
1. Introduction and overview

1.1. Motivation

A common assumption underlying theories of vision is that
a representation of the world – a geometrical replica (Marr
1982) and possibly also affordances required for a reper-
toire of actions (Gibson 1966) – should be delivered to the
decision-making stage of an intelligent system, natural or
artificial. Achieving principled correspondence between
the representation and the world is a challenging philo-
sophical and computational problem. On the philosophical
level, one would like to know how representation is possi-
ble in principle. In vision, for example, one may ask: What
is it about the internal state of an observer seeing a cat on a
mat that makes it refer to the shape of the cat?

A traditional answer to this question has been, for a long
time, similarity. According to this view, which originated
with Aristotle, an internal entity represents an external ob-
ject by virtue of resemblance or isomorphism between the
two: the representation of a tomato has something of the
redness and of the roundness of the real thing.

Echoes of this idea, inherited by Berkeley and Hume
from the Scholasts, can be found in present-day sources:
“Representation of something is an image, model, or re-
production of that thing” (Suppes et al. 1994, p. 517).
Clearly, no one these days believes that a representation of
a cat in an observer’s brain is cat-shaped (or striped, or
fluffy); rather, it is construed as a set of measurements that

collectively encode the geometry and other visual qualities
of a cat. Nevertheless, the philosophical foundation of the
current theories of shape representation is still isomor-
phism: typically, it is assumed that structural (Biederman
1987) or metric (Ullman 1989) information stored in the
brain reflects corresponding properties of shapes in the
world, on a one to one basis.

Apart from having philosophical problems (Cummins
1989), this approach also presents a formidable computa-
tional challenge if the representation is to be veridical (i.e.,
if the geometry of each viewed shape is to be faithfully re-
constructed from the proximal stimulus [Edelman 1998]).
Given the inherent imperfections and distortions intro-
duced by the sensory channels (as manifested in the
plethora of visual illusions), it is perhaps not too surprising
that human perception of shape falls short of veridicality in
a variety of tasks, such as the estimation of local surface ori-
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entation (Koenderink et al. 1996), local curvature (Phillips
& Todd 1996), or even object size (Gregson & Britton
1990). It is certainly possible to learn fascinating lessons
about the workings of the human visual system from the
study of the cases in which it behaves nonveridically, non-
linearly, or downright peculiarly (Gregory 1978; Gregson
1988). Nevertheless, the central goal of this target article –
understanding how representation is possible at all – is
probably better pursued by considering the cases in which
the representations used by the visual system do lead to
veridical perception. As we shall see, lessons that can be
drawn from these cases suggest a philosophically appealing
and formally veridical approach to representation that turns
out to be computationally feasible.

1.2. Representation by second-order isomorphism

In the processing of visual shape, some of the more striking
instances of veridicality are found in experiments in which
the subjects must consider similarities among shapes rather
than the geometry of individual shapes (Cortese & Dyre
1996; Cutzu & Edelman 1996; Edelman 1995a; Shepard &
Cermak 1973; Shepard & Chipman 1970). In these cases, the
veridicality of the representation of the similarities among
shapes is expressed in the consistency among subjects and,
when tested with parametrically controlled stimuli (Cortese
& Dyre 1996; Cutzu & Edelman 1996; Edelman 1995a;
Shepard & Cermak 1973), in the agreement between the pa-
rameter-space patterns formed by the stimuli and their
arrangement in a configuration obtained from the subject
data by multidimensional scaling (more on this in sect. 7).1
At the same time, human performance exhibits considerable
departures from veridicality in perception (Koenderink et al.
1996; Phillips & Todd 1996), especially in the recognition
(Jolicoeur & Humphrey 1998) of shapes (as opposed to the
perception and recognition of similarities among shapes).

How do people happen to be better judges of similarities
among shapes than perceivers of shape? This state of affairs
should be expected if the visual system seeks a second-
order isomorphism (Shepard 1968) between similarities
among shapes and similarities among the internal repre-
sentations they induce, instead of a first-order isomorphism
between the shapes and their representations. Quoting
Shepard and Chipman (1970, p. 2), “the isomorphism
should be sought – not in the first-order relation between
(a) an individual object, and (b) its corresponding internal
representation – but in the second-order relation between
(a) the relations among alternative external objects, and (b)
the relations among their corresponding internal represen-
tations. Thus, although the internal representation for a
square need not itself be square, it should (whatever it is)
at least have a closer functional relation to the internal rep-
resentation for a rectangle than to that, say, for a green flash
or the taste of a persimmon.” Essentially, this is a call for the
representation of similarity instead of representation by
similarity (see Fig. 1).2

1.3. A computational theory of veridical representation

To provide a computational basis for the representation of
similarity, it is not enough merely to postulate, as J. J. Gib-
son did, that the relevant information is picked up or res-
onated to, without specifying the details of the pick-up
process (Marr 1982; Ullman 1980). In the case of repre-

sentation by similarity, the pick-up of external information
amounts to a reconstruction of the visual world. Although
it is quite easy to state, the reconstructionist goal is notori-
ously difficult to attain computationally, as illustrated by the
limited success of Marr’s research program in computer vi-
sion and by the calls for alternative paradigms (Aloimonos
1990; Bajcsy 1988). Fortunately, as we shall see, recon-
struction is not necessary if the representation of similarity
is taken to be the goal of the visual system.

Computationally, the problem of representation can be
addressed on several levels (cf. Marr 1976). On the abstract
level, the concern is to come up with an appropriate math-
ematical formulation, one that would make the problem
well-posed and tractable. The idea of second-order iso-
morphism does in fact lead to a well-defined computational
notion of representation: according to this idea, to repre-
sent a collection of objects means to reflect in a consistent
manner any change an object may undergo.

By and large, this notion of representation is conceptu-
ally orthogonal to the reconstructionist approach: the to-
kens standing for objects need not resemble the objects
themselves (see Fig. 1). Although representation by sec-
ond-order isomorphism does reduce to plain reconstruc-
tion if the represented quantities correspond to distances
among densely spaced points situated on the surface of an
object,3 such a reduction is unwarranted; apart from plac-
ing a heavy computational burden on the perceptual sys-
tem, it serves no useful purpose. As noted by Shepard and
Chipman (1970, p. 3), “it only attempts the absurdity of
putting off until later the whole process of pattern recogni-
tion that must by definition precede the pivotal event in
question” (i.e., the delivery of a representation capable of
supporting perceptual judgment and categorization).
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Figure 1. Clustering by natural kinds, and a representation of it
that fulfills the requirement of second-order isomorphism, ac-
cording to Shepard (1968). The disposition of the tokens corre-
sponding to the three shapes in this illustration in the proximal
representation space (bottom) reflects the disposition of the
shapes in the distal shape space (top); the shapes of the tokens are
irrelevant to their representational capacities.
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On the algorithmic level, representation by second-order
isomorphism calls for ensuring that the similarities between
(necessarily proximal) perceived entities correspond in some
orderly fashion to the distal similarities between objects. A
mechanism tuned to a particular shape provides a convenient
way to estimate the similarity between the current stimulus
and a reference stimulus, if its response falls off monotoni-
cally with the extent of the (distal) deviation of the current
stimulus from the preferred one. This monotonic relation-
ship between proximal and distal similarities provides the
requisite algorithmic basis for veridical representation: as in
nonmetric multidimensional scaling (Kruskal 1964; Shepard
1962), the rank order of the proximal similarities, being the
same as the rank order of the distal similarities, allows re-
covery of the distal configuration of the stimuli in some un-
derlying parametric space (Edelman 1995b).

On the implementational level, the challenge, then, is to
identify a mechanism (biological or artificial) capable of re-
sponding selectively to certain shapes. A generic connec-
tionist classifier trained on the recognition of a particular
class of objects provides the requisite implementational
substrate; a particular classification architecture (namely,
the regularization networks of Poggio & Girosi 1990) may
be preferred on the grounds of biological plausibility.

An adequate computational solution, spanning all three
levels, would exert a decisive influence on the philosophi-
cal outlook on the problem of representation. At the very
least, familiar dogmas would have to be reassessed and the
relative merit of competing proposals reevaluated. The de-
velopments of recent years in the computational, psy-
chophysical, and neurobiological studies of visual repre-
sentation suggest that the time for such a revision has come.
In the remainder of this article, I survey some of the rele-
vant developments and suggest a way to relate them to
some of the current views on the issue of representation in
the philosophy of mind.

2. Representation of similarity: 
Some preliminaries

I now proceed to describe in detail the computational-level
approach to representation outlined in the introduction. A
standard answer to the central question at this level – what
to represent – is, not surprisingly, “shape.” The surprise
comes with the realization that an alternative answer is both
plausible and preferable. The approach expounded below,
which is closely related to Shepard’s (1968) idea of repre-
sentation by second-order isomorphism, offers such an al-
ternative answer: represent similarity between shapes, not
the geometry of each shape in itself.

2.1. Distal shape space

To be able to discuss second-order isomorphism, one must
first define the two relevant similarity functions, one for the
distal (represented) shapes and the other for the proximal
(representing) entities. I begin with the former.

Similarity between objects can be defined via an embed-
ding of the objects into a metric space, where it is then de-
termined by the distance between the points corresponding
to each object. Rather than postulating a unique true distal
similarity space for shapes, I propose to consider an arbitrary
space of the required kind and to show later on that the ex-
act choice of the space is not critical.4 What should be re-

quired of such a distal shape space? Under second-order iso-
morphism, changes of shape, not the shapes themselves, are
to be represented. According to this view, changing a shape
corresponds to a movement of the point encoding the shape
in an appropriate parameter space. To allow metamorphosis
within a certain class of objects, all the members of that class
must admit a common parametrization.

Although modern computer graphics offer a number of
approaches to a common parametrization for a very wide
spectrum of possible shape morphing (Galin & Akkouche
1996; Pentland & Sclaroff 1991) (see also Appendix A), it is
unrealistic to expect that a structure of similarities common
to extremely disparate shapes will carry over into a cogni-
tive system (the need to judge the similarity between ob-
jects from widely disparate categories arises rarely, if ever).
Different object classes may, therefore, be encoded by dif-
ferent sets of parameters.

To some extent, the ease with which a common parame-
trization can be constructed for a set of objects probably de-
pends on the degree of their membership in the same nat-
ural kind (Quine 1969) of shapes (say, quadruped animals)
or in the same artificial shape category (office tables). If any
shape were equally likely (for a “medium-sized” count noun
object), the burden of representing the visual world would
be, I suspect, much heavier.

2.2. Proximal shape space

Defining similarity via proximity in an internal metric shape
space is somewhat more problematic, as discussed by Greg-
son (1975, Ch. 4). The main tool at the disposal of a psy-
chologist who wishes to show that representations of a set
of stimuli can be taken to form a spatial order is multidi-
mensional scaling (see Shepard, 1980, for a review). Using
this technique, it is possible to show that, in a wide variety
of perceptual tasks, subjects behave as if they represented
the stimuli by distributions of points in an internal similar-
ity space of the kind that is needed here (Nosofsky 1992;
Shepard 1987).

A degree of caution is called for when interpreting this
state of affairs. First, the applicability of multidimensional
scaling is ultimately determined by the relevance of the re-
sulting solution:

Even though it is always the case that, if we are prepared to tol-
erate a high enough dimensionality and if we are prepared to
tolerate degenerate, clustered, or lumpy configurations, we can
get a spatial representation, ultimately, the criterion for accept-
ing a representation is the sense that can be made of it, and the
results that can be retrieved or predicted, by rules invariant over
the space, from it. (Gregson 1975, p. 134)

Second, one should not assume too lightly that the inter-
nal similarity space is metric in the full sense used in, say,
differential geometry. In that space, as pointed out by Clark
(1993, p. 147), “Distances are monotonically related to sim-
ilarities, but there is no presumption that sums or ratios of
distances are interpretable. There may be no common unit
to express distances along different axes.” Fortunately, in vi-
sual shape processing these concerns seem to be largely
mitigated; in section 7, we shall see that both the metric
space assumption and the applicability of multidimensional
scaling are justified by the human performance data in a va-
riety of shape perception tasks.

The metric-space definition of internal similarity seems
to fall short of explaining such prominent phenomena in the
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perception of similarity as subjectivity, task dependence,
and asymmetry (Medin et al. 1993; Nosofsky 1991; Tversky
1977; Tversky & Gati 1978). These shortcomings are only
superficial, however. In particular, although the metric-
space model makes it possible to speak about objective dis-
tal similarity (a prerequisite for a realist ontology of visual
shapes), the perceptual system of the observer can warp the
objective similarity space, according to his or its idiosyn-
crasies and to the dictates of the task (Goldstone 1994; Har-
nad 1987). Furthermore, similarity need not remain re-
stricted by the symmetry it inherits from the underlying
distance function; the metric-space model can be consid-
ered a starting point for a more realistic definition, of the
kind proposed, for example, by Krumhansl (1978). Indeed,
as I shall argue in section 5, a distance-based definition of
similarity does not preclude modeling a considerable vari-
ety of similarity-related phenomena in human perception.

The possibility of a principled quantification of both the
distal and the proximal shape similarity addresses the first
problem faced by the proposed theory of representation:
what to represent. The next question – how to communi-
cate similarity relationships induced by a given distal shape
space structure across the gap separating the world from
the observer – is addressed in the following section.

3. Representation of similarity: The problem

3.1. Levels of representation of similarity

Let us now consider the process of representation as a map-
ping from a distal to a proximal metric shape space. One
may ask, at this point, what properties the mapping must
have for the image of the original shape space to qualify as
its faithful representation.

3.1.1. Distinctness. The minimal requirement appears to
be that the mapping be one to one, so that distinct points in
the original space are mapped to distinct points in the rep-
resentation space.5 To realize the implications of limiting
the representational requirements to distinctness, note that
a major reason for maintaining internal representations is
generalization: any system, at any point in time, will have
encountered only a finite number of (labeled or rewarded)
stimuli; for any other stimulus, the response will have to be
generalized, based on memory traces of past experiences
with related stimuli (Shepard 1987). A representation
whose fidelity is limited to distinctness provides no basis for
generalization because it does not contain information con-
cerning relationships among stimuli, beyond the identity of
each of them.

3.1.2. Nearest-neighbor preservation. A modicum of gen-
eralization capability is afforded by the requirement that
the representation mapping preserve the nearest neighbor
structure prevailing in the original space. In this case, two
points that are nearest neighbors of each other before the
mapping remain so after the mapping. This kind of repre-
sentation preserves the structure of natural kinds, which, in
turn, provides a basis for generalization (specifically, all ob-
jects more similar to some object O1 than to O2 will be rep-
resented as such, rather than merely as distinct both from
O1 and from O2).

3.1.3. Full similarity spectrum preservation. If the iden-
tity of the kth nearest neighbor of each point is preserved

for some k > 1, the resulting representation will be in closer
correspondence with the original space. At the limit, when
the rank order of all interpoint distances for any finite set of
points is fully preserved, the representation mapping be-
comes a similitude. The original shape-space configuration
of the points can then be recovered from the distance rank
information, up to rigid motion (Borg & Lingoes 1987;
Kruskal 1964; Shepard 1962; 1980). A representation that
has this degree of fidelity can support categorization at a
number of levels, including determination of the identity of
the stimulus (see sect. 5).

This hierarchy is clearly not the only possible way to de-
fine the fidelity of the representation mapping. If the rep-
resentation is to be used mainly for classification, one may
require points that are separable under some parametric
decision surface in the original space to remain so following
the mapping (this is in contrast to distance-based require-
ments, which are nonparametric). For example, if points in
the original shape space tend to form linearly separable
clusters, one may require that the clusters remain linearly
separable under the mapping. Moreover, one may also re-
quire that clusters that are not originally linearly separable
become so under the mapping (Cortes & Vapnik 1995).
These considerations are beyond the main concern of the
present section, which is to specify a minimal computa-
tional basis for the processes that operate on the represen-
tation space. Still, if the original-space configuration of
stimuli allows an efficient remapping that makes explicit an
underlying structure of linearly separable clusters, this pos-
sibility must remain open following the mapping into the
representation space. Whereas the lowest-fidelity (distinc-
tion-preserving) representation does not necessarily pre-
serve such properties, the highest-fidelity (similarity-pre-
serving) representation clearly does.

3.2. Distal to proximal mapping M

In practice, the structure of the world is never perceived di-
rectly, but always through the more or less distorting chan-
nel of the distal to proximal mapping. If that channel lets
some of the original dimensions of variation of stimuli col-
lapse, the resulting representation runs the risk of not sat-
isfying even the distinctness requirement stated above. For
example, in achromats, the perceptual dimensions of color
are projected out of existence, giving rise to a perceptual
system separated from that of a normal person by a gap that
cannot be bridged. A more complicated situation may arise
when the transformation relating two representations is in-
vertible but highly distorting. In that case, two systems may
have widely different but not unbridgeable grasps of the
world. A pair of stimuli that normally appear similar to one
of the systems may seem dissimilar to the other.6

3.2.1. Constraints on the mapping M. Let us consider the
constraints on the distal to proximal mapping M implied by
the requirement that a representation should preserve sim-
ilarity ranks everywhere in the shape space. A one to one
mapping with this property must be a composition of scal-
ing with rotation or reflection (Reshetnyak 1989).7 Thus,
the requirement of global rank preservation is quite re-
strictive in the class of mappings it allows.

Locally, the rank preservation requirement is satisfied by
any well-behaved (i.e., smooth and invertible) mapping
(Cohn 1967). Such mappings are conformal, that is, they
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preserve angles and, therefore, also the similitude of small
triangles (see Appendix B). In particular, a scalene triangle
formed by a triplet of points in a distal shape space will be
mapped into a triangle with the same ranking of side lengths
in the proximal representation space (see Fig. 1).

3.2.2. Component-wise analysis of M. How likely is a map-
ping M, implemented by a typical visual system, to meet
these requirements for distance rank preservation? Such a
mapping can be described generically as a composition of
four functions, M 5 f4 ° f3 ° f2 ° f1, where the first two 
components, f1 and f2, are dictated by the properties of the
world and the other two constitute part of the system (see
Fig. 2):

Geometry: The function f1(p) maps the distal parameter-
space description p of the object into its geometry (e.g., the
coordinates of the vertices of a fine mesh, suitable for ren-
dering by a graphics system).

Imaging. The function f2(p; z) maps the object’s geome-
try into the image on the receptor surface of the visual sys-
tem. Its dependence on the shape parameters p is deter-
mined by the prior action of f1 and is written down explicitly

for convenience; the dependence on the viewing conditions
z is, however, peculiar to f2.

Measurements. The function f3(p; z) corresponds to the
set of internal measurements performed on the image. In a
typical model of biological vision, each measurement stage
consists of a convolution with a number of filters, followed
by the application of a nonlinearity.

Dimensionality reduction. The function f4(p) maps the
measurement space into a low-dimensional representation
of the shape space, while removing the dependence on the
viewing conditions z. The low dimensionality of the ulti-
mate internal shape space reflects the corresponding char-
acteristic of the distal parameter space; it is also important
for reasons of computational tractability (Edelman & In-
trator 1997).

Note that the second component of M – the view map-
ping, f2 – introduces a dependence on variables z that are
extraneous to the shape parameters to be represented.
These variables encode the orientation of the object with
respect to the observer, to the light sources, and to the other
objects in the scene. Their influence must be counteracted
by the perceptual system, through the combined action of
measurement and dimensionality reduction, f4 ° f3, to re-
duce the likelihood that two nearby parameter-space points
(i.e., two similar shapes) are mapped into widely disparate
points in the final representation space. Absolute invari-
ance with respect to these variables is not necessary; it is
only required that changes in shape space influence the
measurements more strongly than view-space changes
(Edelman & Duvdevani-Bar 1997b; more on this in sect. 4).
Furthermore, not all the dimensions of z have to be treated
by the same mechanism: image-plane translation can be
compensated for by a covert shift of attention (Anderson &
Van Essen 1987) or an overt one (such as a saccadic eye
movement), variation in apparent size – by global scaling
using a hard-wired mechanism (Schwartz 1985), and rota-
tion in depth – by learning an appropriate normalizing
mapping specific for each object class (Lando & Edelman
1995; Poggio & Edelman 1990).

As pointed out above, the preservation of distance ranks
implies that any change in the distal parameter space must
be reflected in the final low-dimensional representation (if
some of the original dimensions collapse under the repre-
sentation, distances between points are likely to be dis-
torted). To ensure that as many as possible of the original
dimensions of variation among the distal objects are pre-
served, it is worthwhile to make as many varied measure-
ments as possible. This makes the measurement space (de-
fined by the action of f3) high dimensional and necessitates
subsequent dimensionality reduction (through the action of
f4). In a flexible system, dimensionality reduction would
have to involve learning to find informative dimensions, de-
pending on the statistics of the input and (if available) on
additional knowledge provided by the environment (for an
introduction to this aspect of representation, see, e.g., In-
trator 1993).

4. Representation of similarity: A solution

4.1. Representation 5 measurement 1
dimensionality reduction

We have seen that veridical representation is theoretically
possible insofar as a low-dimensional subspace isomorphic
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Figure 2. Components of the distal to proximal mapping, M
(see sect. 3.2.2). In this schematic illustration, the shape of the
object is determined by three parameters p (depicted by three
“slider” controls). The appearance of the object is governed by
these parameters and by variables z that represent factors such as
orientation and illumination direction. To ensure proper repre-
sentation of the original parameter space, a typical perceptual sys-
tem must carry out many measurements and then reduce the di-
mensionality of the resulting space while getting rid of the
extraneous variables z.
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(in Shepard’s sense) to a distal shape space may be ex-
tracted from the high-dimensional space of measure-
ments performed by the system. This situation is illus-
trated schematically in Figure 3. The input to an object
recognition system – an n 3 n image – can be considered
as a point in an n2-dimensional image or raster space 5 5
Rn2 (in biological vision, one may think of the space of pat-
terns transmitted by the optic nerve to the brain). The task
of a representational system is, given a pattern X [ 5, to
determine the location of X in a proximal shape space 6
, 5.

The problem of locating X within 6 is analogous to the
problem of determining the exact location of a point on a
terrain, which arises in navigation and in the preparation
of topographical maps. In topography, this problem can be
solved by triangulation: the location of the point is com-
puted from bearings taken to a number of landmarks
whose coordinates are known. Likewise, the location of a
point in the shape space can be found from its disposition
with respect to a number of reference points known to be-
long to the same space (“terrain”). This approach leads to
a straightforward implementation of representation by
second-order isomorphism, as described in the next sec-
tion.

4.2. A Chorus of prototypes

The main difference between triangulation in topography
and in cognitive modeling is the quantity measured to pro-
vide the location of the test point. In topography it is easy
to measure direction, and in a biologically motivated model,
distance (actually, a quantity monotonically related to dis-
tance). Consider a generic connectionist classifier, trained
on instances of a certain shape class, that corresponds to a
reference point or a prototype in the shape space. Note,
first, that such a classifier can be made to learn from exam-
ples. A simple mechanism shown to be applicable, in par-
ticular, to visual object recognition is radial basis function
(RBF) interpolation (Poggio & Edelman 1990); other
learning frameworks such as multilayer perceptrons trained
by back-propagation are also applicable. An RBF module
essentially interpolates the view space (see Fig. 3) of the ob-
ject on which it has been trained, starting from the exem-
plar views provided during training. As a result, the re-
sponse of such a classifier is approximately constant over
the range of the different viewing conditions.

If the classifier’s response also falls off gradually and
monotonically with parameter-space distance from the
stimulus (the shape on which it has been trained; see Fig.
4), it can be used to pinpoint the location of the test stimu-
lus in the shape space, by a process related to triangulation
and to nonmetric multidimensional scaling (Edelman
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Figure 3. The image space, 5 (depicted here as 3-dimensional,
to facilitate visualization), and some of its subspaces (see sect. 4.1).
Two exemplars, E11 and E12, belong to the same class, C1 (the
class of four-legged animal shapes). Some of the different views of
E11 are shown (marked by open circles), along with its view space,
91. The surface patch represents a part of the shape space 6; the
view spaces of the individual objects are transverse to it. A morph-
ing sequence originating at E12 and leading to two other shapes is
illustrated by the dashed curve contained in 6. Movement toward
the upper right corner of 6 corresponds to a reduction in the re-
semblance between the resulting image and the images of coher-
ent looking objects.

Figure 4. Three kinds of response of a radial basis function mod-
ule trained on 10 random views of a parametrically defined object
to stimuli differing from a reference view of that object (marked
by the large circle) in three ways: (1) progressive view change,
marked by s’s; (2) by progressive shape change, marked by 3’s;
(3) by combined shape and view change, marked by p’s. The points
along each curve have been sorted by pixel-space distance be-
tween the test and the reference stimuli (shown along the ab-
scissa); the units along the ordinate are arbitrary (only the relative
response in the three conditions matters). Points are means over
10 repetitions with different random view-space and shape-space
directions of change; a typical error bar ( standard error of the
mean) is shown for each curve. Note the insensitivity of the mod-
ule’s output to view-space changes, relative to shape-space
changes.
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1995b). Note that a number of classifiers, each tuned to a
different reference point, must be activated ( just as in tri-
angulation a number of landmarks must be used for each
measurement).

An ensemble or a Chorus (Edelman 1995b) of k classi-
fiers maps the distal shape space to a proximal representa-
tion space, 5k. If the response of each classifier degrades
gracefully with the dissimilarity between the test stimulus
and the preferred shape, the entire ensemble realizes a
mapping M that is smooth and regular. Thus, the distal to
proximal mapping is conformal8 and can therefore serve as
a substrate for veridical representation of the original para-
meter space, as argued in section 3.2.1.

The main reason to use a bank of classifiers rather than
raw measurement-space distances to reference points for
pinpointing the current stimulus is the possibility of train-
ing a classifier to ignore those directions in the measure-
ment space that are irrelevant to the identity of the stim-
ulus (e.g., directions corresponding to changes in the
viewpoint parameters z). Connectionist modelers have re-
alized in the past that the response change caused by mov-
ing the stimulus away from a stored exemplar should de-
pend on the direction of movement if the space of
admissible exemplars is a low-dimensional manifold im-
mersed in the representation space. Specifically, moving
along a tangent to that manifold should incur a smaller
generalization cost than moving in a direction perpendic-
ular to it. This insight has been incorporated into algo-
rithms that train for invariance by differential reinforce-
ment of stimuli removed in the tangent and the normal
directions to the target manifold (Simard et al. 1992). In
Chorus, invariance is not a goal but rather a precondition
that must be fulfilled for the resulting representation to be
veridical. Furthermore, absolute invariance is not neces-
sary: it suffices that the structure of categories, as defined
by appropriate metrics in the low-dimensional proximal
representation space, not be distorted by the irrelevant
components of distance, measured along the extraneous
dimensions z.

Training classifiers for particular stimuli, as it is done in
Chorus, can be interpreted as downplaying the irrelevant
dimensions by switching from the measurement-space
metrics to representation-space metrics induced by the
class identities (Baxter 1995). This property of the space
spanned by the outputs of classifiers is important for devis-
ing better classification schemes. A typical example is vec-
tor quantization – a representational scheme in which the
location of a point in a multidimensional space is coded by
the identity of its nearest neighbor, chosen from a small set
of points covering the space. In Baxter’s (1995) canonical
vector quantization, the distances to the covering points are
computed according to the classifier metrics, not the raw
vector space metrics.

In comparison with the canonical vector quantization, in
Chorus the primary goal is representation, not classifica-
tion. Accordingly, the computational question to be ad-
dressed is not whether the nearest-neighbor structure
makes more sense when measured in the classifier space
compared with the measurement space but, rather, to what
extent the classifier-space distance structure of an arbitrary
set of points reflects the corresponding structure in some
low-dimensional distal parametrization. A preliminary em-
pirical exploration indicates that classifier-space distances
are indeed likely to behave in the desirable fashion (Edel-

man & Duvdevani-Bar 1997a). The mathematical reason
behind this property of Chorus may be its relationship to a
powerful method of dimensionality reduction (Bourgain
1985; Linial et al. 1994), in which points belonging to a mul-
tidimensional space are embedded into a space of much
lower dimensionality while preserving to a large extent the
original interpoint distances. In Bourgain’s embedding of a
finite set of points, the locations of the points in the new
space are encoded by their distances from randomly cho-
sen subsets of the original set, which serve as reference en-
tities. Distances to reference points are measured in Cho-
rus too: the response of a classifier trained on a reference
pattern constitutes such a measurement, with the added ad-
vantage of tuning out the irrelevant dimensions. Thus, the
use of classifiers in Chorus makes Bourgain’s principle of di-
mensionality reduction applicable in a situation where
“noise” dimensions abound.

5. Uses of similarity

In the preceding section, we saw that the output of a Cho-
rus of classifiers constitutes, under certain conditions, a
veridical representation of a distal shape space to which the
individual reference classes belong. I will now examine the
extent to which this representation can be put to use in
modeling the perception of similarity and its role in cate-
gorization. In this section, I will show that (a) the responses
of a number of classifiers acting in parallel can serve as a
substrate for carrying out classification at different levels of
categorization, depending on the way these responses are
processed, and (b) if the salience of individual classifiers in
distinguishing between various stimuli is tracked and taken
into consideration depending on the task at hand, then sim-
ilarity between stimuli in the representation space can be
made asymmetrical and nontransitive, in accordance with
Tversky’s general contrast model of similarity (Tversky
1977).

5.1. Similarities at different levels of categorization

To understand the potential of the multiple-classifier rep-
resentation to support shape categorization, it is necessary
to consider the requirements of the relevant tasks at the dif-
ferent category levels.

5.1.1. Basic level. At the basic category level (Rosch et al.
1976), we are interested in the identity of the class Cj that
is the closest neighbor of the stimulus X within the shape
space 6. In some cases, the identities of several closest
neighbors may be required (see Fig. 5, middle). Note that
at the basic level the identities of the neighbors should suf-
fice for categorization, whereas at the subordinate level the
knowledge of their disposition relative to the stimulus in the
shape space may be required.

The major obstacle to be overcome at the basic level is
the dependence of the appearance of the stimulus X on fac-
tors such as illumination and viewpoint in addition to the
category membership index j. If Cj is taken to correspond
to the image of a member of j in some canonical orienta-
tion, the viewing conditions can be seen to span a view
space 9j, which is transverse to the class space #, and
pierces it at C 5 Cj (see Fig. 3). A general-purpose func-
tion approximation module (Poggio & Edelman 1990)
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trained to implement the “view normalization” mapping
T(j) : VjrCj can perform basic-level categorization because
its response can be made largely independent of the view-
ing conditions.

5.1.2. Subordinate level. At the identity level, the task is to
determine the exact location of the stimulus in the shape
space, rather than its nearest neighbor(s) in the collection
of known class prototypes. The central problem here lies in
the fine resolution that must be attained despite the resid-
ual misalignment left over from the action of the normaliz-
ing transformation T. This problem can be approached by
learning hyperacuity in the instance space. In hyperacuity-
related visual tasks such as vernier discrimination (West-
heimer 1981), spatial resolution better than the spacing of
the photoreceptors on the retina is attained by combined
action of graded overlapping receptive fields (Snippe &
Koenderink 1992). In shape-space localization, the re-
sponse profile of each of the classifiers in Chorus defines a
“receptive field” over the space 6. The vector of responses
of a number of classifiers (Fig. 5, right) contains the infor-
mation necessary for pinpointing the location of the stimu-
lus within 6, as argued in section 4. Moreover, because of
the graded nature of each response profile and the overlap
between the different shape-space receptive fields, the lo-
calization is likely to be much more precise than what would
have been possible if the responses of the classifiers were
considered individually, in precise analogy to the spatial hy-
peracuity.

The required insensitivity of shape-space localization to
viewpoint transformations stems from two sources. First,
experience shows that hyperacuity can be attained despite
considerable random misalignment of the stimulus as a
whole, relative to its “home” or training pose, probably due
to the shallow and overlapping profiles of the individual re-
ceptive fields (Poggio et al. 1992). Second, explicit training
for invariance with respect to “irrelevant” transformations
can complement the inherent tolerance of the receptive-

field system. Importantly, once learned from examples, the
normalizing transformation T(j) can work even for stimuli
not previously encountered by the system, provided that
they belong to the same class as the examples used for train-
ing. The simplest approach here is to apply to a novel stim-
ulus a transformation that is the average of the normalizing
transformations learned for the class to which the stimulus
belongs (Lando & Edelman 1995).

5.1.3. Superordinate level. Consider now two tasks at a less
specific level in a hierarchy of recognition tasks. The first of
these is to decide whether the stimulus X is the image of
some familiar object. For this purpose, it would suffice to
represent the shape space 6 as a scalar field over the image
space S(X) : 5 rR, which would express for each X its 
degree of membership in 6. For example, one may set S 5
maxi{pi} (the activity of the strongest-responding prototype
module), or S 5 Si pi (the total activity, as in Fig. 5, right;
cf Nosofsky 1988).

The second task is to characterize a superordinate-level
category of the input image, and not merely to decide
whether it is likely to be the image of a familiar object. This
can be done by determining the identities of the prototype
modules that respond above some threshold. For example,
if, say, the cat, the sheep, and the cow modules are the only
ones that respond, the stimulus is probably a four-legged
animal.

5.2. Features of similarity

In Chorus, the response of each classifier pi is, in a sense, a
feature, whose value for a stimulus A ∈ 5 is signified by the
activation pi (A). Consider the similarity structure induced
by this feature space over the universe of stimuli. With the
qualifications stated in section 2, one can take the Euclidean
distance between the feature vectors corresponding to two
objects, p(A) and p(B), to be a default measure of the simi-
larity between them: sE (A, B)21 ~ Si

k
51 [pi (A) 2 pi (B)]2.
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Figure 5. Using the Chorus representation (top) at different levels of categorization (see sect. 5.1). The three panes at the bottom show
(left to right): a superordinate level, the basic level, a subordinate level.
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A uniform scaling in the responses of all prototype detec-
tors p r cp (as in seeing through fog) should not, however,
be interpreted as a change in the shape of the stimulus ob-
ject. To make the similarity insensitive to such scaling, let
us define similarity by the cosine of the angle between p(A)
and p(B), in the space spanned by the prototype responses
(cf Ekman & Lindman 1961):

This definition of similarity must, however, be further
modified, for at least two reasons. First, sa is independent
of context, whereas perceived similarity depends on the
“contrast set” against which it is to be judged. Second, sa is
symmetric, whereas human perception of similarity 
appears to be asymmetric in many cases (Tversky 1977). 
To make sa depend on the context, one can introduce a vec-
tor of weights, one per prototype, so that wi 5 wi ({A, B,
C, . . . }). Thus, comparing A and B in two contexts, {A, B u
C, D, E} and {A, B ( F, G, H}, may result in different val-
ues of similarity between A and B. To model the asymme-
try that frequently arises when subjects are required to es-
timate the similarity of some stimulus A to another stimulus
B, one may observe, following Mumford (1991a), that sub-
jects in this case behave as if they take “A is similar to B” to
mean “B is some kind of prototype in a category which in-
cludes A. Thus, the stimulus input A being analyzed is
treated differently from the memory benchmark B” (Medin
et al. 1993; Mumford 1991a). To give B the required dis-
tinction, each feature pi (B) can be weighted in proportion
to its long-term saliency sal(pi, B) in distinguishing be-
tween B and the other stimuli.9 The resulting expression for
similarity, which provides for the effects of context and for
asymmetry, is

Note that this definition has the same form as the additive
clustering (ADCLUS) similarity measure of Shepard and
Arabie (1979), which, in turn, instantiates Tversky’s (1977)
discrete contrast model of feature-based similarity. At the
same time, it is built on top of a continuous metric repre-
sentational substrate – the shape space spanned by prox-
imities to prototypes. The degree of compromise between
these two approaches to similarity may depend on the de-
mands of the task at hand, via the parameters of Equation
2. At the one extreme, a Chorus-based system may behave
as if it maps the stimuli pertaining to a task into a metric
space, with the ensuing symmetric similarity and possible
interaction among different dimensions; the other extreme
may involve discrete all-or-none features, as in the exam-
ples surveyed by Tversky (1977).

6. Representation of similarity and other theories
of what the brain may be doing

6.1. Making sense of novel objects

A central feature of the Chorus method is its ability to deal
with novel objects (cf Fig. 7, p. 463); once these are repre-
sented in terms of similarities to some of the reference ob-

jects, they can be remembered, recognized, or otherwise
processed (Edelman & Duvdevani-Bar 1997a). In theories
of vision, this ability has so far been considered the prerog-
ative of structural approaches to representation (Bieder-
man 1987; Marr & Nishihara 1978). In structural ap-
proaches, a small number of generic primitives (such as the
several dozen geons postulated by Biederman) is used along
with spatial relationships defined over sets of primitives to
represent a potentially unlimited variety of shapes.

In principle, even completely novel shapes can be given
a structural description, because the extraction of primi-
tives from images and the determination of spatial rela-
tionships is supposed to proceed in a purely bottom-up, or
image-driven, fashion. In practice, however, both these
steps have so far proved impossible to automate, for reasons
that may be nonaccidental (Edelman & Weinshall 1998).
The few computer vision systems currently capable of un-
constrained recognition from gray-scale images either ig-
nore the challenge posed by the problems of categorization
and of representation of novel objects (Murase & Nayar
1995) or treat categorization as a by-product of recognition
(Mel 1997).

In comparison with all these approaches, Chorus treats
familiar and novel objects equivalently, as points in a shape
space spanned by similarities to a handful of reference ob-
jects. The viability of this method is attested to by the pilot
implementation of Edelman and Duvdevani-Bar (1997a),
which achieved recognition performance on par with that
of state of the art computer vision systems despite relying
only on shape cues where other systems use shape and color
or texture or both (Mel 1997; Murase & Nayar 1995;
Schiele & Crowley 1996). This performance was achieved
with a low-dimensional representation (10 dimensions,
compared to hundreds in other systems) whose extraction
from raw images did not require the problematic computa-
tion of a structural description. The use of entire reference
objects as high-level features suggests a link between Cho-
rus and the studies of similarity and generalization in fea-
ture spaces carried out by Shepard and others.

6.2. Similarity and memory-based generalization

Shepard’s (1968; 1984) notion of second-order isomor-
phism is closest to the present one among the prior ap-
proaches to the understanding of representation. Inter-
estingly, the computational approach to second-order
isomorphism in Chorus is related to other work of Shepard
– his law of generalization, which points out that the likeli-
hood of obtaining the same response to two stimuli de-
creases exponentially with their separation in a psychologi-
cal space, as defined, for example, by multidimensional
scaling (Shepard 1987).

Shepard’s law of generalization can be implemented in a
straightforward manner in a connectionist framework by
constructing tuned units that exhibit radially symmetric ex-
ponential decay around the location of the preferred stim-
ulus in a feature space (Hanson & Gluck 1993; Shepard &
Kannappan 1993). However, it is rather more interesting
computationally to note what happens when the radial “re-
ceptive field” of an exponential-decay unit is turned into an
ellipsoidal one by training the unit to ignore changes along
some of the feature-space dimensions. In particular, if view-
point-related changes in the appearance of a three-dimen-
sional shape to which the unit is tuned come to be ignored
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(e.g., through learning), the unit becomes a device capable
of measuring the shape-space distance between the current
stimulus and the optimal one. From here, as we saw in sec-
tion 4, it is just one step to an implementation of the idea of
representation by second-order isomorphism; all one need
do is have a number of tuned units acting in parallel.

A computational mechanism that is particularly suitable
for implementing the tuned units is the regularization net-
work (Poggio & Girosi 1990). The simplicity of learning
from examples in such networks and the relatively straight-
forward way they can be mapped onto the neurobiology of
the brain prompted Poggio to revive the old notion of the
function of the brain being largely that of a flexible mem-
ory, capable of learning from examples, and of similarity-
based classification (Poggio 1990; cf Hebb 1949; Marr
1970). It is important to realize, however, that by them-
selves neither these nor many other learning-based ap-
proaches in the literature can solve the problem of repre-
sentation as posed in the introduction. The reason is that
representation is not a problem of associating (whether by
learning or otherwise) a proper output with a given input,
simply because what counts as “proper” differs from task to
task (unless the world is represented by its replica, a choice
that merely postpones the hard decisions by one stage).
Thus, although different views of the same object should
clearly be associated with a constant response or mapped
into a canonical view (Poggio & Edelman 1990), there does
not seem to be a useful universally valid specification of the
proper response to a novel shape, for example, one that is a
parametric blend of two familiar shapes. Consequently, in
a representational scheme learning must be augmented by
generalization (a process whereby useful responses can be
generated for novel stimuli). Thus, Chorus adopts the basic
learning strategy by letting units become loosely tuned to
certain familiar shape classes (invariantly over dimensions
that are irrelevant to shape, such as viewpoint), and it makes
the existing tuned units collectively represent novel shapes
in a manner that allows them to be localized in an underly-
ing low-dimensional shape space.

6.3. The new Pandemonium

The tuned modules of which Chorus is composed can be
considered as “holistic” feature detectors, where the ith fea-
ture of the stimulus is its similarity to the ith reference ob-
ject.10 The concept of a feature detector originally devel-
oped under the influence of the discovery of “bug
detectors” in the frog retina (Lettvin et al. 1959); this was
linked to the notion of behavior-releasing mechanisms bor-
rowed from ethology (Barlow 1979). Its generalization to
higher perceptual functions such as shape recognition was
subsequently attempted. A well-known proposal for an ob-
ject recognition scheme based on feature detectors – the
Pandemonium (Lindsay & Norman 1977; Selfridge 1959) –
consisted of a three-level hierarchy: feature demons (re-
sponsible for the detection of lines, corners, etc.), cognitive
demons (responsible for entire objects), and a master de-
mon (responsible for the recognition decision). The limited
influence of the Pandemonium model on computer vision
(as opposed to psychological theories of shape processing)
can be traced to two shortcomings.

The first problem with the Pandemonium is the choice
of all-or-none primitive features, such as edges, corners,
and so on. This choice, which clearly violates Marr’s (1976)

principle of least commitment, is likely to lead to the loss of
valuable information at an early processing stage; in the
framework of section 2, it can be seen to render the distal
to proximal mapping nonsmooth, lessening the likelihood
of veridical representation. This situation can be remedied
if probabilistic features are used instead. According to the
probabilistic approach, sensory coding is “the process of
preparing a representation of the current sensory scene in
a form that enables subsequent learning mechanisms to be
versatile and reliable” (Barlow 1990; 1994). Specifically, a
representation is useful for learning if it includes records of
recurring and co-occurring events. In Barlow’s probabilis-
tic Pandemonium, the response strength of a demon would
be proportional to 2log P, where P is the probability of oc-
currence of the feature the demon detects (cf Intrator &
Cooper 1992) .

The second problem with the Pandemonium lies at the
level of decision-making (the master demon), where the
stimulus is essentially described by the identity of the
strongest-responding cognitive demon. This winner-take-
all decision (another violation of the principle of least com-
mitment) does provide some information about the stimu-
lus (namely, the identity of a reference stimulus to which
the current one is the most similar) while discarding much
more; the representation it provides only qualifies as near-
est-neighbor preserving, according to the terminology of
section 3. Chorus improves on this by retaining the re-
sponses of a number of cognitive demons.

6.4. Top-down effects and representation 
as explanation

A number of recent theories postulate an interplay between
bottom-up and top-down influences in the processing of
perceptual information (Carpenter et al. 1991; 1992; Hin-
ton et al. 1995; Mumford 1991b; 1992; Ullman 1995). Evi-
dence from neurobiology (surveyed, e.g., by Ullman 1995)
strongly suggests that information can flow from the higher
to the lower cortical areas and to the thalamus. The com-
putational role of the top-down direction of flow of infor-
mation may be clarified if one assumes that the goal of per-
ceptual processing is to find a good (e.g., minimum
description length) “explanation” for the stimulus (Dayan et
al. 1995; von Helmholtz 1964). Intuitively, it seems un-
questionable that a human observer is capable of parsing
even the most complicated scenes into the constituent ob-
jects in such a manner that every pixel eventually receives
a label attributing it to this or that component. Such pro-
cessing of scenes (as opposed to objects presegmented from
their natural background) is a serious challenge for feed-
forward schemes such as Chorus.

The notion of representation as explanation does not
contradict the idea that similarities between stimuli are to
be represented, although in certain cases, such as scene
processing, these two approaches offer largely orthogonal
views on the problem of representation. On a conceptual
level, the representation of a scene may well be a part of a
cognitive schema (Rumelhart 1980) in which it is embod-
ied, and may therefore be encoded in terms of similarities
to related schemata. Perceptually, however, scenes that fit
the same schema (e.g., city street) are too diverse for the
similarities to be informative, unless the computation of
similarity involves explicit alignment of corresponding com-
ponents (Markman & Gentner 1993) or ignores shape de-

Edelman: Representation of similarities

458 BEHAVIORAL AND BRAIN SCIENCES (1998) 21:4

https://doi.org/10.1017/S0140525X9838125X Published online by Cambridge University Press

https://doi.org/10.1017/S0140525X9838125X


tails altogether. In the latter case, only gross violations of the
schema structure, such as the appearance of a sofa levitat-
ing above a sidewalk (Biederman et al. 1982), are regis-
tered.

With some ingenuity, the theory behind Chorus may ac-
tually be interpreted in terms of the idea of representation
as explanation. Specifically, the activity of the reference-ob-
ject modules may be taken to model the probability distri-
bution associated with the structure of the visual stimulus.
In the case of single objects, this interpretation does not
seem to be too problematic: a stimulus that is attributed
both to the camel and the leopard modes in the probability
(or explanation) space is simply taken to be a giraffe. In
comparison, in the case of scenes (or, more generally, of ob-
jects that share common parts, which, in turn, come to be
represented independently), an explanation of the stimulus
requires an account of the spatial arrangement of the com-
ponents and not only of their identities. A natural approach
to this problem is suggested by Riesenhuber and Dayan
(1997), who propose to combine global configural and local
template-like representations in a scheme that is driven by
a top-down interpretation process (see also sect. 9.2).

In addition to dealing with compound objects and
scenes, a Chorus-like scheme may benefit from top-down
flow of information in deciding which stimuli are to be re-
tained as reference objects, in gathering the statistical
salience data for each reference object (sect. 5), and in con-
trol-related chores such as the computation of the target for
the next fixation (cf Koch & Ullman 1985). By and large,
however, Chorus embodies an attempt to find out how far
a mostly bottom-up approach to representation can be
taken. Perceiving the hidden causes of things is a feat wor-
thy of Sherlock Holmes, and the human visual system
seems to be capable of it, given enough time and a chal-
lenging task such as separating figure from ground in an un-
derexposed photograph (Mumford 1994, p. 133). In less 
extreme situations, including a variety of controlled exper-
imental conditions, the performance of a perceptual Dr.
Watson (“merely” making sense of the stimulus, as detailed
in the next section, instead of accounting for each and every
pixel, as expected from a Holmes) seems to be a goal both
worthy of pursuit and more readily attainable.

7. Perception of similarity

According to the proposed theory of representation, to
make sense of a stimulus means to locate it in a low-di-
mensional psychological space that (a) is inhabited by sim-
ilar stimuli and (b) stands in a principled relationship to a
low-dimensional physical space, such as a common param-
etrization of the stimulus set. The main tool in testing the
predictions of this theory is multidimensional scaling
(MDS), a computational procedure for embedding a set of
points, one per stimulus, into a metric space in such a man-
ner that the interpoint distances conform as closely as pos-
sible to perceived similarities (proximities) between the
points, as measured in some psychophysical procedure
(Kruskal & Wish 1978; Shepard 1980).

7.1. Background

Normally, MDS is used in an exploratory mode, as follows.
After the data are collected, the stimuli are embedded into

a low-dimensional space and the resulting configuration is
inspected. The analysis is considered successful if the di-
mensions of the (psychological, or proximal) embedding
space are correlated with some (physical, or distal) variables
involved in the generation of the stimuli and if the configu-
ration of the stimuli in that space is meaningful. Among the
examples of this procedure given by Shepard (1980), one
finds the application of MDS to the processing of perceived
similarities between Morse signals (the data were obtained
by asking unskilled subjects to decide whether two consec-
utively sounded signals were the same or different). The
two dimensions of the embedding space in that example
correspond to the number of components and the propor-
tion of dots and dashes. Another example is the near-circu-
lar arrangement of colors in two dimensions, obtained by
MDS from a table of judged similarities between color
patches; this result supported Newton’s suggestion to rep-
resent hues by points on a circle.

In the domain of shape perception, MDS has been ap-
plied in the analysis of perceived similarities among rela-
tively simple two-dimensional (2D) figures (rectangles, ran-
dom irregular polygons), but the most spectacular results
have been achieved in two studies that involved more com-
plex shapes. In the first of these studies, subjects were re-
quested to judge (from memory) the pairwise shape simi-
larity of 15 of USA states (Shepard & Chipman 1970). The
2D configurations obtained by MDS were surprisingly con-
sistent across subjects and also made sense geometrically
(i.e., states of similar elongation and shape were grouped
together). Shepard and Chipman pointed out that the find-
ings of (a) very much the same configuration whether the
states were pictorially displayed or only imagined, along
with (b) the relationship, in both cases, between the recov-
ered configuration and the actual cartographic shapes sup-
port the idea of a second-order isomorphism between in-
ternal representations and their corresponding external
objects.

In the second study, the stimuli (2D closed contours)
were created parametrically in such a way that the set of
shapes formed a toroidal configuration in the parameter
space (Shepard & Cermak 1973). The perceived similari-
ties paralleled closely the parameter-space distances among
the stimuli. Shepard and Cermak also reported some inter-
esting patterns of clustering that subjects imposed on the
stimuli when prompted to consider possible categorical la-
bels (such as “fish” or “jet plane”) that could be applied to
the (originally unmarked) 2D contours; these findings sup-
port the assertion, made in section 2.1, that a metric-space
representation of similarity does not contradict the possi-
bility of category-related effects and, in fact, can provide
the requisite substrate for the emergence of those effects.

7.2. Explorations of shape space

To obtain more direct support for the second-order iso-
morphism idea, it is necessary to exert control over the orig-
inal configuration built into the stimuli; the success of the
recovery of that configuration from subject data can then
be quantified and judged statistically. This corresponds to
an application of MDS in confirmatory rather than ex-
ploratory mode – an approach that can only be pursued
with shapes that are generated with computer graphics and
are controlled parametrically.

The veridicality of representation of parametrically de-
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fined three-dimensional (3D) shapes in human subjects has
been tested in two recent studies (Cutzu & Edelman 1996;
Edelman 1995a). In each of a series of experiments, which
involved pairwise similarity judgment, delayed matching to
sample, and long-term memory recall, subjects were con-
fronted with several classes of computer-rendered 3D ani-
mal-like shapes arranged in a complex pattern in a common
parameter space. Response time and error rate data were
combined into a measure of perceived pairwise shape simi-
larities, and the object to object proximity matrix was sub-
mitted to nonmetric MDS. In the resulting solution, the rel-
ative geometrical arrangement of the points corresponding
to the different objects invariably reflected the complex low-
dimensional structure in parameter space that defined the
relationships between the stimulus classes (see Fig. 6).11

The ability of the subjects to represent the low-dimen-
sional pattern of similarities among stimuli did not extend
to nonsense objects, as indicated by the results of control
experiments involving “scrambled” shapes (Cutzu & Edel-
man 1996). The stimuli in these experiments were obtained
by translating the parts of the animal-like shapes to a com-
mon center, resulting in starlike nonsense objects. For
these objects, the similarity between true and MDS-recov-
ered configurations was consistently lower than for animal-
like shapes.

Computer simulations showed that the recovery of the
low-dimensional structure from image-space distances be-
tween the stimuli was impossible, as expected. In compari-
son, the psychophysical results were fully replicated by a
Chorus-like model, patterned after a higher stage of object
processing, in which nearly viewpoint-invariant representa-
tions of familiar object classes (but, presumably, not of non-
sense objects as in the control experiments; cf. Bulthoff &
Edelman 1992) are available; a rough analogy is the infero-
temporal visual area (e.g., see Logothetis et al. 1995; Tanaka
1993; Young & Yamane 1992). As pointed out in section 4,
such a representation of a 3D object can be formed easily

if several views of the object are available by training a
mechanism such as a radial basis function network to inter-
polate a characteristic function for the object in the space
of all views of all objects (Poggio & Edelman 1990). A num-
ber of reference objects (in Fig. 6, the corners of the para-
meter space cross) were chosen, and a separate RBF net-
work was trained to recognize each such object (i.e., to
output a constant value for any of its views, encoded by the
activities of the underlying receptive field layer; cf. Fig. 4).
At the RBF level, the similarity between two stimuli was 
defined as the cosine of the angle between the vectors of
outputs they evoked in the RBF modules trained on the ref-
erence objects (Equation 1). The MDS-derived configura-
tions obtained with this model showed significant resem-
blance to the true parameter-space configurations (see Fig.
6, right).

7.3. Further predictions

The experiments mentioned above and the accompanying
simulations indicate that the human visual system is capa-
ble of forming an internal representation of a set of stimuli
that is second-order isomorphic to the original and, fur-
thermore, that a simple implementation of the Chorus
scheme can exhibit a comparable capability for veridical
representation. Although the psychophysical findings sup-
port the idea of representation by second-order isomor-
phism, they are compatible with a number of possibilities
of implementing the appropriate distal to proximal map-
ping other than Chorus. In fact, given the claim that a
veridical representation is obtained generically if the map-
ping is smooth (sect. 2), one should look into the data for
traits that are peculiar to Chorus and are not easily ex-
plained either by a reconstructionist interpretation (which
seems unlikely, in view of the results of the control experi-
ments) or by alternative mappings. Specifically, it should be
possible to
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Figure 6. Left: Parameter-space configuration used for generating the stimuli in one of the experiments described by Cutzu and Edel-
man (1996a). Middle: 2D MDS solution for all subjects. Symbols: s, true configuration; 3, configuration derived by MDS from the sub-
ject data, then Procrustes transformed (Borg & Lingoes 1987) to fit the true one. Lines connect corresponding points. The coefficient
of congruence between the MDS-derived configuration and the true one was 0.99 (expected random value estimated by bootstrap [Efron
& Tibshirani 1993] from the data: 0.86 0.03, mean and standard deviation; 100 permutations of the point order were used in the boot-
strap computation). The Procrustes distance between the MDS-derived configuration and the true one was 0.66 (expected random value:
3.14 0.15). Right: 2D MDS solution for the RBF model. Coefficient of congruence: 0.98 (expected random value: 0.86 0.03); Procrustes
distance: 1.11 (expected random value: 3.14 0.17).
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1. Predict, for each subject, the distortion in the MDS
configuration for one parameter-space pattern, given the
distortion of another pattern. A better prediction is ex-
pected from the Chorus model, compared with a generic
warping scheme that does not rely on distances to reference
points.

2. Quantify the importance of parameter-space dis-
tances from the stimulus to preset reference points. A
stronger effect of the change of these distances is expected,
compared with a parameter-space movement that pre-
serves the relative distances to the reference points; pre-
liminary results compatible with this prediction have been
reported by Edelman et al. (1996).

3. Test the nature of the reference shapes using prim-
ing. Stronger priming is expected for familiar shapes (in-
cluding the so-called “impossible” objects) relative to less
familiar ones. In comparison, the generic reconstructionist
hypothesis (Biederman 1987), according to which repre-
sentations are constructed “on the fly” by putting together
universal primitives, seems to predict uniform priming for
possible objects and less priming for the “impossible” ones.

8. Neurobiology of similarity

The approach to representation based on a smooth distal to
proximal mapping, and its implementation by the bank of
classifiers, leads to explicit predictions regarding the mech-
anisms of object processing at the higher levels of the pri-
mate visual system. Specifically, one expects to find there
units responding preferentially to certain objects, with the
response falling off monotonically with dissimilarity be-
tween the stimulus and the preferred object while staying
nearly constant over different views of the preferred object
(cf. Fig. 4).

Although reports of cells in the monkey inferotemporal
cortex that respond preferentially to faces by now span
decades (Gross et al. 1972; Perrett et al. 1989), cells tuned
to general objects have been found only recently. In partic-
ular, Tanaka and his group reported the desired selectivity
for specific (mostly 2D) objects in recordings from the in-
ferotemporal (IT) cortex of anesthetized monkeys (Fujita et
al. 1992; Kobatake & Tanaka 1994; Tanaka 1992; 1993;
Tanaka et al. 1991). The interpretation of such findings has
traditionally been hampered by the unknown nature of the
optimal stimuli for the discovered cells: if a cell responds as
vigorously to a brush as to a face, it cannot be properly con-
sidered a face detector. Rather than attempting the impos-
sible (i.e., ruling out all the stimuli that the cell does not
like), Tanaka developed an ingenious method for narrowing
down the range of features that are both present in a given
stimulus and effective in eliciting a response from the cell.
This method has yielded the first evidence of the parallel
between the functional organization of the IT cortex, where
cells responding to similar shapes are arranged in columns
running perpendicular to the cortical surface, and the pri-
mary visual cortex, where the columnar structure reflects
orientation selectivity and ocular dominance.

Although the columnar organization of the IT cortex has
been interpreted in terms of an alphabet of “elementary”
features, it seems to be equally compatible with the notion
that entire objects are represented, as called for by the Cho-
rus model (Tanaka 1993). Under this interpretation, the
several hundred columns that can be squeezed into the

available cortical area correspond to so many classes of “ref-
erence” stimuli. If the tuning properties of the columns are
such that any stimulus likely to be encountered activates a
number (say, three or four) of columns, the entire system
should have a considerable representational power. More-
over, this power would grow if the system were plastic
enough to attune itself to novel object classes, as may in-
deed be the case (Kobatake et al. 1992; Rolls et al. 1989).

More recent data support this interpretation of Tanaka’s
findings: working with awake monkeys, Logothetis et al.
(1995) reported recordings from cells tuned to specific
views of 3D objects (other than faces) on which the mon-
key had been trained. A small proportion of the object-
tuned cells found by Logothetis et al. each responded to a
limited subset of the objects, irrespective of view. Together
with the previous reports of a hierarchical two-stage ap-
proach to (relative) invariance in the face cells (Perrett et
al. 1989), these findings suggest that a cell that responds to
a certain shape nearly independently of viewpoint (corre-
sponding to a prototype cell in Chorus) may do so by inte-
grating the responses of several cells each of which prefers
another view of the same shape, as suggested in section 4
(Edelman & Weinshall 1991; Poggio & Edelman 1990).

None of the experiments described above involved para-
metric manipulation of the stimulus shape – a crucial com-
ponent in testing the predictions of the theory of represen-
tation proposed here. In another study, where such
manipulation was attempted, the stimuli were complex,
parametrically defined, periodic 2D patterns (Sakai et al.
1994). In that study, the cellular response was found to de-
crease monotonically with parameter-space distance be-
tween the test stimulus and the preferred pattern to which
the cells were tuned. With parametrically controlled 3D
stimuli, it should be possible to look for cells that behave in
a manner similar to the RBF module whose response is il-
lustrated in Figure 4. The specific predictions are as fol-
lows:

1. The cell will respond equally to different views of its
preferred object, but its response will decrease with para-
meter-space distance from the point corresponding the
shape of the preferred object (three such cells have been
reported by Logothetis et al. 1995).

2. The responses of a number of cells, each tuned to a
different reference object, will carry enough information to
classify novel stimuli of the same general category as the
reference objects.

3. If the pattern of stimuli has a simple low-dimensional
characterization in some underlying parameter space (as in
Fig. 6, left), it will be recoverable from the ensemble re-
sponse of a number of cells, using multidimensional scal-
ing.

9. Discussion

9.1. Similarity: The raw and the processed

In shape perception, the foremost information-processing
challenge has traditionally been to achieve object con-
stancy, that is, to perceive the object’s shape despite wide
variations in its visual appearance caused by changes in il-
lumination and in the object’s position with respect to the
observer. The proponents of constancy observe, with Her-
aclitus, who pointed out that one cannot step into the same
river twice, that people literally never see the same object
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twice: objects are scaled up or down, translate, rotate, ar-
ticulate, deform, are lit or shadowed, and are occluded by
other objects or obscured by fog.

This observation is both true and misleading. Stressing
the influence of the viewing conditions on the appearance
of objects tacitly assumes that it is the exact shape of the ob-
ject that a representational system should attempt to re-
cover. However, as students of categorization know well, an
intelligent agent is much better off representing an object
on a number of hierarchical levels of abstraction (with the
option of attending to high-resolution details, if the object
happens to be present in front of the observer, and if the
task demands it) than storing a high-resolution replica of
the object and facing the problem of separating the chaff
(pixel-level information) from the wheat (classification in-
formation) every time a new instance of that same object
class is encountered.

When considered with the goal of proper representation
of similarity in mind, the problem of variability of object ap-
pearance assumes a somewhat different aspect. At the com-
putational level, instead of seeking absolute invariance with
respect to the extraneous view-related parameters, a system
can settle for mere tolerance, as determined by the inter-
play of within- and between-category similarities. At the im-
plementational level, the availability of learning modules
that can be trained to compensate for the variability in ob-
ject appearance shifts the focus from the easier problems in
vision (of which invariance seems to be an example) to the
more challenging ones, such as making sense of objects not
previously seen. The Chorus scheme, built around a theory
of representation of similarity, and implemented by a bank
of trainable modules tuned to reference objects, embodies
both the computational and the implementational-level
lessons stated above.

9.2. Some challenges

The holistic treatment of objects, adopted by the present
theory, results in representations that are easily learnable
from examples, but must be further worked upon if re-
quired to support inferences concerning hierarchical struc-
ture. For example, one can perceive the numerals on the
face of a bent clock in Dali’s Persistence of Memory as
shapes in themselves, as well as seeing them as parts of the
whole. It may be possible to address this requirement, to
some extent, by coupling mechanisms that are selective for
scale and retinal location with those that are selective for
shape (Edelman 1994). A well-founded approach to such a
coupling, built around a recently developed computational
mechanism called the Helmholtz Machine (Dayan et al.
1995), has been implemented and tested (on stylized face
images) by Riesenhuber and Dayan (1997).

According to the reasoning of Dayan et al., complex un-
derconstrained perceptual tasks require intimate coopera-
tion between bottom-up, or data-driven, processes and 
top-down, or expectation-driven, ones. Their arguments re-
semble those of other proponents of the Helmholtzian
strategy, mentioned briefly in section 6.4, and are related to
Grenander’s notion of Pattern Theory (opposed to and
complementing mere pattern recognition), as recently ad-
vocated by Mumford (1994). Returning to the example of
Dali’s painting, one can observe that people are aware not
only of the clocks that appear in it but also of their twisted
and bent shapes. Indeed, making sense of this painting may

require knowledge of the possibility of objects bending
without losing their identity.12 The extension of the Chorus
framework to deal with this and similar cases will have to
await future work; one possible direction such a develop-
ment could take would be based on the ideas of class-based
processing (Lando & Edelman 1995; Moses et al. 1996),
and of example-directed metamorphosis (Beymer & Pog-
gio 1996).

9.3. Philosophical implications

Some of the philosophical implications of the Chorus
scheme were mentioned briefly by Edelman (1995b); here,
I discuss at greater length the place of the proposed theory
in the current philosophical debate on the nature of repre-
sentation, stressing its relationship to the increasingly in-
fluential idea of the world as an external memory.

9.3.1. Locke’s conformity and Shepard’s second-order
isomorphism. In describing the implementation of Chorus
(sect. 4), I have suggested that the modules tuned to spe-
cific shapes can be considered as feature detectors, span-
ning a feature space in which each dimension codes simi-
larity to a particular object class. The idea of a feature
detector as a basic ingredient of a representational system
can be traced back to John Locke, who was among the first
to fully realize the infeasibility of Aristotelian representa-
tion by resemblance. Because the firing of a feature detec-
tor is an event that is internal to the representational sys-
tem, this immediately raises the problem of grounding (cf.
Harnad 1990) the representation in reality:

1. Objection. “Knowledge placed in our ideas may be all un-
real or chimerical.” . . . If our knowledge of our ideas terminate
in them, and reach no further, where there is something further
intended, our most serious thoughts will be of little more use
than the reveries of a crazy brain. . . .

2. Answer: “Not so, where ideas agree with things.” (Locke
1690, Book IV, Chapter IV, sects. 1,2)

The principle on which Locke based his answer to the
grounding problem is that of “conformity,” postulated to
prevail between the representations and their objects. As is
well known, Locke distinguished between simple and com-
plex ideas, each kind with its own grounds for conformity.
Consider first the former, somewhat less problematic, kind.
The argument here was that “the idea of whiteness, or bit-
terness, as it is in the mind, exactly answering that power
which is in any body to produce it there, has all the real con-
formity it can or ought to have, with things without us. And
this conformity between our simple ideas and the existence
of things, is sufficient for real knowledge” (Locke 1690,
Book IV, Chapter IV, sect. 4). In terms of feature detectors,
this is a statement of belief in the availability of reliable de-
tectors for immediate perceptual qualities.

The finding of cells tuned to well-defined features such
as patterns of motion (Movshon et al. 1985; Newsome &
Pare 1988), 2D shapes (Kobatake & Tanaka 1994; Tanaka
et al. 1991), or faces (Gross et al. 1972; Perrett et al. 1982)
supports this part of Lockean doctrine, and, in fact, suggests
that it may be extended from “simple” features to entire ob-
jects. The impact of this evidence seems to have been lim-
ited by a persistent concern that the feature detectors do
not “really” detect the features they happen to be tuned to
(Cummins 1989; Dretske 1981; Fodor 1987).13 Neverthe-
less, it has been suggested (Albright 1991) that philosophi-
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cal worries regarding the possibility of Lockean conformity
in the functioning of feature detectors found in the brain
should be quelled to some extent by the successful manip-
ulation of the organism’s perception of a feature through
the injection of current in the vicinity of the appropriate de-
tector pool in the cortex (Salzman et al. 1990).

More important, in light of the possibility of veridical
representation of distal changes by proximal ones, as in
Shepard’s (1968) theory of second-order isomorphism, the
philosophical lure of settling the question regarding what
this or that individual feature detector “really” detects is sig-
nificantly reduced. Moreover, the problematic distinction
between simple and complex ideas suggested by Locke can
be given up: in Chorus, the “feature detectors” can be tuned
to arbitrarily complex objects, yet serve as primitives just as
learnable14 and as immediately perceivable as Locke’s sim-
ple ideas. At the same time, if second-order isomorphism
can be made to work, Locke’s “conformity” acquires a new
concrete meaning: the order and the connection of ideas is
identical to the order and the connection of things.15

9.3.2. A new angle on compositionality. According to this
view, a representational system need not possess a combi-
natorial mechanism for creating complex “ideas” out of
simple ones. In vision, the hypothesis of the combinatorial
structure of concepts takes the form of part-based theories
of object representation (Biederman 1987; Bienenstock &
Geman 1995). The debate between theories that involve
dynamically bound generic parts and prototype-based the-
ories parallels the classical dispute between Empiricist and
Rationalist theories of concepts, in which the main argu-
ment against prototype-based theories is their alleged fail-
ure to support compositionality and productivity (Fodor
1981, p. 296). That argument, however, hinges on a logicist
approach, which does not recognize any way of combining
simple concepts into complex ones, short of logical/syntac-
tical connectives.

In Fodor’s (Rationalist) interpretation of Empiricism, a
system equipped with, say, three object-specific modules,
tuned to the shapes of a tuna, a cow, and a car, has only three
(indivisible) visual concepts: tuna, cow, and car. In fact,
however, such a system turns out to be capable of repre-
senting a variety of other shapes, some of which are quite
unlike the shapes for which dedicated modules are available
(cf. Fig. 7). Here and elsewhere in cognitive modeling, the
logicist approach insists on indivisible primitives and logi-
cal connectives, effectively forcing a violation of the princi-
ple of least commitment. As a result, logicists cannot but
predict a representational capacity that falls far short of the
empiricist predictions based on coarse coding, which, in
this example, means falling short of the experimental ob-
servations. In contrast, if the stimulus is compared simulta-
neously to a number of graded prototypes, instead of being
subjected to a Pandemonium-like all-or-none logical/syn-
tactic analysis, the productivity problem vanishes, along
with the premise for Fodor’s argument.

9.3.3. The world as its own representation. In a passage
intended to deflect criticism from the proponents of fuzzy-
set interpretation of the notion of a prototype, Fodor (1981,
p. 297) admitted that prototype theories may be able to
handle the combinatorics of defining the extension of
terms, but not their sense. Extension, however, may be all
there is to a representation.

Indeed, the idea of second-order isomorphism places the
burden of representation where it belongs – in the world.
In Chorus, the ensemble of feature detectors responds 
(J. J. Gibson would say resonates) to the environment
(while extracting task-specific information) without recon-
structing it internally. By merely mirroring proximally the
similarity structure of a distal shape space, Chorus embod-
ies the ideas of those philosophers who argued that “mean-
ing ain’t in the head” (Putnam 1988, p. 73) and that “cogni-
tive systems are largely in the world” (Millikan 1995,
p. 170), circumvents the severe difficulties encountered by
the reconstructionist approaches in computer vision, and
may explain the impressive performance of biological visual
systems, which, in any case, appear to be too sloppy to do a
good job of reconstructing the world geometrically (O’Re-
gan 1992). Thus, in an important sense, Chorus lets the
world be its own representation.

9.3.4. Qualia. If the world is its own representation, how
are we to explain phenomenological qualia (Goodman
1977), such as the redness of a tomato or the shape of a pear,
as perceived subjectively? The Aristotelian representation
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Figure 7. Representation of novel objects in terms of similari-
ties to familiar ones. The plot is a two-dimensional rendition (pro-
duced by MDS) of a 10-dimensional space spanned by the out-
puts of 10 prototypes modules in a pilot implementation of the
Chorus scheme. Each point in this plot corresponds to a view of
an object; views belonging to the same object cluster. The objects
on which the modules have been trained are indicated by the
small icons; the larger icons point to three novel test objects. Note
that representations of similar objects (e.g., the quadrupeds) re-
side near each other; moreover, the novel quadruped (the giraffe)
has been grouped with its likes. Because of the poor resolution of
the front end of this system (implemented by a bank of 250 Gauss-
ian receptive fields, each about one-tenth of the size of the stim-
ulus images), objects that resemble each other at a coarse scale are
sometimes confused (e.g., the manatee, or the sea cow, has been
placed near the van; in the full 10-dimensional space, the mana-
tee, which was a novel test object, was found to be similar to the
tuna, the cow, and the automobile wagon, in that order). For a de-
scription of this system, see Edelman and Duvdevani-Bar (1997a).
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by similarity solves the qualia problem appealingly by
equating these perceptual qualities with the physical qual-
ities of the corresponding percepts (i.e., the internal repre-
sentations). Thus, a shift toward the view of representation
of similarity carries with it a price. The standard version of
the problem of qualia actually seems to be exacerbated: on
the face of it, it is more difficult to explain the apparent rich-
ness of the perceived world if one denies that the shape of
each of the constituent objects is in itself fully represented.

A partial solution to this problem is suggested by the re-
alization that the apparent richness of the perceived world
is, to a considerable extent, apparent (Dennett 1991). The
source of this illusion may lie in the immediate availability
of the information in the world, which acts as an “external
store” (O’Regan 1992).16 A growing number of psychophys-
ical experiments support this view (Blackmore et al. 1995;
Grimes 1995; O’Regan 1992; Pollatsek et al. 1984; Rensink
et al. 1995). In these experiments, subjects are typically
found to be unaware of moderate or, at times, major
changes in the visual stimulus during the “blanking” period
associated with a saccade or induced artificially by present-
ing two stimulus frames in succession with a short-duration
gray-field mask interposed between them. For example,
changes such as the disappearance (or appearance) of
pieces of furniture in a room scene or the sudden growth
(by a significant fraction) of the tallest building in a city sky-
line scene may go unnoticed. This suggests that under nor-
mal viewing conditions (i.e., without scrutiny) much less in-
formation than previously assumed is taken away from each
scene.17

Although Dennett’s insights do reduce the acuteness of
the qualia problem to a degree, they do not appear to be
able to do away with it. In particular, we are still left with
the need to explain why and how a tomato looks round and
red to the observer, who represents directly only the differ-
ences between tomatoes and, say, pears and oranges (as op-
posed to the shape and the color of the tomato). An expla-
nation here may, however, be less elusive than commonly
thought: an accomplished account of qualia in psychophys-
iological terms has been formulated recently around the no-
tion of a quality space (analogous to the shape spaces dis-
cussed earlier in this paper), reconstructed from an
observer’s responses, using multidimensional scaling (Clark
1993). Adding to the thoughts of Carnap and Goodman a
great deal of data from psychology and physiology, Clark
shows that, in principle, it is not impossible to 
characterize a perceptual experience in objective terms,
starting from relative similarity defined over tuples of ob-
jects – the very notion that constitutes the foundation of the
second-order isomorphism theory (see Appendix D).

9.4. Concluding remarks

I have presented a theory of shape representation based on
Shepard’s notion of second-order isomorphism between
the similarity structure of the internal representation space
and that of the world of objects. The highlights of the pro-
posed theory are as follows:

1. Formal veridicality: Representations are grounded in
physical reality. This is expressed by a correspondence be-
tween proximal and distal similarities, which, under certain
conditions, allows for formal veridicality.

2. Unifying approach: The representational substrate is
a feature space spanned by similarities to reference objects.

The feature-space approach offers the possibility of a
smooth integration between the processing of shape and
other visual dimensions. Furthermore, it provides a com-
mon representational substrate for cognitive tasks at differ-
ent levels of categorization.

3. Learnability: Representations can be learned from
examples, using well-understood computational mecha-
nisms.

4. Empirical support: There is a natural mapping of rep-
resentation of similarity onto well-defined neurophysiolog-
ical mechanisms (ensembles of tuned units). This mapping
is indirectly supported by psychophysical data, and by a
functional-level simulation in an artificial neural network
model.

5. Philosophical appeal: The proposed theory takes a
clear stand on philosophical issues that have been intensely
debated for a long time. It also offers an opportunity to in-
crease the productivity of the debate, by encouraging the
consideration of relevant arguments from adjacent disci-
plines.

To conclude, let us return to the Riddle of Representa-
tion, as posed in the introduction: By virtue of what does
the representational state of a human observer seeing a cat
on a mat refer to that cat (Cummins 1989)? A slightly dif-
ferent formulation of this riddle – what is common to two
humans, a robot, and a Martian, who all see a cat on a mat?
– may actually point toward a solution. It seems likely that
the only thing that can be common to these four represen-
tational systems is the cat itself, sitting “out there” on the
mat. One way to implement the idea of the world as its own
representation is by constructing a system that has at its dis-
posal tunable modules that can be trained to respond to cats
or dogs or any other object. Such a system will represent a
cat when it sees one (by virtue of firing of the appropriate
modules) and will also be able to dream of a cat or imagine
one (if the modules are made to fire in the absence of an
immediate sensory stimulation). Moreover, if a selection of
modules (not more than a few hundred), each tuned to a
different class of stimuli, is available, the system should also
be able to represent (through the response of a small sub-
set of the modules at a time) many more stimuli, in addition
to those actually stored in memory.

APPENDIX A. Formalization 
of distal shape spaces
The idea that objects belonging to a given natural kind can be
given a common parametrization has independently led to the
emergence of the concept of a shape space in a number of applied
disciplines ranging from biological morphometrics to computa-
tional molecular biology. In addition, concepts related to shape
space have been defined in different mathematical disciplines,
such as statistics, complex analysis, and algebraic geometry.

Perhaps the most straightforward approach to the construction
of a low-dimensional shape space is based on the notion of “land-
marks” – fiducial points affixed to the object whose location de-
termines the object’s shape (Bookstein 1991). An orderly study of
the geometry of shape spaces defined by locations of points has
been initiated only recently, by Kendall (1984; 1989), who pointed
out that the notion of a shape must include a specification of the
transformations which, by definition, leave the shape invariant. In
Kendall’s shape spaces, where objects are rigid configurations of
points, it is natural to define shape modulo the action of the or-
thogonal group of transformations (i.e., rigid motions plus reflec-
tion). From this it follows that dissimilarity between two sets of
points is to be measured by the Procrustes distance, which is de-
fined by the sum of squares of residual distances between corre-
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sponding points remaining after applying an optimal orthogonal
mapping that matches one set to the other (Borg & Lingoes 1987).

An interesting consequence of allowing for a Procrustes trans-
formation before computing shape-space distance is that it makes
the topology of the space nontrivial. Consider the simple example
of the space of all triangles in a plane, and a particular member of
that space: the equilateral triangle. Start deforming this triangle
by moving one of the vertices inward, along the perpendicular to
the opposite side; this deformation corresponds to a movement of
the corresponding point in the shape space. At some stage, the
chosen vertex will cross over the opposite side (at which point the
triangle will degenerate into a line) and will continue moving out-
ward. Finally, an equilateral triangle will be re-formed; this trian-
gle is a rotated version of the original one and therefore equiva-
lent to it under the Procrustes metric. Hence, continuous
movement along a straight line in the triangle-vertex space corre-
sponds to a movement along a closed line in the shape space. It
can be shown that this space is also not flat and that it contains sin-
gularities (one of which is the triangle whose three vertices coin-
cide); furthermore, the local Riemannian metric that takes these
properties into account determines a global metric that is identi-
cal to the Procrustes distance (Carne 1990; Le & Kendall 1993).

In some cases it may be desirable to define shape modulo a
group of transformations that is less restrictive than the orthogo-
nal group, or, in other words, to allow deformation.18 In that case,
a suitable framework for the definition of a shape space is provided
by the theory of Riemann surfaces (Krushkal’ 1979). Specifically,
any two surfaces (shapes) of a given genus related by a conformal
mapping can be considered as equivalent (belonging to the same
class), with a quasiconformal mapping (see Appendix B) taking
one shape class into another. The resulting shape space (known as
the Teichmüller space) has a Riemannian metric defined by the
deviation of the quasiconformal mapping from conformality
(Krushkal’ 1979). The Teichmuller space can be parameterized by
a small set of real numbers that provide a possible coordinate sys-
tem for the resulting shape space (Sundararaman 1980).

APPENDIX B. Quasiconformal mappings
In two dimensions, a mapping realized by an analytic function with

a nonvanishing Jacobian in a given region is conformal there
(Cohn 1967). In other words, any well-behaved function that maps
a portion of the plane to itself is bound to preserve angles on a
small scale (and hence also ratios of side lengths of small triangles;
see Fig. 8). In higher dimensions, conformality is very restrictive.
As proved by Liouville in 1850, already for n 5 3 there are no map-
pings that are everywhere conformal from Rn to itself except those
that are composed of finitely many inversions with respect to
spheres, or Mobius transformations. These constitute a finite-di-
mensional Lie group that includes the group of rigid motions in
Rn and is only slightly broader than that group (Reshetnyak 1989).
This means that enforcing conformality in a mapping between
high-dimensional spaces amounts to enforcing global isometry or
global preservation of distances (by analogy with the 3D Euclid-
ean space, mappings that satisfy this constraint are called rigid mo-
tions).

A considerably broader class of mappings emerges if the re-
quirement of conformality is replaced by that of quasiconformal-
ity. A regular topological mapping is quasiconformal if there exists
a constant q, 1 # q , `, such that almost any infinitesimally small
sphere is transformed into an ellipsoid for which the ratio of the
largest semiaxis to the smallest one does not exceed q (Reshetnyak
1989). Intuitively, a conformal mapping is locally an isometry (i.e.,
a rigid motion; see Fig. 8); a quasiconformal mapping is locally
affine (i.e., a combination of motion with shearing deformation).
Under such a mapping, the ranks of distances between points are
preserved approximately, on a small scale (Väisälä 1992, p. 124).
The relevance of quasiconformality to the representation of real-
world shapes stems from the realization that distance ranks need
not be preserved globally across the entire shape space; they need
only be preserved within shape classes ( just as the common pa-
rametrization that is the basis for the definition of distal similarity
is required to hold within, but not to extend across, the boundaries
of natural kinds).

APPENDIX C. Distal to proximal mapping and the
possibility of different parametrizations
Consider the effect of the geometry mapping, f1, defined in sec-
tion 3.2.2. The properties of this mapping are to be defined with re-
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Figure 8. Illustration of the concept of conformal mapping, discussed in Appendix B. Left: Two similar “triangles” formed by two
straight line segments and two circular arcs, all meeting at right angles. Right: The same two “triangles” under the action of the confor-
mal mapping z 5 !wwatanhw(x) (the choice of the function here is arbitrary and is merely intended to illustrate the concept of conformal-
ity). For the small triangle, the isosceles shape as well as all the angles are preserved. At a larger scale, the triangle is distorted, although
the angles remain right.
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spect to a family of possible parametrizations of the distal shape
space rather than with respect to some illusory true and unique
parameterization. Let 3 be the set of all parameterizations related
to a given one p0 by some conformal mapping T. The set 3 is an
equivalence class (Väisälä 1971); moreover, because the composi-
tion T °M is conformal if M is, veridical representation of some 
p[ 3 is equivalent to the representation of any other p[ 3. Now,
a conformal mapping M will give rise to a proper (i.e., second-or-
der isomorphic) representation of object clustering under all pa-
rameterizations belonging to some class 3x. The nature of that
class will depend on the nature of the mapping (which can em-
phasize some distances among objects at the expense of others,
with or without altering the distance ranks).

A system that is a product of natural selection is expected to
have evolved a mapping suited to the representation of those as-
pects of its habitat that are most important for its survival and be-
havior. Thus, along with veridical representation, it is also possible
that two perceptual systems implementing different mappings will
have incompatible (or even conflicting) pictures of the world.
Note that this effect cannot be distinguished from that of differ-
ent parametrizations (discussed above).

APPENDIX D. More on qualia
A simplified version of Clark’s (1993) qualia account can be for-
mulated on the basis of the present approach, for example, by con-
sidering the redness of a ripe tomato as a counterpoint to the
greenness of an unripe one and the shape of a pear as a contrast
to the shape of an apple. Obviously, a shape, a color, or some other
quality considered in isolation can be represented in any manner
whatsoever; it is the introduction of other objects that makes rep-
resentation challenging. Now, a progressive reduction in the level
of illumination would force the observer to switch gradually to sco-
topic vision, effectively losing not only the ability to discriminate
between the two tomatoes on the basis of their color but also all
the color qualia. Likewise, a gradually ripening green tomato
would, by any sensible account of qualia, be perceived as an
equally gradual turning of the quale of greenness into that of red-
ness.

This suggests that it may be more productive to consider qualia
such as “redness versus greenness” and “pear-shape versus apple-
shape” as primitive, and redness or pear-shape as derived (by a
process computationally equivalent to multidimensional scaling).
The “redness versus greenness” quale may then be identified with
the feature-space support for telling apart ripe and unripe toma-
toes; although this reduction seems to hold only in the context of
tomato discrimination, it is easily extended to apply to any other
pair of stimuli, by projecting the difference between their feature-
space representations onto the paradigmatic “red versus green”
distinction. In shape perception, an analogous argument can be
constructed using, for example, the distinction between a pear and
an apple; morphing a pear into an apple is the shape-space coun-
terpart of the color shift induced by the ripening of the tomato in
the color example. In summary, it seems sensible to accept the no-
tion that qualia are qualia of similarities; this rules out the awk-
ward situation in which a quale can be anything at all and points
toward a potentially fruitful way to address the problematic issues
associated with qualia experimentally.
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NOTES
1. Agreement between patterns derived from visual and hap-

tic perceptual data has also been reported (Garbin 1990).
2. The idea of representation by second-order isomorphism

has been advanced, under various guises, in a number of fields in
cognitive science. Typically, the researchers in these fields take for
granted the implausibility of representation by similarity, that is,
by first-order isomorphism. Consequently, the theories mention
merely “isomorphism,” it being implied that the isomorphism
holds between structures (and is, therefore, “second-order,” in
Shepard’s terms) and not between individual entities (Gallistel
1990; Holland et al. 1986; Palmer 1978). Second-order isomor-
phism has been advocated recently by Cummins (1996), who calls
it “The Picture Theory of Representation.” This descriptor is
rather unfortunate, because in vision research pictorial represen-
tations are strongly associated with the Aristotelian notion of rep-
resentation by similarity, or first-order isomorphism.

3. As pointed out by S. Ullman (personal communication).
4. The problem of alternative parametrizations is addressed in

Appendix C.
5. It is difficult to impose this requirement over all possible ob-

jects unless the dimensions along which objects can vary are
known in advance. Thus, any perceptual system is prone to the er-
ror of omission caused by the necessarily finite set of measure-
ments that span its internal representational space.

6. Two examples are the “other race” effect in face recognition
(Brigham 1986) and the distinction between the sounds l and r, as
perceived by a native speaker of Japanese versus a native speaker
of English.

7. One should keep in mind that scaling and other transforma-
tions mentioned in the present context pertain to configurations
formed by objects in the shape space, and not to the objects them-
selves.

8. Strictly speaking, it is quasiconformal (as is any diffeomor-
phism restricted to a compact subset of its domain; Zorich 1992,
p. 133), which means that it can be considered conformal on a
small scale (see Appendix B).

9. The computation of salience can be carried out by a method
such as Littlestone’s (1988) Winnow.

10. The holistic nature of these features stems from the possi-
bility of a reference shape being an entire object, rather than, say,
a generic part.

11. For further details, see Cutzu and Edelman (1998). This
finding has recently been replicated psychophysically in the mon-
key (Sugihara et al. 1998).

12. For a striking report of the malleability of object represen-
tations that emerge in a developing cognitive system, see the work
of Landau et al. (1988). They found that children’s assumptions
about which deformations an object can undergo while retaining
the same count-noun name depended on the object’s appearance:
deformations of furry convoluted objects (as compared with a sin-
gle example view) were tolerated to a much larger extent than de-
formations of angular artifact-like things.

13. Compare the debate about whether the simple cells in the
mammalian primary visual cortex are really line detectors or local
Fourier analyzers (Hubel & Wiesel 1959; Maffei 1978).

14. By ostension, as in “this is a cat” (pointing to a cat) (see
Quine 1969).

15. “Ordo et connexio idearum idem est ac ordo et connexio
rerum” (Spinoza 1677, II, p. 7).

16. Compare Berkeley (1710, sect. 45): “Upon shutting my
eyes all the furniture in the room is reduced to nothing, and barely
upon opening them it is again created.”

17. See also Biederman et al. (1974). In memory research, this
point seems to be more widely accepted, in the form of the schema
theories (Bartlett 1932; Rumelhart 1980). For some notes of cau-
tion, see Cavanagh (1995) and Koriat and Goldsmith (1995).

18. Consider, again, Dali’s Persistence of Memory: We perceive
the thing suspended from the tree branch as a deformed clock
rather than an uninterpretable shape; this shows that there can be
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perceptual equivalence between some shapes that are related by
deformations rather than transformations.
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Chorus of k prototypes or discord 
of contradictory representations?

David R. Andresen and Chad J. Marsolek
Department of Psychology, University of Minnesota, Minneapolis, MN 55455.
andr0196@maroon.tc.umn.edu; chad.j.marsolek-1@umn.edu
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Abstract: The human visual system is capable of learning both abstract
and specific mappings to underlie shape recognition. How could dissimi-
lar shapes be mapped to the same location in visual representation space,
yet similar shapes be mapped to different locations? Without fundamen-
tal changes, Chorus, like other single-system models, could not accomplish
both mappings in a manner that accounts for recent evidence.

Edelman posits a shape representation system in which the simi-
larity of distal stimuli corresponds with the distance between their
points in an internal representation space. For example, given
their distal similarity, the word forms “rage” and “rage” would be
mapped to points that are very near in representation space. This
is an interesting approach to shape representation, one that cap-
tures desirable properties of how neural network models can ac-
complish such representation.

However, a problem arises when one considers how such a sys-
tem could accomplish both abstract and specific representation.
Similar visual forms, such as “rage” and “rage,” should be mapped
to different (albeit near) locations in situations where the differ-
ences signal something important about the inputs. However, the
forms “rage” and “RAGE,” which are fairly dissimilar, should be
mapped to the same location in situations where the differences
should be ignored, as in reading for meaning. How could Chorus
accomplish the latter mapping? If the system were to map “rage”
and “RAGE” together, then it would be unable to also accurately
represent the physical similarity between “rage” and “rage” in the
same representation space; the latter distal stimuli are even more
similar than the former.

It appears that Edelman dismisses such abstract visual repre-
sentations: “it is unrealistic to expect that a structure of similari-
ties common to extremely disparate shapes will carry over into a
cognitive system” (sect. 2.1). However, empirical evidence indi-
cates that, in some situations, disparate shapes are mapped to a
common location in visual representation space.

In a recent study (Bowers 1996), subjects first read words pre-
sented in either all lowercase (e.g., “rage”) or all uppercase letters
(e.g., “RAGE”) and also heard other words presented auditorily.
In a subsequent test phase, they identified words presented very
briefly in all lowercase letters, most of which were primed from
previous processing. All words were composed of letters with
highly dissimilar lower- and uppercase visual structures (e.g.,
rage/RAGE). Most important, same-case primed and different-
case primed words were identified with equal accuracy, yet both
were identified significantly more accurately than auditorily
primed words. Assuming that such priming reflects structural

changes in the relevant shape representations, dissimilar shapes
must have been mapped to the same location in representation
space (to account for equivalent same- and different-case prim-
ing), and this must have been a visual representation space (to ac-
count for greater visual than auditory priming).

The problem of accounting for both abstract and specific visual
representation is not limited to the domain of word forms; it ap-
plies to objects as well. For example, grand pianos and upright pi-
anos may be relatively dissimilar distal stimuli, yet they should be
mapped to the same location in visual representation space to fa-
cilitate access to common postvisual information. At the same
time, two exemplar grand pianos may be similar distal stimuli, yet
they must be mapped to different locations in order to distinguish
them. If Chorus were to map grand and upright pianos to the same
location, it would be unable to represent accurately the similarity
between Edelman’s grand piano and Shepard’s grand piano.

A recent study indicates that both abstract and specific object
representation occur in the visual system (Marsolek 1997). Sub-
jects first viewed line drawings of objects and printed words that
named other objects, in the central visual field. In a subsequent
test phase, they named line drawings of objects presented very
briefly in the left or right visual field. Some test objects were the
same as those viewed previously, some exemplars differed from
those previously viewed, some corresponded to the previously
viewed words, and some had not been primed in any way. When
test objects were presented directly to the left hemisphere (i.e., in
the right visual field), same-exemplar primed and different-exem-
plar primed objects were named with equal accuracy, and both
were named significantly more accurately than word-primed ob-
jects. In contrast, when test objects were presented directly to the
right hemisphere (i.e., in the left visual field), same-exemplar
primed objects were named significantly more accurately than
both different-exemplar primed objects and word-primed objects
(and accuracy in the latter two conditions did not differ).

Thus, when subsystems in the left hemisphere were given 
advantages in processing test objects, behavior indicated that dis-
similar shapes were mapped to the same location in representa-
tion space (same- and different-exemplar priming were equiva-
lent), and this must have been a visual-object representation space
(both same- and different-exemplar priming were greater than
word priming). In addition, when subsystems in the right hemi-
sphere were given advantages in processing test objects, behavior
indicated that dissimilar shapes were mapped to different loca-
tions in representation space (same-exemplar priming was greater
than different-exemplar priming).

This double dissociation disconfirms theories that posit a single,
undifferentiated system for visual object recognition. We hypoth-
esize instead that two relatively independent neural subsystems
operate in parallel to subserve object recognition: an abstract sub-
system that operates more effectively than a specific subsystem in
the left hemisphere than in the right and maps even visually dis-
similar objects together when they are associated with common
postvisual information, and a specific subsystem that operates
more effectively than an abstract subsystem in the right hemi-
sphere than in the left and maps visually similar objects to sepa-
rate locations when they are visually and meaningfully distinctive
(Marsolek & Burgund 1997). These subsystems probably use con-
tradictory internal processing strategies, one in which parts are ex-
plicitly represented as such for an abstract subsystem (Marsolek
1995), and another in which parts are not represented explicitly
for a specific subsystem (Marsolek et al. 1996). Given that the be-
havioral expression of abstract versus specific representation de-
pended on which hemisphere received higher quality input before
the other, at least relatively independent neural circuitry must
have implemented abstract and specific representations.

These results also disconfirm theories that posit separate sub-
systems for abstract and specific representation while also posit-
ing that the two operate in sequence (either abstract representa-
tion precedes specific representation or vice versa). Evidence for
abstract representations, without accompanying evidence for spe-
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cific representations, was obtained in left-hemisphere presenta-
tion. Evidence for specific representations, without accompany-
ing evidence for abstract representations, was obtained in right-
hemisphere presentations. Hence, the results cannot be explained
by suggesting, for example, that Chorus supports specific repre-
sentations and that a subsequent process like that hypothesized
for superordinate-level categorization (examining only prototype
modules above some threshold may indicate that the input is a
four-legged animal [sect. 5.1.3]) accomplishes abstract represen-
tation. If so, specific priming should have accompanied any ob-
servation of abstract priming; the specific representation for an in-
put should have been computed (with all prototype modules
producing responses) before the abstract representation could
have been computed. Yet, this prediction did not hold in left-
hemisphere presentations.

Where does this leave us? Assuming separate subsystems are in-
volved, Chorus could possibly account for the kind of processing
involved in a specific subsystem, but fundamental changes would
be needed for it to account for abstract representation. If Chorus
as it stands accounts for specific representation, why would it be
incomplete? Does an abstract subsystem underlie such a crucial
component that ignoring it leaves a substantial gap in our under-
standing of object recognition? Apparently so. Basic- and entry-
level object-naming effects alone (Jolicoeur et al. 1984; Rosch et
al. 1976; also evident in Marsolek, submitted) indicate that dis-
similar visual objects (e.g., grand and upright pianos) tend to be
categorized at a level corresponding to the output from an abstract
subsystem (e.g., piano) more often and more readily than at a level
corresponding to the output from a specific subsystem (e.g., an ex-
emplar grand piano). Explanations of both abstract and specific
abilities must be developed for a complete understanding of hu-
man visual-form recognition.

Seeing wood because of the trees? A case 
of failure in reverse-engineering

Philip J. Benson
University Laboratory of Physiology, Parks Road, Oxford, OX1 3PT, United
Kingdom. philip.benson@physiol.ox.ac.uk www.physiol.ox.ac.uk/,pjb

Abstract: Failure to take note of distinctive attributes in the distal stimu-
lus leads to an inadequate proximal encoding. Representation of similari-
ties in Chorus suffers in this regard. Distinctive qualities may require ad-
ditional complex representation (e.g., reference to linguistic terms) in
order to facilitate discrimination. Additional semantic information, which
configures proximal attributes, permits accurate identification of true
veridical stimuli.

The human perceptual system is adept at warping (at least) visual
space through nonlinear distorting channels. Warps of sensory
space are present in adaptation and sensitivity enhancement (they
might also subserve mechanisms involved in remapping and plas-
ticity). Adaptation to stimuli distorts their representational mech-
anism or category. Is this sufficient for rejecting representations
limited to distinctness (sect. 3.1.1)? I think it is, but for a reason
very different from the one provided by Edelman (sect. 9.1), who
denies that similarity is distinctness. Edelman’s metric is prob-
lematic because of its bias toward recovering stimulus configura-
tions using multidimensional scaling (MDS) – a method with
some inherent problems. Distinctiveness is much more powerful
than Chorus can represent.

What Edelman and his colleagues believe is that the proximal
code is within-category conformal (cf. sect. 2.1). Chorus works be-
cause Chorus works with its input (Fig. 7) and is permitted to dis-
regard nth-dimensional attributes of the distal token. Those at-
tributes may, for much of machine or biological vision, suffice for
representation under experimental conditions. But when an out-
lying stimulus is submitted to normalisation “sphering” (here, and

as in component analyses), accurate classification is bound to fail.
The dimensionality reduction process, f4 ° f3 (sect. 3.2) may omit
salient features or their interaction. The nth-dimension might just
be the one that captures the most important quality of “interest-
ingness,” as in projection pursuit methods (Friedman & Tukey
1974). As in Markovian networks, it is quite likely that latent vari-
ables are beneficial in the representational process. These may not
be directly accessible for interpretation or decision making. How-
ever, such variables are veridical terms – verisimilitudinous, in
fact. To impose conformal redundancy seems to presuppose prior
knowledge about possible stimuli, and what Chorus represents
seems to be second rate. Accessibility (even) to similarity codes
seems to preclude considering that there might be a genuine dif-
ference between phenomenal consciousness (what you see, or
rather, what’s out there) and access consciousness (what you get).
[See Block: “On a Confusion about a Function of Consciousness”
BBS 18(2) 1995.] There are plenty of occasions in which no
amount of retuning will give you access to those attributes. In my
multidimensional cognitive hierarchy I need the trees in order to
establish varieties of qualities of their wood. I might be better off
referring to those distal tokens, for which I have no visual repre-
sentation, in another complex relational modality, possibly lin-
guistic. But there remain occasions on which this will fail. It may
happen when there are no adequate visual or verbal characteris-
tics of an intrinsic quality of the stimulus, yet behaviour is most
definitely affected by its presence or absence.

An example will illustrate my point. Prototypes are most prob-
ably a figurative consequence of category formation; they do, how-
ever, serve as the means by which distinctness or “interestingness”
is embodied. Prototypicality might thus be considered a residual
feature of cognitive processing caused by the activation of similar
neighbouring exemplars (general arousal, in other words). A prox-
imal stimulus that has been (or is naturally and phenomenally) en-
hanced in some way should make the system exhibit facilitation
along the attribute dimension(s), heightening distinctiveness. Im-
proved within- or between-category identification of this stimulus
can be explained in two ways. First, the attribute is more readily
selected because the breadth of tuning or geometry of proximal
modules (sects. 1.3; 2.2) is affected by the same nonlinearities in
the sensory system. Second, and alternatively, the intrinsic rela-
tionship between features caused by distinctness (and not coded
for proximally) enhances categorisation. The latter explanation is
most likely in concessions to failed categorisation. The real fly (cf.
sect. 7.3) in the ointment of Chorus theory is its inability to re-
trieve representations of distinctness.

The upshot of this is that when I know I am dealing with a tree,
I might not know why it has more of “wood” (invariances notwith-
standing), but knowing it does is useful and interesting and it ap-
peals to me for some reason. Trees or cats on mats are quite un-
likely to be common to internal representational systems, no
matter how plastic the tuneable modules are. In the worst possi-
ble case I would not be able to tell whether what I was looking at
was veridical. Although I could acknowledge the effect of a novel
distinct difference on my reaction to it, without access to sup-
porting higher-order representations, perhaps linguistic, I would
not be able to save on cat food.
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Representation is space-variant
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Abstract: Under shift, caused for example by eye movement, or by rela-
tive movement of the subject or object of perception, the cortical repre-
sentation undergoes very large changes in “size” and “shape.” Space-vari-
ance of cortical representation rules out models that fundamentally
require linear interpolation between shifted patterns (e.g., Edelman’s
model) or rigid shift of an invariant retinal stimulus corresponding to shift
at the cortex (e.g., the shifter theory of van Essen). Recently, a computa-
tional solution of “quasi-shift” invariance for space-variant mappings has
been constructed (Bonmassar & Schwartz 1997a; 1997b).

Edelman’s work addresses an important gap in the computational
discussion of neural representation which to date has largely been
carried out on a verbal level. His position is that representation is
a record of similarities to stored prototypes rather than direct rep-
resentation in the form of templates, or feature vectors. Rather
than learning all possible prototypes (similarities), a “small” num-
ber are stored, with interpolation of new stimuli providing gener-
alization. Edelman uses a particular form of cluster analysis 
(multidimensional scaling) to effect classification. No neurally
plausible means of implementing multidimensional scaling in the
brain is provided, and no comparison with other similar forms of
clustering, or indeed, no statistical pattern recognition in general,
is supplied. It seems to us there is a basic mathematical equiva-
lence between clustering based on “similarities” and clustering
based on direct feature vector representation. We will focus in-
stead on the issue of linear interpolation of learned prototypes,
which we identify as the key contribution of this model.

Representation in the brain is expressed, we believe, in a wide
variety of cortical loci. The majority of cortical visual areas are
topographically organized. Spatial representations in the brain (in
the form of topography and columnar spatial patterns) are them-
selves a form of representation, and one that obviously does not
depend on “similarities” between prototypes, but is an example of
direct, template-based representation.

The spatial structure of visual stimuli is represented in V-1 as a
topographic map whose fidelity is sufficiently detailed to account
for visual acuity. This map is approximated by the complex loga-
rithmic (log-polar) map (Schwartz 1977). No other analytic form
for V-1 topography has yet been presented, and the approximation
of the two-dimensional topographic map by the simple one-para-
meter fit in the form of (complex) log (z 1 a), with a representing
the extent of “foveal” representation (a is roughly 0.5 degrees), is
considered to be a “good” approximation by most workers in the
field (e.g., see Dow et al. 1985; Tootell et al. 1985; Van Essen et
al. 1984). Recently, a more general conformal map has been nu-
merically generated from 2-deoxyuglucose data obtained from
primate V-1, and the error bounds for this fit are in the range of
15–20% (Schwartz 1994). Although this numerical conformal
map has no simple analytic representation, it is similar in its prop-
erties to the complex log, and we will use the complex log as a con-
venient way of modeling the spatial properties of early primate vi-
sual representation.

The nonlinear spatial structure of V-1 representation poses an
unavoidable problem for the basis of Edelman’s model: simple lin-
ear “interpolation” between shifted versions of a prototype fails
because the human visual representation is strongly space-variant,
and both the size and “shape” of the V-1 representation of a stim-
ulus undergoes very large changes. This is demonstrated in Fig-
ure 1, which shows the behavior of letters under shifts or, equiva-
lently, of eye movement. The cortical representation of these
shapes is strongly distorted under shift (i.e., eye movement). That
interpolation of the same letter but with different eye positions
could not possibly work is evident. Edelman’s model would re-

quire storage of a large number of eye position “prototypes,” mul-
tiplying the combinatorial explosion already present owing to the
other geometric symmetries. Of course, one can invoke (as does
Edelman) the deus ex machina of IT (inferotemporal) cortex here
to somehow unravel this problem, but we know very little about
any aspect of trigger feature representation in IT at the present
time. There is some evidence that IT trigger features are invari-
ant under size, translation, and rotation transforms (Schwartz et
al. 1983), but IT receives its representation ultimately from V-1,
and therefore inherits the space-variant nature of V-1 representa-
tion.

In our lab, we have considerable experience building machine
vision systems based on complex logarithmic image representa-
tion (reviewed in Schwartz et al. 1995). We can confidently state
from experience that linear interpolation of view, as used by Edel-
man, grossly fails to allow a system built on space-variant design
principles (e.g., the human brain) to function. The reader can ver-
ify this directly from Figure 1.

Recently, we have developed a computational solution to this
problem by devising a new form of Fourier transform (the expo-
nential chirp transform) that provides quasi-shift invariance, as
well as size and rotation invariance that are consistent with the dif-
ficulties imposed by V-1 representation (Bonmassar & Schwartz
1997a; 1997b). Edelman has published a psychophysical study in
which perfect translation invariance in human vision is called into
question. We can explain this quite simply in terms of “quasi-in-
variance,” which is defined precisely in our papers on the expo-
nential chirp cited above. This discussion indicates a fundamental
terminological and conceptual problem in the perceptual litera-
ture. Geometric invariance is not possible in a space-variant sys-
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Figure 1 (Bonmassar & Schwartz). The result of applying the
space-dependent cross-correlation to a (197 3 194) image of let-
ters with an image of the letter “T” at the fixation point. Top left:
the original image of letters; top right: its space-dependent repre-
sentation; at bottom left: the log-polar (space-dependent) image of
the letter “T” (split by the vertical meridian into a “left” and “right”
hemisphere segment. These two last space-dependent images are
used by the ECT (Exponential Chirp Transform) algorithm to
compute the space-dependent cross-correlation, as shown in the
bottom right of the figure. Clearly visible is the sharp peak located
in the position of the letter “T” in the original image (cortical)
space.
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tem. Similarly, there is (and can be) no “veridical” representation
in the brain, since V-1 discards more than 99.99% of the informa-
tion available at the level of retinal (optical) image (Rojer &
Schwartz 1990).

The symptoms associated with space-variance in human vision
provide a fatal problem for models based on simple linear inter-
polation (Edelman) or simple “linear shift” to account for the
problem of eye movement (the Olshausen-Anderson-Van Essen
“shifter theory” cited by Edelman as a solution to the problems in-
troduced by eye movement). Linear shift, or linear interpolation,
cannot be invoked as a modeling tool in the primate visual system
because of the strongly nonlinear nature of V-1, and later cortical
representation. Linear shift of a cortical pattern does not corre-
spond, in an isomorphic sense, to linear shift of a retinal pattern!
Models that require this feature (e.g., the shifter theory, the lin-
ear interpolation aspects of Edelman’s model) cannot be correct.

We are constantly surprised that models purporting to explain
biological vision ignore the most basic spatial structure of the vi-
sual system. However, it is always useful to be able to falsify mod-
els, particularly in fields such as this, in which most models are
“not even wrong.” For the present, we can assert, with strong con-
fidence, that models depending fundamentally on the ability to
shift linearly or interpolate cortical representations of visual stim-
uli, and that as a result ignore the space-variant structure of the
primate visual system, are, to paraphrase W. Pauli, “even wrong.”

Distal similarity, shape referents, subjective
world, and redundancy

Hannes Eisler
Department of Psychology, Stockholm University, 106 91 Stockholm,
Sweden. he@psychology.su.se www.psychology.su.se

Abstract: The concept of distal similarity that plays a crucial role in Edel-
man’s theory of representation is called into question in this commentary
on theoretical as well as empirical grounds. A possible confusion between
shape and (knowledge of) its referent, the problem of the subjective world,
redundancy, and large individual differences in subjective space encoun-
tered in contrived universes are discussed.

I concur with Edelman that the recognition of objects, based on
their shape, builds on similarity; however, I can see some prob-
lems with some of his arguments. First, there is a problem with
the concept of “distal similarity,” between shapes or between
other stimuli, colors, for example. As pointed out in Eisler (1960),
similarity refers to psychological attributes; for pairs of stimuli, any
definition is arbitrary. To give substantive content to the concept
of distal similarity, it should be possible to measure it without re-
course to asking observers.

I was surprised to find “jaggedness” to be a pertinent property
of the shapes of states of the United States in Shepard and Chip-
man’s (1970) experiment. In an experiment (Eisler & Roskam
1977b) on the similarity of patterns consisting of pairs of luminous
points positioned in the first quadrant, we expected two dimen-
sions from the physical arrangement, either extension in x- and y-
directions, or vector length and angle. But a third dimension
emerged: “cornerness” for the points that were farthest away from
the origin. Of course, this attribute of percept space could be con-
sidered a property of stimulus space, contributing some to the dis-
tal similarities, but how would we know in advance?

A third example is a study of the visual perception of texture
such as the surface of bricks or cloth (Eisler & Edberg 1982). An
attempt to use “stylized textures” (regular patterns of circular ar-
eas varying in number, diameter, and distance) as easily quantifi-
able referents to real textures, suitable for a texture chart for ar-
chitects, failed. The attributes obtained from multidimensional
scaling (MDS) or similarity judgments of real textures could not
be captured by the stylized patterns. Proponents of the idea of dis-

tal similarities seem to have fallen into the “physicalistic trap,”
clinging to physical measures rather than psychological (Eisler
1982). I assume that the perception (or experience) of similarity
(note that I do not use “subjective similarity,” since objective sim-
ilarity does not exist) is direct, perhaps using a “smart” perceptual
mechanism Runeson (1977) by applying Landahl’s (1945) physio-
logical model. This idea would also be consistent with the findings
of von Grünau et al. (1994).

The second problem is a confusion of pure shape with (knowl-
edge of) its referent. Edelman mentions “quadruped animals,”
and depicts in Figure 1 the distance between a cow and a tricer-
atops (the tail of which I sadly miss, by the way) as smaller than
that between either and the third legless animal. But are these dis-
tances determined by the shapes alone or by presence and ab-
sence of quadrupedality? In that connection I would like to note
the importance of the (subjective) world which is only superficially
mentioned by Edelman as a class or category. The universe may
be clear from the sample used or defined by instruction. Similar-
ities depend strongly on the pertinent universe (see Sjöberg &
Thorslund 1979).

It may be worth mentioning the rather amazing stability of sub-
jective space; it is not only MDS that can reveal its structure. In
the above-mentioned experiment on luminous points (Eisler &
Roskam 1977a; 1977b), five different estimation instructions (of
which one was similarity) for the same stimulus set “tapped” the
space with congruent results (cf. also Eisler 1982). This does not
demonstrate conclusively whether the mapping is inherently built
on similarities, but in any case the space could be constructed
from similarity judgments. Stability does presuppose a “natural”
universe, however (cf. Eisler 1982). The rather contrived circle-
and-spoke figures used by Shepard (1964) showed large individ-
ual differences in their isosimilarity contours; certain subjects not
only collapsed dimensions, as mentioned by Edelman, but at-
tended to only one of the two dimensions (Eisler & Lindman
1990).

Finally, let’s return to the tailless triceratops. I could see what it
was from the head alone; that it had four legs I knew before I saw
them. This is a problem of redundancy of shapes: How much of a
given shape is necessary for its placement in a subjective space,
based on similarity? This calls to mind Thurber’s drawing of a
room with hunting trophies – heads of deer and antelopes – on
the wall, all covered with small distinct patterns. “They were shot
by George’s uncle – the one that lost his mind.” But one could rec-
ognize the animals.

Appearance is more than shape, illumination,
and pose

Jan-Olof Eklundh and Stefan Carlsson
Computational Vision and Active Perception Laboratory, Department of
Numerical Analysis and Computing Science, Royal Institute of Technology,
100 44 Stockholm, Sweden. joe@nada.kth.se, stefanc@nada.kth.se
www.nada.kth.se/

Abstract: Although we find the idea of representation by similarities at-
tractive as such, we have two main objections to the specific proposal of
Edelman. First, he does not consider complexity issues in terms of storage
and speed of recall for recognition. Related to this, the appearance of ob-
jects depends on far more factors than just shape, illumination, and pose.
This requires an intermediate shape abstraction process that extracts cat-
egory-specific shape properties from the mixed appearance of images.

Edelman argues for visual representations supporting second-or-
der isomorphisms: “i.e., correspondence between distal and prox-
imal similarities among shapes, rather than between distal shapes
and their proximal representations” (Abstract). This idea and its
implications are attractive (limited need for scene reconstruction,
the world serves as its own representation).
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The target article deals primarily with the issue or representa-
tion, but as is pointed out in section 1.3, this should be considered
with regard to the problem of pattern recognition and categoriza-
tion. It is when we consider Edelman’s suggestions from that per-
spective that we come up against its limitations.

First of all, recognition can be trivially regarded as establishing
a correspondence between incoming stimuli and stored represen-
tations, as described in the pattern recognition paradigm. In par-
ticular, visual stimuli images can be represented in the form of a
high-dimensional vector of image intensities. Recognition is then
equivalent to partitioning this high-dimensional space and associ-
ating the incoming stimuli to their corresponding sectors. That the
appearance of a shape depends on various external factors can
then be accounted for in principle by extending the partition for
that specific shape. The dimensionality and thereby the complex-
ity of the recognition system will then necessarily grow with the
number of shapes and objects. This is a problem that any compu-
tational theory has to to address.

The target article suggests a learning step that reduces the di-
mensionality of the representation, but it still fails to discuss com-
plexity or scaling issues, although they are inherent in the discus-
sion of various methods (e.g., for achieving interpolation of views).
The crucial question of complexity of storage and recall versus the
number of shapes or categories stored is not addressed. With an
increasing number of categories, the number of similarities to be
represented grows combinatorially and the manifold on which the
representations live becomes increasingly complex so as to cap-
ture isomorphisms. In general, one can say that although the pat-
tern recognition paradigm is noncontroversial, it is of limited use-
fulness unless scaling and complexity issues are taken into
account. This was the argument that made Marr (1976) embark
upon his work on scene reconstruction. The argument still holds,
whatever conclusion one draws.

The proposed representation is based on the appearance of the
objects in images. Edelman discusses the fact that appearance is
not invariant but depends on illumination and pose. This seems to
be an oversimplification, since there are far more factors that can
effect the appearance of a shape. In doing away with any need for
representing parts or properties explicitly, it is not clear how the
framework can deal with similarities on the basis of the constituent
parts, or with the fact that the categories of interest at a particular
instance are task dependent. What about a set of bottles with dif-
ferent labels? How is the shape of the bottle abstracted from the
appearance of the bottle and the label together? In Edelman’s sys-
tem, there is no clue to this except the extension of the “bottle
manifold” in the representational space to include all various kinds
of labels. This will eventually lead to combinatorial explosion.

The basic property of the system responsible for these problems
is the global nature of the representation. Edelman has not con-
vinced us that we can do without an intermediate representational
step, based on nonglobal shape properties that would allow for the
abstraction of a shape from its mixed appearance. This is what
most research in computer vision is founded on and studies of le-
sions in the human visual system also indicate that both types of
models are needed (e.g., see Farah 1994). [See also Farah: Neu-
ropsychological Inference with an Interactive Brain” BBS 17(1)
1994.]

What is wrong with prototypes

Peter Földiák
Psychological Laboratory, University of St Andrews, St Andrews KY16 9JU,
United Kingdom. peter.foldiak@st-andrews.ac.uk
psych.st-and.ac.uk:8080/~pf2

Abstract: Representing objects and concepts as points in low-dimensional
shape space defined by distances to other complete object exemplars or
prototypes, expressed as single numbers, misses the key advantages of rep-
resentation in terms of hierarchically constructed, meaningful features of
the environment. Generalisation along statistically significant, near-inde-
pendent, sparse, cooperative features that stand directly for various as-
pects of a concept is essential.

Edelman’s target article comes from a long line of papers placing
object/concept prototypes or exemplars at the centre of repre-
sentation. The representation of a prototype corresponds to a
complete object, without any structural, componential, or featural
description. Relationships between items here are purely func-
tions of distances in metric spaces in which these prototypes are
located. The following serious problems follow from this.

1. The relationship between two concepts is usually much more
complex than what a single number, the “similarity,” can repre-
sent.

2. In prototype models, generalisation is simply a function of
distance. Real generalisation and analogies depend on the corre-
spondence of only some or even just one of the properties of the
objects or concepts involved and are not affected by even large dif-
ferences in other aspects. A red cherry can be more similar to a
red bus than to a yellow carrot. Prototype-space would predict
otherwise. Such judgements may also depend on the context,
while prototypes do not allow the consideration of only certain as-
pects of a concept.

3. In a metric space the triangle inequality implies that if points
A and B are close and points B and C are close, then A and C will
also be close. Furthermore, if A and B are close and B and C are
far, then A and C are also far. The full richness of relationships be-
tween a large collection of complex items can hardly be success-
fully embedded in such a space, especially in low dimensions. For
instance, a red cherry is similar to a red bus, and a red bus is sim-
ilar to a green bus, but the red cherry and the green bus should be
maximally distant.

4. Prototypes are unsuitable for representing composite con-
cepts by similarity to their components. A guppy may be a poor
example of “fish” and a poor example of “pet” but it is a highly typ-
ical example of pet fish (Hampton 1993).

5. Sensory processing in the brain involves dimensionality ex-
pansion, not reduction (Barlow 1972; Field 1994). V1 contains
about 100 times as many neurons as the optic nerve does, and
higher visual areas maintain similar numbers. Despite this, corre-
lations between neurons are surprisingly low even in higher areas
and even in restricted experimental situations (Gawne & Rich-
mond 1993), so it is unreasonable to assume small numbers of
highly redundant “modules.” The additional representational ca-
pacity of a high-dimensional representation can be used to in-
crease selectivity and to make the representation sparse (Földiák
1990; Olshausen & Field 1994). The metaphor of a visual “alpha-
bet” is also misleading as it suggests a small set of symbols. In fact,
sensory neurons have a huge variety of response properties.

6. Neurons in higher visual areas can show remarkable speci-
ficity, and can stand for complex combinations of lower level fea-
tures; nevertheless, their selectivity is far broader than what would
be necessary for a prototype coder. They also ignore or generalise
over far larger number of aspects of stimuli than what would make
it helpful to think of them as representing complete, “holistic” pro-
totypes. Even high-level cells code only certain aspects of an ob-
ject and are not “pontifical cells” (Barlow 1972). The output of the
suggested holistic classifier is not in any useful sense a feature as
it does not signal any aspect of the object.
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7. Would the representation of the colour red by the activity of
all red objects classifiers by efficient, and would it produce the cor-
rect generalisations? According to the prototype scheme the prop-
erties associated with redness all generalise far less to a red object
with an unusual shape. Shape here should be irrelevant.

8. The suggestion that the new stimulus “giraffe” is represented
by similarity to “camel” and “leopard” is an example of the inade-
quacy of the scheme. There is no way to know whether such a “gi-
raffe” is an ungulate with spots or a predator with a hump. How
would the prototype scheme represent a pink submarine unam-
biguously?

The introduction of elliptical basis functions to restrict the se-
lectivity of the proposed classifiers to limited aspects of objects
could help solve some of these problems, but the further we go in
that direction the less holistic and prototype-like and the more fea-
ture-based the scheme becomes. Feature-based models repre-
senting items as sparse (Barlow 1959; Földiák 1990; Olshausen &
Field 1994), cooperative (Dayan et al. 1995; Hinton 1992), low-
redundancy (Barlow 1989; Bell 1996; Földiák 1990; Schmidhuber
1992) features can go a long way toward solving all the problems
mentioned above. Such representations should not only be dis-
tributed and sparse, but they should also consist of features that
directly correspond to meaningful statistical regularities, “suspi-
cious coincidences,” or “sensory cliches” (Barlow 1989) of the en-
vironment, while still being more structured and general than
ones consisting of classifiers of individual exemplars. They not
only tell us the degree of similarity between two concepts, but the
overlap between their representations specifies the nature and as-
pect of the relationship. They provide biologically plausible, mul-
tiple-cause models (Földiák & Young 1995; Saund 1995) of the
stimuli as opposed to the chorus of single-cause prototypes sug-
gested.

Objects, please remain composed

Robert L. Goldstone
Psychology Department, Indiana University, Bloomington, IN 47405.
rgoldsto@indiana.edu cognitrn.psych.indiana.edu/

Abstract: The holistic representation of objects as coordinates in a psy-
chological space should be supplemented with decompositional processes
that break objects down into components. There is strong psychological
evidence for object decomposition, and structured representations are
also needed because of their computational efficiency. Structured and un-
structured representations can be unified by a process that extracts regu-
larities at multiple levels of an object.

Edelman’s target article presents a coherent and persuasive ac-
count of at least one-half the task of representing similarities be-
tween objects. The article focuses on the representation of objects
by their coordinates in a relatively low-dimensional space shared
by other objects. Each object is represented holistically rather
than decomposed into features. This holistic treatment of objects
is a powerful technique, providing efficient representations of ob-
ject similarities, particularly when combined with representations
derived from interobject relations and blends of (whole) objects.
There are, however, psychological and computational reasons for
believing that objects are also represented by their decomposition
into features.

A substantial body of psychological evidence supports decom-
positional accounts of object recognition. While Edelman cites re-
cent research showing cells of inferotemporal (IT) cortex re-
sponding to whole objects, the earlier work on neurons that
respond selectively to specific object properties such as color, ori-
entation, edges, and motion provides some evidence for early fea-
tural decomposition (Hubel & Wiesel 1968). At a functional level,
cognitive psychology provides additional evidence for decomposi-
tion. Garner (1974) reports evidence that shape and color features

can be selectively attended without interference from each other,
but some other stimulus properties cannot. Treisman and Gelade
(1980) argue that features are registered separately, giving rise to
efficient and parallel searches for individual features and the au-
tomatic splitting apart of different features that occur in the same
object. In general, not all parts of an object are equally tightly con-
nected to each other. Some object parts influence each other
strongly and are fused, whereas other parts are naturally isolated
and correspond to different psychological features.

Computationally speaking, structured representations are often
highly efficient and parsimonious. Imagine a domain in which all
the objects contain 5 parts selected from a vocabulary of 15 parts,
and each part is related to every other part in one of eight ways.
For example, a wristwatch could be encoded as a watch connected
to two straps, one strap attached to a buckle, the other strap at-
tached to a prong, and the prong inserted in the buckle. If each of
the objects that could be represented by this componentially de-
scribed system were represented holistically, then (15*8)5, or
about 24 billion whole-object representations would be required.
Actual objects will certainly occur very sparsely in this space of fea-
tures and relations. Still, to ignore the componential structure of
the objects is to forfeit the opportunity of adopting a representa-
tional system with only 15 1 8 elements. The additional mecha-
nisms required for building and processing structured represen-
tations are often more than compensated for by their economy,
particularly as objects become increasingly complex.

As suggested by the above combinatorics, applying whole-ob-
ject representations beyond toy domains quickly results in very
high-dimensional spaces. Edelman’s Figure 3 is misleading in that
it suggests that an arbitrary object, such as a teapot, can be repre-
sented in the same low-dimensional space as the quadrupeds. If
one wishes to reconstruct whole objects simply by identifying their
coordinates or neighbors in a space, then an extremely large space
would be required to represent all the objects we commonly rec-
ognize. The problem with the suggestion (sect. 2.1) that different
object classes should be encoded by different parameters (i.e., in
different spaces) is that objects belong to different classes at dif-
ferent times, and similarities between objects can be determined
across classes. For some purposes, the shape similarity of dogs to
wolves, cats, cows, dolphins, balls, tacks, and even shelves is rele-
vant and is generally computable. The notion of parameter spaces
that are tuned to particular object domains is important, but it
must be supplemented with processes that can compute the sim-
ilarity of any shapes.

One of the major limitations of multidimensional scaling ap-
proaches is their lack of structure. Even if the dimensions can be
interpreted, there is no mechanism for dimensional interactions,
or for representing relations between dimensions. Structured rep-
resentations are likely to be particularly important when objects
are composed of easily separable features, parts that have previ-
ously been encoded, or articulated segments. In these cases, struc-
tural descriptions provide an elegant and compressed representa-
tional code. Short codes can be used to token features that may be
associated with quite complex configurations. For example, a sin-
gle code can be built for an entire complex letter if it is involved
in many words. It is true that these codes violate Marr’s (1982)
principle of least commitment, but the benefits of information
compression necessitate discarding some raw information. Fur-
thermore, if effective featural codes are constructed, then the raw
information can be faithfully recovered by activating the feature.

A full account of object representation must exploit the com-
plementary advantages of both holistic and structured represen-
tations. Unstructured whole-object representations are particu-
larly useful when object parts are difficult to isolate, when there
are many complex interactions between the parts, and when a par-
ticular object occurs frequently. The combined advantages of
structured and unstructured representations can be achieved by a
system that develops features at the most informationally efficient
level. Such a system might create a single holistic representation
for an entire word if it occurs frequently enough, but would alter-
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natively represent it compositionally if it is less frequent and the
letters have been well learned. The same perceptual learning
mechanism that can imprint on a whole object can also imprint on
an element within the object if it occurs reliably across objects. A
general imprinting mechanism of this sort unifies structured and
unstructured representations under the assumption that both ap-
proaches work by detecting regularities and creating compressed
codes for these regularities.

Metric assumptions are neither necessary
nor sufficient to describe similarities

Robert A. M. Gregson
Division of Psychology, School of Life Sciences, Australian National
University, Canberra ACT 0200, Australia. robert.gregson@anu.edu.au

Abstract: Alternative models of similarity judgments that do not rest on
metric space assumptions are known to be better descriptions of actual hu-
man behaviour but are ignored by Edelman. The internal spaces he pos-
tulates are a convenient fiction for artificial intelligence, but not compati-
ble with what is now known about psychophysics at both behavioural and
neurological levels of perceptual processing.

Edelman (sect. 1.1, para. 4) begins his argument by misleadingly
citing a work of mine (Gregson 1988) that has absolutely nothing
to say about similarity. As I have published work very critical of the
metric-space assumptions he espouses (Gregson 1975; 1976;
1979; 1980; 1984; 1985; 1993; 1994), the reader who wishes to 
follow the argument without preconceptions is advised to consult
a source in which I discuss similarity explicitly, with examples. 
Gregson (1995) is the most recent text, and the first to explore ex-
plicitly the compatibility of similarity judgments with nonlinear
psychophysical modelling. This does draw on results in multidi-
mensional psychophysics (Gregson 1992) but can be treated as
self-contained.

Edelman’s suggestion in that paragraph that I was concerned
with the human visual system’s behaving “downright peculiarly” is
about as misleading as can be. Having rejected metric-space no-
tions precisely because I think they embody the wrong algebra for
mapping behaviour that is quite normal, ubiquitous, and in no way
peculiar, but just characteristically human, I have tried to treat
similarity judgments as operations within the nonlinear dynamics
of perceptual processes, and executed in time. This has involved
using geometric patterns as stimulus materials because they are
obvious and easy to manipulate, as many other workers in Europe
have found (referenced in Gregson 1975; 1994; 1995), but odour
mixtures and even series of musical tones have also been used
(Gregson & Harvey 1992). I have no sympathy with similarity the-
ory locked onto the transformations of one particular sensory-per-
ceptual modality. One might, for example, even argue cogently
that what distinguishes some judgments of olfactory mixtures
from others in visual pattern perception is quite different pro-
cessing of multidimensional similarities.

Tversky and Gati’s (1982) critique is, I assume, well known to
North American readers (even though Edelman does not cite it),
but the diversity of subsequent models that do not assume metric
axioms is unfortunately overlooked, though they were all required
for good reasons, including a careful regard for real data proper-
ties. I have distinguished (Gregson 1995, p. 186) between metric-
space models, vector models (from the Stockholm group), poly-
morphous models, set theoretic models (which include disparate
models from Sweden, Australia, and the USA), and cascades in
nonlinear psychophysics. In passing, I note that the algebra Edel-
man offers in section 5.2 is not strictly accurate as a summary of
some of the set-theoretic models used and the asymmetry prob-
lem had been handled quite differently by both Ekman and my-
self. The metric-space idea and its counterpart assumptions in
some multidimensional scaling algorithms have been discarded by

workers because they assume too much and describe too little.
Setting aside technical naïvety, the trap is to assume that the

monotonic distance idea for ordering similarity relations in an in-
ner platonic ideal space (sects. 2.2 and 3.2.1) supports the
Minkowski metric ideas that are global and invariant over neigh-
bourhoods of the system’s momentary reference points. It has
been known since at least the 1920s that spaces that are metric
only in a local neighbourhood, but have no global properties im-
plying constraints on monotone distance-separation relations, can
be defined and their properties resemble features of similarity
mappings identified independently by Tversky, Eisler, and myself
(Gregson 1995, p. 202).

The other problem that arises when we can construct simple
counterinstances is the jump from (1) similarity based on element-
wise matchings between corresponding partitioned subsets of
stimulus attributes and (2) to matching on relational patterns
within vectors of elements. The first can sometimes be locally rec-
onciled with metric space mappings; but the second requires some
hierarchies of similarity types, for example, jumping from first-or-
der to relative similarities, or moving from pairs to quads of stim-
uli in a given comparison.

The accumulation of psychological evidence since the publi-
cation of Shepherd’s original ideas has shown that the metric
models, where discriminable from other models in their predic-
tions, are inferior. In artificial intelligence we may assume what
we like in order to see where it leads, and for mathematical
tractability some will take the easy way out. In modeling real be-
haviour we must always respect not only the fine-grained struc-
ture of data but also what the brain actually does. The evidence
on the latter has been slower coming, but it now tells against
metric internal representations of relationships. A recent exam-
ple is the neurological work of Cohen et al. (1996). Edelman’s
conclusion (4) of section 9.4 is where we can disagree most pro-
foundly, with respect to the relevant psychophysics as well as the
physiology.

Representations need self-organizing 
top-down expectations to fit 
a changing world

Stephen Grossberg
Department of Cognitive and Neural Systems, Boston University, Boston, MA
02215. steve@cns.bu.edu

Abstract: “Chorus embodies an attempt to find out how far a mostly bot-
tom-up approach to representation can be taken.” Models that embody
both bottom-up and top-down learning have stronger computational prop-
erties and explain more data about representation than feedforward mod-
els do.

Adaptive Resonance Theory (ART) models self-organize “second-
order isomorphisms” using either unsupervised learning, super-
vised learning, or mixtures of both. This self-organizing capability
is needed to learn in the real world. Regularization networks are
not self-organizing in this sense. They cannot do fast stable learn-
ing in complex changing environments. These properties depend
upon learned top-down expectations, matching of bottom-up data
with these expectations, and mismatch-driven search for new rep-
resentations (Carpenter & Grossberg 1991; Grossberg 1980;
1987). These mechanisms allow ART to automatically “ignore
those directions . . . that are irrelevant to the identity of the stim-
ulus” by focusing attention on critical features while suppressing
irrelevant features. This ART matching rule has been supported
by many psychophysical and neurobiological data (e.g., Grossberg
1995; Grossberg & Merrill 1996). ART matching also allows a dy-
namical control of attentive vigilance through a process of “match
tracking” that automatically determines how general learned rep-
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resentations become to match world statistics (Carpenter &
Grossberg 1991). Other models in which bottom-up and top-
down processes are used (e.g., Back Propagation and the
Helmholtz Machine) do not yet have these properties.

Edelman criticizes winner-take-all decisions because they vio-
late the “principle of least commitment,” but such decisions can
quantitatively simulate categorical perception data (e.g., Gross-
berg et al. 1997a). ART systems such as masking fields (Cohen &
Grossberg 1986), ART-EMAP (Carpenter & Ross 1995), Distrib-
uted ARTMAP (Carpenter 1996), and Gaussian ARTMAP
(Williamson 1996) also show how distributed codes may improve
recognition, and how the distribution reflects data uncertainty.
Gaussian ARTMAP in particular is a self-organizing RBF (radial
basis function) production system.

Self-organizing view-invariant 3-D object categories fuse view-
specific categories in ARTMAP systems (e.g., Bradski & Gross-
berg 1995), as in the IT data reviewed in section 7.2. The 3-D cat-
egories occur in the Map Field, wherein outputs from multiple
categories, whether of different letter fonts or different object
views, are adaptively fused.

Edelman’s measurements and dimensionality reduction stages
are typically called vision and learned recognition stages. Although
ART top-down matching occurs in the vision system, even as pe-
ripherally as the LGN (Gove et al. 1995; Grossberg et al. 1997b),
vision uses principles and circuits different from those of the
recognitions system. Edelman describes measurement as “a con-
volution with a number of filters, followed by the application of a
nonlinearity,” including light source compensation and figure-
ground separation. Cortical models of visual perception, called
FACADE models, suggest additional mechanisms (e.g., Arrington
1994; Chey et al. 1997; Francis & Grossberg 1996; Gove et al.
1995; Grossberg 1994; 1997; Grossberg et al. 1997b; Grossberg &
Todorovic 1988). For example, parallel processing streams for
boundary representation (interblob stream) and surface repre-
sentation (blob stream) compute complementary computational
properties. Feedback between these streams assures their mutual
consistency and initiates figure-ground pop-out. Diffusive filling-
in completes surface representations from signals that discount
the illuminant.

Edelman summarizes a sensible approach to representation,
but one that is limited by its feedforward character. ART models
self-organize stable representations that achieve second-order iso-
morphism to arbitrarily large and changing environments, but
only by using learned top-down expectations, attention, and mem-
ory search. FACADE models have clarified a lot of data about vi-
sion, but only by introducing new concepts about how comple-
mentary streams of boundary, surface, and motion processes
achieve mutual consistency and coherence using other types of
feedback. A major intellectual watershed separates feedforward
models from self-organizing feedforward/feedback models. This
watershed needs to be crossed for a deeper understanding of how
humans autonomously form representations of the real world.

The notion of distal similarity is ill defined

Ulrike Hahn and Nick Chater
Department of Psychology, University of Warwick, Coventry CV7 4AL, United
Kingdom. u.hahn,n.chater@warwick.ac.uk

Abstract: We argue that the notion of distal similarity on which Edelman’s
reconstruction of the process of perception and the nature of representa-
tion rests is ill defined. As a consequence, the mapping between world and
description that is supposedly at stake is, in fact, a mapping between two
different descriptions or “representations.”

Edelman has shown experimentally that people can extract the
underlying parameters used to generate a set of novel stimuli.
From the results of multidimensional scaling, he conjectures that

the internal space that people recover represents these parame-
ters. This implies that nearby points in the original parameter
space are near in the mental space, and it is short step from this to
saying that similarity is preserved between the two spaces. Such
results are not surprising where the dimensions of variation in the
objects are subjectively obvious (e.g., the length and orientation
of line segments), and in such cases this correlation between pa-
rameter space and mental space is frequently found. But it is im-
pressive with Edelman’s stimuli, where the underlying dimensions
of variation are far from obvious and interact in a complex way to
produce the visual image.

Edelman moves from these results to a general theory of per-
ception founded on similarity. He presents this as an alternative to
a “reconstructionist” approach. The goal of perception is assumed
to be preserving similarities between things in the environment,
rather than building an internal representation of environmental
structure. Edelman’s target article is important and should act as
a valuable stimulus for future research. We believe, however, that
there are three difficulties with this viewpoint as a general pro-
gram in perception.

(1) The notion of “distal” similarity seems ill-defined. Goodman
(1972) pointed out that any two objects have infinitely many com-
mon and distinctive features, thus “objectively” everything is
equally similar to everything else. Watanabe (1985b) illustrates
that even choosing for a set of objects only those predicates that
are extensionally distinct (which for a finite set of objects is a fi-
nite set of predicates) still leaves all between-object similarities
equal, unless differential weights for predicates are introduced.
This is not just a philosophical nicety. In Edelman’s experiments,
stimuli are generated artificially by varying a set of parameters;
thus nearness in parameter space may be chosen as a reasonable
measure of similarity.

But the natural world has not been generated by manipulating
a small number of underlying parameters. Variation in natural ob-
jects can be considered along a limitless number of dimensions.
By choosing (and assigning differential weights to) any subset of
these dimensions, all manner of “distal” similarities can be gener-
ated. Objects may be compared by overall color, by outline shape
using any number of shape representation systems, by nearness to
the observer (or to Pluto!), by weight, by perimeter length, and so
on, indefinitely. Moreover, any of these measurements can be
combined in arbitrary ways (e.g., perimeter length times weight)
to produce new measures that can be used to give new dimen-
sions.

Any set of any dimensions seems equally good as a distal mea-
sure of similarity. It might be suggested, for example, that physics
could supply constraints on what can count as an underlying di-
mension, but it should be clear that this still leaves an infinite
number of possible dimensions along which objects in the envi-
ronment might be assessed; moreover, it will rule out many psy-
chologically critical dimensions (e.g., the dimensions that define
facial structure) since these do not relate to physical quantities. In
short, it does not make sense to say that two things are similar
without specifying in what way they are similar (Goodman 1972);
to specify this, however, requires a cognitive agent to define which
dimensions of distal variation matter and which do not; then the
relation between an “objective” distal similarity structure and the
similarity structure in the internal space of an agent breaks down.
This means the claim that the perceptual system preserves an ob-
jective distal similarity structure loses its sense. Edelman, rather
than dealing with objective properties of the world, is dealing with
two different descriptions or representations – an experimenter-
intended one (the underlying parametrization) and one formed by
participants (the internal similarity spaces).

The situation seems analogous to the general philosophical dif-
ficulty with the correspondence theory of truth: there is no “mind-
independent” way to specify which facts the world consists of, so
the claim that true statements correspond to these facts is circu-
lar. In exactly the same way, there is no “mind-independent” way
to specify which are the similarities in the world, so the claim that
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similarities in mental space correspond to these external similar-
ities is circular. But if there are no distal similarities, there can be
no second-order isomorphism on which to build a theory of rep-
resentation. The debate about the correspondence theory of
truth as stated by us is a philosophical classic. The point we are
making – that there is no “picture” relationship between state-
ments and world – is widely accepted (see Strawson, Ayer,
Wittgenstein II) even within logical positivism (for example,
Neurath).

(2) Perception frequently appears to involve classifying very 
different patterns as similar. For example, the sequences
101010101010 and 010101010101 appear similar, even though
they differ at each spatial location. Similarly, a photograph and its
negative will be judged similar, even though they differ in every
pixel value. Or again, different pictures of the same face, or dif-
ferent tokens of the same phoneme, will seem very similar, even
if, under some obvious physical description, they appear com-
pletely different. The point is that the perceptual system identi-
fies the common structure in both stimuli. How does this relate to
Edelman’s claim that distal structure is preserved in the internal
representation of similarity? Using some obvious physical inter-
pretation of the stimulus, the objects are very different, yet they
are judged to be very similar, violating Edelman’s theory. But us-
ing, instead, a perceptually appropriate description for measuring
“distal” similarity (e.g., that the stimuli above are both examples
of alternating patterns: descriptions in terms of the structure of a
face or the identity of a phoneme), the similarities between the
distal world and the mind are preserved, but only at the cost of cir-
cularity.

(3) Finally, we suggest that the reconstructive approach to per-
ception may not be an alternative to Edelman’s similarity-based
view of perception. Instead, a reconstruction of the perceptual
world may be required to explain why the similarities are judged
as they are. For example, with Edelman’s artificial figures, the pa-
rameters of variations may be of interest as part of a specification
of the structure of those figures – indeed, only by attempting to
reconstruct those figures does it seem possible to realize that there
are only a small number of underlying parameters of variation
(i.e., the recipe for reconstructing each figure is the same, apart
from parametric variation). Thus, the parametrization used as a
basis for internal similarity judgments may be based on the at-
tempt to reconstruct the figure. For example, it is not clear why
two pictures of the same face will be judged to be similar unless
the same underlying 2/3D structure has been reconstructed (at
least partially) for both. Thus, we would argue that the recon-
structionist view of perception may be an important component
in an account of similarity of relevance to Edelman’s empirical re-
sults.

Representation of similarities 
and correspondence structure

Nathan Intrator
School of Mathematical Sciences, Tel-Aviv University, Ramat-Aviv 69978,
Israel. nin@math.tan.ac.il www.math.tan.ac.il/~nin

Abstract: Apart from the computationally appealing properties of repre-
sentation by similarities, it is possible to extend this form of representation
when needed to include object parts as well as the correspondence be-
tween subobject parts.

Edelman provides a solid theory about object representation and
its consequences. The idea of representing an object as a vector of
distances from several other reference objects is very appealing on
computational grounds and demonstrates a simple and probably
robust dimensionality reduction. It further suggests a simple al-
gorithm for hierarchical clustering, in which whenever a “suffi-

ciently different” object appears, it may be registered as a new
prototype, and when an object that is “not very different” appears
and its class label is unexpected, it is again registered as a new pro-
totype.

I would like to elaborate on the issue of “holistic” features ver-
sus the feature-representation that correspond to subparts in ob-
jects (sect. 6.3). It is a fundamental question in object representa-
tion not only whether there is a need to represent objects as
wholes or as combinations of features, but also whether the exact
topographic relation between subobject parts is essential. There
is no doubt, for example, that there is a big difference between a
phone that is on or off the hook, although this may be a very small
difference in object space. This example demonstrates the need
for an explicit feature-based representation with topographic cor-
respondence, but as it would be difficult to argue that there is a
prototype for an off-the-hook phone, holistic representations may
coexist with more elaborate feature-based representations. If
these representations do coexist, then it is likely that those based
on prototypes are more specific but computationally simpler and
are hence used for very repetitive (everyday) tasks, or tasks that
require fast responses. The more elaborate representation is ap-
propriate when the correspondence between object parts is im-
portant, for example, to represent walking or running.

One could argue that when a certain part of an object appears
to have higher weight for purposes of recognition or discrimina-
tion, then that object part can be represented as a prototype or a
distance vector from prototypes. The correspondence between
object parts carries information that is very important and useful
for classification and discrimination (Geman et al., forthcoming).
In the case of representation by similarity, the exact relation be-
tween subparts and the object (the binding together of object
parts) can be encoded via temporal structure such as synfires
(Abeles 1981).

The representation of objects as a vector of distances from sev-
eral prototypes suggests a very simple method for mental object
manipulations, in which creating a mental representation of a cer-
tain object simply requires stimulating one (or more) of the pro-
totype cells representing an instance of that object.

In summary, it appears that the simple object representation
proposed by Edelman is compatible with the need for binding be-
tween subparts. Future psychophysics will clarify whether object
representation via subparts coexists with holistic representation
and whether the binding problem can be addressed by holistic
representations and temporal structure.

Representation of similarities – a
psychometric but not an explanatory 
concept for categorization

Martin Jüttner
Institute for Medicinal Psychology, University of Munich, Munich, D-80336,
Germany. martin@imp.med.uni-muenchen.de
lrz.muenchen.de/~u7fo1bg/www/

Abstract: The representation of similarities is a viable concept for a cog-
nitive extension of visual psychophysics to the recognition of shapes, bring-
ing issues such as similarity and categorization back into that field. How-
ever, as a framework it appears too general to place constraints on a
particular process model for categorization. In particular, a preference for
Chorus-like schemes with respect to structure-oriented approaches is un-
warranted.

Edelman’s conception can be regarded, on a theoretical level, as
an extension of classical multidimensional scaling (MDS) to the
recognition of shapes. To evaluate the potentials and limitations of
such an undertaking, it is useful to recapitulate one of the basic
motivations for MDS: it has been observed repeatedly that the
probability that a learned response to any stimulus will generalize
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to any other is not an invariant monotonic function of physical
stimulus difference (Shepard 1987). This missing invariance even-
tually led to the radically different view of MDS as a way to re-
verse-engineer the problem of generalization. Rather than start-
ing with physical stimulus properties, the response data produced
by an observer were used to reconstruct a psychological space
where distances would be monotonically related to generalization.
Hence, the price paid for gaining a universal law of generalization
was the loss of the specificity of the psychophysical mapping be-
tween the physical stimulus world and the psychological space
where that law applies.

At this point, Edelman tries to reestablish the missing link by
reconsidering Shepard’s (1968) idea of second-order isomorphism
and by evaluating the conditions necessary to preserve the simi-
larity structures of distal (physical) feature space in their proximal
(internal) representations. Such an approach is commendable in
its own right because it returns classification, similarity, and recog-
nition to the domain of visual psychophysics. Over a long period,
models of spatial vision were concerned mainly with predicting
detection and discrimination thresholds of certain stimulus pat-
terns without explaining “how things look” (Shapely et al. 1990).
The need for a paradigm shift toward a more cognitive perspec-
tive in psychophysics can be illustrated by our own work on clas-
sification learning in foveal and extrafoveal vision. Here it became
clear that the perceptual dimensionality of (proximal) representa-
tions in extrafoveal vision is distinctly reduced but not that of
foveally acquired representations (Jüttner & Rentschler 1996;
Rentschler et al. 1994). Remarkably, this characteristic feature of
extrafoveal vision has proved to be free of the well-known deficits
in spatial resolution. It also calls for an extension of Edelman’s dis-
tal-to-proximal-mapping scheme with an additional component
accounting for retinal eccentricity.

To this extent the “representation of similarities” certainly pro-
vides a useful psychometric tool for understanding categorization.
Problems arise, however, if this principle is used as explanatory
concept, that is, as a justification for a particular process model for
categorization. Here Edelman promotes his Chorus concept, in
which a relatively small number of individual classifiers is tuned
to a particular shape prototype and the relative activation trig-
gered by a given test stimulus determines the similarity and/or
classification response. There are a number of arguments against
such a tight coupling between the psychometric concept of simi-
larity and this particular implementation.

The first argument pertains to an empirical finding. In the
above classification experiments with foveal and extrafoveal vision
we recently evaluated a number of prominent classification mod-
els from the cognitive literature (Unzicker et al., in press). Among
these was one implementation of a regularization network that
also plays a central role in the implementation of Chorus. In our
comparison, we measured the extent to which the similarity struc-
ture immanent in the observers’ classification response could be
replicated by the various models using the method proposed by
Cutzu and Edelman (1996). Despite distinct differences in their
theoretical assumptions, the models’ performance was surpris-
ingly equivalent, in particular for foveal viewing. Such a result sug-
gests that similarity as such does not place constraints on a partic-
ular process model for categorization.

Second, in practical applications of a Chorus-like classification
scheme, the computation of similarities has to be preceded by two
decisions: which feature dimensions to use and which prototypes
to consider. In this respect, Chorus relies on additional top-down
information concerning the classification context, or, to take up
Edelman’s triangulation analogy, successful navigation requires
knowing not only the bearings with respect to some landmarks but
also to which map that sort of information applies.

There is another respect in which the limitations of the Chorus
scheme become obvious. Like the classical Pandemonium model,
Edelman’s new version faces severe problems in more realistic
(i.e., texture-defined) environments where it becomes exceed-
ingly difficult to decide which of the texture, colour, or contour-

determined patches actually define the “object” whose similarity
coordinates are to be determined. It seems rash to oppose struc-
ture-oriented approaches as Edelman does. After all, it is the
problem of scene understanding in multiple-object environments
that led to the nonaccidental prevalence of structure-oriented ob-
ject recognition systems in computer vision (cf. Caelli & Bischof
1996; Flynn & Jain 1993). Moreover, such approaches are not nec-
essarily limited to extreme reconstructionist positions as Edelman
seems to imply. For example, evidence-based systems (EBS) orig-
inally proposed in the field of machine vision (Caelli & Dreier
1994; Jain & Hoffman 1988) have been successfully applied to re-
constructing processes of pattern classification and generalization
in humans (Jüttner et al. 1997). EBS do not argue for a fixed reser-
voir of shape primitives, nor do they adopt a definite position in
the debate about whether objects are to be represented mentally
as 2D or 3D models. Rather, they provide a method for trans-
forming images into a rule-based representational format open to
propositional reasoning.

This situation is reminiscent of the long-standing debate about
“analogue” versus “propositional” representations. [See also
Pylyshyn: “Computational Models and Empirical Constraints”
BBS 1(1) 1978; and Kossyln: “On the Demystification of Mental
Imagery” BBS 2(4) 1979.] It may be worthwhile to reconsider the
argument of Anderson (1978). Given that all cognitive behaviour
is the product of both representation and process, he argued for
an indeterminacy concerning the representational format as long
as the processes operating on them remain unspecified. Edel-
man’s theoretical concern is restricted to representation as such,
whereas its use is discussed only on the (secondary) level of im-
plementation (i.e., the Chorus scheme). His approach is accord-
ingly faced with a similar indeterminacy in its explanatory value.

The Chorus scheme: Representation 
or isomorphism, holistic or analytic?

Cyril Latimer
Department of Psychology, University of Sydney, Sydney NSW 2006,
Australia. cyril@psych.usyd.edu.au
www.psych.usyd.edu.au/staff/cyril/

Abstract: The Chorus scheme could be an important step in the search
for solutions to the symbol grounding problem (Harnad 1990), but Edel-
man does not address the potential difficulties inherent in downgrading
differences in favor of similarities in a categorization device. Isomorphism
rather than representation is a more coherent way of thinking about Cho-
rus whose modules are probably analytic rather than holistic.

Representation of similarities or differences? Edelman pro-
poses that representation is representation of similarities, but he
nowhere addresses the problems associated with permitting the
ascendancy of similarities over differences (Sutcliffe 1986). Cas-
sirer (1966) notes that in such a scheme, those aspects that differ-
entiate objects tend more and more to disappear and form only a
shadowy background on which the constant features gain salience.
Abstraction of sameness leaves behind all the particularities in
such a way that they, and the transformations of which they are ca-
pable, become irrecoverable. On the other hand: “The genuine
concept does not disregard the particularities which it holds un-
der it, but seeks to show the necessity of the occurrence and con-
nection of just those particularities. What it gives is a universal rule
for the connection of the particulars themselves” (Cassirer 1966,
p. 30). Edelman’s scheme nonetheless has great appeal, offering
as it does a potential mechanism for the iconic and categorical rep-
resentations necessary for an attack on the symbol-grounding
problem (Harnad 1990; 1992). But is representation the correct
concept in this context?

Representation or isomorphism? Edelman’s discussion vacil-
lates uneasily between the notions of representation and isomor-
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phism. Representation is a ternary relation whereas isomorphism
is a binary one. A representation has (a) the thing represented, (b)
the thing representing (a), and (c) someone or something that
knows that (a) represents (b). In theories of cognition, (c) could
only refer to some homunculus or perhaps to some future super
neurosurgeon able to observe a patient’s brain states and note how
they correlate perfectly with (represent) states of the world (See
Maze [1983] and Michell [1988] for a comprehensive case against
representative theories of cognition.) A more viable conception is
isomorphism, where states of the world stand in a direct relation-
ship with states of the brain, and Edelman’s mechanism is ideally
suited to modelling the processes that bring about this isomor-
phism in category learning and concept formation. Indeed, Har-
nad makes a similar point, “It is not that the mind receives the
transducer/effector or analogue activity (or, for that matter, the
symbolic activity) as data. If the mind is grounded in this way, then
it just is the activity of those structures and processes” (1992, p.
80).

The world as its own representation? Given the above account
of representation, the notion of the world acting as its own repre-
sentation is an incoherent one. It would be much clearer to say
(sect. 9.3.3) that Chorus simply responds or resonates to the envi-
ronment; but this still leaves in doubt the ontological status of the
modules in Chorus. Edelman cites John Locke’s simple and com-
plex ideas as precursors of feature detection theory, but surely his
doctrine of abstract ideas is more apposite in the context of cate-
gorization. Locke struggled with the ontological status of his ab-
stract ideas and was misinterpreted, not least by Berkeley, “What
more easy for any one to look a little into his own thoughts and
there try whether he has, or can attain to have, an idea that shall
correspond to the description here given of the general idea of a
triangle – which is neither oblique nor rectangle, equilateral,
equicrural nor scalenon, but all and none of these at once?”
(Berkeley 1710/1965, p. 52). Locke, however, foresaw the diffi-
culty in abstract ideas as crude templates or prototypes with an ex-
istence in their own right, and asserts, “they frame an idea which
they find those many particulars to partake in, and to that they
give, with others, the name man, for example. And thus they come
to have a general name, and a general idea. Wherein they make
nothing new, but only leave out of the complex idea they had of
Peter and James, Mary and Jane, that which is peculiar to each,
and retain only that which is common to them all” (Locke
1690/1964, p. 17). Further on in the essay, he emphasizes the
point, “But if we would rightly consider what is done in all these
genera and species or sorts, we should find that there is no new
thing made” (Locke 1690/1964, p. 62). Locke’s doctrine is thus
closer to that of Cassirer, who regards the concept, not as an en-
tity in its own right, but as a rule that captures the relationships in
which the particulars stand. The strength of Chorus is that not only
does it too avoid reifying categories, but it could also provide an
explicit, neurally plausible mechanism for responding directly and
accurately to particulars and their interrelationships.

The holistic treatment of objects? In contrast to feature-de-
tection theory, the Chorus modules are said to be holistic analyz-
ers. There is not enough information in the the target article to
verify this (there rarely is in papers that deal with wholes and parts
that are relative and not absolute; Latimer & Stevens 1997). How
is input presented to Chorus? If input is in pixels or even grey
scale, then it is still being segmented into parts, albeit much
smaller parts than in most feature-detection theories, but still
parts. What role does the information contained in these parts
(relative positions in the input array, etc.) play in later computa-
tions of similarity and difference of objects? If the so-called holis-
tic properties of objects are being derived from properties of the
parts, then in principle and in practice, the Chorus scheme is no
more holistic than the mechanisms of feature-detection theory.

Boundary conditions and the need 
for multiple forms of representation

Arthur B. Markman and Takashi Yamauchi
Department of Psychology, Columbia University, New York, NY 10027.
markman@psych.columbia.edu www.columbia.edu/,abm16;
takashi@psych.columbia.edu

Abstract: Multidimensional space representations like those posited in
Edelman’s target article are not sufficient to capture all similarity phe-
nomena. We discuss phenomena that are compatible with models of sim-
ilarity that assume structured relational representations. An adequate
model of similarity and perception will require multiple approaches to
representation.

The representational system advocated in the target article is
based on the use of multidimensional spaces, in which similarity
is inversely proportional to distance in space. The model assumes
that objects are represented by points in a space. The simple mea-
surement of distance between points may be augmented with
other processes to account for observed asymmetries and context
effects in similarity judgments (Krumhansl 1978; Nosofsky 1986).
Edelman suggests that multidimensional space representations
might be used to account for judgments of similarity of complex
visual scenes as well.

We describe phenomena that serve as boundary conditions on
the proposal that similarities can be characterized as distances in
a mental space. These phenomena do not rule out the use of mul-
tidimensional space representations in perception; rather, they
suggest that many forms of representation must coexist in models
of perception and similarity.

Boundary phenomena. A central boundary condition on simi-
larity is that people have access to the commonalities and differ-
ences arising from comparison, even from comparisons of visual
scenes (Markman & Gentner 1993b; 1996). For example, Mark-
man and Gentner (1996) asked people to list the commonalities
and differences of pairs of complex scenes. Three findings from
these studies are important here. First, people easily listed the
commonalities and differences of these pairs, suggesting that they
could fix upon discrete aspects of the comparison. Second, there
was a high correlation between the number of listed commonali-
ties and the rated similarity for each pair, suggesting that the per-
ception of similarity is determined by the properties arising from
a comparison. Third, the commonalities and differences included
correspondences between items that (a) were visually similar in
the scenes (e.g., Christmas trees that looked similar), (b) sat in the
same spatial relationship in pairs of scenes (e.g., a vase and an an-
gel statuette on top of a mantle), or (c) sat in the same conceptual
relationship in pairs of scenes (e.g., cars and robots that were both
being repaired).

Other studies suggest that similarity is highly sensitive to iden-
tity of representational elements. In classic studies, Tversky and
Gati (1982) found that exact matches along some dimension were
weighted more heavily than were dimension values that were
merely similar (the coincidence effect). Pairs of objects with iden-
tical values on one dimension and dissimilar values along the other
dimension were rated as more similar than were pairs of objects
with moderately similar values along each dimension. The reverse
has been observed in studies of choice, where it has been shown
that people will choose an item moderately similar to an ideal
along two dimensions rather than an item identical on one di-
mension and dissimilar on the other (Kaplan & Medin 1997; Si-
monson & Tversky 1992).

The ability to access commonalities and differences of visual
scenes suggests (1) that there are discrete representational ele-
ments in complex scenes that can be placed in correspondence
and accessed and (2) that the basis of a correspondence can be
similarities in perceptual properties, spatial relations, or concep-
tual relations. These abilities do not seem compatible with a mul-
tidimensional space representation because multidimensional
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spaces only allow calculations of distances between points in
which the dimensions of comparison are predetermined by the di-
mensions of the space.

The data from scene similarity suggest that there are many ways
correspondences may be determined. Comparisons of individual
perceptual objects are also influenced by the context of the com-
parison. For example, a melon cannot be distinguished from a bas-
ketball without information about color (and texture) because
shape information is shared by these objects. Similarly, distin-
guishing a zebra from a horse or a cat from a tiger requires color
information. At times, functional information also seems impor-
tant, so distinguishing an orange from a tennis ball might require
a combination of shape and color information as well as input from
higher level knowledge about the uses of these objects. A model
of perception needs to have a mechanism for integrating a variety
of sources of information that come together.

Multiple representations. These boundary phenomena do not
rule out the use of multidimensional space representations in ob-
ject recognition. Instead, they suggest that no single representa-
tional system will successfully serve as the basis of cognitive mod-
els (Markman, in press; Markman & Dietrich, in preparation). It
is likely that there are redundant representational systems under-
lying human cognitive abilities. The target article suggests that a
multidimensional space representation makes sense for some as-
pects of object recognition. There is compelling evidence, how-
ever, that similarity comparisons require structured relational rep-
resentations akin to those proposed in structural description
theories of object recognition (e.g., Biederman 1987). Rather than
seeking a winner-take-all battle, I urge a peaceful coexistence of
representational systems in models of perception and similarity.
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How to combine interpolation with feedback?

Guenther Palm
Department of Neural Information Processing, University of Ulm, D-89069
Ulm, Germany. palm@neuro.informatik.uni-ulm.de

Abstract: The Chorus representation is a sparse, similarity-preserving
representation achieved by a feedforward neural network. Hence it is
probably better suited for interpolation than for categorization. This com-
mentary raises the question of how to combine categorization with inter-
polation, whether feedforward networks can be reasonable models for
parts of the cerebral cortex, and whether people can perform more than
one interpolation at a time.

The essence of Edelman’s target article is the introduction of a
similarity-preserving representation (the Chorus representation)
and a discussion of some of the virtues of similarity. I sympathize
very much with this approach since we have concentrated much
of our research effort on the creation of sparse similarity preserv-
ing representations for associative memory (Palm 1980; 1987a;
1987b; 1990; Palm & Palm 1991; Palm et al. 1997; Stellmann
1992). Their usefulness in associative memory, and, more gener-
ally in any kind of robust processing is an additional virtue of sim-
ilarity-preserving codes or representations. In fact, the Chorus
representation is not only similarity preserving but also sparse,
that is, most of the representational units have zero (or near zero)
activity. The word “sparse” perhaps characterizes this property
even better than Edelman’s “low dimensional.” Some issues re-
lated to the Chorus representation and the computational use of
similarity in general will be raised below:

(1) Feedforward neural networks like the Chorus scheme are in
general good for interpolation. How can this be combined with the
need for categorization and segmentation?

I have the impression that the proposed scheme works only on

presegmented pieces of images; the segmentation itself probably
has to be performed by a different network. Categorization, a typ-
ical feature of feedback associative memories, can help to perform
segmentation in difficult cases, but this is not compatible with the
interpolation properties of similarity-preserving representations
in feedforward networks. An interesting question is how to com-
bine feedback and feedforward networks to obtain an architecture
that can perform both segmentation by categorization and inter-
polation. Pursuing this question may also lead to a more realistic
model of inferotemporal (IT) cortex.

A related question amenable to experimental perceptual tests
concerns whether humans can indeed solve problems involving a
combination of segmentation and interpolation. For example, if
subjects learn to recognize some novel shapes from particular
views (as in Bülthoff & Edelman 1992; Logothetis et al. 1995) and
first have to identify them (e.g., in forced choice experiments) hid-
den in a background of similar shapes, can they still identify these
particular shapes when they are shown from intermediate but
novel views?

(2) Are feedforward networks adequate explanations for infor-
mation processing in the cerebral cortex, in view of the promi-
nence of anatomical feedback within and between cortical areas?
In particular, it is doubtful that interpolation is the sole or even the
principal function of IT cortex.

(3) Another issue has to do with the problem of compositional-
ity of representation mentioned only briefly in the target article.
The Chorus scheme is a representation of a small segment of the
visual scene (perhaps the focus of attention?) containing essen-
tially one object.

What happens if there are two or three objects in this segment?
Or one object composed of parts that can be addressed as objects
in their own rights? If the system knows a train engine and a snake
but not a train, would it treat the train as more similar to the en-
gine or the snake?

Perhaps more interesting than amending Chorus with addi-
tional mechanisms to deal with composed or multiple objects is
the corresponding experimental psychological question: Can hu-
mans interpolate two or three objects simultaneously? And are
there perhaps different interpolation networks for different spots
on the retina?

(4) The most fundamental issue related to similarity-preserving
representations is the question of who or what defines the simi-
larity.

I think the internal similarity cannot always be just the external
sensory similarity, as supposed in the target article. There are
other important similarities, for instance, a functional similarity:
defining a chair as something to sit on, we can identify many ob-
jects as suitable chairs and regard them as similar in this respect
without a simple visual similarity.

In understanding speech, for example, we can identify words as
similar on the basis of contents that sound quite different; vice
versa, similar sounding sentences can have quite different mean-
ings (e.g., “let us recognize speech” vs. “let us wreck a nice
beach”).

As in speech recognition, this endowment of objects with a dif-
ferent nonsensory similarity normally comes after a stage of cate-
gorization (or categorical perception). As in the understanding of
spoken sentences, there has to be a close interaction between sim-
ilarity-based matching on the “lower” level and “higher” level of
similarity. This very important and intricate problem is clearly be-
yond the scope of the target article. It may even be doubted
whether the concept of similarity or of interpolation is still ade-
quate on the higher level, and if it is, it may only be definable func-
tionally, which leads to a certain circularity in the definition of
higher level similarity. In any case, these questions are probably
less amenable to current neuroscientific approaches and more im-
portant for the organization of complex technical systems (under-
standing of images or speech) in artificial intelligence.
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Attentional dynamics and a chorus of geons

Eric Postma, Jaap van den Herik, and Patrick Hudson
Computer Science Department, Maastricht University, 6200 MD Maastricht,
The Netherlands. postma@cs.unimaas.nl; herik@cs.unimaas.nl;
hudson@cs.unimaas.nl www.cs.unimass.nl/~postma

Abstract: This commentary discusses three main requirements for mod-
els of vision, namely, translation and scale invariance, scalability, and hi-
erarchy. Edelman’s Chorus model falls short of fulfilling these require-
ments because it ignores the highly dynamic nature of vision.
Incorporating an attentional mechanism and assuming geon-like proto-
type representations may enhance Chorus’s plausibility as a model of hu-
man object recognition.

Edelman presents an inspiring account of visual representations
in the brain. The impressive recognition performance of the “Cho-
rus model” is on a par with the best state-of-the-art algorithms for
recognizing presegmented shapes. Chorus acknowledges the high
dimensionality of the retinal image and does not assume the im-
age-like input representation commonly used in other visual mod-
els. Since the million retinal signals received by the primary visual
cortex are not spatially labeled (Koenderink 1984), the spatial or-
der needs to be recovered from the signals themselves. In Cho-
rus, this recovery proceeds by embedding the high-dimensional
inputs in an appropriate low-dimensional shape space.

Notwithstanding the general appeal and originality of the pro-
posed model, Chorus falls short of fulfilling three main require-
ments for models of visual recognition, namely, translation and
scale invariance, scalability, and hierarchy. In the following, Cho-
rus’s failure on each of the requirements is discussed and related
to a single underlying limitation.

First, the evidence for complete translation and scale invariance
of human recognition (Biederman & Cooper 1991) imposes a se-
vere structural constraint on models of human recognition. In sec-
tion 3.2.2, Edelman acknowledges the need to compensate for
(image-plane) translations and suggests a solution (i.e., covert at-
tention) with which we fully agree. However, there is more to
covert attention then just solving translation problems (see be-
low). For scale invariance, Edelman suggests the solution pro-
posed by Schwartz (1985). Unfortunately, this solution confounds
spatial order with functional order by relying on the topography
of primary visual cortex. Hence some other solution is needed.

Second, section 4.1 does not mention how many “landmarks”
are required in Chorus to triangulate the shape space in a reli-
able way. Given the huge number of different shapes and their
similarity relations, it is unlikely that only about a dozen refer-
ence shapes will suffice for distinguishing between each pair of
all naturally occurring shapes. On the contrary, the number of
prototypes required for reliable recognition will become very
large. This increases the effective dimensionality of the shape-
space representations when a visual object activates many pro-
totypes. High-dimensional representations are profitable for
their robustness (cf. Rao & Ballard 1995) but invalidate the gen-
eralization performance of Chorus when serving as a basis for
classification.

Third, the Chorus model represents shapes in their entirety 
but cannot represent part-whole and part-part relations. Human
observers, however, are able to recognize an object as a configu-
ration of parts and features. This limitation may lead to false 
predictions about human similarity ratings (cf. Hummel &
Stankiewicz 1996).

Dynamic vision: Attention and a chorus of geons. Chorus’s
failure on the three requirements can be characterized by a single
shortcoming: Chorus ignores the highly dynamic nature of vision.
Since objects and scenes are scanned sequentially through sac-
cadic eye movements, they give rise to representations that are up-
dated in an incremental way. In close connection, a gaze-inde-
pendent attentional process, that is, covert attention, selects
locations and scales appropriate for the task at hand (Postma et al.

1997). In this way, covert attention allows for both translation and
scale-invariant recognition by dynamically varying the location
and grain of its sampling grid. A solution to Chorus’s scalability
problem is to assume a limited set of basis shapes, not unlike Bie-
derman’s (1987) geons, which serve as prototypes for recognition.
Such a scheme necessitates an incremental reconstruction of
shape representations in which spatial attention plays a central
part by selecting the parts and effectively preventing interference
from other parts or objects. The ensuing representations form re-
cursive structures, such as trees, which accommodate the need for
part–whole representations of objects and scenes.

The sequential and hierarchical nature of visual processing in
the brain as evidenced by biological and psychological findings re-
flects a multistage strategy consistent with a such a compositional
process. Even during fixation, object recognition may proceed in
a sequential fashion. In a backward-masking paradigm, presenta-
tion times as short as 100 milliseconds (which is too short to make
eye movements) suffice for the recognition of well-known objects
and scenes. Within 100 milliseconds, two to three attentional
snapshots can be taken (Saarinen & Julesz 1991). Interestingly, the
extraction of two to three parts together with their invariant rela-
tions is sufficient for view-invariant entry level classification (Fiser
et al. 1996). Hence object recognition, even without eye move-
ments, can still be considered an incremental process that pro-
ceeds by the mechanism underlying the shifts of covert attention.

Conclusion. We feel that the representation-by-similarities ap-
proach offers a viable theory of representing shapes and their sim-
ilarities, but not of representing objects and scenes. In combina-
tion with an active selection process and a means for representing
part–whole and part–part relations, however, the approach may
lead to a plausible model of human object recognition.

Vector code differences and similarities

E. N. Sokolov
Department of Psychophysiology, Moscow State Lomonosov University,
Moscow 103009, Russia. sokolov@cogsci.msu.su

Abstract: Edelman suggests that any shape is encoded by an excitation
vector with components corresponding to excitations of corresponding
neuronal modules. This results in discrimination of stimuli in a shape space
of low dimensionality. Similar vector encoding is present in color vision.
Red-green, blue-yellow, bright and dark neurons are modules that repre-
sent a number of different color stimuli in color space of low dimension-
ality. Vector encoding allows effective computation of color differences
and color similarities. Such a neuronal vector-encoding approach has also
been applied to the perception of visual movement, line orientation, and
stereopsis.

Edelman’s theory is a unified approach to visual representation. It
suggests that a shape is represented by the activation of a limited
number of neuron modules each broadly selective for a set of
shapes. Thus, any shape is encoded by an excitation vector with
components equal to excitations of the corresponding neuronal
modules. This strategy results in the discrimination of stimuli in a
shape space of a low dimensionality.

Similar vector encoding occurs in color vision. The multidi-
mensional scaling of a matrix of subjective color differences de-
rived from paired presentation of color stimuli yielded a four-di-
mensional space. Each color is characterized by a selective color
detector tuned to the excitation of four types of color encoding
neurons: red-green, blue-yellow, bright, and dark. The lengths of
the excitation vectors are equal, so colors are represented on a hy-
persphere in four-dimensional space. Three angles of the hyper-
sphere closely match hue, lightness, and saturation, respectively
(Izmailov & Sokolov 1991).

Subjective differences correlate highly with the Euclidean dis-
tances between corresponding color points. This correspondence
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between subjective differences and Euclidean distances suggests
that absolute values of vectorial differences are the basis for the
perception of color differences.

This vector coding of color stimuli also occurs in fish and mon-
keys as measured with instrumentally conditioned responses. Fac-
tor analysis of confusion matrices with probabilities and differen-
tial stimuli revealed a four-dimensional color space closely
resembling color space in humans (Sokolov 1994).

Each color stimulus is characterized by a specific excitation vec-
tor, all vectors being equal in length. Using the coordinates of the
vectors, one can compute their inner products. It has been shown
that the matrix of the inner products of these color vectors corre-
sponds with the probability matrix obtained by instrumental con-
ditioning (Latanov et al. 1997).

The correspondence of response probabilities to inner products
of color vectors implies that during conditioning an output com-
mand neuron’s inner products are computing to get similarity
measures between conditional and differential color stimuli.

Thus red-green, blue-yellow, bright, and dark neurons are the
modules that represent a number of different color stimuli in a
color space of low dimensionality. Vector encoding allows effec-
tive computation of color similarities and differences. A similar
vector code is also likely in other modalities. This neuronal vector-
encoding approach has also been applied to the perception of vi-
sual movement, line orientation, and stereopsis (Fomin et al.
1979).

Visual tasks require manipulable
representations1

Bradley V. Stuart
Center for Automation Research, University of Maryland, College Park, MD
20742. brad@cfar.umd.edu www.cfar.umd.edu/,brad

Abstract: Representation of similarities is not sufficient for most visual
tasks. The proposed framework collapses useful dimensions such as posi-
tion and pose for the sake of naming the object. Collapsing these dimen-
sions leaves no representation of the object itself, but only an internal
name that cannot be meaningfully manipulated.

In the proposed representational system, a set of classifiers is
trained to recognize a number of nonrigid objects in different con-
figurations and orientations. New objects are then classified (or
defined) by their similarity to the nearest few of these training ex-
amples. The approach is to reduce an extremely high-dimensional
input space (the retina) to a medium-dimensional measurement
space, and then to define object classes as fuzzy regions in this
space using radial basis function classifiers. Images are then de-
scribed by comparison with a number of those previously built
measurement vectors that most closely match the measurement
vector of the input.

Any system of representation will reflect similarities in the dis-
tal environment, but that alone is not sufficient. Modern com-
puter hardware even allows systems previously deemed unwork-
able or too expensive to successfully classify objects among a set
of training images. Edelman’s system and the appearance-based
systems reduce the dimensionality of the input by comparison
with a representation that combines all the training examples into
averages and distributions. Edelman’s approach precedes this
comparison with a dimensionality-reducing measurement step,
whereas this is not required in the appearance-based approach.

A robotic or biological system with vision that needs to manip-
ulate objects (including its own body) also needs to manipulate
representations of those objects. Interactions such as tool or part
grasping and local path planning require not only identifying the

target object but also representing the object’s location and pose.
These aspects of the object are explicitly eliminated in the pro-
posed description, as the training process collapses dimensions
unrelated to the object class.

On the other hand, a manipulable representation encodes these
aspects explicitly, and allows the agent to change them. By mani-
pulating the representation, the agent can assess the likely effects
of an action before it is performed. While the measurement-space
level may be manipulable, this is not the basic representation pro-
posed by Edelman. The neural network classifiers and multi-di-
mensional scaling (MDS) collapse dimensions of the measure-
ment space not germane to the object’s name – precisely those
dimensions on which objects are manipulated.

The world does not consist of objects in isolation, so even this
representation will not be rich enough to capture the relationships
between objects. Individual object representations need to be put
together in relation to one another as the agent builds a repre-
sentation of the entire scene. It isn’t necessary that these rela-
tionships be in metric correspondence with the environment, just
that they encode the relations pertinent to the agent’s goals.

A representation suitable for an active agent also needs to rep-
resent actions or the influence of one object on another. Moving
agents need to reason about how their motion changes the rela-
tionship of the agent (itself an object) to its surroundings. Poten-
tial collisions need to be discovered and their possible conse-
quences determined. What prestored object could be similar to a
collision?

Systems with vision need to navigate in their environment,
build up maps of various scenes, link these scene maps into global
maps, and represent possible changes in the external world. Pre-
diction is a valuable mode of reasoning, and it requires a manipu-
lable representation of objects and places. These representations
are modified as changes in the environment are noticed; they are
improved as more details are perceived. Links are added and
changed as new facts are discovered. Representations need to be
predictive; we should be able to determine whether a tool fits a
part or whether a collision is imminent without always trying it
first. Navigating systems need more than simple reactive interac-
tion with the visible environment. It is not enough to simply iden-
tify a place; the agent must localize itself in the place, recall its
structure, and decide how to act.

There are computer vision problems where representations of
space or the relationships between objects are not needed. The
approach could probably be successful in industrial applications
where the number of objects is limited and the segmentation
problem is not an issue. In problems such as image database in-
dexing, where images need to be searched for dictionary terms,
this representation scheme will probably work well. These are es-
sentially naming tasks; the problem is to select a set of categories
based on the image data.

Conclusion. By focusing on what is learnable by radial basis
function classifier networks, Edelman has selected a representa-
tion that supports only bottom-up processing of visual data, and
that solves a problem particularly well suited to classifier net-
works: the placement of an object among a set of previously
learned examples. The representation explicitly removes aspects
of the object related to its manipulation or its environmental con-
text. These aspects, much more than an object’s identity or name,
are important parts of the visual world and its representation in an
active agent.

NOTE
1. Dr. Stuart’s commentary was received too late to be responded to by

the author in the first round; Dr. Edelman will reply to it in a Continuing
Commentary section of a forthcoming issue.

Commentary/Edelman: Representation of similarities

480 BEHAVIORAL AND BRAIN SCIENCES (1998) 21:4

https://doi.org/10.1017/S0140525X9838125X Published online by Cambridge University Press

https://doi.org/10.1017/S0140525X9838125X


A neural basis for the Chorus model?

M. J. Tovée
Psychology Department, Newcastle University, Newcastle Upon Tyne, NE1
7RU, United Kingdom. m.j.tovee@ncl.ac.uk
www.psychology.ncl.ac.uk/www/psychol.html

Abstract: The neural basis of the Chorus model has been cast in terms of
the visual alphabet theory, but the neural evidence can also be interpreted
as supporting a theory of higher level representation in which neurons are
responsive to complex 3D stimuli. These neurons, functioning as a popu-
lation, could also form the basis of a representation such as envisaged by
the Chorus model.

In his discussion of a neural basis for the Chorus model, Edelman
seems to accept the visual alphabet hypothesis and cuts his model
to fit this concept of higher processing. However, the nature of
representation in inferotemporal cortex (IT) is far from clear-cut.
Based on the responses of Tanaka’s elaborate cells (Tanaka et al.
1991), a representation could be derived in at least two ways. First
there could be a traditional hierarchy in which the cells respon-
sive to simple shapes would feed into a higher cell layer, whose
cells respond preferentially to complex stimuli. The output of
these cells would then signal the presence of a complex object to
higher areas, such as the prefrontal cortex. Alternatively, there
may be no upper layer. The pattern of responses across the vari-
ous columns of elaborate cells may directly signal the presence of
a complex object to a higher area without having to converge on a
cell in IT sensitive to complex stimuli. The latter view is favoured
by disciples of the visual alphabet hypothesis.

The visual alphabet theory assumes that an IT cell will reliably
signal the presence of the particular simple shape that excites it
regardless of whatever else is present in the visual field. However,
this may not always be the case. In a recent study, the responses
of single neurons in the anterior IT of awake-behaving macaques
were recorded when the monkey performed a visual fixation task
(Rolls & Tovée 1995). The responses of individual neurons to vi-
sual stimuli presented individually at one of two positions in the
cell’s receptive field were then determined. The images were then
shown in pairs and the cell’s response was compared with its re-
sponse to the images presented separately in the corresponding
area of the receptive field. There was a significant interaction ef-
fect between the stimuli when shown as pairs. A similar effect has
been reported for neurons in more posterior IT (Sato 1989). Ad-
ditionally, some of Tanaka’s own data may show this effect. In a cell
shown in his 1991 paper, Tanaka’s simplification procedure con-
verged on an inverted T shape as the preferred simple shape for
this cell (Tanaka et al. 1991). A more complex object that contains
this simple shape should evoke a strong response from the cell, as
the cell should signal the presence of the shape. However, the cell
did not respond well to a 1 shape, in which the preferred simple
shape is still present, in concert with a bar below its centre (Young
1995). Thus, the presence of other visual features may disrupt the
response of a cell to its preferred shape, a result that is the oppo-
site of what is assumed in the visual alphabet conception of IT. If
other cells behave in a similar way, the characterisation by this
method of the simple shapes preferred by IT cells cannot be suf-
ficient to account for the performance of the cells in the recogni-
tion of even slightly more complex objects.

Perhaps the strongest evidence for neurons responsive to com-
plex 3D objects are the face-selective neurons, which seem resis-
tant to stimulus simplification protocols (see Tovée 1995). This
finding is supported by Tanaka’s own research, in which a com-
bined electrophysiological and optical imaging study found face-
selective neurons arranged in columns in anterior IT (Wang et al.
1996). Tanaka (1996) has argued that faces are a special case, and
that all other complex stimuli are represented by a distributed
code across cells responsive to simple 2D shapes. Only faces have
a specific class of neurons tuned to them. However, it could be ar-
gued that it is unlikely that only faces, out of all the complex stim-

uli that the brain needs to represent, should have a specific class
of cells to represent them. There have been persistent reports that
in addition to cells responsive to faces, there are cells responsive
to other complex biological stimuli, such as hands. Faces are im-
portant, especially for social animals such as primates, but so are
other visual stimuli, such as food sources and predators. It seems
more likely that face-selective neurons are an example of a class
of neurons responsive to complex stimuli and that other classes of
neurons are responsive to other complex stimuli (Tovée 1995).
This is consistent with clinical data from brain-damaged subjects
where some patients have been reported with selective impair-
ments of the ability to recognise and classify a particular class of
complex stimuli such as faces, coins, cars, or domestic animals
(e.g., Young 1992).

In conclusion, we can say the available neural data can be in-
terpreted as supporting a theory of representation in which neu-
rons are responsive to complex 3D stimuli. Populations of these
view-invariant cells, which can modify and change their responses
on the basis of experience (Tovée et al. 1996), are able to repre-
sent vast numbers of stimuli (Abbott et al. 1996). It is these neu-
rons that may provide the neural basis of the Chorus model.

A multiculture of veridicalities

J. van Brakel
Institute of Philosophy, University of Leuven, 3000 Leuven, Belgium.
pop00127@cc5.kuleuven.ac.be

Abstract: Edelman’s target article purports to be about veridical repre-
sentations. I argue that it would be a mistake to think it has much to do
with veridicality as normally understood.

If representation is something, it is certainly an improvement to
talk about “representation of similarities” instead of representa-
tion simpliciter. It would be even better to talk about “represen-
tation of similarity in one respect or another.” What tying “repre-
sentation” to “similarity” leaves open, as Edelman notes in passing
is: (1) that the power of representation would grow, were the sys-
tem (i.e., the brain) plastic enough to attune itself to novel object
classes and (2) that two perceptual systems implementing differ-
ent mappings could have incompatible (or even conflicting) pic-
tures of the world.

I propose that such observations should be at the centre of re-
search on vision, which should focus on the plasticity of categories
and the absence of “objective” similarities (van Brakel 1991;
1993).

Notwithstanding the interesting advantages Edelman’s ap-
proach may have, the technical details are couched in a language
that hides suppositions possibly not conducive to research on per-
ception. I will concentrate on one term, “veridical”; other expres-
sions innocently used, include: salience, natural kind, structure of
natural kinds, structure of the world, the order and the connec-
tion of things, nearest-neighbour structures, widely disparate cat-
egories, basic-level categorisation, prototypes, familiar categories.

Appealing to colloquial usage, Edelman suggests, that “veridi-
cal” refers to a relation between something (a sentence, a repre-
sentation, a Chorus of classifiers) and The World. He claims, for
example, that perceptual systems are faced with the problem of
securing a veridical relationship between the world and its inter-
nal representation (Abstract and sect. 1.1), and he stresses (sect.
9.3.3) that the burden of representation belongs in the world, im-
plying that his distal space shape is the world (the same conflation
is made in Appendix B).

But one would be mistaken to think that Edelman’s proposals
have anything to do with this notion of veridicality. How could it?
Should we envisage that here to the left, we have the world, and,
here to the right, we have a representation, and, here in front of
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us, on the table, we have a machine that measures veridicality? We
enter world and representation into the machine, and, lo and be-
hold, its digital output says: “Your representation is 82% veridical.
Congratulations!” If this is the wrong picture, then how should
veridicality (and representation) be envisaged?

That there is something fishy about his veridicality is indirectly
acknowledged by Edelman: in the concluding remarks he talks
about formal veridicality. What is actually meant by “veridicality”
in the target article is isomorphy of two similarity spaces: the space
of distal shape similarities and the proximal space containing the
output of a Chorus of classifiers. The implicit suggestion is that the
distal space is already a veridical representation of the world, but
little is said as to why that might be so. There is talk of “common
parametrisation” and “multidimensional scaling” as if those tech-
niques guarantee that those spaces mirror what is real or other-
wise veridical. The nearest Edelman comes to “justifying” his
approach is when, in Appendix B he claims that common para-
metrisation is the basis for the definition of distal similarity.

The techniques on which Edelman’s veridicality relies are
highly disputable. Here is an example (commenting in passing on
Edelman’s incidental references to colour and qualia and the work
of Clark 1993). In a recent exchange on the issue Jameson (1997)
says: “There is a body of similarity scaling research . . . indicating
. . . H[ue], S[aturation] & B[rightness] . . . are real psychological
constructs.” The “body of similarity scaling research” however
does not support Jameson’s belief in hue, saturation and bright-
ness being real psychological constructs but, if anything, the op-
posite (Saunders & van Brakel 1997).

There is another, more fundamental problem in talking inno-
cently about the veridicality of any distal space. Assume we are
talking Tsistsistas (Cheyenne), two centuries ago. We are standing
in the middle of a desert, keen on perceiving salient objects and
events. “Vovetas,” your companion says. Of course, you know a
vovetas when you see one (van Brakel 1991). It is either a black
vulture, or a common nighthawk, or a swarm of dragonflies, or red
skimmers, or a tornado (skipping some details). So, what do you
see? Well, you are not expected to see either this or that or that or
that; what you are expected to see is vovetas, an ordinary manifest,
observable. How would the Chorus of classifiers deal with vove-
tas? It shouldn’t come up with a set composed of five categories
(hawks, tornado, . . . ), if only because not all hawks are vovetas; it
should just learn the salient natural kind vovetas. And of course
that is what the Chorus will do, if that is what its conductor wants
it to do. Just as it will respond correctly to cats and dogs, if that is
what it has been trained to do.

Edelman’s proposals may be useful in making Choirs of classifiers
better learners – at least relative to the tasks set by certain types of
conductors; but any veridicality in that story is a veridicality of the
sort that makes talk of “salience,” “natural kinds,” “structure of the
world,” “familiar categories,” and so on, equally applicable to vul-
tures and vovetas, that is, a multiculture of veridicalities.

Regular spaces versus computing with chaos

Cees van Leeuwen
Faculty of Psychology, Department of Psychonomics, University of
Amsterdam, 1018 WB Amsterdam, The Netherlands.
ceesvl@uvapsy.psy.uva.nl

Abstract: The attempt to provide a faithful mapping from distal shape
space to proximal state space in terms of a higher order relationship de-
fined over proximal similarity space stumbles on the context sensitivity of
higher order relationships. Proportional analogy problems using quadru-
ples of figures illustrate that for a number of interesting perceptual prob-
lems, the number of relevant dimensions cannot be reduced.

Edelman invokes the old concept of isomorphism in an inspiring
effort to obtain a basis for a unified approach to visual represen-

tation. The mathematical properties of isomorphism involve a
mapping between two domains. This mapping is one to one, and
a relationship R should faithfully be preserved by it. This means
that whenever there is a relation R between items in one domain,
a corresponding relation R9 will occur between their images in the
other. Countless isomorphisms can be defined between two man-
ifolds, including many arbitrary ones. So isomorphisms have to be
kept principled and meaningful. Such conditions were satisfied in
the way the isomorphism concept was originally applied to the
psychology of perception. In Köhler’s (1929) psychoneural iso-
morphism, proximal objects were assumed to be isomorphic to
electrostatic force fields in the brain. The relation preserved in the
projection is principled. It is constrained by physical properties of
the force field. Its meaning is determined by the holistic phe-
nomenal characteristics of the proximal object.

Vagueness is often a better guarantee of immortality than speci-
ficity, as the latter risks refutation. Köhler’s psychoneural iso-
morphism was sufficiently specific to allow testable predictions.
Subsequent testing unequivocally disconfirmed the cerebral inte-
gration implied by his isomorphism thesis (Lashley et al. 1951; Pri-
bram 1984). A neurally less constrained isomorphism (Henle
1984) may be taken to imply that a proximal representation of a
figure in state space would faithfully represent the position of the
figure in distal shape space. Let the relationship to be preserved
be first order; for example, the distance between figures in shape
space. Meaningful distances will express similarity between the
figures in proximal state space.

Edelman assumes such a proximal similarity space but argues
against identifying the corresponding R with first-order dis-
tance. On the basis of the phenomena, he may be quite justified
in doing so. Subjects’ impressions of figures shapes and of which
figures in proximal space they resemble depend on context. For
instance, in Figure 1, the L-shaped distal component will give
rise to quite different impressions depending on whether it con-
tacts the square. In Figure 1A it will still resemble an L, but in
Figure 1B, it will resemble a square. Because minimal changes
in context can have large, and highly specific effects on similar-
ity, similarity cannot be the R that is to be preserved in a princi-
pled way. Contact-sensitivity, in other words, poses an obstacle
to the application of the isomorphism principle (van Leeuwen
1990).

Edelman proposes an alternative R. Instead of first-order sim-
ilarity, he proposes a higher order relation to be preserved across
distal and proximal space. The R to be preserved is defined over
a subset of the similarities of distal shapes. This should lead to an
image R9 which faithully represents, for example, the rank order
between the distances in the shape space. As a consequence, sub-
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Figure 1 (van Leeuwen). The phenomenon of occlusion illus-
trating the principle of small changes, large consequences in first-
order similarity.
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jects’ rank ordering in similarity judgments across pairs of distal
shapes should be stable and reliable.

Let us discuss the issue whether this isomorphism is principled
or suffers from the same context-dependency problems as first-or-
der similarity. The principled character of higher order isomor-
phism is contradicted by the context dependency of higher order
similarity judgments. Such context dependency has been demon-
strated, in proportional analogy problems (Indurkhya 1992). A
proportional analogy is usually represented as A : B 5 C : D. The
problem A : B 5 C : ? is to find a shape D that stands in the same
similarity relation to C as a B does to A. Figure D1 would be a so-
lution for problem 1, and Figure 2 for problem 2. Figure D2
would be a bad solution for problem 1 and D1 would be a bad so-
lution for Problem 2. This implies that Figure C is similar to D1
and dissimilar to D2 in the context of problem 1, but the reverse
is true in the context of problem 2; in other words, there is a re-
versal in the similarity space ordering for figures A, C, D1, and D2,
depending on the presence of Figure B1 or B2.

Such changes in similarity ordering are not easily understood as
a consequence of some global parametrization of similarity space.
A solution should be in terms of a difference given to alternative
dimensions of similarity space in problems 1 and 2. Shape C re-
sembles D1 more than D2 in a dimension relevant to problem 1,
and it resembles D2 more than D1 in another relevant dimension
to problem 2. The problem is that that these dimensions are de-
termined by the specific contrast between the respective B figures
used in problems 1 and 2. Since there can be an infinite number
of such contrasts in the set of all possible proportional analogy
problems, this solution can only lead to an explosion of the num-
ber of relevant dimensions and hence to ad hocness.

In a rebuttal, one might say that these proportional analogy
problems are not quite representative for perceptual tasks; they
belong rather to the domain of cognition. This rebuttal, however,
ignores a central capacity of the visual system. The proportional
analogy problems require context-specific restructuring of visual
similarity space. A structure for a figure is discovered in the
problem that would not have been perceived in other circum-

stances. It requires a perceiver to extract information from the
distal configuration beyond its predominant perceptual organi-
zation. This capacity is of significance for a variety of visual per-
ception tasks.

Surplus structural information appears to be relevant in the aes-
thetic apprehension of a work of abstract art (Boselie 1983;
Boselie & Leeuwenberg 1985). Creative design processes are
shown also to rely on this capacity. Architects and industrial de-
signers, for instance are known to produce external displays such
as idea sketches. From these sketches, they extract surplus struc-
tural information, which contributes positively to the quality of
their design product (Verstijnen et al. 1997). As a consequence,
the creativity rating of a design product is larger if designers are
allowed to sketch during the process of invention.

When a creative invention is made without sketching, subjects
have to do so by means of visual imagery alone. The contrast of
sketching and imagery-alone conditions illustrates the important
role of the extraction of surplus structure in visual perception.
Whereas it is easy to extract surplus structural information under
sketching conditions, hardly any can be found with imagery alone.
Hence, despite the similarities between visual perception and vi-
sual imagery (Kosslyn 1980) and the fact that creative inventions
can be made by figural combination with imagery alone (Finke
1990), the extraction of surplus structure is one type of process
that contrasts perception and imagery (Verstijnen et al. 1997).
This contrast may explain, among others, why certain figural re-
versals that occur spontanously in the perception of certain am-
biguous figures do not occur in imagery (Chambers & Reisberg
1985). These facts suggest that Edelman’s approach has difficul-
ties with what might be a very central function of perceptual ac-
tivity. If the extraction of surplus information cannot be explained
in Edelman’s framework then he cannot deal with how children or
adults learn to discriminate objects or how they come to appreci-
ate the aesthetics of a certain work of abstract art or the signature
of a new fashion style.

Edelman’s view is quite traditional. It has more in common with
the structural description approach than is apparent at first glance.
He shares, for example, the view that for a set of components, a
primary, context-free specification is possible. The difference is
that, in the constructivist approach, these components are ele-
mentary features, from which a hierarchical, structural descrip-
tion is constructed. In Edelman’s approach, these primary shapes
are complex prototypes and no hierarchical representation is con-
structed. A (novel) object is encoded by graded similarity to a re-
stricted set of prototypes. But this approach is not sufficient to dis-
tinguish the prototypes from (elementary) features, from which
object representations are construed.

What we need is an approach that does justice to the strong con-
text dependency of object representations in similarity space. The
context sensitivity would imply that small changes in contextual
circumstances could have large effects on similarity space. Simi-
larity space would become extremely warped, and systems oper-
ating in this space would be structurally unstable. This would un-
dermine the usefulness of approaches based on a similarity metric,
whether they are first or higher order.

To do justice to the warped character of the activation land-
scapes of perceptual system spaces, we need a different set of
models and different techniques for their evaluation than those
based on distance metrics. The state space for figural represen-
tations is likely to be generated by a highly nonlinear function. I
have advocated the approach of chaotic computation for per-
ceptual shapes (van Leeuwen 1997a; van Leeuwen et al. 1997b).
These models operate in highly warped state spaces, and show
nonstable limit behaviours. To evaluate these systems, we look
at transients. Techniques that could be used for their evaluation
against electrophysiological data are, for instance, the dynamical
measurement of stochastic coherence (Schack & Krause 1995).
That any (higher or first-order) isomorphism will ever contribute
to solving the puzzle of perception is highly unlikely from this
perspective.
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Figure 2 (van Leeuwen). Proportional analogy problems illus-
trating context dependency of higher order relations in similarity
spaces.
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How is representation learned?

James R. Williamson
Department of Cognitive and Neural Systems, Boston University, Boston, MA
02215. jrw@cns.bu.edu cns-web.bu.edu/pub/jrw/www/jrw.html

Abstract: Edelman’s memory-based approach to visual representation is
preferable to parts-based alternatives. However, the existing algorithms
for learning the shape prototypes are biologically implausible because they
are nonlocal and nonconstructive. There is an alternative learning algo-
rithm that constructs a mixture model of prototypes on-line, using only lo-
cal information, and is more biologically plausible and may perform suffi-
ciently well.

At first glance, the memory-based approach to visual representa-
tion proposed by Edelman might seem inadequate for recogniz-
ing real-world objects across all 3D orientations, given the variety
and complexity of their shapes. Instead, the combinatorial nature
of parts-based approaches makes them seem more appropriate for
this task. However, experience tells us that it is extremely difficult
to recover generic object parts from real-world images. Further-
more, as Edelman points out, there is no need to represent an ob-
ject’s shape or structure explicitly, only to represent enough infor-
mation about its appearance so that we can preferentially respond
to views of that object over those of other objects.

Hence the key question is: “How much information is enough?”
Edelman argues that relatively few prototypes are enough, be-
cause of coarse coding. If the prototypes’ response functions are
sufficiently smooth, they can support interpolation, within the
high-dimensional measurement space, of low-dimensional “prox-
imal shape space” manifolds that correspond to parameters of the
distal shape space. I find this argument convincing.

Since this is an approach for visual representation in biological
systems, my next question is: How can biological systems learn
these representations? Biological plausibility requires that we sat-
isfy the following three conditions, among others.

1. On-line. The network should learn to recognize objects as
they are encountered in real time. It is also possible that off-line
optimization, utilizing more global statistics, takes place during
memory consolidation.

2. Local. The network parameters should be updated using
only local information.

3. Constructive. For any of the subregions of the shape space,
how does the network know, a priori, how many prototypes should
be allocated? If one region of the shape space has special envi-
ronmental relevance, it may require a disproportionate number of
prototypes.

Edelman states that, among connectionist classifiers, the radial
basis function (RBF) networks of Poggio and Girosi (1989) are
preferable on the grounds of biological plausibility (sect. 1.3,
para. 5). Edelman and Poggio (1992) used RBF networks to suc-
cessfully interpolate the view space of objects they were trained
on. The architecture of RBF networks does indeed map straight-
forwardly to the neurobiology of the brain; however, the algo-
rithms typically used to train these networks, such as those used
by Edelman and Poggio, do not. While RBF networks can learn
on-line, their gradient-descent learning equations require that
error signals computed at each of the parameters in the output
layer feed back to each of the parameters in the hidden layer. This
is not very local due to the large number of backprojections that
are required. Moreover, the learning equations in the hidden
layer are considered to be biologically implausible (Poggio &
Girosi 1989, p. 48). RBF networks also typically lack a construc-
tive mechanism that builds, or self-organizes, a representation of
appropriate size for a given problem domain, or that allocates re-
sources to regions of the shape space according to their environ-
mental relevance.

One class of networks that meets these three conditions is
Adaptive Resonance Theory (ART) networks (Carpenter & Gross-
berg 1987). Of particular relevance here is a recently developed

ART network, called Gaussian ARTMAP (GAM), which is a type
of RBF network (Williamson 1996; 1997). Each GAM internal
category node (which corresponds to a prototype) has a Gaussian-
defined receptive field in the input space, as well as a mapping to
an output prediction. GAM learns a Gaussian/multinomial mix-
ture model of the joint input/output space using, essentially, an
on-line approximation of the well-known Expectation-Maximiza-
tion (EM) algorithm, an iterative technique for maximizing a mix-
ture model’s likelihood. Unlike RBF networks trained with gradi-
ent descent, GAM does not require a massive number of
backprojections to transmit error signals. Rather, GAM receives
only a single error signal if it makes an incorrect prediction. This
raises a global vigilance level, which has the effect, via learning, of
either sharpening relevant existing receptive fields or adding new
prototypes, in order to improve discrimination in the appropriate
region of the input space.

GAM has been combined with a biologically motivated model
of early vision into a system for visual representation consistent
with the approach described by Edelman (Grossberg & Wil-
liamson 1997). This system has been applied to image segmenta-
tion and classification based on textural and brightness attributes,
where it outperformed alternative approaches that use rule-based,
multilayer perceptron, and K-nearest-neighbor classifiers. In ad-
dition, those errors that the system did make were correlated with
the pairwise distances between textures in MDS coordinates
based on psychophysical measurements (Rao & Lohse 1996).

One potential advantage of mixture models is their flexibility.
Because mixture models represent the joint density of the in-
put/output space, they support mappings in multiple directions.
For example, if an object category is primed, it can generate ex-
pectations of the input features. However, a note of caution is that
this flexibility comes at a cost. Because mixture models represent
the density across all the input dimensions, they may not support
the level of smoothness in the output space that a memory-based
approach requires, and that RBFs trained with gradient descent
can obtain.

Author’s Response

Shape representation by Second-order
Isomorphism and the Chorus model: SIC

Shimon Edelman
School of Cognitive and Computing Sciences, University of Sussex at
Brighton, Falmer BN1 9QH, United Kingdom. shimone@cogs.susx.ac.uk
www.cogs.susx.ac.uk/users/shimone

Abstract: Proximal mirroring of distal similarities is, at present,
the only solution to the problem of representation that is both the-
oretically sound (for reasons discussed in the target article) and
practically feasible (as attested by the performance of the Chorus
model). Augmenting the latter by a capability to refer selectively
to retinotopically defined object fragments should lead to a com-
prehensive theory of shape processing.

R1. An overview of the commentaries

The relationships among the stances taken by the commen-
tators on the various issues surrounding representation and
similarity can be visualized with the help of Figure 1. This
figure depicts a two-dimensional embedding of a textually
defined “commentary space” in which each commentary is
represented by a point labeled with its author’s last name.
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The center of the plot is occupied by commentaries that
touch on relatively few of the 11 issues used to define con-
ceptual similarity in this visualization exercise. Whereas the
units along the two dimensions are, of course, arbitrary, the
locations and the proximities in the plot can be given an in-
terpretation. For example, the upper right corner contains
the minders of computational issues, and, in particular, of
top-down influences; the lower right is occupied by the
champions of nonlinear dynamics, and the lower left con-
tains the proponents of combined metric and structural
representations. All these issues, along with some of the
specific concerns raised by the commentators, are dis-
cussed in this response.

R2. Veridicality

The strongest concerns in connection with veridicality are
voiced by Hahn & Chater, who contend that the notion of
an objective shape space in which proximity corresponds to

similarity is problematic, because, as pointed out by Good-
man (1972b) and by Watanabe (1985a), objective similarity
is an ill-defined concept. Eisler goes even further, stating
that he does not use the term “subjective similarity” be-
cause there is no such thing as “objective similarity” in the
first place.

A typical argument against the notion of objective simi-
larity is made by Murphy and Medin (1985), who note that
the number of attributes shared by plums and lawn mow-
ers could be infinite: both weigh less than 1,000 kilograms
(and less than 1,001 kilograms), neither can hear well, both
have a smell, and so on. Watanabe (1985a) formalized this
kind of reasoning, by proving that any two objects are as
similar to each other as any other two objects, insofar as the
degree of similarity is measured by the number of shared
predicates (provided that the set of predicates is finite and
equally applicable to all objects, and that no two objects are
identical with respect to this set).

Although they are formally impeccable, these arguments
leave one with a suspicion of being cheated out of using a
perfectly serviceable concept – similarity – by some kind of
definitional sleight of hand (what Dennett, 1991, calls an
“intuition pump”). Somehow, the deep intuitive roots of
similarity play a part in this show: without the reader’s utter
and absolute conviction that plums are not similar to lawn
mowers, the impact of Murphy and Medin’s example would
be considerably weakened. Quite perversely, this convic-
tion emerges unscathed even from the formal argument:
plums are not perceived as similar to lawn mowers no mat-
ter what, despite the recruitment of silly features common
to both, such as not being able to hear well.

The resolution we are offered for this conundrum con-
sists of bringing into the consideration an observer, whose
system of “values” (Watanabe 1985a) or “prior spacing of
qualities” (Quine 1969) removes the ambiguity by intro-
ducing a bias (Goldstone 1994). Indeed, in a precursor to
the target article (Edelman 1995b), I cited Watanabe and
Quine in support of a particular kind of bias in the percep-
tion of similarities – the natural bias imposed by the stan-
dard machinery of biological vision (receptive fields with
smooth graded profiles, etc.).

A logical continuation of this approach, suggested by
Hahn & Chater, is to consider the nature (in particular,
the veridicality) of the mapping between the representa-
tional systems of two observers instead of the mapping be-
tween the world and the observer’s similarity space. It is in-
teresting to note that a straightforward rephrasing of the
relevant passages of the target article (substituting “another
observer’s” for “distal”) leaves the computational conclu-
sions concerning veridicality, mutatis mutandis, intact. In
particular, if the composition of the mappings of the two ob-
servers, M1 ° M2

21, is smooth, and if no dimensions are lost
(projected out) along the way, the two representation
spaces will be locally second-order isomorphic.

Establishing the possibility of veridical communication
between two observers in the manner suggested above
shifts the focus of discussion away from the possibility of
veridical perception. This means, however, that somewhere
along the way the real world of shapes gets lost. Do we have
to give up the notion of objective similarity altogether just
to annul the standard philosophical arguments against it?
Hahn & Chater answer in the affirmative, drawing an
analogy between the discredited correspondence theory of
truth and the second-order isomorphic representation of
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Figure R1. A 2-D rendition of an 11-dimensional “commentary
space” derived from the 21 commentaries. [Stuart’s commentary is
not included; response will appear in second round in a forthcoming
issue.] Each commentary was first described by 11 binary predicates,
chosen so as to cover the major issues raised in all 21 of them. The is-
sues were defined by the appearance in the text of the following key-
words or key concepts: (1) warped similarity spaces, (2) differences vs.
similarities, (3) veridicality, (4) the influence of context on similarity,
(5) computational complexity, (6) compositionality and structural sim-
ilarity, (7) mention of nonlinear dynamics, (8) top-down effects, in-
cluding adaptive resonance theories, (9) holism, (10) invariances, and
(11) neurobiology. If a given key phrase appeared in a particular com-
mentary, the corresponding bit in the feature vector describing that
commentary was set to 1; otherwise, it was set to 0. The 21 3 21 ma-
trix of pairwise Euclidean distances between the commentaries was
then formed, and the 21 points were embedded into a 2-D space by
metric multidimensional scaling (MDS). The coefficient of congru-
ence (Borg & Lingoes 1987) between the distances in the MDS-
derived 2-D configuration and in the original 11D one was 0.97, sig-
nifying that much fewer than 11 dimensions were sufficient to de-
scribe the contextual similarities among the different commentaries.

https://doi.org/10.1017/S0140525X9838125X Published online by Cambridge University Press

https://doi.org/10.1017/S0140525X9838125X


objective similarities. I reject this analogy, and contend that,
as far as shape geometry is considered, this amounts to
throwing out the baby with the bath water.

Intuitively, the geometry of a plum is very different from
that of a lawn mower, because any shape-preserving trans-
formation1 applied to the former would leave a residual dis-
crepancy that is large relative to the size of the smaller of
the objects involved in the comparison – and also large rel-
ative to the residual that is left when a plum and a melon
are compared. More formally, a survey of the mathematical
theory of shape spaces developed in the last decade (and
mentioned briefly in the target article) suggests that shape
can be formalized naturally along these lines, in such a man-
ner that similarity is unique (defined by proximity along
minimal geodesics in the shape space) in all but certain de-
generate cases (Bookstein 1996; Carne 1990; Kendall 1984;
Le 1991; Le & Kendall 1993).

Unfortunately, all the commentators who had problems
with my notion of veridicality ignored the proposal men-
tioned above, despite its appearance in the target article. An
exception is van Brakel’s commentary, where the idea of a
common parameterization basis for distal similarity is men-
tioned, only to be dismissed as “highly disputable.” In sup-
port of this dismissal, the reader is given two examples. The
first of these deals with color and is therefore irrelevant in
the context of shape description and representation (except
as a psychological rather than psychophysical theory; see
Sokolov’s commentary). The second example is essentially
a paraphrase of Quine’s Gavagai-observing situation (Quine
1960), translated into the Cheyenne language of two cen-
turies ago: the challenge is to reify a highly ambiguous term,
vovetas, that may refer to a black vulture, a swarm of drag-
onflies, or, for all a nonspeaker of Cheyenne knows, to the
left hind leg of a rabbit. Van Brakel admits that Chorus
would be able to acquire the vovetas concept, but implies
that in doing so, Chorus would not be reflecting anything
objective or veridical about the world. My reply is that this
does not preclude Chorus from acquiring a genuinely
veridical representation in a more natural situation: one
that has to do with natural kinds. I dare say that van Brakel’s
tacit assumption that vovetas is a natural kind would have
been resisted by Quine. Lumping together black vultures
and tornadoes may sound exotically appealing, but is about
as useful for prediction – the main reason for having cate-
gories in the first place (Shepard 1987) – as the classes of
animals in the famous excerpt from an ancient encyclopae-
dia cited by Jorge Luis Borges.2

R3. Compositionality and the representation 
of structure

Földiák, Goldstone, Intrator, Markman & Yamauchi,
and Postma et al. all point out the lack of explicit repre-
sentation of structure (or, more generally, of various di-
mensions of similarity) in the Chorus scheme. Of these
commentators, Földiák is the only one who rejects repre-
sentation by similarities to prototypes altogether. The argu-
ments raised by Földiák are based on the assumption that
this representation scheme is necessarily holistic, and, in
particular, that dimensions of shape cannot be separated
from those of texture or color in the processing of complex
objects. This assumption, however, is unwarranted: the
Chorus scheme described in the target article can be

adapted to attend selectively to different dimensions of
variation of the stimuli in several ways. First, the input
space of the prototype modules can be “skewed” and some
of its dimensions stressed, as proposed by Földiák himself,
as well as by Postma et al. (this is, of course, a standard
technique in pattern recognition). Second, the imposition
of class labels on a set of stimuli can steer the system toward
the formation of a low-dimensional space in which some of
the directions of variation are downplayed and others ac-
centuated. In this manner the system can be made to treat
different views of the same object or its different paramet-
rically related versions equivalently, while maintaining dis-
criminability along other dimensions (Intrator & Edelman
1997). Third, selective association between prototype mod-
ules can make some dimensions more important in certain
situations. The action of such an association mechanism can
be illustrated with Földiák’s example: “There is no way to
know whether . . . a ‘giraffe’ [represented by similarity to a
camel and a leopard] is an ungulate with spots or a preda-
tor with a hump.” Indeed, if I see, for the first time, a thing
that resembles a spotted camel or a deformed leopard, I
cannot tell whether it is going to try to hunt me down or
start grazing. One of these acts, however, would immedi-
ately suggest the strengthening of an association between
the representation of the novel animal and that of its proper
class.3

Any of these approaches effectively creates a stimulus
bias in the similarity space (Nosofsky 1991; Shepard 1964),
whose action resembles that of assigning a larger weight to
some dimensions (i.e., to similarities to some of the proto-
types), at the expense of others. However, such adjustment,
which may be task-specific (Schyns et al. 1998), only makes
sense if the underlying representation reflects as many
stimulus dimensions as possible, because different subsets
of these dimensions will be relevant in different situations.
Such a sparse code, advocated by Barlow (1959) and by oth-
ers (including Földiák), can be achieved in two ways: by a
combination of abstract features (such as “red,” an example
suggested by Földiák) or by a combination of multidimen-
sional concrete prototypes (such as “similar to a cherry,” as
in the Chorus scheme). There is no reason why the former
kind of feature should be preferable a priori; in fact, ab-
stract features are a very poor basis for categorization and
generalization. (What do we learn about the nature of an
object by being told only that it is red?) In comparison,
holistic features such as similarities to prototypes are both
useful for generalization and easy to acquire by a process
Quine (1960) calls learning by ostension (as in “this is a
cherry,” pointing to a cherry). Indeed, infants at the peak of
the concept acquisition period around age 2 exhibit pre-
cisely this tendency to attribute labels (words) to shapes of
entire objects, rather to their color, or to the shapes of their
parts (Markman 1989; Smith et al. 1997), and so do per-
ceptual novices in general (Tanaka & Gauthier 1997). Only
after receiving a different label for an already encountered
object do they associate it with the object’s color, material,
or local features.

Holistic representation (Fig. 2) is hence a sensible open-
ing strategy, which can serve as the basis for the develop-
ment of more sophisticated analytical approaches. The
need to augment a holistic similarity-based model with
some capability for structure manipulation is stressed by
Goldstone and Markman & Yamauchi, who list experi-
mental findings concerning the perception and categoriza-

Response/Edelman: Representation of similarities

486 BEHAVIORAL AND BRAIN SCIENCES (1998) 21:4

https://doi.org/10.1017/S0140525X9838125X Published online by Cambridge University Press

https://doi.org/10.1017/S0140525X9838125X


tion of complex objects and scenes that are best accommo-
dated by a structural model. I agree with their conclusion
(drawn also by Intrator and by Eklundh & Carlsson) that
the coexistence of multidimensional feature space and
structural models is desirable. Such coexistence should not
become an end in itself, however, lest the difficulties in-
herent in the purely structural approaches (Edelman 1997)
cancel any potential advantage that may stem from com-
bining structural descriptions with prototype-based shape
spaces.

How can one steer a middle way between the holistic fea-
ture-space extreme, justly criticized as falling short of repli-
cating human performance in many tasks, and the struc-
tural extreme, which has remained a piece of science fiction
(albeit an intellectually appealing one) since its introduc-
tion more than two decades ago? Postma et al. claim that
a dozen or so reference shapes are unlikely to suffice for dis-
tinguishing between each pair of the huge number of nat-
urally occurring shapes. This need not be a problem for a
large-scale Chorus-like model, however. Such a model can
have at its disposal hundreds of prototype modules, of
which only a small subset becomes active in any given dis-
crimination task.4 In comparison, Postma et al.’s proposal to

use generic “prototypes” such as Biederman’s (1987)
“geons” seems to me counterproductive, given the poor
track record of geon-based theories in computational vision
(Edelman 1997) and the emerging consensus regarding
their shortcomings as models of human object-recognition
performance (Jolicoeur & Humphrey, in press; Kurbat
1994; Tarr et al. 1997).

Intrator’s suggestion to use prototypical (statistically de-
fined rather than generic) shapes as “parts” seems to be
nearer the mark, if only we can manage to avoid the need
for temporal binding of parts – a traditional handicap of the
structural approaches. One possible way to do this is to re-
sort to binding by retinotopy (Edelman 1994), a concept il-
lustrated in Figure 3. In this approach, structure is repre-
sented explicitly, but in an image-based rather than an
object-centered manner. Functionally, this is only a small
concession: a full-blown structural description must in any
case be extracted anew for each distinct aspect of the object
(if it can be extracted at all); image-based structure is as-
pect-specific by its nature. Computationally, however, the
latter is much more tractable, especially if the primitives in
terms of which structure is represented are encoded by
Chorus-like modules. The only modification required for
that purpose in the holistic Chorus scheme is the introduc-
tion of attention-like control over the location and size of
the retinal receptive field of each module (which can be
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Figure R2. Left: Chorus of holistic prototypes; the new object X
is represented by its similarities to objects A and B. This repre-
sentation scheme, which I described in the target article, can sup-
port various recognition-related tasks, working from gray-level im-
ages of real objects (Duvdevani-Bar et al. 1998; Edelman &
Duvdevani-Bar 1997a, 1997c). According to Latimer, “it could
also provide an explicit, neurally plausible mechanism for re-
sponding directly and accurately to [objects] and their interrela-
tionships”; Jüttner notes that it transforms “images into a rule-
based representational format open to propositional reasoning”
(cf. Barsalou’s 1997 notion of perceptual symbol systems). How-
ever, as pointed out by Földiák, Goldstone, Intrator, Mark-
man & Yamauchi, and Postma et al., this scheme does not al-
low structural decomposition and analysis of shapes. Right:
Chorus of generic fragments, as suggested by Postma et al. This
scheme is a simplification (involving image-based fragments) of
the standard structural model of representation, such as Bieder-
man’s (1987) Recognition By Components (RBC). Neither RBC,
nor simplified models such as this one (which does not seek to re-
cover 3-D parts and their spatial relationships) has ever been
made to work on real images. A compromise approach, which
combines the theoretical and practical appeal of Chorus with a
certain ability for explicit representation of structure, is illustrated
in Figure 3.

Figure R3. Chorus of prototypical fragments. In this proposed
scheme, each object-specific module comes in several varieties,
distinguished by the location of the module’s receptive field (indi-
cated schematically by the open circle) relative to the fixation
point (indicated by the thick dot). For example, module A1 re-
sponds optimally when the fixation is just above a stimulus re-
sembling object A. Likewise, module A2 prefers the object to be
just below the fixation point. As in the Chorus of prototypes, a new
object X is represented by the pattern of activities across object-
specific modules. Here, however, these activities carry additional
information concerning the structure of X. For example, the ac-
tivities of A2 and B1 together characterize the shape of the lower
fragment of X; the activities of A1 and B2 together determine the
shape of its upper fragment – without recourse to either generic
parts or to any kind of binding mechanism (beyond coactivation
and retinotopy). This scheme is even closer to Barsalou’s (1997)
perceptual symbol system.
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done in a hard-wired fashion, as depicted in Fig. 3). In other
words, the Chorus of prototypes can be turned into a Cho-
rus of fragments, when necessary. For now, however, this is
only a conjecture; theoretical analysis and computational
experiments currently under way in my laboratory should
decide whether or not this approach can endow Chorus
with the ability to represent structure without giving up its
practical appeal and its straightforward interpretation in
terms of familiar mechanisms of biological information pro-
cessing.

R4. Specific vs. abstract similarity

Andresen & Marsolek contend that in Chorus the repre-
sentation of similarity on an abstract level (as between the
words “rage” and “RAGE”) must be preceded by its repre-
sentation on a more concrete level. Furthermore, they note
that subjects in priming experiments exhibit double dissoci-
ation between the levels: In some conditions, concrete or
specific but not abstract visual representations are activated,
whereas in others only abstract representations are primed.
They conclude that a distinct system dedicated to abstract
representations must exist alongside a specific, Chorus-like
one. Their first premise, however, is not valid: The activation
of a concrete-level representation does not necessarily pre-
cede that of an abstract-level one if the representations are
distributed. This point is best illustrated not with totally dis-
parate shapes such as “rage” and “RAGE” (for which simi-
larity is solely a matter of convention and should be encoded
by a “lateral” association link between two equal-status pro-
totypes), but rather with concepts that are part of a hierarchy,
such as giraffe and quadruped. In Chorus, several modules
whose activity patterns normally signify the presence of some
kind of quadruped animal may fire and cause the higher lev-
els to decide that a quadruped is present, without any of the
specific quadrupeds being detected (because the pattern of
the module activations does not happen to coincide with any
of the patterns corresponding to the specific quadrupeds).
Thus, although a separate “abstract” representation system
like the one suggested by Andresen & Marsolek may exist, its
existence remains a conjecture yet to be supported by data.

R5. Similarity under a prescribed metric

The notion of objective similarity, discussed earlier, pre-
supposes the existence of a unique “natural” metric on the
distal shapes. Hahn & Chater argue that even if such a
metric exists, subjects are not necessarily bound by it, and
may judge as similar objects that share arcane features such
as “pixel to pixel alternation” but that differ in every corre-
sponding pixel (for example, 010101 and 101010). A related
point is made by Palm, who distinguishes between “exter-
nal sensory similarity” and “functional similarity” (shared,
for example, by various chairs, all of which can be sat on,
without being visually similar). Postma et al. draw atten-
tion to the need for invariance with respect to transforma-
tions such as translation and scaling, which leave shape un-
changed, yet strongly affect what the target article calls the
measurement-space appearance of the objects (as illus-
trated by the same pair of patterns, 010101 and 101010, one
of which is a cyclic translation of the other). I am less con-
cerned about the kind of similarity singled out by Hahn &
Chater, because I believe that it is of secondary importance

in everyday perception, where it is clear what the natural
metric is.5 After all, it requires a certain sophistication on
the part of the observer to realize that two pictures are the
same in that they contain the same number of black pixels,
or that two character strings are the same because they spell
the same word, or that two sets of particle tracks in a Wil-
son cloud chamber are the same because they both corre-
spond to b-decay events. Despite the comments of Ben-
son, who (as far as I can gather) criticizes the lack of
representation of these kinds of abstract distinctions and
similarities in Chorus and calls for “linguistic terms” and
“additional semantic information,” I prefer to keep this cart
behind the horses.

In contradistinction to nonobvious relations (either ab-
stract or concrete), proper representation of similarity un-
der common transformations such as translation and scal-
ing is a real concern, as is indeed noted in the target article.
This issue, however, is more complicated than Postma et
al. would have it, if only because human recognition is not
completely invariant either to translation or to scaling (pace
Biederman & Cooper 1991). Specifically, recent research
shows that the degree of invariance depends on familiarity
with the patterns, on global similarity between the objects
to be discriminated, and on their compositional structure
(Dill & Edelman 1997). Thus, a “blanket” approach to in-
variance via a global transformation (even a space-variant
one, as proposed by Bonmassar & Schwartz) does not
seem to be appropriate in modeling human performance. A
more credible approach is suggested by neurophysiological
findings (Ito et al. 1995; Tovee et al. 1994), where cellular
responses, even if invariant under a certain amount of trans-
lation and scaling, pertain only to particular stimuli, hence
excluding the possibility that invariance arises out of some
global and universal mechanism.

R6. Similarity in context

As noted by Eisler, van Leeuwen, and Tovée, similarities
depend strongly on the context of the comparison (what
Eisler calls “the pertinent universe” and what Jüttner
refers to as the choice of the map, which is prior to the
choice of landmarks, apropos my analogy between catego-
rization and navigation in a shape space). A similar point has
been made by Mumford (1991a) (as discussed in the target
article), by Tversky (1977), and many others. As in the dis-
cussion of abstract similarities, here, too, I propose to treat
the perception of geometric similarities defined over
triplets of shapes as the basic phenomenon and to use a
model of that phenomenon (namely, the Chorus scheme) as
a starting point in the development of more comprehensive
and sophisticated approaches. Specifically, as suggested in
the target article, the modules comprising Chorus can be
assigned salience-related weights, with the salience being
determined by the context in which the comparisons are
carried out. At present, it is not known how well this ap-
proach will be able to replicate psychophysical data on the
perception of similarity; an extensive simulation study de-
signed to address this issue is clearly required.

R7. Top-down effects

Several of the commentaries question the rationale of choos-
ing a basically feedforward architecture, such as that of Cho-
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rus, to model object-recognition processes in human vision.
Grossberg in particular states that “a major intellectual wa-
tershed separates feedforward models from self-organizing
feedforward/feedback models.” I tend to agree, but, impor-
tant as it may be, the choice of architecture of the model can-
not precede the development of a theory of the problem. This
methodological issue is a source of much controversy in vi-
sion research. Marr (1982) argued that the implementation
of a model should follow rather than precede the develop-
ment of the theory. In contrast, connectionist modelers be-
lieve that the two should be allowed to interact. In the pre-
sent case, the logical order is rather clear: feedback models
such as Grossberg’s Adaptive Resonance Theory (ART), or
Mumford’s (1994) bottom-up/top-down scheme deal with
the problem of categorization, which can be approached in a
principled manner only following a resolution of the logically
prior Problem of Representation (Cummins 1989). The lat-
ter problem has to do with the very possibility of securing a
principled relationship between the world and its represen-
tation. ART, which attempts to capture dynamically the cat-
egorical structure of a stream of data, is neutral with respect
to the nature of this relationship: The data are (proximal)
measurements such as images, and nothing is assumed or de-
duced about their distal causes.

The neutrality of ART and of similar models with respect
to abstract computation-level issues such as veridicality and
the Problem of Representation may suggest that they are
compatible with the idea of second-order isomorphism and
that they can support this mode of representation as well as
(and possibly better than) the Chorus scheme. I assume this
is what Grossberg had in mind when he wrote in his com-
mentary that “ART models self-organize ‘second-order iso-
morphisms’ using either unsupervised learning, supervised
learning, or mixtures of both.” There are certain obstacles
to overcome, however, before ART can be used in this man-
ner. First, the feedback nature of ART makes the analysis
of the possible relationship between distal and proximal en-
tities more difficult than for a purely feedforward model:
whereas second-order isomorphism requires merely that
the distal to proximal mapping be smooth, in ART the map-
ping is iterated, and it is not clear what requirements it
should fulfill, and what the interaction between iteration
and veridicality is. Second, in the context of representing
(not yet categorizing) novel stimuli, an ART-based ap-
proach such as that of the system described by Bradski and
Grossberg (1995) is actually detrimental, because it re-
quires assigning the current stimulus to one of the familiar
categories (or creating a new category), although it may be
preferable to represent it within the existing framework
(e.g., in terms of similarities to existing categories, as in
Chorus). Hence my preference for feedforward models for
the time being.

The turn of recognition-related tasks such as categoriza-
tion comes when the Problem of Representation is solved.
Palm doubts the ability of Chorus to perform segmentation
and categorization, which, he claims, can be made much
easier by allowing for top-down influences in one’s model.
Without such influences, Palm claims, the feedforward
Chorus is essentially limited to interpolation among stored
examples. Whereas Chorus indeed does not deal with the
problem of segmentation, it has been shown effective in
discrimination and categorization of objects unfamiliar to it,
achieving a score of about 85% correct over a database of
50 such objects (Edelman & Duvdevani-Bar 1997d).

The power of interpolation among stored examples obvi-
ously depends on the nature of the information available in
each example, and on what the system does with it. In the
most recent application of the Chorus scheme, the exam-
ples were entire view-spaces6 of reference objects (Duvde-
vani-Bar et al., in press; Edelman & Duvdevani-Bar 1997c).
Interpolation among these allowed the system to estimate
the view-space for a novel object, and to use that estimate
subsequently to carry out a variety of visual tasks (e.g., to
recognize a novel view or to determine the pose of an ob-
ject previously seen from only one vantage point).7

R8. What Chorus really does

Of the commentators who raise computational issues, Bon-
massar & Schwartz are the only ones who appear to mis-
understand the target article completely. The first of their
misunderstandings has to do with multidimensional scaling
(MDS), which is not “a particular form of cluster analysis”
(Kruskal 1977), but rather a kind of distance-preserving di-
mensionality reduction. Their second misreading is that
Chorus uses MDS “to effect classification.” In fact, Chorus
does not use MDS at all (which is why, incidentally, the re-
mark that the target article does not specify a neurally plau-
sible implementation for MDS is irrelevant). The informa-
tion concerning the shape-space location of the stimulus is
present in the activities of the reference-shape modules, in-
sofar as these covary monotonically with the appropriate
distal similarities. An experimenter studying the model (or
the brain) can use MDS to extract that information and to
embed it into a 2-D space; the model itself need not do that.
If there are 1,000–2,000 reference-object modules (of
which only a very small proportion fires for any given stim-
ulus), these can be mapped directly onto a similar number
of “output lines” (leading to association or action modules),
for example, by a linear matrix switch of the kind described
by Willshaw et al. (1969). One may hypothesize that the
CA1 and CA3 circuits in the hippocampus (Hasselmo 1995)
constitute a “crossbar” matrix switch of this type. Note that
straightforward input-output association is impossible if the
dimensionality of the signal is on the order of 1,000,000 (as
it is in the primary visual cortex, or V1) rather than 1,000 (as
in the inferotemporal, or IT, cortex). Thus, Bonmassar &
Schwartz’s statement that “there is a basic mathematical
equivalence between clustering based on ‘similarities’ and
clustering based on direct feature vector representation” is
mistaken: neither clustering nor other processing (e.g., as-
sociation) of the raw feature vectors would work because of
the high dimensionality and because of the predominance
of irrelevant dimensions (as noted in the target article, sect.
3.2).

The third misunderstanding by Bonmassar &
Schwartz, which crops up repeatedly in their commentary,
is centered on a mistaken characterization of Chorus as re-
lying on “simple linear ‘interpolation’ between shifted ver-
sions of a prototype.” Bonmassar & Schwartz conflate two
issues here; that of multiple-view interpolation by the pro-
totype modules, and that of translation invariance. The for-
mer is certainly not a linear phenomenon (Bülthoff & Edel-
man 1992; Poggio & Edelman 1990). In fact, the main
assumption behind the use of radial basis functions (RBFs)
in the implementation of the prototype modules is that of a
smooth relationship between the effect of the variables over
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which the module must generalize (i.e., the viewpoint) and
its required output (a constant, for a given object). As a re-
sult, the RBF mechanism can dampen the effects of any
smooth transformation or deformation of the input, includ-
ing the “space-variant nature of V-1 representation”
stressed by Bonmassar & Schwartz, given enough exem-
plars to work with. Furthermore, if the visual system is ca-
pable of foveation (fixating the object to be recognized),
only a limited form of translation invariance is required.
Specifically, invariance has to hold over an area equal to the
apparent size of the object (to support recognition when
different parts of the object are fixated), rather than over
the entire visual field. This invalidates Bonmassar &
Schwartz’s claim that “[Chorus] would require storage of a
large number of eye position prototypes.”

How can this translation invariance be achieved? At the
time I was writing the target article, I believed that a space-
variant mapping proposed by Schwartz and Cavanagh and
developed further by Bonmassar & Schwartz might ac-
tually be part of the solution, not part of the problem.
Specifically, foveation, followed by the complex logarithm
mapping, followed again by a covert shift of attention (Mc-
Culloch 1965) to the centroid of the resulting signal, can
result in approximate size invariance. This approach would
also keep the problem of translation invariance within
manageable limits, to be dealt with by mechanisms such as
interpolation (Bradski & Grossberg 1995). However, a re-
view of the neurobiological literature (see Ch. 6 in Edel-
man, forthcoming), and the results of recent studies on the
sensitivity of human object recognition to translation, con-
vinced me that a global mapping (even a space-variant one)
is not a good model of the primate visual system insofar as
translation invariance is concerned. On the one hand,
translation invariance exhibited by cells in the IT cortex is
limited to receptive fields that can be rather small and is
specific to the class of shapes to which the cell is tuned (Ito
et al. 1995; Tovée et al. 1994). On the other hand, in hu-
man subjects the transfer of shape discrimination across
just a few degrees in the parafovea is imperfect if the
shapes are defined by the spatial configuration of several
common parts, but is nearly perfect if the objects share 
the part structure and differ only parametrically (Dill & 
Edelman 1997). In comparison, if translation and other 
invariances were the result of a global mapping, the same 
degree of invariance would be expected for any shape –
contradicting the neurobiological and the psychophysical 
data. The upshot of this discussion is that Bonmassar &
Schwartz’s commentary is rather tangential to the issue at
hand, and that the problem of size/translation invariance
must still be considered open.

R9. Complexity and scalability

The commentary by Eklundh & Carlsson raises the im-
portant question of computational complexity that is not ad-
equately treated in the target article. How many prototypes
are necessary for representing the shapes of objects corre-
sponding to the 30,000 or so count nouns (Biederman 1987)
presumably known to an adult speaker of English? Eklundh
and Carlsson state that “with an increasing number of cat-
egories the number of similarities to be represented grows
combinatorially.” This observation is true but irrelevant to
the complexity of representation; Chorus aims to (1) repre-

sent the objects in terms of their similarities to a fixed num-
ber of reference shapes, while (2) preserving the similari-
ties among objects to the largest possible extent. Because
the dimensionality of the representation space is fixed, the
real concern is whether it suffices to deal with the increas-
ing number of objects (a problem whose size is obviously
linear in the number of objects) rather than with the num-
ber of object relations, such as similarities (whose number
grows much faster). Experiments with an implementation
of Chorus (Edelman & Duvdevani-Bar 1997a; 1997d) indi-
cate that the number of prototypes (reference shapes) nec-
essary for supporting a certain level of recognition perfor-
mance grows slower than the number of objects. These
results, however, were obtained with only about 50 objects;
further and more extensive experiments are necessary to
determine whether computational complexity is a real con-
cern here.

R10. Learnability

Another computational concern – that of learnability – is
raised by Williamson. He argues that despite a certain bi-
ological and computational appeal of the radial basis func-
tion (RBF) network used in Chorus, the standard algo-
rithms used for training RBF networks are biologically
implausible. Williamson proposes an alternative imple-
mentation for an object-specific module of the kind re-
quired by Chorus; his Gaussian ARTMAP network is re-
lated to Grossberg’s ART, and is endowed with an online
learning algorithm. Now, because the Chorus model is mo-
tivated by functional considerations (derived from the sec-
ond-order isomorphism theory), the object-specific mod-
ules that serve as its building blocks can be implemented by
a variety of architectures, as demonstrated in a related study
on the extraction of veridical low-dimensional representa-
tions from image data (Intrator & Edelman 1997). Thus,
because on the algorithmic level Chorus is a generic model,
the introduction of any additional architecture capable of
fulfilling the required function broadens the support for the
model as a whole. On the more abstract computational level
and on the level of biological implementation, however, the
situation is not as simple. First, a mixture model such as
Williamson’s Gaussian ARTMAP inherits from ART the
predisposition toward single-cause explanations of the in-
put, at the expense of impartial representation (which
would allow the input to belong to neither category); I al-
ready mentioned this characteristic of ART in my reply to
Grossberg’s commentary. Second, as Williamson notes,
Gaussian ARTMAP, being a probability mixture model,
does not automatically enforce as much smoothness as may
be required by the second-order isomorphism theory (un-
like the RBF model, where smoothness is a major goal in
the learning procedure). Furthermore, from the standpoint
of biological implementation, the RBF learning algorithm
is not as implausible as suggested by Williamson, especially
if learning is limited to the estimation of the linear weights
between the hidden layer and the output (Edelman &
Weinshall 1991). An in-depth comparison between the bi-
ological plausibility and other merits of certain versions of
RBF networks on the one hand, and of versions of ART
such as Gaussian ARTMAP and its EM (Expectation-Max-
imization) learning algorithm on the other is beyond the
scope of this article.
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R11. Neurobiology

Only a few of the commentators bring lessons from neuro-
biology to bear on the discussion. Some of these are highly
disputable, as exemplified by Földiák’s statement that sen-
sory processing in the brain involves dimensionality expan-
sion, not reduction, presumably because “V1 contains about
100 times as many neurons as the optic nerve does, and
higher visual areas maintain similar numbers.” The mistake
here is the assignment of one neuron per dimension. On the
one hand, this must be the strategy of the visual system at
the level of the visual input to the brain (i.e., in the optic
nerve), simply because at that level there is no way the sys-
tem can “know better” than to assume that each input line
corresponds to an independent dimension. On the other
hand, in the rest of the visual system the issue becomes that
of effective, not nominal, dimensionality. For example, if all
the input lines are perfectly correlated, then the effective
dimensionality is equal to one. If the correlations between
neuronal responses in the higher areas were as “surprisingly
low” as described by Földiák, it would be impossible to 
recover the category of the visual stimulus from mass-
response data such as the fMRI signal, the optical signal 
measured using voltage-sensitive dyes, or the more old-
fashioned evoked potential field: All these would resemble
high-dimensional noise. Just as in V1, the most important
dimensional characterization of the representation is in
terms of the functional architecture (i.e., the columnar
structure, the cytochrome oxidase blobs, etc., as defined by
Hubel, Wiesel, Livingstone, and others), so in IT the di-
mensionality of the representation is more likely to corre-
spond to the number of column-like modules discovered by
Tanaka and others (Fujita et al. 1992; Tanaka 1996), and not
to the number of neurons there. The notion of functional
architecture and Tanaka’s findings (not cited by Földiák) are
also relevant in qualifying Földiák’s statement that the
metaphor of a visual alphabet, which suggests a small set of
symbols, is implausible because “sensory neurons have a
huge variety of response properties.” Already in V1, only a
few of the possible dimensions of the image (namely, ori-
ented energy at a subset of locations) are represented; in IT,
the code is at least as low-dimensional.

Not all theoretical neurobiologists are as happy as they
should be about the dimensionality reduction that occurs in
the visual processing stream. In particular, Bonmassar &
Schwartz argue (contra Földiák) that vision cannot be
veridical because “V1 discards more than 99.99% of the 
information available at the level of retinal (optical) 
image.” This argument, however, is based on a further and
rather unwarranted assumption that all 1,000,000 or so di-
mensions are required for describing the various distinc-
tions among distal stimuli that must be veridically repre-
sented in the first place. In addition to being pessimistic
about the possibility of veridical representations, Bonmas-
sar & Schwartz are rather conservative in their description
of the current understanding of the process of recognition
in the brain (they write that “we know very little about any
aspect of trigger feature representation in IT at the present
time”). I attribute this gloomy outlook to their somewhat
outdated view of the psychophysics and the neurophysiol-
ogy of object recognition. Regarding the function of IT cor-
tex, Bonmassar & Schwartz choose to refer only to Schwartz
et al. (1983), and neglect to mention the data amassed in
the last decade and a half (cited in the target article). The

psychophysical findings of veridical representation of shape
spaces, from Shepard and Cermak (1973) to Cutzu and
Edelman (1996), are ignored altogether. Against this back-
ground, the target article’s account of the function of IT cor-
tex may indeed appear as “deus ex machina.”

Whereas much more is now known about the IT cortex
than a decade or so ago, some of the crucial issues con-
cerning the function of this area are the subject of intense
controversy. One of these is the question of the grain of the
representation there: Do IT cells prefer entire objects or
frequently occurring object fragments in their response
patterns (Tanaka 1993b)? In his commentary, Tovée calls
the latter the “visual alphabet” hypothesis, claiming that the
target article adopts it as the neural basis for the Chorus
model. In fact, in the target article I adopted an opposite,
holistic stance (see, e.g., sect. 9.3.2 ), with the purpose of
finding out whether this route, which is much more conve-
nient computationally than the compositional one, can lead
to sufficiently powerful representations. My conclusion,
supported by computational experiments (Edelman &
Duvdevani-Bar 1997a; 1997c), is that the holistic approach
to representation advocated by Tovée is feasible. Additional
considerations, such as the need for an explicit representa-
tion of structure in some tasks (discussed in sect. 3, suggest,
however, that the holistic approach should be supple-
mented by another one, based on object fragments or a “vi-
sual alphabet.” Future experiments should determine
whether an extension of Chorus along these lines (as
sketched in Fig. 3) is computationally feasible and biologi-
cally relevant.

R12. Methodological and metatheoretical issues

A combination of theoretical considerations with the results
of computational experiments and neurobiological evi-
dence, as attempted in the target article, is especially im-
portant in connection with two issues raised by Jüttner.
The first of these concerns the equivalent performance of
quite different models of similarity perception in the ex-
periments of Unzicker et al., in press. As stated in the tar-
get article (and reiterated elsewhere in this response), the
computational requirements of the second-order isomor-
phism theory are generic and cannot be used to specify a
particular model architecture. The reasons for preferring
the Chorus scheme, and, in particular, a Chorus of RBF
modules, have to do with concrete issues such as imple-
mentational parsimony, learnability, and, ultimately, biolog-
ical evidence (the latter is decisive as far as the relevance of
second-order isomorphism as a model of visual representa-
tion in the brain is concerned). Jüttner’s second remark
refers to Anderson’s (1978) plea for “indeterminacy con-
cerning the representational format as long as the processes
operating on them remain unspecified.” Again, bringing to
bear considerations from all the relevant disciplines, in-
cluding neurobiology, reduces this indeterminacy: the
presently available biological data certainly constrain the
processes of vision, even if they do not yet determine them
unequivocally (in disembodied theorizing, in comparison,
anything goes).

Latimer’s commentary provides a crucial philosophical
angle on the ideas expressed in the target article. Never-
theless, two of the metatheoretical questions he poses along
the way seem to me to obscure rather than clarify things.
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The first of these is the purported irrelevance of represen-
tation, which Latimer describes as a ternary relation, in-
volving the thing represented (A), the thing representing
(B), and an observer, to whom B represents A. It has been
fashionable for some time to argue from this definition that
talking about representations is the same as postulating a
homunculus.8 The homunculus, however, need not be
brought into consideration at all: B represents A to the rest
of the system, if representation is functionally justified in
Millikan’s (1984) sense, and, even better, if an external in-
tervention at the presumed locus (or “causal nexus”) of rep-
resentation (such as the injection of current in the appro-
priate place in the cortex; cf. Salzman et al. 1990) affects the
situation in the manner compatible with the representa-
tional account. [See also Millikan: “A Common Structure
for Concepts of Individuals, Stuffs, and Real Kinds” BBS
21(1) 1998.]

My second remark on Latimer’s commentary concerns
his questioning of the holistic nature of Chorus. For better
or for worse, Chorus acquires and uses images of prototyp-
ical or reference objects without analyzing them into parts.
Latimer seems to claim that this still does not mean that
Chorus is holistic, because the images are ultimately com-
posed of pixels, which later play a role in computations of
similarity. I see this argument (stated at much greater
length in Latimer & Stevens 1997) as a quibble because it
leaves the most important thing unsaid: exactly how pixels
play a role in subsequent processing makes all the differ-
ence. In the case of Chorus, values of hundreds of pixels are
conflated and the information in them is redistributed and
transformed each time the activity of a receptive field at the
measurement-space level is computed; further on, even
more extensive convergence takes place. If this still quali-
fies Chorus as a model based on (pixel-level) parts, then
something is wrong with Latimer’s nomenclature.

R13. And now, something completely different

The two remaining commentaries come from a theoretical
fringe, defined by an adherence to the arsenal of arguments
from nonlinear dynamics (Gregson) and, in particular,
from chaos theory (van Leeuwen). The word “fringe” here
is not a facetious epithet, but a description of the relation-
ship between nonlinear phenomena and their local approx-
imations: the very status of the former as a generalization of
the latter implies conceptual priority of the latter in the nor-
mal progress of scientific understanding. Gregson himself
admits that “spaces that are metric only in a local neigh-
borhood, but have no global properties implying constraints
on monotone distance-separation relations, can be defined”
(para. 4) and that “element-wise matchings between corre-
sponding partitioned subsets of stimulus attributes . . . can
sometimes be locally reconciled with metric space map-
pings” (para. 5). Chorus, which aims at representing the lo-
cal metric structure of distal similarities (see Appendix B of
the target article), fits these two descriptions well. It also
happens to be mathematically tractable, applicable in prac-
tice, and capable of explaining a long list of results in the
psychophysics and physiology of the representation of real
3-D shapes.9 Consequently, I believe that both its possible
deficiencies in modeling the perception of “geometric pat-
terns” (Gregson’s euphemism for a handful of dots or lines),
and its inadequacies in solving structural analogy problems

or modeling creative design (pointed out by van Leeuwen)
can be safely classified as higher-order effects, to be taken
care of in the next revision.

R14. Conclusions

In summary, I propose to distinguish between concerns
grounded in technical issues such as scalability, computa-
tional complexity, or compositionality and criticism of the
stance of the target article on matters of principle, such as
veridicality.

I consider the issues of compositionality and the repre-
sentation of structure as technical for a simple reason:
whereas the capacity to represent novel objects was tradi-
tionally the prerogative of structural models based on the
principle of compositionality, it is now demonstrably within
reach of alternative approaches such as Chorus. This capa-
bility thereby became a matter of technology, not principle.
Admittedly, Chorus does not represent structure explicitly.
This, however, seems to have been a small price to pay for
a provably working scheme (Edelman & Duvdevani-Bar
1997a), in a field where structural approaches such as that
of Marr and Nishihara (1978) remained a disembodied in-
spiration to psychologists (Biederman 1987), but were
never shown to work on more than a dozen hand-labeled
line drawings of stylized two-part shapes (Hummel & Bie-
derman 1992). Moreover, there appears to be a way to ex-
tend Chorus to deal with structure explicitly, as proposed in
Figure 3. The viability of this proposal is likewise a techni-
cal issue, which should and will be resolved by computa-
tional experiments; there is no point in trying to settle it by
philosophical arguments.

The issue of veridicality of representation is a harder nut
to crack (which should not, perhaps, be surprising, consid-
ering that it has been around since before Plato). I believe
that some headway is possible even here, however, at least
as far as the representation of shape is concerned. A full dis-
cussion of the mathematical underpinnings of this belief,
centered on the concepts of natural and unique parameter-
ization of shapes, is beyond the scope of the present article.
Suffice it to say here that philosophers would be well ad-
vised to team up with mathematicians in dealing with these
issues – unless they are satisfied with the psychologists’
workaround (in computer slang, a quick and dirty fix for a
bug.) for the problem of distal similarity, namely, the impo-
sition of an observer bias.

NOTES
1. Shape-preserving transformations are the rigid motions and

uniform scaling; stretching and bending, which could bring a plas-
ticine plum into congruence with a toy lawn mower, are disal-
lowed.

2. Borges quotes, in the essay “The Analytical Language of
John Wilkins” (1981) a list, “attributed by Dr. Franz Kuhn to a cer-
tain Chinese encyclopaedia entitled “Celestial Emporium of
Benevolent Knowledge.” On those remote pages it is written that
animals are divided into: (a) those that belong to the Emperor, (b)
embalmed ones, (c) those that are trained, (d) suckling pigs, (c)
mermaids, (f ) fabulous ones, (g) stray dogs, (h) those that are in-
cluded in this classification, (i) those that tremble as if they were
mad, ( j) innumerable ones, (k) those drawn with a very fine
camel’s hair brush, (l) others, (m) those that have just broken a
flower vase, (n) those that resemble flies from a distance.”

3. This is but an echo of the famous discussion of induction,
found in Hume (1748, pp. 23ff), which starts: “Let an object be
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presented to a man of ever so strong natural reason and abilities;
if that object be entirely new to him, he will not be able, by the
most accurate examination of its sensible qualities, to discover any
of its causes or effects.”

4. This corresponds to combining Barlow’s (1959) idea of a
sparse code with Tanaka’s (1996) estimate of 1,300–2,000 object-
tuned modules in the inferotemporal cortex of the monkey.

5. Cf. the argument I made in section 2 in favor of objective
shape spaces.

6. A view-space of an object is the low-dimensional trajectory
ascribed in the measurement space by the point corresponding to
a view of that object, as it undergoes a parametric transformation
such as rotation in depth. The dimensionality of the view-space
manifold is determined by the number of parameters in the trans-
formation.

7. The setting of interpolation weights in this example is,
strictly speaking, a top-down operation, albeit of a different kind
than the top-down processing stream in models such as ART.

8. This argument is especially popular with the neobehavior-
ists who wish to equate intelligence with a bundle of reflexes
(Brooks 1991).

9. These have been cited and discussed in the target article,
and will not be repeated here. In comparison, I could not discern
the relevance of Gregson’s only reference from neurophysiology
– an fMRI study (Cohen et al. 1996) that lists cortical areas acti-
vated in a mental rotation task – to the issues he raises elsewhere
in his commentary.
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