilinear wave equation, q = 1, and for the nonlinear
Schrödinger equation, q = 2. We give an example which shows that analyticity of the
initial data is necessary to obtain exponential estimates.
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1. Introduction

Neishtadt [23] showed that a system of ordinary differential equations (ODEs) with
a rapidly rotating phase of period ε can be transformed into a system of ODEs for
the slow variables and a scalar ODE for the fast phase, both of which are, up to a
small error, independent of the fast phase variable.
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When the vector field is analytic in the slow coordinates the procedure can be
carried out up to an exponentially small remainder of magnitude O(e−c/ε) for some
c > 0. The result is proved by applying N near-identity transformations, each of
which reduces the error by one order in ε, carefully estimating the remainders and
concluding that the embedding is optimal when N = O(1/ε). For rapidly forced
Hamiltonian ODEs this implies approximate conservation of the Hamiltonian of the
truncated slow system in the new coordinates with an error of order O(e−c/ε) over
times of length O(1) and, in particular, approximate conservation of the averaged
Hamiltonian of the original slow system with error O(ε) over exponentially long
times provided that the trajectory of the system remains bounded.

An O(ε)-close-to-identity analytic map ψε on a finite-dimensional space Rn is
the time-ε map of a rapidly forced analytic vector field, where ε is the period of the
forcing. Neishtadt’s result therefore applies and shows that ψε can be embedded
into the flow of a system of autonomous ODEs up to an exponentially small error.
When ψε is symplectic, this flow is also symplectic. This proves that the iterates of
ψε approximately conserve the energy of this flow over exponentially long times so
long as they remain bounded.

Benettin and Giorgilli [1] give an alternative proof of this embedding result by
matching a Taylor expansion of a diffeomorphism ψε with the formal power series
expansion of the flow of an ε-dependent vector field f̃(x), called a modified vector
field [13,17], truncating at some order N , where, as before, the embedding is optimal
when N = O(1/ε).

In particular, if the diffeomorphism ψε is a one-step discretization of order p with
step size h = ε of an ODE ẋ = f(x), then ψε can be approximately embedded into
the flow of a modified vector field f̃ that satisfies ‖f − f̃‖ = O(hp). If the ODE is
Hamiltonian with energy H and ψε is symplectic, then the modified vector field is
also Hamiltonian with energy H̃ and |H − H̃| = O(hp). This implies approximate
conservation of the energy H of the original system by the symplectic time-stepping
method ψε over exponentially long times provided the numerical trajectory remains
bounded. This strategy has been used to prove approximate energy conservation
of many classes of symplectic numerical methods, in particular symplectic Runge–
Kutta discretizations (see [13,17,29] and the references therein).

The question arises as to whether (and to what extent) these results extend to
partial differential equations (PDEs). Here, the phase space is typically an infinite-
dimensional Hilbert space, and the vector field contains unbounded operators, usu-
ally in the form of spatial derivatives. These unbounded operators propagate into
the transformed vector field of Neishtadt [23] and into the formal series expansion
of the modified vector field of Benettin and Giorgilli [1].

Note that the analytic difficulties persist when analysing full space-time dis-
cretizations of the problem. When discretizing space, unbounded operators turn
into a sequence of bounded operators whose operator norms diverge as the spatial
resolution increases. Consequently, the constant c in the exponential error esti-
mate O(e−c/ε) tends to 0 with increasing spatial resolution, so that the approx-
imate embedding result for general initial data without the requirement of high
regularity fails unless ε is coupled to the spatial step size in a suitable way. This
leads to severe restrictions on the time-step size. In the case of hyperbolic prob-
lems such as semilinear wave equations, the naive approach fails for step-size ratios
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close to the Courant–Friedrichs–Lewy (CFL) limit, i.e. in the practically relevant
regime.

Matthies and Scheel [21] consider semilinear Hamiltonian PDEs coupled to a
high-frequency oscillator via a nonlinearity that is bounded on the underlying
Hilbert space. They prove that Neishtadt’s result of an approximate embedding
into a flow where the slow variables are decoupled from the fast oscillator is still
true, albeit with an error O(exp(−c/h1/(q+1))) under the condition that the initial
data are in a Gevrey class associated with the evolution equation. For the semilinear
wave or nonlinear Schrödinger equation, this amounts to requiring real analyticity
of the initial data. The positive constants q and c in the error estimate depend on
the Gevrey class associated with the evolution equation. Matthies proves a similar
result for rapidly forced parabolic PDEs [19] and an approximate embedding result
for space-time discretizations of parabolic PDEs [20]. Matthies and Scheel [21] also
provide an example showing that Gevrey-regular initial data are necessary. The
conclusion is that exponential averaging still works in this context, but long-time
approximate conservation of the averaged energy might fail because solutions of
Hamiltonian evolution equations are not generally Gevrey regular over long times.

The aim of this paper is to prove a similar result for time semi-discretizations
of PDEs. Note that, while formally a time discretization of a PDE can be embed-
ded into the flow of a rapidly forced evolution equation via the construction of
Fiedler and Scheurle [11, § 2], the rapidly forced nonlinear term in the interpolating
evolution equation is not bounded, so the results of [21] do not apply.

Runge–Kutta time semi-discretizations of semilinear Hamiltonian PDEs are only
well defined if the method is implicit; explicit or partially implicit Runge–Kutta
time semi-discretizations such as partitioned Runge–Kutta methods, the simplest
of which are the leapfrog and symplectic Euler schemes, cannot satisfy the CFL
condition for any size of time step [14]. Thus, in this paper we consider a class
of (implicit) symplectic A-stable Runge–Kutta methods that includes the Gauss–
Legendre Runge–Kutta methods. The simplest of these methods is the implicit
midpoint rule.

The analysis relies on our earlier work: in [24] we analysed the differentiability
properties with respect to the initial value and time of the semi-flow of

∂tU = F (U) = AU + B(U) (1.1)

on a scale of Hilbert spaces, and obtained analogous results for the time-h map
of its corresponding A-stable Runge–Kutta time semi-discretization. In [25], we
proved stability of the semi-flow and of the time-semi-discrete solution under spatial
spectral Galerkin approximation.

Our approach applies to a large class of semilinear Hamiltonian PDEs with
analytic nonlinearities, including the semilinear wave equation and the nonlinear
Schrödinger equation on the circle. Our main result, theorem 4.1, can be para-
phrased as follows. If a semilinear Hamiltonian evolution equation with energy H
is discretized by a symplectic A-stable Runge–Kutta method Ψh of order p, then
there exists a modified Hamiltonian flow Φ̃, defined for Gevrey-regular data, with a
Hamiltonian H̃ that is O(hp) close to H, such that Φ̃h interpolates Ψh with expo-
nentially small error O(exp(−c∗/h1/(q+1))), where c∗ and q are positive constants.
As a consequence, the modified energy H̃ is conserved by the symplectic integrator
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Ψh with the same exponentially small error for Gevrey-regular initial data. This
result is in a number of ways parallel to what has been proved for rapidly forced
PDEs by Matthies and Scheel [21]: as in their work, the constants q and c∗ depend
on the Gevrey class associated with the evolution equation, and c∗ also depends
on the numerical scheme; moreover, as in [21], the result does not imply long-
time approximate energy conservation for time semi-discretizations because both
the solutions of the PDE and the numerical trajectories are typically not Gevrey
regular over long times.

Let us mention some related work. Moore and Reich [22] derive a modified multi-
symplectic PDE for a multi-symplectic discretization of the semilinear wave equa-
tion that is satisfied by the numerical solution with higher accuracy than the dis-
cretization error; further results in this direction are due to Islas and Schober [15].
Both papers derive higher-order modified equations, but leave it open as to whether
these are well posed. In this paper, we can actually prove that the interpolating
flow is well defined. In [26], it is shown that second-order finite-difference space
semi-discretizations of analytic solutions of the semilinear wave equation approx-
imately conserve a discrete momentum map up to an exponentially small error.
Cano [2] considers symmetric–symplectic space-time discretizations of semilinear
wave equations and constructs a finite-order modified Hamiltonian, assuming cer-
tain conjectures on the smoothness of the fully discrete system.

The approximate conservation of invariants by splitting methods for Hamiltonian
PDEs has been studied extensively via normal form transformations or modulated
Fourier expansions. Such results require less stringent regularity assumptions, but
they are limited either to linear equations [5, 6] or to the weakly nonlinear regime,
i.e. to small initial data of space-time discretizations near a homogeneous equilib-
rium [4,9,12], or they refer to modified numerical methods that dampen high oscil-
lations [7, 9]. Note that (symplectic) Gauss–Legendre Runge–Kutta discretizations
of linear Hamiltonian systems preserve energy exactly [13]. The results of [4,8,9,12]
give approximate conservation of actions and regularity of trajectories of splitting
methods applied to semilinear wave and Schrödinger equations for small initial
data over polynomially long times under non-resonance conditions. These results
require initial values in high-order Sobolev spaces [4,9,12] or restrictive conditions
on the coupling between space and time-step size [8]. In [7], exponentially accurate
interpolations are constructed for modified splitting methods that dampen highly
oscillatory motion.

Exponentially accurate estimates for PDEs, albeit without reference to a Hamil-
tonian structure, have also been obtained in the context of homogenization of linear
elliptic problems for Gevrey-regular data [16], while a result for homogenization up
to all orders for nonlinear elliptic PDEs can be found in [3].

The paper is structured as follows. In § 2 we define the precise class of semilinear
Hamiltonian PDEs that we study. This class includes the semilinear wave equation
and the nonlinear Schrödinger equation. In § 3, we introduce A-stable symplectic
Runge–Kutta methods. These methods are well defined on Hilbert spaces when
applied to a semilinear PDE of the class considered. In § 4, we present and prove
our main result, theorem 4.1, on approximate Hamiltonian interpolation of the
time-h map of such Runge–Kutta methods. Finally, in § 5, we give an example of a
nonlinear Schrödinger equation in Fourier space, which shows that Gevrey-regular
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initial data are necessary for an exponentially accurate embedding of a symplectic
Runge–Kutta method into a flow.

2. Semilinear Hamiltonian PDEs

In this section, we describe the class of semilinear Hamiltonian systems on Hilbert
spaces considered in this paper. We begin by reviewing the general functional setting
for semilinear evolution equations from [27] and introduce Gevrey spaces. In § 2.2,
we review results on the differentiability in time of the semi-flow from [24]. In
§ 2.3, we restrict to the Hamiltonian case and review a well-known integrability
lemma in our Hilbert space setting. Section 2.4 introduces Hilbert spaces of analytic
functions and superposition operators on these spaces. Finally, in §§ 2.5 and 2.6,
respectively, we show how our main examples, the nonlinear Schrödinger equation
and the semilinear wave equation, fit into this framework.

2.1. Semilinear evolution equations

We initially consider an abstract semilinear evolution equation of the form (1.1),

∂tU = F (U) = AU + B(U),

on a Hilbert space Y. We assume the following.

(A) A is a normal operator on a Hilbert space Y that generates a C0-semigroup
etA.

Recall that an operator A is normal if it is closed and AA∗ = A∗A. For a defini-
tion of strongly continuous semigroups (C0-semigroups), see [27]. Assumption (A)
implies that there is a constant ω > 0 such that ‖etA‖ � etω for all t � 0.

To formulate our assumptions on the nonlinearity B, we need some definitions.
We write

BX
R (U0) = {U ∈ X : ‖U − U0‖X � R}

to denote the closed ball of radius R in a Hilbert space X about U0 ∈ X . When no
confusion about the space is possible, we may drop the superscript X . Let D ⊂ Y
be open. For δ > 0, let

Dδ =
⋃

U∈D
BY

δ (U).

Let YC ≡ Y + iY denote the complexification of Y. We define, for fixed δ > 0,

DC =
⋃

U∈D
BYC

δ (U).

Our assumption on B is then stated as follows.

(B0) There are some δ > 0 and a bounded open set D ≡ D0 such that B : DC → YC

is analytic with bound M0.

Then, after casting (1.1) in its mild formulation

U(t) = etAU0 +
∫ t

0
e(t−s)AB(U(s)) ds, (2.1)
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we can apply the contraction mapping theorem with parameters to obtain well-
posedness locally in time [27]. Let U0 → Φt(U0) denote the flow of (2.1), i.e. U(t) =
Φt(U0) ∈ DC satisfies (2.1) with U(0) = U0 ∈ DC. Then Φt is continuous in t and
analytic in U0.

For m ∈ N, let Pm denote the sequence of spectral projectors of A onto the set
BC

m(0) ∩ spec A, set P ≡ P1 and Q ≡ 1 − P. Assumption (A) implies that

lim
m→∞

PmU = U

for all U ∈ Y, and that

‖APmU‖Y � m‖PmU‖Y (2.2)

for m ∈ N. Let q > 0, τ � 0 and 	 ∈ N0. Since A is normal, |QA|� exp(τ |QA|1/q)
is a well-defined, generally unbounded and densely defined operator on Y. We may
thus introduce the abstract Gevrey space

Yτ,�,q = D(|QA|� exp(τ |QA|1/q)) (2.3)

equipped with the inner product

〈U1, U2〉Yτ,�,q
= 〈PU1, PU2〉Y

+ 〈|QA|� exp(τ |QA|1/q)QU1, |QA|� exp(τ |QA|1/q)QU2〉Y . (2.4)

Gevrey-smooth functions U ∈ Yτ,�,q are exponentially well approximated by their
Galerkin projections PmU . Indeed, setting Qm = id − Pm,

‖QmU‖Y � m−� exp(−τm1/q)‖U‖Yτ,�,q
. (2.5)

Moreover, this definition of the norm ensures that

‖A‖Yτ,�+1,q→Yτ,�,q
� 1 and ‖U‖Yτ,�,q

� ‖U‖Yτ,�+1,q
(2.6)

for all U ∈ Yτ,�+1,q. For convenience, we define Y� ≡ Y0,�,q. We can then state the
following lemma, which will be needed later.

Lemma 2.1. Let A satisfy (A). Then, for σ > τ and p ∈ N0,

‖Ap‖Yσ,�,q→Yτ,�,q
� max

{
1,

(
pq

e(σ − τ)

)pq}
. (2.7)

Proof. For p = 0, there is nothing to prove; hence, let p > 0. For fixed U ∈ Yσ,�,q,

‖ApU‖2
Yτ,�,q

= ‖PU‖2
Y + ‖|QA|pe(τ−σ)|QA|1/q |QA|�eσ|QA|1/q

QU‖2
Y . (2.8)

The function f(λ) = |λ|pe(τ−σ)|λ|1/q

is non-negative and has a global maximum at
λ∗ = (pq/(σ − τ))q. Replacing the corresponding term in (2.8) by its maximum
value, we obtain (2.7).
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2.2. Differentiability of the semi-flow

To obtain a flow of the evolution equation that has higher-order time derivatives,
as required in § 4, we need more specific assumptions on the regularity of B on the
scale of Hilbert spaces defined above.

We use the following convention to denote derivatives. Given any Hilbert space X ,
open set D ⊂ X and map Z : D → R, we write DZ(U) to denote the derivative of Z
at U ∈ D as an element of X ∗, and denote by ∇Z(U) the canonical representation
of DZ(U) by an element of X . In other words, DZ(U)W = 〈∇Z(U), W 〉, where
〈·, ·〉 denotes the inner product on X .

For Hilbert spaces X and Z, and j ∈ N0, we write Ej(Z,X ) to denote the vector
space of j-multilinear bounded mappings from Z to X ; we set Ej(X ) ≡ Ej(X ,X ).
Moreover, when U ⊂ X is open and k ∈ N, we write Ck

b(U ,Z) to denote the set of
k-times continuously differentiable functions F : U → Z whose derivatives DiF are
bounded as maps from U to E i(X ,Z) and extend to the boundary of U . When U
is not open but has non-empty interior, we define Ck

b(U ,Z) = Ck
b(intU ,Z), where

intS denotes the interior of a set S.
Finally, for Hilbert spaces X , Y and Z, and open subsets U ⊂ X , V ⊂ Y and

W ⊂ Z, we write
F ∈ C(m,n)

b (U × V; W)

to denote a continuous, bounded function F : U × V → W whose partial Fréchet
derivatives Di

XDj
Y F (X, Y ) exist, are bounded and are such that the maps

(X, Y, X1, . . . , Xi) 
→ Di
XDj

Y F (X, Y )(X1, . . . , Xi)

are continuous from U ×V ×X i into Ej(Y,Z) for i = 0, . . . , m and j = 0, . . . , n, and
extend continuously to the boundary. If U or V are not open but have non-empty
interior, we again define C(m,n)

b (U × V; W) = C(m,n)
b (intU × intV; W).

Given δ > 0 and a family of open sets D� ⊂ Y� for 	 = 0, . . . , L for L ∈ N, we
define the sets

Dδ
� =

⋃
U∈D�

BY�

δ (U) (2.9)

analogously to the set Dδ above.
We assume that the sets D� are nested, i.e. D�+1 ⊂ D�, for 	 = 0, . . . , L − 1.

Then, by construction, we also have Dδ
�+1 ⊂ Dδ

� for 	 = 0, . . . , L − 1. For example,
the family Dk = intBYk

R (U0) is nested for every U0 ∈ YL and R > 0.
We now make the following assumption on the nonlinearity of our semilinear

evolution equation.

(B1) For δ > 0 fixed as in (B0), there exist K ∈ N0, N ∈ N with N > K +
1, and a nested sequence of Yk-bounded and open sets Dk, such that B ∈
CN−k
b (Dδ

k,Yk) for k = 0, . . . , K.

We denote the bounds of the maps B : Dδ
k → Yk and their derivatives by constants

Mk, M ′
k, etc., for k = 0, . . . , K. In addition to the domains D0, . . . ,DK defined in

(B1), we also need a domain DK+1 on the next highest scale rung YK+1, which
may be any YK+1-bounded, open and nested subset of DK , and we define

RK+1 = sup
U∈Dδ

K+1

‖U‖YK+1 . (2.10)
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We can then quote the following theorem on the uniform regularity of the flow [24,
theorem 2.6 and remark 2.8].

Theorem 2.2 (regularity of semi-flow). Assume (A) and (B1). Then there exists
T∗ > 0 such that the semi-flow (U, t) 
→ Φt(U) of (1.1) satisfies

Φ ∈
⋂

j+k�N
��k�K+1

C(j,�)
b (DK+1 × (0, T∗); Yk−�). (2.11)

Moreover, Φ maps DK+1 × [0, T∗] into Dδ
K . The bounds on Φ and T∗ depend only

on the bounds afforded by (B1), (2.10), on ω and on δ.

Remark 2.3. In [24] we chose to shrink domains D in the range of the flow map
to

D−δ = {U ∈ D : dist(U, ∂D) � δ}

rather than work with extended domains Dδ in the argument of the flow map as
we do here. Since Dε−δ ⊂ (Dε)−δ for ε > δ > 0, the formulation in [24] implies
the version stated here; working with extended domains is more convenient for the
purposes of this paper as the extension preserves star-shapedness, which is required
in § 2.3.

Remark 2.4. The precise form of assumption (B1) is motivated by the typical
case where B is a superposition operator of a function f : D ⊂ Rd → Rm and Y� is
related to the standard Sobolev space H� = H�(I; Rd), where I = [a, b] ⊂ R. Then,
if f is (N + 1)-times continuously differentiable on some open set D ⊂ Rd, it is
N -times differentiable as a map from the open set D of H1 to H1. We note that
u ∈ D ensures that u(x) ∈ D pointwise. Moreover, f is (N − k)-times differentiable
from D ∩ Hk to Hk (see [24, theorem 2.12]; [26, remark 7.4]).

For the results of § 4, we need regularity of the flow on a space of Gevrey-regular
functions as well. Hence, we assume the following.

(B2) There exist τ > 0, q > 0, L � 0 and a Yτ,L,q-bounded open set Dτ,L,q ⊂ DK+1
such that B ∈ C2

b(Dδ
τ,L,q,Yτ,L,q).

We note that Yτ,L,q ⊂ YK+1 due to lemma 2.1. In the following, Dτ,L+1,q refers to
an arbitrary Yτ,L+1,q-bounded open subset of Dτ,L,q. We note that under assump-
tion (B2), theorem 2.2 applies with Yτ,L,q in place of Y, with Dτ,L+1,q in place of
DK+1 and with K = 0.

2.3. Hamiltonian structures on Hilbert spaces

Our main result, theorem 4.1 below, requires that (1.1) is Hamiltonian, i.e. that
there exist a symplectic structure operator J and a Hamiltonian H : D → R such
that

∂tU = AU + B(U) = J∇H(U). (2.12)

In addition to (A) and (B0), we assume the following.
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(H0) The symplectic structure operator J is a closed, skew-symmetric, densely
defined and bijective linear operator on Y.

(H1) A is skew-symmetric and J−1A is bounded and self-adjoint on Y.

(H2) For every U ∈ Dδ, the operator J−1DB(U) is self-adjoint on Y.

(H3) D is star shaped.

Formally, the function H : Dδ → R is an invariant of the motion.
Recall that a subset S of a linear space is star shaped if there exists U∗ ∈ S

such that for every W ∈ S the line segment U∗W is contained in S. We then say
that S is star shaped with respect to U∗. We remark that if D is star shaped with
respect to U∗ ∈ D, then Dδ is star shaped with respect to U∗ as well. Moreover,
by the closed graph theorem, (H0) implies that J is invertible with J−1 ∈ E(Y).
This implies, in particular, that J−1DB(U) is a bounded operator on Y for every
U ∈ Dδ.

An operator A is skew if A∗ = −A and D(A) = D(A∗). This implies that
spec(A) ⊂ iR and that, by Stone’s theorem, A generates a unitary C0-group on Y
(see, for example, [28]). If A = As + Ab, where As is skew and Ab is bounded, we
can redefine B as B + Ab and A as As to satisfy (H1). This situation is typical for
semilinear wave equations (see § 2.5).

Further, by conditions (A), (H0), and (H1),

J−1A = (J−1A)∗ = A∗(J−1)∗ = −A(−J−1) = AJ−1. (2.13)

Hence, A and J−1 commute, which also implies the following.

Lemma 2.5. Assume (A), (H0) and (H1). Then J−1Pm = PmJ−1 for all m ∈ N0.

Proof. By (2.13), the normal bounded operator L = (A + 1)−1 and J−1 commute,
and so do F (L) and J−1 for any polynomial F . Approximating the characteristic
functions χΛ of measurable sets Λ ⊂ spec(L) by polynomials, we see that χΛ(L)
and J−1 also commute [28]. With Λ = {λ ∈ spec(L), λ−1 −1 ∈ BC

m(0)}, this implies
that χΛ(L) = Pm commutes with J−1.

The existence of a Hamiltonian H is then guaranteed by the following integra-
bility lemma.

Lemma 2.6. Assume (A), (B0) and (H0)–(H3) hold. Then there exists an analytic
bounded Hamiltonian H : Dδ → R for the evolution equation (1.1).

Proof. We seek a Hamiltonian of the form

H(U) = 1
2 〈U, J−1AU〉 + V (U). (2.14)

Due to (H1), the quadratic part of the Hamiltonian is well defined and possesses
the properties claimed.

To proceed, we use that Dδ is star shaped and fix U0 such that D and Dδ are
star shaped with respect to U0. We set

V (U) =
∫ 1

0
〈J−1B(tU + (1 − t)U0), U − U0〉 dt, (2.15)
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so that, for W ∈ Y,

〈∇V (U), W 〉 =
∫ 1

0
〈J−1B(tU + (1 − t)U0), W 〉 dt

+ t

∫ 1

0
〈J−1DB(tU + (1 − t)U0)W, U − U0〉 dt

=
∫ 1

0

d
dt

〈tJ−1B(tU + (1 − t)U0), W 〉 dt, (2.16)

where the last equality is due to the self-adjointness of J−1DB(U). Then, by the
fundamental theorem of calculus, B(U) = J∇V (U). Further, (2.15) shows that ana-
lyticity of B implies analyticity of V , and uniform bounds on B imply corresponding
uniform bounds on V .

For bounds on the modified Hamiltonian in § 4 we shall need (H3) on at least
two scale rungs, so that, for simplicity, we assume the following.

(H4) Each Dk is star shaped for k = 0, . . . , K + 1.

In the next section we introduce concrete function spaces and superposition oper-
ators on these spaces in order to verify that our main examples, the nonlinear
Schrödinger equation and the semilinear wave equation, fit into our abstract frame-
work.

2.4. Spaces of analytic functions

We denote the Fourier coefficients of a function u ∈ L2(S1; Cd) on the circle
S1 � R/(2πZ) by ûk, so that

u(x) =
1√
2π

∑
k∈Z

ûkeikx. (2.17)

Let Gτ,� ≡ Gτ,�(S1; Cd) denote the Hilbert space of analytic functions u ∈ L2(S1; Cd)
for which

‖u‖2
Gτ,�

≡ 〈u, u〉Gτ,�
< ∞,

where the inner product is given by

〈u, v〉Gτ,�
=

∑
|k|�1

〈ûkv̂k〉Cd +
∑

|k|>1

k2�e2τ |k|〈ûkv̂k〉Cd . (2.18)

It can be shown that Gτ,�(S1; Cd) contains all real analytic functions whose radius of
analyticity is at least τ . In particular, functions in Gτ,�(S1; Cd) can be differentiated
infinitely often. This follows from lemma 2.1 with Y = L2(S1; Cd) and A = ∂x.
We write H� ≡ G0,� to denote the usual Sobolev space of functions whose weak
derivatives up to order 	 are square integrable.

The additional index 	 in Gτ,� is important because of the following.

Lemma 2.7 (Ferrari and Titi [10, lemma 1]). The space Gτ,�(S1; C) is a topological
algebra for every τ � 0 and 	 > 1

2 . Specifically, there exists a constant c = c(	) such
that for every u, v ∈ Gτ,�(S1; C) the product uv ∈ Gτ,�(S1; C) with

‖uv‖Gτ,�(S1;C) � c‖u‖Gτ,�(S1;C)‖v‖Gτ,�(S1;C). (2.19)
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To treat general nonlinear potentials, we need to consider superposition operators
f : Gτ,� → Gτ,� of analytic functions. The following lemma is a minor adaptation of
results proved in [10,19].

Lemma 2.8. If f : Cd → Cd is entire, then f is also entire as a function from
Gτ,�(S1; Cd) to itself for every τ � 0 and 	 > 1

2 . If f is analytic on Br(u0) ⊂ Cd,
where u0 ∈ Cd, then f is analytic from Dτ,� ≡ BR(u0) ⊂ Gτ,�(S1; Cd) to Gτ,�(S1; Cd)
for any R < r/c, where c = c(	) is the constant from lemma 2.7. Moreover, f ∈
C2
b(Dτ,�; Gτ,�).

Proof. We prove the result for d = 1; it generalizes to d > 1 if multi-indices are
used. Let f be entire and let

f(z) =
∞∑

n=0

an(z − u0)n (2.20)

be the Taylor series of f around u0 ∈ C. Let φ : R → R be its majorization

φ(s) =
∞∑

n=0

|an|sn.

By applying the algebra inequality (2.19) to each term of the power series expansion
(2.20) of f(u), we see that the series converges for every u ∈ Gτ,� provided τ � 0
and 	 > 1

2 , and that

‖f(u)‖Gτ,�
� c−1φ(c‖u − u0‖Gτ,�

) + |a0|(
√

2π − c−1), (2.21)

where c is as in lemma 2.7 (see [10]). In other words, f is entire on Gτ,�(S1).
When f has only a finite radius of analyticity, we argue as follows. Assume that

|f(z)| � M on BC
r (u0). Then, by Cauchy’s estimate,

|an| � M

rn
.

Consequently, the majorant φ is bounded on any BC
ρ (0) with ρ < r with uniform

bound

µ =
M

1 − ρ/r
.

Due to (2.21), the superposition operator f is then analytic and bounded by

Mspp =
µ

c
+ |a0|(

√
2π − c−1)

as a map from a ball Dτ,� = BR(u0) of radius R = ρ/c around u0 ∈ Gτ,� into Gτ,�;
similarly, we see that f ∈ C2

b(Dτ,�; Gτ,�).

2.5. Functional setting for the semilinear wave equation

Consider the semilinear wave equation

∂ttu = ∂xxu − V ′(u) (2.22)
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on S1. Its Hamiltonian can be written

H(u, v) =
∫

S1
[ 12v2 + 1

2 (∂xu)2 + V (u)] dx,

where v = ∂tu. We write U = (u, v)T and set Y ≡ H1(S1; R)×L2(S1; R) so that the
Hamiltonian is well defined on Y. For U = (u, v) ∈ Y let P0U = (p0u, p0v) where,
for u ∈ L2(S1; R), we define p0u = û0 and let Q0 = id − P0. Setting

Ã =
(

0 id
∂2

x 0

)
,

we then define

A = Q0Ã, B(U) =
(

0
−V ′(u)

)
+ P0ÃU, (2.23)

and the symplectic structure operator J via

〈J−1U1, U2〉Y =
∫

S1
(u1v2 − u2v1) dx (2.24)

for all U1 = (u1, v1)T, U2 = (u2, v2)T ∈ Y.
Since the Laplacian is diagonal in the Fourier representation (2.17) with eigen-

values −k2 for k ∈ Z, the eigenvalue problem for A separates into 2 × 2 eigenvalue
problems on each Fourier mode, and specA = iZ\{0}. Clearly, A is skew-symmetric
on Y if H1 = G0,1 is endowed with the inner product (2.18). Note that P0Ã has a
Jordan block and is hence included with the nonlinearity B. Thus, with

Yτ,�,q = Gτ,�+1(S1; R) × Gτ,�(S1; R),

B(U) from (2.23) satisfies (B2) with q = 1.
The symplectic structure operator J defined by (2.24) is an unbounded operator

on Yτ,�,1 with domain Yτ,�+1,1. It is possible, though not necessary for anything
which follows, to compute J−1 explicitly. Namely, (2.24) reads

〈J−1U1, U2〉Y = 〈(J−1U1)u, u2〉H1 +〈(J−1U1)v, v2〉L2 =
∫

S1
(u1v2−u2v1) dx. (2.25)

The definition of the inner product (2.18) implies

〈(J−1U1)u, u2〉H1 = 〈(p0 − ∂2
x)(J−1U1)u, u2〉L2 ,

so that (2.25) splits into

(p0 − ∂2
x)(J−1U1)u = −v1 and (J−1U1)v = u1.

We conclude that

J−1 =
(

0 −(p0 − ∂2
x)−1

1 0

)
.

If the potential V : D → R is analytic on an open set D ⊂ R, then, by lemma 2.8,
B is analytic from BYτ,�,1

R (U0) to Yτ,�,1 for any τ, 	 � 0 and U0 = (u0, v0) ∈ Yτ,�,1
with u0 independent of x, provided BR

r (u0) ⊂ D with R < r/c(	) as in lemma 2.8.
In this setting, all the above assumptions are satisfied.
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2.6. Functional setting for the nonlinear Schrödinger equation

Consider the nonlinear Schrödinger equation

i∂tu = −∂xxu + ∂ūV (u, ū) (2.26)

on the circle S1, where V (u, ū) is analytic in Reu and Im u. Setting U ≡ u, we can
write

A = i∂2
x, B(U) = −i∂ūV (u, ū). (2.27)

Similar to (2.24), we have

〈J−1u1, u2〉Y =
∫

Re(iu1ū2) dx (2.28)

with Y = H1(S1, C). Therefore, as for the semilinear wave equation in § 2.5, we see
that J−1 : H2 → L2 and that (H0) and (H1) hold. The first term of the Hamiltonian

H(U) = 1
2

∫
S1

(|∂xu|2 + V (u, ū)) dx (2.29)

is then well defined for all u ∈ Y. The Laplacian is diagonal in the Fourier rep-
resentation (2.17) with eigenvalues −k2. Hence, spec A = {−ik2 : k ∈ Z} so that
A generates a unitary group on L2(S1; C) and, more generally, on every Gτ,� with
	 ∈ N0 and τ � 0.

To continue, we identify R2 � C so that Y = H1(S1, R2). If the potential V : D ⊂
R2 → R is analytic as a function of (q, p) ≡ (Re u, Im u), then, by lemma 2.8, the
nonlinearity B(U) defined in (2.27) is analytic as a map from a ball in Gτ,�(S1; R2)
to itself for every τ � 0 and 	 > 1

2 . The construction of the domain hierarchy works
as in § 2.5, so that (B0)–(B2) hold with Yτ,�,q = Gτ,2�+1(S1; R2), where 	 ∈ N0 and
q = 2.

We remark that if we were to write out the nonlinear Schrödinger equation in real
coordinates with U = (Re u, Im u), the structure operator J would be the canonical
symplectic matrix on R2 for the space L2(S1; R2).

An example of a nonlinear Schrödinger equation in Fourier space that is defined
on a more complicated set than a ball can be found in remark 5.1.

3. A-stable Runge–Kutta methods on Hilbert spaces

In this section, we introduce a class of A-stable Runge–Kutta methods that are well
defined when applied to the semilinear PDE (1.1) under assumptions (A) and (B0),
and review some regularity and convergence results for those methods from [24]. In
most of this section, we need not assume that (1.1) is Hamiltonian.

Applying an s-stage Runge–Kutta method of the form (3.1) to the semilinear
evolution equation (1.1), we obtain

W = U01 + haF (W ), (3.1 a)

Ψh(U0) = U0 + hbTF (W ). (3.1 b)

https://doi.org/10.1017/S0308210515000852 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210515000852


1278 C. Wulff and M. Oliver

For U ∈ Y, we write

1U =

⎛
⎜⎝

U
...
U

⎞
⎟⎠ ∈ Ys, W =

⎛
⎜⎝

W 1

...
W s

⎞
⎟⎠ , B(W ) =

⎛
⎜⎝

B(W 1)
...

B(W s)

⎞
⎟⎠ ,

where W 1, . . . , W s are the stages of the Runge–Kutta method,

(aW )i =
s∑

j=1

aijW
j , bTW =

s∑
j=1

bjW
j ,

and A acts diagonally on the stages, i.e. (AW )i = AW i for i = 1, . . . , s. In the
following, we denote s copies of Y by Ys endowed with norm

‖W‖Ys = max
j=1,...,s

‖W j‖Y .

The scheme (3.1) can be written in a more suitable form, required later, namely

W = Π(W ; U, h) ≡ (id − haA)−1(1U + haB(W )) (3.2 a)

and

Ψh(U) = S(hA)U + hbT(id − haA)−1B(W (U, h)), (3.2 b)

where S is the so-called stability function

S(z) = 1 + zbT(id − za)−11 . (3.3)

We now make a number of assumptions on the method and its interaction with
the linear operator A. First, we assume that the method is A-stable. Setting C− =
{z ∈ C : Re z � 0}, the conditions are as follows.

(RK1) The stability function (3.3) is bounded with |S(z)| � 1 for all z ∈ C−.

(RK2) The s × s matrices id − za are invertible for all z ∈ C−.

We also require two further conditions.

(RK3) The matrix a is invertible.

(RK4) The method is symplectic.

Recall that the flow map of a Hamiltonian system is a symplectic map, i.e. Φt

satisfies
(DUΦt(U))TJ−1DUΦt(U) = J−1 (3.4)

for all U and t for which this relation is well defined [18]. A numerical one-step
method is called symplectic if, when applied to a Hamiltonian system, its time-h
map Ψh is symplectic.

It is known that a Runge–Kutta method of the form (3.1) is symplectic when its
coefficients satisfy

biaij + bjaji − bibj = 0
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for i, j = 1, . . . , s (see, for example, [30]). The simplest example of a symplectic
Runge–Kutta method is the implicit midpoint rule, given by

Ψh(U) = U + hF

(
U + Ψh(U)

2

)
,

which, equivalently, can be written in the form of a general Runge–Kutta scheme
(3.1) with s = 1, a11 = 1

2 , and b1 = 1. This is an example of a Gauss–Legendre
Runge–Kutta method; Gauss–Legendre Runge–Kutta methods satisfy conditions
(RK1)–(RK4); see [24, lemma 3.6] for conditions (RK1)–(RK3) and [30], for exam-
ple, for (RK4).

In the following, we also need to refer to a set of key estimates on the linear
operators that appear in the formulation (3.2 a), (3.2 b) of the Runge–Kutta method,
namely

‖(id − haA)−1‖Ys→Ys � Λ, (3.5 a)

‖haA(id − haA)−1‖Ys→Ys � 1 + Λ, (3.5 b)
‖S(hA)‖Ys→Ys � 1 + σh (3.5 c)

for all h ∈ [0, h∗] and constants Λ � 1 and σ � 0. These estimates naturally hold
true on each rung of our hierarchy of spaces. For proofs, see [24, § 3.2].

A-stable Runge–Kutta methods have the remarkable property that their time-h
map is of the same regularity class as the flow of the evolution equation stated in
theorem 2.2. We state this result as an abbreviated version of [24, theorem 3.15 and
remark 3.17].

Theorem 3.1 (regularity of numerical method). Assume (A), (B1) and (RK1)–
(RK3). Then there exists h∗ > 0 such that the components W j of the stage vector
W (U, h) and numerical method Ψ(U, h) = Ψh(U) are of class (2.11), with T∗ there
replaced by h∗ here. Moreover, Ψ and W j map into Dδ

K . The bounds on W , Ψ and
h∗ only depend on the bounds afforded by (B1) and (2.10), on the coefficients of the
method, on the constants afforded by (3.5) and on δ.

Remark 3.2. Even when B : Y → Y is analytic, the numerical time-h map Ψh(U)
is generally not analytic in h unless A is bounded. Take, for example, the linear
Schrödinger equation, i.e. (2.26) with B ≡ 0, discretized by the implicit midpoint
rule. Then

h 
→ S(hA)ek = (id + 1
2hA)(id − 1

2hA)−1ek =
1 + 1

2hk2i
1 − 1

2hk2i
ek

has radius of analyticity 2/k, where ek is the kth Galerkin mode of A as described
in § 2.6. Therefore, if the Fourier expansion of U does not terminate finitely, then
Ψh(U) = S(hA)U cannot be analytic in h. This argument applies to any A-stable
Runge–Kutta method: since |S(z)| � 1 for all z ∈ iR by assumption (RK1), the
stability function is a rational polynomial S(z) = P(z)/Q(z) with deg Q � deg P.
Hence, deg Q � 1 so that S(z) has at least one pole z0. The radius of analyticity of
S(z) around 0 is r0 = |z0|, so that h 
→ S(hA)ek cannot be analytic outside a ball
around h = 0 of radius r0/k. As for the implicit midpoint rule, this implies that
Ψh(U) is not analytic in h unless the Fourier expansion of U is finite.
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Thus, while differentiability in h can be obtained by stepping down on a scale
of Hilbert spaces, analyticity can only be obtained by projecting onto a subspace
on which the vector field is bounded. This will become necessary in § 4.3, where
analyticity is essential for obtaining exponential error estimates.

4. Exponentially accurate Hamiltonian embeddings of
time semi-discretizations

We are now ready to state and prove our main result on approximate embeddings
of symplectic time discretizations of Hamiltonian evolution equations into flows.

4.1. Statement of the main result

In the following, we write j = �r� to denote the largest integer j � r, and j = �r�
to denote the smallest integer j � r.

Theorem 4.1 (main theorem). Assume that the semilinear Hamiltonian evolution
equation (2.12) with energy (2.14) satisfies (A), (B0)–(B2) and (H0)–(H4). Apply
a symplectic Runge–Kutta method of order p � 1 and step size h which satisfies
(RK1)–(RK4) to (2.12). Assume further that

K + 1 � P ≡
⌈

p(q + 1)2

q
+ q

⌉
+ 1

with K from (B1) and q from (B2). Then there exists h∗ > 0 and a modified energy
H̃ : Dδ/2

1 × [0, h∗] → R which is analytic in U for each h ∈ [0, h∗] and satisfies

sup
U∈DP

|H̃(U, h) − H(U, h)| = O(hp) (4.1 a)

such that J∇H̃ generates a modified flow Φ̃ : D1 × [0, h∗] → Dδ/4
1 . The numerical

method is approximately embedded into the modified flow with an exponentially small
error in the sense that there is c∗ > 0 such that

sup
U∈Dτ,L+1,q

‖Ψh(U) − Φ̃h(U)‖Y1 � cΦ̃ exp(−c∗h
−1/(1+q)). (4.1 b)

The modified energy is also approximately conserved by the numerical method:

sup
U∈Dτ,L+1,q

|H̃(Ψh(U), h) − H̃(U, h)| � cH̃ exp(−c∗h
−1/(1+q)). (4.1 c)

For the semilinear wave equation, q = 1 (see § 2.5), so the exponents in (4.1 b)
and (4.1 c) scale like h−1/2. For the nonlinear Schrödinger equations, q = 2 (see
§ 2.6), so the exponents in (4.1 b) and (4.1 c) scale like h−1/3. Note that, due to (B2),
Dτ,L+1,q ⊂ DK+1 ⊂ DP , so the supremum in (4.1 a) can be taken, in particular, over
Dτ,L+1,q.

Remark 4.2. For ODEs, estimate (4.1 c) holds with q = 0 and implies approximate
conservation of the energy H over exponentially long times so long as the numer-
ical trajectory remains bounded. For PDEs this conclusion does not hold, because
solutions of semilinear PDEs and their discretizations are not generally Gevrey reg-
ular over long times, while Gevrey regularity is needed for the embedding estimate
(4.1 b) (see § 5).

https://doi.org/10.1017/S0308210515000852 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210515000852


Exponentially accurate embeddings of time semi-discretizations 1281

Remark 4.3. When the evolution equation (2.12) is linear, e.g. a linear wave equa-
tion or linear Schrödinger equation, its Hamiltonian is conserved exactly, since sym-
plectic Runge–Kutta methods conserve quadratic invariants [13].

Remark 4.4. Our result implies conservation of the modified energy with exponen-
tially small error over finite times under slightly stronger conditions. We assume
that there is a triple of Gevrey spaces as follows.

(B3) There are τ > 0, q > 0, L � 0, and a sequence of nested Yτ,L+k,q-bounded
and open sets Dτ,L+k,q such that B ∈ C3−k

b (Dδ
τ,L+k,q,Yτ,L+k,q) for k = 0, 1, 2.

Let Dτ,L+3,q ⊂ Dτ,L+2,q be an open and bounded subset of Yτ,L+3,q. Fix T > 0
and δ > ε > 0. Then for any U0 with

{Φt(U0) : t ∈ [0, T ]} ⊂ Dτ,L+3,q (4.2)

and for any h ∈ [0, h∗], the convergence theorem [24, theorem 3.20] with p ≡ 1, with
Yτ,L+1,q in place of Y, ensures that there is h∗ > 0 such that, for any h ∈ (0, h∗],
the discrete trajectory U j = (Ψh)j(U0) is O(h)-close to the flow in the Yτ,L+1,q

norm, and hence satisfies U j ∈ Dε
τ,L+1,q so long as 0 � j � �T/h� and h > 0 is

sufficiently small. Theorem 4.1 with Dτ,L+1,q replaced by Dε
τ,L+1,q, Dj replaced by

Dε
j and δ reduced to δ − ε then implies approximate conservation of the modified

energy H̃ with an error

h−1O(exp(−c∗h
−1/(1+q))) = O(exp(−βh−1/(1+q)))

for any β ∈ (0, c∗) with order constants uniform over all U0 satisfying (4.2).

The remainder of the section is devoted to the proof of theorem 4.1, where claims
(4.1 a)–(4.1 c) correspond to lemmas 4.18, 4.9 and 4.12, respectively.

Lemma 4.9 generalizes the well-known embedding result for ODEs, stated as
theorem 4.7, to the Hilbert space setting. Theorem 4.7 is not directly applicable to
PDEs because the formal expansion in h of the numerical method contains powers
of the unbounded operator A. We thus resort to the following construction, which is
also used in [21]: in § 4.2, we truncate the evolution equation (2.12) to the subspace
PmY. Then, in § 4.3, we obtain an embedding result on this subspace and choose an
optimal cut-off m as a function of h to obtain the embedding result in the Hilbert
space setting. Finally, in § 4.4, we prove estimate (4.1 a).

4.2. Galerkin truncation

For given m ∈ N, we define a truncated Hamiltonian evolution equation by
restricting the Hamiltonian phase space to the subspace PmY. Since ∇H|PmY =
Pm∇H and J−1 leaves PmY invariant by lemma 2.5, the corresponding restricted
evolution equation reads

u̇m = JPm∇H(um).

Thus, setting fm = PmF and Bm = PmB, we can write

u̇m ≡ fm(um) = Aum + Bm(um). (4.3)
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We denote the flow of the projected system on PmY by φt
m. For convenience, we set

Φt
m = φt

m ◦ Pm. Similarly, let wm denote the stage vector, with wj
m its components

for j = 1, . . . , s, let ψh
m denote the numerical time-h map obtained by applying an

s-stage Runge–Kutta method to the projected semilinear evolution equation (4.3)
and abbreviate W j

m = wj
m ◦ Pm and Ψh

m = ψh
m ◦ Pm.

In [25], we proved that all of the maps above (the truncated flow Φt
m, the com-

ponents of the stage vector W j
m and the numerical time-h map Ψh

m of the trun-
cated system) are of the same class (i.e. class (2.11)) as the exact flow Φt with
m-independent bounds. The precise statement is as follows.

Theorem 4.5 (regularity of flow and numerical method of projected system).
Assume (A), (B1) and (RK1)–(RK3). Then there are positive T∗, h∗ and m∗ such
that for every m � m∗ the flow Φt

m is of class (2.11) and the components of the
numerical stage vector W j

m and the numerical time-h map Ψh
m are of the same class,

but with T∗ replaced by h∗, with bounds that are independent of m � m∗. Moreover,
Φt

m, W j
m and Ψh

m map DK+1 into Dδ
K .

Note that Φt
m (respectively, Ψh

m) are analytic in t (respectively, in h) so long as B
is analytic on Y. However, the radius of analyticity is generally non-uniform in m.

Next, we present an exponential error bound for the projection error of the numer-
ical scheme; this is necessary for obtaining an exponentially small embedding error
in § 4.3 below.

Lemma 4.6 (exponential projection error estimate for the numerical scheme).
Assume that the semilinear evolution equation (1.1) satisfies conditions (A) and
(B0)–(B2). As before, let Ψh and Ψh

m denote a single step of a Runge–Kutta method
subject to (RK1)–(RK3) applied to the full and projected semilinear evolution equa-
tions, (1.1) and (4.3), respectively. Then there are positive constants h∗, m∗ and
cΨ such that, for all m � m∗, h ∈ [0, h∗] and U ∈ Dτ,L+1,q,

‖Ψh(U) − Ψh
m(U)‖Y1 � cΨm−L exp(−τm1/q). (4.4)

Proof. By theorems 3.1 and 4.5 applied with Yτ,L,q in place of Y and K = 0, there
exist h∗ > 0 and m∗ > 0 such that

Ψh, Ψh
m, W j , W j

m ∈ Cb(Dτ,L+1,q × [0, h∗];Dδ
τ,L,q)

for j = 1, . . . , s with bounds that are uniform in h ∈ (0, h∗] and m � m∗.
We first estimate the difference of the stage vectors W (U)−Wm(U), noting that

W (U) = (id − haA)−1(1U + haB(W (U))),

Wm(U) = (id − haA)−1(Pm1U + hPmaB(Wm(U))).

Taking the difference of the expressions, we obtain

W (U) − Wm(U) = (id − haA)−1(Qm1U + ha[B(W (U)) − PmB(Wm(U))]). (4.5)

Setting

‖b‖ =
s∑

i=1

|bi| and ‖a‖ = max
i=1,...,s

s∑
j=1

|aij |,
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and using estimate (3.5 a), we obtain

‖ha(id − haA)−1(B(W (U)) − PmB(Wm(U)))‖Ys

� hΛ‖a‖‖B(W (U)) − PmB(Wm(U))‖Ys .

Using the triangle inequality and the mean-value theorem, we further estimate

‖B(W (U)) − PmB(Wm(U))‖Ys

� ‖QmB(W (U))‖Ys + ‖PmB(W (U)) − PmB(Wm(U))‖Ys

� ‖QmB(W (U))‖Ys + M ′
0‖W (U) − Wm(U)‖Ys . (4.6)

Taking the Ys norm of (4.5), using (3.5 a), and inserting (4.6), we obtain

‖W (U) − Wm(U)‖Ys � sΛ‖QmU‖Y + h‖a‖Λ‖QmB(W (U))‖Ys

+ hM ′
0‖a‖Λ‖W (U) − Wm(U)‖Ys .

This proves that, for h∗ < 1/(M ′
0‖a‖Λ),

‖W (U) − Wm(U)‖Ys � sΛ
‖QmU‖Y

1 − h∗M ′
0Λ‖a‖ + h∗‖a‖Λ

‖QmB(W (U))‖Ys

1 − h∗M ′
0Λ‖a‖ .

We apply (2.5) to the first term on the right and note that, again by (2.5),

‖QmB(W (U))‖Ys � sm−L exp(−τm1/q)Mτ,L, (4.7)

where Mτ,L,q is the bound for the norm of B : Dδ
τ,L,q → Yτ,L,q afforded by assump-

tion (B2). This establishes that there exists a constant cW such that

‖W (U) − Wm(U)‖Ys � cW m−L exp(−τm1/q) (4.8)

for all m � m∗ and h ∈ [0, h∗]. (As in [25], where we considered the case τ = 0, we
could obtain a stage vector error bound in the Ys

1 -norm by applying A to (4.5) and
using (3.5 b), but this is not necessary for what follows.)

To estimate the difference between the Runge–Kutta updates, we write them in
the form (3.2 b) such that the respective right-hand sides are (uniformly) bounded
operators:

Ψh(U) = S(hA)U + hbT(id − haA)−1B(W (U)),

Ψh
m(U) = S(hA)PmU + hbT(id − haA)−1PmB(Wm(U)).

Then,

Ψh(U) − Ψh
m(U) = S(hA)QmU + hbT(id − haA)−1[B(W (U)) − PmB(Wm(U))].

Inserting (4.7) and (4.8) back into (4.6), we also find that

‖B(W (U)) − PmB(Wm(U))‖Ys � cBm−L exp(−τm1/q) (4.9)

for some constant cB > 0. We note that (2.4) and (3.5 b) imply

‖ha(id − haA)−1‖Ys→Ys
1

� 2 + Λ.
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This and the invertibility of a, assumption (RK3), then yield

‖Ψh(U) − Ψh
m(U)‖Y1

� (1 + σh)‖QmU‖Y1

+ ‖b‖‖a−1‖‖ha(id − haA)−1(B(W (U)) − PmB(Wm(U)))‖Ys
1

� (1 + σh)‖QmU‖Y1 + (2 + Λ)‖b‖‖a−1‖‖B(W (U)) − PmB(Wm(U))‖Ys .

Inequality (4.4) is now a consequence of (2.5) and (4.9).

4.3. Approximate embedding of semi-discretizations into a flow

We first review an approximate embedding result for Runge–Kutta discretizations
of ODEs and then show how to extend it to PDEs. Consider the autonomous ODE

ẏ = f(y) (4.10)

defined on the closed ball BCm

r (y0). We write φt to denote the flow of (4.10) and
ψh denote the time-h map of an s-stage Runge–Kutta method of the form (3.1)
applied to (4.10). When f is analytic, it is known that ψh can be expanded in a
converging power series in h on a smaller ball, so that we can write

ψh(y) = y +
∞∑

j=1

hjgj(y). (4.11)

Specifically, as shown in [13, theorem IX.7.2] (with 2R there replaced by r here) via
Cauchy estimates, (4.11) holds true for (y, h) ∈ BCm

r/2(y
0) × [0, r/(4‖a‖M)). More-

over, the numerical time-h map ψh can be embedded into the flow of a modified
vector field up to an exponentially small error. A general form of this result was
proved in [1] with specific proofs for the class of Runge–Kutta schemes we consider
in [13,29] (see also [17]). We state the result as follows.

Theorem 4.7. In the setting introduced above, there are positive constants η, c1
and c2 that depend only on the method such that, for every r > 0 and M > 0 such
that

‖f(y)‖ � M for y ∈ BCm

r (y0)

and every h ∈ [0, ηr/M ], there exists a modified differential equation ẏ = f̃(y),
defined on BCm

r/4(y
0), whose flow φ̃t satisfies φ̃t(y0) ∈ BCm

r/4(y
0) for at least 0 � t � h

and which satisfies the estimate

‖ψh(y0) − φ̃h(y0)‖ � hc1M exp
(

− c2r

hM

)
.

The proof will not be repeated in detail here. But we note for later reference that
the modified vector field is constructed as a power series in h:

f̃n(y; h) = f(y) +
n−1∑
j=p

hjf j+1(y), (4.12)
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where p is the order of the numerical method. Its exponential map is then expanded
in powers of h and matched term by term with the expansion of the numerical time-
h map (4.11). This yields a recursive expression for the coefficient vector fields,

f j(y) = gj(y) −
j∑

i=2

1
i!

∑
k1+···+ki=j

(Dk1 · · ·Dki−1f
ki)(y), (4.13)

for j � 2, where ki � 1 for all i (see [1, § 3.1]). We write Dig(y) = Dg(y)f i(y) as
short-hand notation for the Lie derivative with respect to the ith coefficient vector
field (as in [13, lemma IX.7.3]). The proof of theorem 4.7 proceeds by carefully
estimating the growth of the f j , noting that the optimal truncation is achieved
when n = n(h) = �c2r/(hM)�. When referring to the optimally truncated vector
field, we write f̃h or just f̃ .

In addition, we need the following estimate, which guarantees consistency of the
truncation. It is a slight generalization of results proved in [13,29].

Lemma 4.8. In the notation of theorem 4.7, for every a ∈ N there exists a constant
c3 = c3(a) such that, for every h ∈ [0, ηr/M ],

‖f̃a(y) − f̃(y)‖ � c3r
−aMa+1ha for y ∈ BCm

r/4(y
0).

Proof. It is known (see [1] for general numerical one-step methods and [13, 29] for
the Runge–Kutta methods considered here) that there exist positive constants c4

and c5 � 1/(c2e) that depend only on the method such that

‖f j(y)‖ � c4M

(
c5Mj

r

)j−1

for y ∈ BCm

r/4(y
0). (4.14)

Applying this estimate to (4.12) and using that n � c2r/(hM) and therefore h �
c2r/(nM), we find that

‖f̃a(y) − f̃(y)‖ � ha
n−1∑
j=a

hj−a‖f j+1(y)‖

� ha
n−1∑
j=a

hj−ac4M

(
c5M(j + 1)

r

)j

� c4Mha
n−1∑
j=a

(
c2r

nM

)j−a(
c5M(j + 1)

r

)j

� c4ea+1M

(
c2hM

r

)a n−1∑
j=a

(
j + 1

n

)j−a (j + 1)a

ej+1

� c4ea+1M

(
c2hM

r

)a

a!, (4.15)
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where in the last inequality we have bounded the first factor inside the sum by 1
and noted that jae−j is decreasing for j � a, so that

n−1∑
j=a

(j + 1)a

ej+1 �
∫ n

a

xae−x dx �
∫ ∞

0
xae−x dx = a!.

This completes the proof.

Since f̃p = f , we note, setting a = p, that lemma 4.8 provides a bound on ‖f(y)−
f̃(y)‖. Hence, by the triangle inequality, for every h � ηr/M there is a method-
dependent constant cf̃ such that

‖f̃(y)‖ � Mcf̃ for y ∈ BCm

r/4(y
0). (4.16)

We now apply theorem 4.7 to the sequence of truncated problems (4.3), where,
for each m, we work on the space PmY endowed with the Y1-norm. (See remark 4.11
for an explanation of why we work with the Y1- rather than the Y-norm.)

Let YC
1 = Y1 + iY1 be the complexification of Y1. We now choose R1 > 0 such

that Dδ
1 ⊂ BY1

R1
(0). Then, by construction, fm is analytic on DC ∩ PmBYC

1
R1

(0) and
satisfies the estimate

‖fm(um)‖YC
1

� ‖Aum‖YC
1

+ ‖Bm(um)‖YC
1

� mR1 + m sup
U∈DC

‖PmB(U)‖YC � cF m (4.17)

with cF = R1 + M0.
Setting M = cF m, theorem 4.7 asserts that the numerical time-h map can be

embedded into a modified flow up to an error that is exponentially small in the step
size h, albeit not uniformly in m. If, however, we make the stronger assumption
that the initial datum lies in some Gevrey space Yτ,L+1,q with τ > 0, lemma 4.6
asserts that the numerical solution of the full semilinear evolution equation (1.1)
remains exponentially close in the spectral cut-off m to the numerical solution of
the projected system. Thus, we can carefully choose m = m(h) to balance the
projection error and the embedding error to obtain an embedding result on the
Gevrey space that is still exponential in h but at a lesser rate. This is done in the
next lemma, where we also show that the result can be formulated not only on balls
as in theorem 4.7, but also on more general m-independent subdomains of Y1 as
needed in the proof of theorem 4.1.

We denote the coefficients of the power series expansion of ψh
m by gj

m, the expan-
sion coefficients of the modified vector field (defined via (4.13)) by f j

m, and seek an
optimally truncated modified vector field of the form

f̃n
m(um; h) = fm(um) +

n−1∑
j=p

hjf j+1
m (um). (4.18)

Lemma 4.9 (embedding lemma for Gevrey class data). Assume that the semilin-
ear evolution equation (1.1) satisfies conditions (A) and (B0)–(B2). As before, let
Ψh denote a single step of a Runge–Kutta method subject to (RK1)–(RK3) applied
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to the semilinear evolution equation (1.1). Then there exists h∗ > 0 such that the
choices

m(h) =
(

χ

τh

)q/(1+q)

and n(h) =
⌊
τ q/(1+q)

(
χ

h

)1/(1+q)⌋
(4.19 a)

with χ = c2δ/(4cF ) ensure that the modified vector field

F̃ (U ; h) ≡ f̃
n(h)
m(h)(PmU ; h), (4.19 b)

where f̃n
m is given by (4.18), has the following properties.

(a) F̃ : Dδ/2
1 → Y1 is analytic for every fixed h ∈ [0, h∗] with bound

‖F̃‖Cb(Dδ/2
1 ,Y1)

� cF̃ m(h) (4.19 c)

for some cF̃ > 0 independent of h.

(b) F̃ generates a modified flow Φ̃ : D1 × [0, h] → Dδ/4
1 .

(c) There exists a constant cΦ̃ such that, for every U ∈ Dτ,L+1,q and h ∈ [0, h∗],

‖Ψh(U) − Φ̃h(U)‖Y1 � cΦ̃ exp(−c∗h
−1/(1+q)) (4.19 d)

with c∗ = τ q/(q+1)χ1/(q+1).

(d) For each a ∈ N there is a constant ca � 0 such that, with F̃ a
m ≡ f̃a

m ◦ Pm and
m = m(h), we have

‖F̃ − F̃ a
m‖Cb(Dδ/2

1 ,Y1)
� cahama+1. (4.19 e)

Proof. Set r = 1
4δ. As Dδ

1 is a bounded subset of Y1, there exists m∗ such that,
due to (2.5), ‖QmU‖Y � m−1‖U‖Y1 � 1

2δ − r and therefore PmU ∈ Dδ−r for every
U ∈ Dδ/2

1 and m � m∗. In particular, for any such U and m, the ball

BPmYC

1
r (PmU) = {u ∈ PmYC : ‖u − PmU‖YC

1
� r}

is contained in DC ∩ PmBYC

1
R1

(0). Then estimate (4.17) holds true and we can apply
theorem 4.7 with M = cF m and y0 = PmU on this ball. This theorem asserts that,
for every h ∈ [0, ηr/(cF m)], the modified vector field

f̃m = f̃n(h)
m with n(h) = �c2r/(hcF m)�

is defined on BPmYC

1
r/4 (PmU) and analytic as a map from BPmYC

1
r/4 (PmU) to YC

1 . Its flow
φ̃t

m satisfies
φ̃t

m(PmU) ∈ BPmYC

1
r/4 (PmU)

for at least 0 � t � h, and

‖ψh
m(PmU) − φ̃h

m(PmU)‖YC
1

� hc1cF m exp
(

− c2r

hcF m

)
. (4.20)
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By construction, F̃m = f̃m ◦ Pm is analytic as a map from Dδ/2
1 to Y1 with flow map

Φ̃m = φ̃m ◦ Pm + Qm, which is analytic as a map from D1 to Dδ/4
1 for any choice

of m � m∗ and t ∈ [0, h]. Estimates (4.19 c) and (4.19 e) then follow directly from
(4.16) and lemma 4.8, respectively.

Our next step is to estimate the difference between the solution to the modified
projected equation and the numerical solution of the full semilinear evolution equa-
tion (1.1). We split the error into the projection and the embedding error, the first
of which is controlled by lemma 4.6 and the second by (4.20). By Lemma 4.6 there
exist h∗ > 0 and (a possibly increased choice of) m∗ > 0 such that for m � m∗ and
h ∈ [0, h∗] the projection error estimate (4.4) holds. Increasing m∗, if necessary, to
achieve that m∗ � ηr/(cF h∗), we ensure that both the embedding error estimate
(4.20) and the truncation error estimate (4.4) hold true for every m � m∗ and
h ∈ [0, ηr/(cF m)].

Since Dτ,L+1,q ⊂ D1, by splitting the total error into a projection error component
and the embedding error on the subspace PmY, we obtain that

‖Ψh(U) − Φ̃h
m(U)‖Y1 � ‖Ψh(U) − ψh

m(PmU)‖Y1 + ‖QmU‖Y1

+ ‖ψh
m(PmU) − φ̃h

m(PmU)‖Y1

� (1 + cΨ )m−� exp(−τm1/q) + hc1cF m exp
(

− c2r

hcF m

)

for all U ∈ Dτ,L+1,q, h ∈ [0, ηr/(cF m)] and m � m∗. The first and second errors
decrease with m, whereas the third error increases with m. We now demand that
the two exponents on the right coincide. Under the ansatz m = ζh−α for some ζ
and α ∈ (0, 1), we obtain

‖Ψh(U) − Φ̃h
m(U)‖Y1 � (1 + cΨ )hα�ζ−� exp(−τζ1/qh−α/q)

+ c1cF ζh1−α exp(−χζ−1hα−1)

with χ = c2r/cF = c2δ/(4cF ). Then the exponents coincide, provided τζ1/qh−α/q =
χζ−1hα−1, i.e. when

α =
q

1 + q
and ζ =

(
χ

τ

)α

. (4.21)

This implies that m(h) is given by (4.19 a), and

‖Ψh(U) − Φ̃h
m(h)(U)‖Y1 � c̃hν exp(−c∗h

−1/(1+q)) (4.22)

with c∗ = τζ1/q = τ q/(1+q)χ1/(q+1) and ν = min{1, q	}/(1 + q), and where we
possibly need to shrink h∗ > 0 to satisfy m(h∗) � m∗ and h∗ � ηr/(cF m(h∗)) =
(η/c2)χ1−α(τh∗)α. Solving the latter inequality for h∗ leads to the restriction that

h∗ � χτ q

(
η

c2

)q+1

.

A similar computation yields the form of n(h) stated in (4.19 a). The exponential
estimate (4.19 d) is then obtained by defining the modified vector field by (4.19 b)
with corresponding modified flow Φ̃t(U) ≡ Φ̃t

m(h)(U) and setting cΦ = c̃hν
∗ .
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Remark 4.10. The formal expansions of both the numerical method and the mod-
ified vector field contain powers of the unbounded operator A. Therefore, the mod-
ified vector field cannot be written as a semilinear Hamiltonian evolution equation
of the form (2.12). If we were simply interested in constructing the modified vector
field, we could avoid using spatial Galerkin truncation by setting up different spaces
for domain and range such that the modified vector field, computed up to a given
order, is continuous. In fact, we need such techniques in § 4.4 to obtain the order
estimate (4.1 a) for the modified Hamiltonian, which is yet to be constructed. In
such a setting, however, we do not have a theory of local existence of solutions for
the modified differential equation, so we cannot obtain an approximate embedding
of the numerical method into a flow.

Remark 4.11. The reason for constructing the modified vector field on a subspace
of Y1 rather than Y is that on general domains we can only maintain a valid
domain of definition of the nonlinearity B(U) under Galerkin truncation uniformly
in m � m∗, and, in particular, assert estimate (4.17) by dropping down at least
one rung on the scale of spaces. Similarly, we require data in Dτ,L+1,q rather than
Dτ,L,q for the exponential estimates (4.19 d) and (4.1 c) because we want to define
Ψh and Ψh

m uniformly in h and m on general open sets of Gevrey spaces, not just on
open balls. This can only be done when constructing them as maps from Dτ,L+1,q

to Dδ
τ,L,q (see [24,25]).

Next, we show that in the Hamiltonian case the above construction also yields
a modified Hamiltonian, which is approximately conserved under the numerical
time-h map of the full semilinear evolution equation (2.12).

Lemma 4.12 (modified Hamiltonian for Gevrey class data). Under the conditions
and in the notation of lemma 4.9, suppose further that (H0)–(H4) and (RK4)
hold true. Then, for sufficiently small h∗ > 0, there exists a modified Hamiltonian
H̃ : Dδ/2

1 × [0, h∗] → R, defined up to a constant of integration, which is analytic in
U ∈ Dδ/2

1 for every h ∈ [0, h∗] and such that the modified vector field from lemma 4.9
satisfies F̃ = J∇H̃. Moreover, there exist constants c∗ ∈ (0, τ q/(q+1)χ1/(q+1)), with
χ as in lemma 4.9 and cH̃ > 0 such that, for every U ∈ Dτ,L+1,q and h ∈ [0, h∗],

|H̃(Ψh(U), h) − H̃(U, h)| � cH̃ exp(−c∗h
−1/(1+q)). (4.23)

Proof. By assumption (H1), the operator J−1A is self-adjoint on Y. Since, by
lemma 2.5, J−1 and Pm commute, J−1A is also self-adjoint on PmY with respect to
the restriction of the Y-inner product to PmY. Hence, the linear part u̇m = Amum

of (4.3) is Hamiltonian on PmY. Moreover, by (H2), the operator J−1DB(U) is self-
adjoint for each U ∈ Dδ. Hence, J−1DBm(um) is self-adjoint for each um ∈ Dδ∩PmY
so that, altogether, the vector field fm from (4.3) is Hamiltonian as a map from
Dδ ∩ PmY to PmY with respect to the restriction of the Y-inner product to PmY.
Since on each Galerkin subspace PmY the numerical method ψh

m is symplectic, the
Taylor coefficients f j

m of the modified vector field f j
m are also Hamiltonian (see,

for example, [1, 13, 17]). Moreover, the operator J−1Df j
m(um) is self-adjoint with

respect to the restriction of the Y-inner product to PmY for each um ∈ Dδ ∩ PmY
and the same holds true for J−1Df̃

n(h)
m(h)(um).
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As we argued in the proof of lemma 4.9, PmU ∈ Dδ for U ∈ Dδ/2
1 , so J−1DF̃ (U)

is self-adjoint with respect to the Y-inner product for each U ∈ Dδ/2
1 . By assump-

tion (H4), the set Dδ/2
1 is simply connected and star shaped.

Therefore, we can proceed as in the proof of lemma 2.6. We fix U0 ∈ D1 such
that Dδ/2

1 is star shaped with respect to U0 and define

H̃(U) =
∫ 1

0
〈J−1F̃ (tU + (1 − t)U0), U − U0〉 dt.

This modified Hamiltonian H̃ is well defined and analytic on Dδ/2
1 . Moreover, the

steps taken in (2.16) still apply, so H̃ is invariant under the modified flow with

F̃ = J∇H̃.

To prove (4.23), we decrease h∗ such that the right-hand side of (4.19 d) is smaller
than δ/4 for every U ∈ Dτ,L+1,q. This is to ensure that Ψh(U) ∈ Dδ/2

1 , so that H̃ is
defined at Ψh(U). Then, using the mean-value theorem, the bound on the modified
vector field given by (4.19 b), (4.19 d) and the invertibility of J, we estimate, for
h ∈ [0, h∗] and U ∈ Dτ,L+1,q, that

|H̃(Ψh(U)) − H̃(Φ̃h(U))| � ‖∇H̃‖Cb(Dδ/2
1 ;Y1)

‖Ψh(U) − Φ̃h(U)‖Y1

� ‖J−1F̃‖Cb(Dδ/2
1 ;Y1)

‖Ψh(U) − Φ̃h(U)‖Y1

� ‖J−1‖E(Y1)‖F̃‖Cb(Dδ/2
1 ;Y1)

cΦ̃ exp(−c∗h
−1/(1+q))

� ‖J−1‖E(Y1)cF̃ m(h)cΦ̃ exp(−c∗h
−1/(1+q)).

Since H̃ is conserved under the modified flow, choosing m as in (4.19 a), we obtain

|H̃(Ψh(U)) − H̃(U)| � c̃h−q/(1+q)e−c∗h−1/(1+q)
.

Dominating the algebraic prefactor by fractional exponential decay, this inequality
implies (4.23) with a possibly smaller value for c∗ > 0 than in lemma 4.9.

What is still missing is the proof of the O(hp)-closeness of the modified Hamil-
tonian to the original one. In a first attempt to prove such a result, we write

|H(U) − H̃(U)| � |H(U) − H(PmU)| + |H(PmU) − H̃(U)|, (4.24)

where m = m(h) is as in (4.19 a). Under the assumptions of lemma 4.12, the first
term on the right is exponentially small for U ∈ Dτ,L+1,q.

To estimate the second term of (4.24), choose some fixed U0 ∈ D1 such that Dδ/2
1

is star shaped with respect to U0, and set H(U0) = H̃(U0). The naive choice is
then to employ (4.19 e) with a = p so that F̃ a

m = f̃a
m ◦ Pm = F ◦ Pm. Integrating

F̃ − F ◦ Pm, we obtain the estimate

|H(um) − H̃m(um)| � O(mp+1hp) = O(h(p−q)/(q+1)) (4.25)

for every um = PmU and U ∈ Dδ/2
1 . This estimate is weaker than the expected

O(hp).
A closer inspection reveals that, in the context of the semilinear evolution equa-

tion (2.12), the second inequality of (4.15) in the proof of lemma 4.8 is too weak:
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when estimating the Taylor coefficients f j
m of the modified vector field in some fixed

Hilbert space norm, the unboundedness of the operators A contained therein will
introduce a factor mj (see (4.14)). This propagates into the proof of (4.25). Note,
however, that these estimates are simply about consistency, not about constructing
a flow. Thus, we can afford to lose smoothness rather than order. In other words,
we can estimate the Taylor coefficients of the modified vector field as maps from
one Hilbert space into another with a weaker norm. This will be detailed in the
next section.

4.4. Modified vector fields on Hilbert spaces

In this section, we present a more subtle estimate on the difference between the
original Hamiltonian and the modified Hamiltonian. The main difference to the
derivation of (4.25) in the previous section is that we consider the expansion coef-
ficients of the numerical method and of the modified vector field as maps between
different rungs on our scale of Hilbert spaces such that the loss of smoothness is
carefully accounted for.

We begin by establishing the necessary functional setting for the analysis of
modified vector fields on Hilbert spaces. We then review a result from [25] on the
Galerkin projection error for the numerical time-h maps. This estimate is then
propagated into an estimate on the difference between the full and the modified
vector field, which finally implies a corresponding estimate on the difference between
the exact Hamiltonian and the modified Hamiltonian.

In this section, we work directly with the standard construction of the modified
vector field. Namely, for 	 = 1, . . . , K + 1, we write

G� =
∂�

hΨh

	!

∣∣∣∣
h=0

(4.26)

to denote the 	th coefficient of the expansion of Ψh in powers of h, and define the
analogues of the expansion coefficients (4.13) for the modified vector field on Hilbert
spaces as follows: we set F 1 ≡ G1 and define

F � = G� −
�∑

i=2

1
i!

∑
�1+···+�i=�

D�1 · · ·D�i−1F
�i (4.27)

for 	 = 2, . . . , K + 1, where the sum ranges over indices 	i � 1 for all i, where
DjG = DGF j . We also recall from § 4.3 that g�

m and f �
m denote the 	th coefficients of

the expansions of the projected numerical method and the corresponding modified
vector field, respectively, and set G�

m ≡ g�
m ◦ Pm and F �

m ≡ f �
m ◦ Pm.

In the notation of condition (B1), we set Uκ = Dκ for κ = 1, . . . , K +1. Then the
regularity results given by theorem 3.1 on Ψh and theorem 4.5 on Ψh

m imply that,
in particular, there exists m∗ such that, for all m � m∗ and 	 = 1, . . . , K + 1,

G�, G�
m ∈

⋂
j+k�N

��k�K+1

Cj
b(Uk; Yk−�). (4.28)

Moreover, bounds in the norms associated with (4.28) are uniform in m � m∗.
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In the following, we shall state such bounds on vector fields in terms of the
three-parameter family of norms

|g|N,K,S = max
j+k�N
S�k�K

‖Djg‖C(Uk;Ej(Yk,Yk−S)) (4.29)

for 1 � S � K � N . The parameter S plays the role of a loss-of-smoothness index
as it forces the image of the map be estimated at least S rungs down the scale. We
can then prove a simple result on the regularity of the expansion coefficients of the
modified vector field.

Lemma 4.13 (modified vector field on a scale of Hilbert spaces). Assume that G1,
. . . , GK+1 are of class (4.28). Then the vector fields F 1, . . . , FK+1 defined by (4.27)
are also of class (4.28).

Proof. The proof is based on the simple fact that F ∈ Cn
b (Yi+j ,Yj) and G ∈

Cn+1
b (Yj ,Y) imply that DGF ∈ Cn

b (Yi+j ,Y). Thus, it remains to observe that their
repeated application to the terms in the inner sum of (4.27) causes all loss indices
to always sum to 	. We proceed by induction in 	. The case 	 = 1 does not require
proof. Assume therefore that 	 > 1 and the lemma is proved up to index 	 − 1. For
	 > 	1 � 1, we estimate, with G ≡ D�2 · · ·D�i−1F

�i that

|D�1G|N,K+1,� = |DGF �1 |N,K+1,�

= max
j+k�N

��k�K+1

‖Dj(DGF �1)‖C(Uk;Ej(Yk,Yk−�))

� 2N max
j+k�N

��k�K+1

‖Dj+1G‖C(Uk−�1 ;Ej+1(Yk−�1 ,Yk−�))

× max
j+k�N

�1�k�K+1

‖DjF �1‖C(Uk;Ej(Yk,Yk−�1 ))

= 2N max
j+k�N+1−�1

�−�1�k�K+1−�1

‖DjG‖C(Uk;Ej(Yk,Yk−(�−�1)))|F
�1 |N,K+1,�1

� 2N |G|N,K+1−�1,�−�1 |F �1 |N,K+1,�1 , (4.30)

provided that G is of class (4.28) with K replaced by K−	1 and 	 replaced by 	−	1.
Here the first inequality is based on the product rule and selective weakening of
the norm on the domain spaces, thereby increasing the respective operator norms.
The identity between the fourth and the fifth lines is achieved by redefining j + 1
as j and k − 	1 as k. The final inequality holds because 	1 � 1, so that we are
strictly extending the range of the running indices. We note that the second term
in the final line of (4.30) is bounded by the induction hypothesis. The estimation of
the first term in the final line of (4.30) can now be made recursively to resolve the
entire product D�1 · · ·D�i−1F

�i from the inner sum of (4.27) in terms of quantities
that are bounded by the induction hypothesis. This is always possible because at
the kth step of this process we lose 	k rungs of smoothness, and the sum of the loss
indices satisfies 	1 + · · · + 	i = 	 by construction.

We now aim to derive estimates on the difference between F � and F �
m with respect

to the same type of norm. In [25], we obtained a related result on the difference
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between Ψh and Ψh
m from which we can start. Setting I = (0, h∗), U = DK+1 and

X = YK+1, we define the norm

‖Ψ‖N,K = max
j+k�N
��k�K

‖Dj
U∂�

hΨ‖L∞(U×I;Ej(X ;Yk−�)) (4.31)

for 0 � K � N . Then the stability of the numerical method on a scale of Hilbert
spaces under spectral truncation can be formulated as follows.

Lemma 4.14 (Oliver and Wulff [25, theorem 3.7]). Assume (A), (B1) and (RK1)–
(RK3). Then there is h∗ > 0 such that, for every 0 � S � K + 1,

‖Ψh − Ψh
m‖N−1−S,K+1−S = O(m−S) (4.32)

as m → ∞. The order constants depend only on the bounds afforded by (B1), (2.10),
(3.5), on the coefficients of the method and on δ.

We note that lemma 4.6 above already provided us with an exponential estimate
on Ψh−Ψh

m for Gevrey-regular data, whereas lemma 4.14 here also asserts bounds on
derivatives with respect to h and U ; the proof is correspondingly more complicated
even in spaces of finite order of smoothness and can be found in [25].

To proceed, we observe that lemma 4.14 holds with K + 1 in the statement of
the lemma replaced by any κ between S +1 and K +1, with K as defined in condi-
tion (B1). Note that in the definition of the norm (4.31) we must correspondingly
read X and U as Yκ and Uκ, respectively. Then, specializing to the particular value
k = κ − S in the definition of the norm appearing in (4.32), we obtain

max
j+κ�N−1

S+��κ

‖Dj
U∂�

h(Ψh − Ψh
m)‖L∞(Uκ×I;Ej(Yκ;Yκ−S−�)) = O(m−S).

Thus, fixing 	 ∈ 1, . . . , K + 1 − S and taking the maximum over the allowed range
κ = S + 	, . . . , K + 1, we can write

max
j+κ�N−1

S+��κ�K+1

‖Dj
U∂�

h(Ψh − Ψh
m)‖L∞(Uκ×I;Ej(Yκ;Yκ−S−�)) = O(m−S). (4.33)

Due to the definition of G� in (4.26), this directly implies that

|G� − G�
m|N−1,K+1,S+� = O(m−S). (4.34)

Lemma 4.15 (stability of the modified vector field). Suppose that G1, . . . , GK+1

and Ḡ1, . . . , ḠK+1 are of class (4.28), and let F � and F̄ � denote expansion coef-
ficients of the respective associated modified vector fields defined via (4.27). Then,
for S ∈ 1, . . . , K and every 	 ∈ 1, . . . , K + 1 − S,

|F � − F̄ �|N−1,K+1,S+� � c max
1�k��

|Gk − Ḡk|N−1,K+1,S+k,

where the constant c depends on the bounds on Gk and Ḡk in the norm | · |N−1,K+1,k

for k = 1, . . . , 	.
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Proof. The proof follows the same steps as that of lemma 4.13. We set D̄�G ≡ DGF̄�.
The crucial estimate corresponding to (4.30) then takes the form

|D�1G − D̄�1Ḡ|N−1,K+1,S+� � |DG(F �1 − F̄ �1)|N−1,K+1,S+�

+ |D(G − Ḡ)F̄ �1 |N−1,K+1,S+�

� 2N |G|N−1,K+1−S−�1,�−�1 |F �1 − F̄ �1 |N−1,K+1,S+�1

+ 2N |G − Ḡ|N−1,K+1−�1,S+�−�1 |F̄ �1 |N−1,K+1,�1 ,

where the estimates in the last inequality follow from (4.30). This reasoning can
again be applied iteratively to resolve the entire difference of products of the form
D�1 · · ·D�i−1F

�i , where we note that the loss indices now add up to exactly S + 	,
as required.

We now turn our attention to the optimally truncated modified vector field F̃ ≡
f̃m ◦ Pm, where m = m(h) is as in (4.19 a). This is the same modified vector field
that gives rise to the modified Hamiltonian in lemma 4.12. Then the difference
between F̃ and F , the exact vector field of the semilinear evolution equation (1.1),
can be estimated as follows.

Lemma 4.16. Suppose conditions (A), (B0)–(B2) and (RK1)–(RK3) are satisfied
with K + 1 � P , where

P =
⌈

p(q + 1)2

q
+ q

⌉
+ 1, (4.35)

q is defined in (B2) and p is the order of the numerical method. Then the difference
between the original vector field F and the modified vector field F̃ from lemma 4.9
satisfies

‖F̃ − F‖Cb(DP ;Y) = O(hp). (4.36)

Proof. We define two intermediate vector fields. Let F̃ a denote the modified vector
field of the numerical method applied to the original semilinear evolution equa-
tion (1.1) computed up to order a � K + 1. Formally, as in the finite-dimensional
case, it has an expansion of the form (4.12):

F̃ a = F +
a−1∑
j=p

hjF j+1. (4.37)

Note that F = F̃ p. Due to (4.28) and lemma 4.13, all coefficients F k in the expan-
sion (4.37), and consequently F̃ a, are also of class (4.28) with 	 = a.

We now choose h∗ and m∗ as in the proof of lemma 4.9 and suppose m � m∗, so
that the projected modified vector fields are well defined. Let F̃ a

m ≡ f̃a
m ◦ Pm denote

the corresponding modified vector field of the projected system (4.3), again up to
order a, with m = O(h−q/(q+1)) as in (4.19 a). By lemma 4.13 applied to G�

m, the
vector field F̃ a

m is also of class (4.28).
We now decompose

F − F̃ = (F − F̃ a) + (F̃ a − F̃ a
m) + (F̃ a

m − F̃ ). (4.38)
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We show that when a is chosen as

a = �p(q + 1) + q�, (4.39)

each term on the right is O(hp) in appropriate norms.
A bound on the first difference on the right-hand side of (4.38) follows directly

from the definition of F̃ a in (4.37). Using the norms defined in (4.29),

|F − F̃ a|N−1,K+1,a � hp
a−1∑
j=p

hj−p|F j+1|N−1,K+1,a.

By lemma 4.13, all norms in the right-hand sum are finite, so that, for a ∈ 1, . . . ,
K + 1,

|F − F̃ a|N−1,K+1,a = O(hp). (4.40)

To estimate the second difference on the right-hand side of (4.38), we apply
lemma 4.15 with Ḡ� = G�

m, which we recall are also of class (4.28), so that (4.34)
applies, yielding

|F̃ a − F̃ a
m|N−1,K+1,a+S = O(m−S) (4.41)

for S ∈ 1, . . . , K + 1 − a.
A bound on the third difference on the right-hand side (4.38) is provided by

(4.19 e), namely
‖F̃ a

m(h) − F̃‖C(Dδ/2
1 ;Y1)

= O(ham(h)a+1). (4.42)

We now seek conditions under which the estimates (4.41) and (4.42) are of
order hp. Due to (4.19 a), m = m(h) = O(h−q/(1+q)), so that the requirement
m−S = O(hp) leads to the choice

S =
⌈
p
1 + q

q

⌉
.

Similarly, the requirement O(hama+1) = O(hp) is equivalent to

O(hama+1) = O(ha−q(a+1)/(q+1)) = O(ha/(q+1)−q/(q+1)) = O(hp),

which leads to the choice (4.39).
Since P is defined such that P � S + a (see (4.35)), the above estimates for the

three terms of the decomposition (4.38) imply (4.36).

Remark 4.17. If we can change F̃ so that its leading order linear part is A rather
than APm(h), then theorem 4.1 still applies. This is true since, by (2.5), for U0 ∈
Yτ,L+1,q the differences between the two modified vector fields and their flows up
to time h are exponentially small in the Y1-norm.

In the Hamiltonian case, the previous result on O(hp)-closeness of true and mod-
ified vector field carries over to a statement on O(hp)-closeness of the corresponding
Hamiltonians.

Lemma 4.18. Under the assumptions of lemma 4.16 suppose that, in addition, the
semilinear evolution equation is Hamiltonian satisfying (H0)–(H4) and that the
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numerical method is symplectic, i.e. satisfies (RK4), and is of order p. Then the
modified Hamiltonian H̃ from lemma 4.12 can be chosen such that

‖H − H̃‖Cb(DP ;R) = O(hp).

Proof. By (H4), DP is star shaped with respect to some U0 ∈ DP . Since the
modified Hamiltonian from lemma 4.12 is defined only up to a constant, we can
choose the constant of integration such that H(U0) = H̃(U0). Then, following the
proof of lemma 2.6, we estimate, for any U ∈ DP ,

|H̃(U) − H(U)| �
∣∣∣∣
∫ 1

0
〈J−1(F − F̃ )(tU + (1 − t)U0), U − U0〉 dt

∣∣∣∣
� ‖J−1‖E(Y)‖F − F̃‖Cb(DP ;Y) sup

U∈DP

‖U − U0‖Y .

Since DP is Y-bounded, lemma 4.16 implies that the right-hand side is O(hp).

5. Lower estimates in an example: a nonlinear Schrödinger equation

In this section we set up a counter-example, motivated by [21], which shows that
analyticity of the initial data is necessary to achieve an embedding of the implicit
midpoint rule into a Hamiltonian flow.

5.1. Model evolution equation

We work with functions u : [0,∞) → l2(N0; C), whose components may be inter-
preted as the Fourier coefficients of a square-integrable function defined on the
circle. Further, we write u = v + iw to identify the real and imaginary parts of the
components of u.

We now define the Hamiltonian

H = 1
2

∞∑
k=1

ωk|uk|2 + w0 Re f(u)

with ωk � 0 and
f(u) = f(u1, u2, . . . ) =

∑
α

cαuα,

where α = (α1, α2, . . . ) ∈ NN
0 is a multi-index, each cα is a real coefficient, uα =

uα1
1 uα2

2 · · · as usual, and the summation is over all multi-indices with α0 = 0 and a
finite number of non-zero coefficients αk for k � 1.

In terms of v and w, this defines a Hamiltonian system

d
dt

(
v

w

)
= J∇H(v, w), (5.1)

where J is the standard symplectic structure matrix

J =
(

0 id
− id 0

)
.
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For k = 0, we obtain by direct computation that

v̇0 =
∂H

∂w0
= Re f(u), (5.2 a)

ẇ0 = −∂H

∂v0
= 0. (5.2 b)

For k � 1,

v̇k =
∂H

∂wk
= ωkwk + w0 Re

∂f(u)
∂wk

, (5.2 c)

ẇk =
∂H

∂vk
= −ωkvk − w0 Re

∂f(u)
∂vk

. (5.2 d)

In all of the following, we assume the initial condition w0(0) = 0 so that, due to
(5.2 b), w0(t) = 0 for all t � 0. Then (5.2 c) and (5.2 d) combine into

u̇k = iωkuk

for k � 1, which is immediately solved as

uk(t) = uk(0)eiωkt. (5.3)

Substituting (5.3) back into (5.2 a) and integrating in time, we obtain

v0(t) = v0(0) + Re
∑
α

cαuα(0)
∫ t

0
exp

(
i
∑

k

ωkαkt

)
dt

= v0(0) + Re
∑
α

cαuα(0)
exp(i

∑
k ωkαkt) − 1

i
∑

k ωkαk
.

5.2. Implicit midpoint time discretization

We write un = vn + iwn to denote a time discretization of (5.2). Specifically, one
step of the implicit midpoint time discretization with step size h applied to (5.2 a)
and (5.2 b) takes the form

v1
0 = v0

0 + h Re f( 1
2 (u1 + u0)), (5.4 a)

w1
0 = w0

0. (5.4 b)

Thus, assuming that w0 is zero initially, wn
0 remains zero in every step. Then, for

k � 1, we obtain

u1
k = u0

k + hiωk
u1

k + u0
k

2
+ h

w1
0 + w0

0

2
(· · · )

so that, noting that the last term is zero, we can write

u1 = S(hA)u0, (5.5)

where S(hA) = diag(s1, s2, . . . ) with

sk = sk(h) =
1 + 1

2 iωkh

1 − 1
2 iωkh

. (5.6)
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Plugging (5.5) into (5.4 a), we can write

v1
0 = v0

0 + h Re f(Gu0) = v0
0 + h Re

∑
α

cα(Gu0)α, (5.7)

where G = G (h) = diag(g1, g2, . . . ) with

gk = gk(h) =
1 + sk

2
=

1
1 − 1

2 iωkh
. (5.8)

5.3. Modified vector field

To obtain an expression for the modified vector field for initial data w0(0) = 0,
we make the ansatz

˙̃v0 = Re(f̃(ũ)) with f̃(u) =
∑
α

c̃αuα (5.9)

and, for k � 1,
˙̃uk = iω̃kũk. (5.10)

Integrating (5.10) from 0 to h, where ũ(0) ≡ u0 and equating the resulting expres-
sion with (5.5), we immediately obtain that

sk = eiω̃kh. (5.11)

Similarly, inserting the solution of (5.10) into (5.9), integrating from 0 to h and
equating the resulting expression with (5.7), we find

h Re[cα(Gu0)α] = Re
[
c̃α

exp(i
∑

k αkω̃kh) − 1
i
∑

k αkω̃k
(u0)α

]
. (5.12)

Therefore, to satisfy (5.12), we have to find c̃α such that

hcαgα = c̃α
exp(i

∑
k αkω̃kh) − 1

i
∑

k αkω̃k
. (5.13)

Note that the left-hand side of this equation only vanishes when h = 0 or cα = 0.

5.4. Resonances

Equation (5.13) can be solved for c̃α unless the numerator on the right-hand side
is zero. Let us call this a resonance. Due to (5.11), we can write the condition for
resonance as sα = 1. Let us look for particular resonances between three consecutive
‘wavenumbers’ such that

sk−1sksk+1 = 1. (5.14)

Using the definition of sk in (5.6), this condition reads

4(ωk + ωk+1 + ωk−1) = h2ωk−1ωkωk+1. (5.15)

We consider the case ωk = k2 so that (5.2) is a nonlinear Schrödinger equation.
We let u ≡ (v, w) ∈ h1 × h1 = Y, where h� = h�(N0; R). Thus, Y is the Sobolev
space H�(S1; C) in Fourier coordinates. Further, (5.2) is of the form (1.1) with A
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the Laplacian in Fourier coordinates, i.e. (Au)k = iωkuk. Consequently, (A), (H0)
and (H1) hold as described in § 2.6; recall that we require u ∈ h1(N0; C) to ensure
that H(u) is finite. The nonlinearity B from (1.1) is then defined by

B(u)k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝

w0 Re
∂f(u)
∂wk

−w0 Re
∂f(u)
∂vk

⎞
⎟⎟⎠ for k � 1,

(
Re f(u)

0

)
for k = 0.

(5.16)

We wish to satisfy (B0)–(B2) and (H2–4) with Dk = BYk

R (0) and Dτ,L,q = BYτ,L,q

R (0)
for some positive R, τ and L. Let us look at one such f , where all interactions are
between triples of consecutive wavenumbers, namely

f(u) =
∞∑

j=2

uj−1ujuj+1.

Due to the Hölder inequality,

|f(u)| �
∞∑

j=2

|uj−1ujuj+1| � ‖u‖2
l2
‖u‖l∞ � ‖u‖3

l2
.

so that f : l2(N0; C) → C is a bounded trilinear form on l2, and hence analytic as
a function on l2 and therefore also on h1.

Similarly, we can check that B(u) defined as in (5.16) is an analytic map from hk

to itself for all k ∈ N0 so that (B0)–(B2) hold for any L � 0, τ > 0 and q = 2. As
in § 2.6, we consider the case q = 2 because this Gevrey space consists of sequences
{uk} whose Fourier series u(x) =

∑
k∈Z ukeikx is analytic in x.

Let us now consider the resonance condition (5.15) for our example, where ωk =
k2. We obtain

4((k − 1)2 + k2 + (k + 1)2) = h2(k − 1)2k2(k + 1)2

or, after simplification,

12 +
8
k2 = h2(k2 − 1)2.

For h sufficiently small, there is exactly one positive root k(h). Clearly, k(h) =
O(h−1/2) as h → 0, and there is a resonance whenever k(h) ∈ Z.

At a resonance, the embedding error in the v0 component is given by the left-hand
side of (5.12). For our example, cα = 1, so that the embedding error reads

e(h) = h Re(gk−1gkgk+1u
0
k−1u

0
ku0

k+1).

Since k = O(h−1/2), (5.8) shows that gj = O(1) for j = k − 1, k, k + 1. Clearly, the
embedding error can only be exponentially small provided u0

k decays exponentially
as k → ∞. As a specific example, take

u0
k =

e−τk

k�+2
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for k � 1 and u0
0 = 0. It is easily seen that u0 ∈ Yτ,�,2 for any τ, 	 � 0. For this

initial condition, the embedding error satisfies

e(h) = O

(
he−3τk

k3�+6

)
= O(e−ch−1/2

) (5.17)

for some c > 0 as in [21].

Remark 5.1. If in the setting above we choose

f(u) =
1
u0

+
∞∑

j=2

uj−1ujuj+1,

then the nonlinearity B defined by f(u) via (5.16) can be considered on the open
half-balls

Dk = int(BYk

R (0)) ∩ {u : u0 > ε}

for some ε > 0 fixed. Then Dk is convex, and hence star shaped with respect to any
u ∈ Dk. Defining Dτ,�,q analogously, we obtain a nested domain hierarchy on which
B satisfies (B0)–(B2) and (H2)–(H4); (H0), (H1) and (A) hold true as before. This
example shows that it makes sense to consider domains Dk different from balls.
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