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We consider some geometric aspects of regular Sturm{Liouville problems. First, we
clarify a natural geometric structure on the space of boundary conditions. This
structure is the base for studying the dependence of Sturm{Liouville eigenvalues on
the boundary condition, and reveals many new properties of these eigenvalues. In
particular, the eigenvalues for separated boundary conditions and those for coupled
boundary conditions, or the eigenvalues for self-adjoint boundary conditions and
those for non-self-adjoint boundary conditions, are closely related under this
structure. Then we give complete characterizations of several subsets of boundary
conditions such as the set of self-adjoint boundary conditions that have a given real
number as an eigenvalue, and determine their shapes. The shapes are shown to be
independent of the di® erential equation in question. Moreover, we investigate the
di® erentiability of continuous eigenvalue branches under this structure, and discuss
the relationships between the algebraic and geometric multiplicities of an eigenvalue.

1. Introduction

A regular Sturm{Liouville problem (SLP) consists of an ordinary di¬erential equa-
tion of the form

(py0)0 + qy = ¶ wy on (a; b) (1.1)

and a complex boundary condition (BC), i.e.

(A j B)

0
BB@

y(a)

(py0)(a)

y(b)

(py0)(b)

1
CCA = 0; (1.2)

where

1 6 a < b 6 1; 1=p; q; w 2 L1((a; b); R);

w 6= 0 almost everywhere on (a; b); (A j B) 2 M ¤
2£4(C);

)

(1.3)

and ¶ 2 C is the so-called spectral parameter. Here, L1((a; b); R) denotes the space
of Lebesgue integrable real functions on (a; b), while M ¤

2£4(C) stands for the set of
2 by 4 matrices over C with rank 2. Each value of ¶ for which the equation (1.1)
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has a non-trivial solution satisfying the BC (1.2) is called an eigenvalue of the SLP
consisting of (1.1) and (1.2), and such a solution is called an eigenfunction for this
eigenvalue.

In this series of papers, we want to address some geometric aspects in the study
of SLPs and their applications. These investigations may serve as the beginning of
interplay between di¬erential geometry and SLPs. A few observations made from
the geometric point of view are quite new, and we believe that they will be proven
important.

In this paper, we  rst clarify a natural geometric structure on the space of com-
plex BCs and on the space of real BCs, i.e. the Grassmann manifold structure. Un-
der this structure, the separated BCs and the coupled ones, or the self-adjoint BCs
and the non-self-adjoint ones, are mutually related, which makes it possible to ob-
tain information about SLPs with BCs of one type from information about SLPs
with BCs of the other type. For example, from the simplicity of the eigenvalues for
separated real BCs, one deduces the simplicity of the eigenvalues in an arbitrary
bounded domain in C for any BC su¯ ciently close to a separated real one. This
geometric structure plays an important role in the complete characterization [7]
of the discontinuity of the nth eigenvalue and a new proof [8] of the inequalities
among eigenvalues established recently in [2]. More applications of similar ®avour
will be given in subsequent papers.

Then we characterize the following subsets of BCs: the set of complex BCs that
have a given complex number ¶ as an eigenvalue of geometric multiplicity 2; the set
of complex BCs that have ¶ as an eigenvalue; the set of real BCs that have a given
real number ¶ as an eigenvalue; the set of self-adjoint complex BCs that have ¶ as
an eigenvalue; and the set of self-adjoint real BCs that have ¶ as an eigenvalue. It
turns out that the  rst set consists of a single coupled BC. This BC varies as ¶
changes to form a complex curve in the space of complex BCs. The part of this curve
corresponding to the real ¶ is called the real characteristic curve of the SLP. Using
the real characteristic curve, it is proved that when p, w > 0 almost everywhere
on (a; b), the eigenvalues for the separated real BCs determine the eigenvalues for
any complex boundary condition. We also  gure out the shapes of the other sets.
It is proved that the shapes do not depend on the concrete di¬erential equation
in question. For example, the set of self-adjoint real BCs that have a real number
¶ as an eigenvalue is always di¬eomorphic to the 2-sphere with two points glued
together. The reason for this phenomenon is the following: these sets are always
images under natural Lie group actions of some sets that are universal to all the
regular SLPs. More geometric information about these sets and its applications will
appear in later papers.

In [5], Kong and Zettl proved the continuous di¬erentiability (with respect to
the BC) of certain continuous eigenvalue branches and obtained formulae for their
di¬erentials in several cases. The third purpose of this paper is to prove the ana-
lyticity of any continuous simple eigenvalue branch under the manifold structure.
Our proof is both elementary and very short. Moreover, the main idea in our proof
is used to show that when w > 0 almost everywhere on (a; b), the algebraic and
geometric multiplicities of an eigenvalue for a separated real BC are equal. This
result and a theorem in [2] together imply that when w > 0 almost everywhere on
(a; b), the algebraic and geometric multiplicities of an eigenvalue for an arbitrary
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self-adjoint BC are always equal. We also give an example to demonstrate that, in
general, the algebraic and geometric multiplicities of an eigenvalue are not equal.

2. Notation and prerequisite results

By a solution to (1.1), we mean a function y on (a; b) such that y and py0 are
absolutely continuous on all compact subintervals of (a; b) and satisfy (1.1) al-
most everywhere. The second condition in (1.3) guarantees that for any solution y
to (1.1), y and py0 are absolutely continuous on the interval (a; b), hence, one can
de ne y(a), (py0)(a), y(b) and (py0)(b) via appropriate limits. Thus, the BC (1.2)
is always well de ned. From now on, we will denote py0 by y[1] for any solution y
to (1.1).

For each ¶ 2 C, let ¿ 11(¢; ¶ ) and ¿ 12(¢; ¶ ) be the solutions to (1.1) determined by
the initial conditions

¿ 11(a; ¶ ) = 1; ¿
[1]
11 (a; ¶ ) = 0; ¿ 12(a; ¶ ) = 0; ¿

[1]
12 (a; ¶ ) = 1: (2.1)

Then any solution to (1.1) is a linear combination of ¿ 11(¢; ¶ ) and ¿ 12(¢; ¶ ). We will
denote ¿

[1]
11 and ¿

[1]
12 by ¿ 21 and ¿ 22, respectively. Set

© (t; ¶ ) =

³
¿ 11(t; ¶ ) ¿ 12(t; ¶ )

¿ 21(t; ¶ ) ¿ 22(t; ¶ )

´
; t 2 [a; b]; ¶ 2 C: (2.2)

Then © (t; ¶ ) satis es the matrix form of (1.1), i.e.

© 0(t; ¶ ) =

³
0 1=p(t)

q(t) ¶ w(t) 0

´
© (t; ¶ ); (2.3)

and © (a; ¶ ) = I . It is known [10] that for each t 2 [a; b], © (t; ¶ ) is an entire matrix
function of ¶ . Moreover, © (t; ¶ ) 2 SL(2; R) for t 2 [a; b] and ¶ 2 R. The following
result says that © (b; ¶ ) determines the eigenvalues of the SLP.

Lemma 2.1. A number ¶ 2 C is an eigenvalue of the Sturm{Liouville problem
consisting of (1.1) and (1.2) if and only if

¢ ( ¶ ) =: det(A + B© (b; ¶ )) = 0: (2.4)

Therefore, either all the complex numbers are eigenvalues, or the eigenvalues are
isolated and do not have an accumulation point in C.

We will call the function ¢ the characteristic function of the SLP. The algebraic
multiplicity (or just multiplicity) of an isolated eigenvalue is the order of the eigen-
value as a zero of ¢ . An eigenvalue is said to be simple if it has multiplicity 1, while
the eigenvalues of multiplicity 2 are called double eigenvalues. When we count the
(isolated) eigenvalues in a domain in C of an SLP, their multiplicities will be taken
into account. The linear space spanned by the eigenfunctions for an eigenvalue is
called the eigenspace for the eigenvalue. The geometric multiplicity of an eigenvalue
is de ned to be the dimension of its eigenspace, which is either 1 or 2. The relation
between the two multiplicities of an eigenvalue will be discussed in x 5. The follow-
ing result is a slight generalization of theorem 3.1 in [5] or theorem 3.2 in [6] applied
to the variation of the BC in an SLP only. It requires a norm k ¢ k on the space
M2£2(C) of 2 by 2 matrices over C and can be proved using Rouch́e’s theorem [1].
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Theorem 2.2. Let N » C be a bounded open set such that its boundary does not
contain any eigenvalue of the Sturm{Liouvil le problem consisting of (1.1) and (1.2),
and n > 0 the number of eigenvalues in N of the problem. Then there exists a ¯ > 0
such that the Sturm{Liouvil le problem consisting of (1.1) and an arbitrary boundary
condition

(C j D)

0
BBB@

y(a)

y[1](a)

y(b)

y[1](b)

1
CCCA = 0 (2.5)

satisfying

kA Ck + kB Dk < ¯ (2.6)

also has exactly n eigenvalues in N .

The following formula has appeared in [2] and can be veri ed directly using the
ordinary di¬erential equation about @ ¶ © (t; ¶ ) derived from (2.3) and the initial
condition @ ¶ © (a; ¶ ) = 0.

@ ¶ © (t; ¶ ) = © (t; ¶ )

³
¬ 12(t; ¶ ) ¬ 22(t; ¶ )

¬ 11(t; ¶ ) ¬ 12(t; ¶ )

´
; (2.7)

where

¬ 11(t; ¶ ) =

Z t

a

¿ 11(s; ¶ ) ¿ 11(s; ¶ )w(s) ds;

¬ 12(t; ¶ ) =

Z t

a

¿ 11(s; ¶ ) ¿ 12(s; ¶ )w(s) ds;

¬ 22(t; ¶ ) =

Z t

a

¿ 12(s; ¶ ) ¿ 12(s; ¶ )w(s) ds:

9
>>>>>>>=

>>>>>>>;

(2.8)

The reality of p, q in (1.1) and © (b; ¶ ) for ¶ 2 R implies the following result.

Lemma 2.3. The non-real eigenvalues for a real boundary condition appear in con-
jugate pairs. Each such pair share the same multiplicity and the same geometric
multiplicity.

BCs that can be written into the form

³
a11 a12 0 0

0 0 b21 b22

´
0
BBB@

y(a)

y[1](a)

y(b)

y[1](b)

1
CCCA = 0 (2.9)

are called separated ones. Any eigenvalue for a separated BC has geometric multi-
plicity 1. A BC that is not separated and not one of the degenerated BCs (actually
the trivial initial conditions)

y(a) = 0 = y[1](a) (2.10)
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and

y(b) = 0 = y[1](b) (2.11)

is called a coupled one. Note that there is no eigenvalue for each of the degener-
ated BCs. The BC (1.2) is said to be self-adjoint if

A

³
0 1

1 0

´
A ¤ = B

³
0 1

1 0

´
B ¤ ; (2.12)

where A ¤ is the complex conjugate transpose of A. The following result is well
known (see [2,10]).

Theorem 2.4. Assume that p, w > 0 almost everywhere on (a; b) and the boundary
condition (1.2) is self-adjoint. Then the Sturm{Liouvil le problem consisting of (1.1)
and (1.2) has an in¯nite number of eigenvalues, and they are real and bounded from
below.

By lemma 2.1 and theorem 2.4, when p, w > 0 almost everywhere on (a; b) and
the BC (1.2) is self-adjoint, the eigenvalues for (1.2) can be ordered to form a
non-decreasing sequence

¶ 0; ¶ 1; ¶ 2; ¶ 3; : : : ; (2.13)

approaching +1 so that the number of times an eigenvalue appears in the sequence
is equal to its multiplicity. Therefore, for each n 2 N0, ¶ n is a function on the space
of self-adjoint SLPs with positive leading coe¯ cient and positive weight.

When w > 0 almost everywhere on (a; b), the eigenvalues for a self-adjoint BC
are always real. Moreover, we have the following result due to M�oller [9].

Theorem 2.5. Assume that w > 0 almost everywhere on (a; b), p changes sign
on (a; b), i.e. both ft 2 (a; b); p(t) > 0g and ft 2 (a; b); p(t) < 0g have posi-
tive Lebesgue measures, and the boundary condition (1.2) is self-adjoint. Then the
eigenvalues of the Sturm{Liouvil le problem consisting of (1.1) and (1.2) are neither
bounded from below nor bounded from above.

Throughout this paper, a capital English letter other than Y stands for a 2 by 2
matrix, while the entrices of the matrix are denoted by the corresponding lower
case letter with two indices.

3. Spaces of boundary conditions

In this section, we discuss a natural geometric structure on spaces of BCs, give the
general continuous dependence of eigenvalues on BC under this geometric structure,
and then present some actions of Lie groups on spaces of BCs.

As mentioned in the introduction, a complex BC is just a system of two linearly
independent homogeneous equations on y(a), y[1](a), y(b) and y[1](b) with complex
coe¯ cients, i.e.

(A j B)

³
Y (a)

Y (b)

´
= 0; (3.1)
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with (A j B) 2 M ¤
2£4(C). Here we have used the notation

Y (t) =

 
y(t)

y[1](t)

!

; t 2 [a; b]: (3.2)

Two systems,

(A j B)

³
Y (a)

Y (b)

´
= 0 and (C j D)

³
Y (a)

Y (b)

´
= 0; (3.3)

represent the same complex BC if and only if there exists a matrix T 2 GL(2; C)
such that

(C j D) = (T A j T B): (3.4)

Thus the space BC of complex BCs is just the quotient space

GL(2; C)nM ¤
2£4(C): (3.5)

The complex BC represented by the system (3.1) will be denoted by [A j B]. For
example, in this notation, the two degenerated BCs (2.10) and (2.11) can be written
as [I j 0] and [0 j I], respectively. Usual bold faced capital English letters will also
be used to denote BCs. We give the space M2£4(C) of 2 by 4 complex matrices the
usual topology on C8, then M ¤

2£4(C) is an open subset of M2£4(C). In this way, BC

inherits a topology, the quotient topology.

Theorem 3.1. The space BC of complex boundary conditions is a connected and
compact complex manifold of complex dimension 4.

Proof. BC is also the space of complex 2-planes in C4 through the origin, so, it is
the well-known Grassmann manifold G2(C4) (see, for example, [3,4]).

For use in the sequel, here we mention that BC has the following canonical atlas
of local coordinate systems:

OC
1 =

»µ
1 0 b11 b12

0 1 b21 b22

¶
; b11; b12; b21; b22 2 C

¼
;

OC
2 =

»µ
1 a12 0 b12

0 a22 1 b22

¶
; a12; a22; b12; b22 2 C

¼
;

OC
3 =

»µ
1 a12 b11 0

0 a22 b21 1

¶
; a12; a22; b11; b21 2 C

¼
;

OC
4 =

»µ
a11 1 0 b12

a21 0 1 b22

¶
; a11; a21; b12; b22 2 C

¼
;

OC
5 =

»µ
a11 1 b11 0

a21 0 b21 1

¶
; a11; a21; b11; b21 2 C

¼
;

OC
6 =

»µ
a11 a12 1 0

a21 a22 0 1

¶
; a11; a12; a21; a22 2 C

¼
;

9
>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>;

(3.6)

the so-called canonical coordinate systems on BC.
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Remark 3.2. Note that BC n f[I j 0]; [0 j I ]g is not compact. This is the reason
for including [I j 0] and [0 j I ] in BC.

Similarly, the space BR of real BCs is just GL(2; R)nM ¤
2£4(R), and we have the

following result.

Theorem 3.3. The space BR of real boundary conditions is a connected and com-
pact analytic manifold of dimension 4.

Remark 3.4. Geometrically, BR is also the space of 2-planes in R4 through the ori-
gin, i.e. the Grassmann manifold G2(R4). It has a canonical atlas fOR

j ; 1 6 j 6 6g
of local coordinate systems, the so-called canonical coordinate systems on BR, whose
de nition is obtained from (3.6) by replacing C by R.

Under the Grassmann manifold structure on BC and BR, the coupled BCs are nat-
urally related to the degenerated BCs and the separated BCs. Using the canonical
coordinate systems on BC and BR, it is easy to determine how close to each other any
two given BCs are. Moreover, by applying theorem 2.2 to each of OC

1 ; OC
2 ; : : : ; OC

6 ,
one deduces the following general version of the continuous dependence of eigen-
values on BC.

Theorem 3.5. Let N » C be a bounded open set whose boundary does not contain
any eigenvalue of the Sturm{Liouvil le problem consisting of (1.1) and (1.2), and
n > 0 the number of the problem’s eigenvalues in N . Then there exists a neigh-
bourhood O of the boundary condition (1.2) in BC such that the Sturm{Liouvil le
problem consisting of (1.1) and an arbitrary boundary condition in O also has ex-
actly n eigenvalues in N .

Remark 3.6. Theorem 3.5 implies that if ¶ ¤ is a simple eigenvalue for a BC
A 2 BC, then there is a continuous function ¤ : O ! C de ned on a connected
neighbourhood O of A in BC such that

(i) ¤ (A) = ¶ ¤ ,

(ii) for any X 2 O, ¤ (X) is a simple eigenvalue for X.

Any two such functions agree on the common part (still a neighbourhood of A
in BC) of their domains. So, by the continuous simple eigenvalue branch through
¶ ¤ we will mean any such function. In general, by a continuous eigenvalue branch
we mean a continuous function ¤ : O ! C de ned on a connected open set O » BC

such that for each A 2 O, ¤ (A) is an eigenvalue for A. The concept of continuous
eigenvalue branch has appeared in [5] and [6].

Remark 3.7. We may restrict our attention to the space BR of real BCs. There
is a result for BR similar to theorem 3.5. Moreover, the concepts of continuous
eigenvalue branch over BR and continuous simple eigenvalue branch over BR have
their clear meanings.

The following result demonstrates the importance of the concept of continuous
simple eigenvalue branch in addition to implying existence of eigenvalues.
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Theorem 3.8. The values of a continuous simple eigenvalue branch over BR are
either all real or all non-real.

Proof. Let ¤ : O ! C be a continuous simple eigenvalue branch over BR. Assume
that ¤ (A1) is real and ¤ (A2) is non-real for some A1, A2 2 O. Consider a path
s 7! A(s) 2 O, 1 6 s 6 2, from A1 to A2. By the continuity of ¤ , ¤ (A(s)) is
non-real for s su¯ ciently close to 2. Without loss of generality, we can assume that
¤ (A(s)) is non-real for any s 2 (1; 2]. Then, for each s 2 (1; 2], both ¤ (A(s)) and
¤ (A(s)) are eigenvalues for A(s). Since the continuity of ¤ also implies that

lim
s ! 1

¤ (A(s)) = ¤ (A1); lim
s ! 1

¤ (A(s)) = ¤ (A1); (3.7)

the multiplicity of ¤ (A1) is at least 2. This is impossible.

The space BR
S of self-adjoint real BCs consists of the separated real BCs

µ
a11 a12 0 0

0 0 b21 b22

¶
(3.8)

and the coupled real BCs of the form [K j I] with K 2 SL(2; R). Thus,

BR
S = f[A j B] 2 BR; det A = det Bg: (3.9)

Theorem 3.9. The space BR
S of self-adjoint real boundary conditions is a connected

and closed analytic three-dimensional submanifold of BR. Therefore, BR
S is also

compact.

Proof. The open subset

BR
S \ OR

6 = f[K j I]; K 2 SL(2; R)g (3.10)

of BR
S consists of the coupled BCs in BR

S and is clearly analytic. The separated BCs
in BR

S are the separated real ones,
µ
1 c 0 0

0 0 1 d

¶
;

µ
1 c 0 0

0 0 0 1

¶
;

µ
0 1 0 0

0 0 1 d

¶
;

µ
0 1 0 0

0 0 0 1

¶
;

(3.11)

where c, d 2 R, and have the neighbourhoods
»µ

1 a12 0 a22

0 a22 1 b22

¶
; a12; a22; b22 2 R

¼
= BR

S \ OR
2 ;

»µ
1 a12 a22 0

0 a22 b21 1

¶
; a12; a22; b21 2 R

¼
= BR

S \ OR
3 ;

»µ
a11 1 0 a21

a21 0 1 b22

¶
; a11; a21; b22 2 R

¼
= BR

S \ OR
4 ;

»µ
a11 1 a21 0

a21 0 b21 1

¶
; a11; a21; b21 2 R

¼
= BR

S \ OR
5

9
>>>>>>>>>>>>=

>>>>>>>>>>>>;

(3.12)

in BR
S , respectively. These neighbourhoods are analytic. So BR

S is an analytic three-
dimensional submanifold of BR.
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Since SL(2; R) is connected and the separated BCs in BR
S can be connected, in

the neighbourhoods given above, to the coupled ones in BR
S , BR

S is connected.
To see BR

S is closed, let f[A(n) j B(n)]g+ 1
n = 1 be a sequence in BR

S such that

[A(n) j B(n)] ! [C j D] 2 BR (3.13)

as n ! +1. Then [C j D] is in OR
j for some j, 1 6 j 6 6, and [A(n) j B(n)] is also

in OR
j when n is su¯ ciently large. Thus we can assume that as n ! +1,

(A(n) j B(n)) ! (C j D) (3.14)

in M2£4(R). Thus, from det A(n) = det B(n), for each n we deduce det C = det D,
i.e. [C j D] 2 BR

S . This completes the proof.

Remark 3.10. BR
S is a compacti cation of SL(2; R).

A complex BC [A j B] is self-adjoint if and only if either [A j B] is real with
det A = det B or [A j B] = [ei³ K j I ] with ³ 2 (0; º ) and K 2 SL(2; R). Equiva-
lently, a complex BC is self-adjoint if and only if it can be written as [z1C j z2D]
for some complex numbers z1, z2 satisfying jz1j = jz2j > 0 and real matrices C, D
satisfying det C = det D.

Theorem 3.11. The space BC
S of self-adjoint complex boundary conditions is a con-

nected, closed and analytic real submanifold of BC and has dimension 4. Therefore,
BC

S is also compact.

Proof. The coupled self-adjoint complex BCs have the neighbourhood

f[ei³ K j I ]; ³ 2 [0; º ); K 2 SL(2; R)g = BC
S \ OC

6 (3.15)

in BC
S ; the separated self-adjoint complex BCs are listed in (3.11) and have the

neighbourhoods
»µ

1 a12 0 ·z

0 z 1 b22

¶
; a12 2 R; z 2 C; b22 2 R

¼
= BC

S \ OC
2 ;

»µ
1 a12 ·z 0

0 z b21 1

¶
; a12 2 R; z 2 C; b21 2 R

¼
= BC

S \ OC
3 ;

»µ
a11 1 0 ·z

z 0 1 b22

¶
; a11 2 R; z 2 C; b22 2 R

¼
= BC

S \ OC
4 ;

»µ
a11 1 ·z 0

z 0 b21 1

¶
; a11 2 R; z 2 C; b21 2 R

¼
= BC

S \ OC
5

9
>>>>>>>>>>>>=

>>>>>>>>>>>>;

(3.16)

in BC
S , respectively. These neighbourhoods are real analytic. Thus BC

S is an analytic
real submanifold of BC and has dimension 4.

Since each non-real self-adjoint BC can be connected, in the neighbourhood given
in (3.15), to a self-adjoint real BC, and the space BR

S of self-adjoint real BCs is
connected, BC

S is connected.
To see BC

S is closed, let f[An j Bn]g + 1
n = 1 be a sequence in BC

S that converges to
[A ¤ j B¤ ] 2 BC. Without loss of generality, we can assume

[A ¤ j B ¤ ] = [I j C ] 2 OC
1 : (3.17)
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Then, for su¯ ciently large n, [An j Bn] 2 OC
1 , and hence

[An j Bn] = [I j e i³ n Dn] (3.18)

for some ³ n 2 [0; º ) and Dn 2 SL(2; R). The convergence of f[An j Bn]g+ 1
n = 1 implies

that

e i³ n Dn ! C (3.19)

in M2£2(C) as n ! +1. So, fDng + 1
n = 1 is bounded in SL(2; R). Hence, by using

subsequences if necessary, we can assume that fei³ n g+ 1
n = 1 converges in C, say to ei³ ¤

with ³ ¤ 2 [0; º ], and fDng + 1
n = 1 converges in SL(2; R), say to D ¤ . Therefore,

[A ¤ j B ¤ ] = [I j e i³ ¤ D ¤ ] 2 BC
S : (3.20)

This completes the proof.

Note that BC
S is not a complex submanifold of BC. It is interesting to  nd out if

BC
S has a complex structure compatible with its di¬erential structure.
We will also use the concepts of continuous eigenvalue branch over BC

S and con-
tinuous eigenvalue branch over BR

S . Combining the reality of the eigenvalues for a
self-adjoint BC when w > 0 almost everywhere on (a; b), and theorem 3.5, yields
the following result.

Theorem 3.12. Assume that w > 0 almost everywhere on (a; b) and the boundary
condition (1.2) is self-adjoint. Let r1 and r2, r1 < r2, be any two real numbers such
that neither of them is an eigenvalue of the Sturm{Liouvil le problem consisting
of (1.1) and (1.2), and n > 0 the number of eigenvalues in the interval (r1; r2) of
the problem. Then there exists a neighbourhood O of the boundary condition (1.2)
in BC

S such that the Sturm{Liouvil le problem consisting of (1.1) and an arbitrary
boundary condition in O also has exactly n eigenvalues in (r1; r2).

Remark 3.13. Assume that w > 0 almost everywhere on (a; b). Let ¶ ¤ be an
eigenvalue for a BC A 2 BC

S and n its multiplicity. Pick a small ° > 0 such that A
has only n eigenvalues in the interval [ ¶ ¤ ° ; ¶ ¤ + ° ]. Then, by theorem 3.12, there
is a connected neighbourhood O of A in BC

S such that each BC in O has only n
eigenvalues in ( ¶ ¤ ° ; ¶ ¤ + ° ). Thus there are continuous functions ¤ 1; : : : ; ¤ n :
O ! C de ned on O such that

(i) ¤ 1(A) = ¢ ¢ ¢ = ¤ n(A) = ¶ ¤ ,

(ii) ¤ 1(X) 6 ¢ ¢ ¢ 6 ¤ n(X) for any X 2 O,

(iii) for each X 2 O; ¤ 1(X); : : : ; ¤ n(X) are eigenvalues for X.

We will see that n 6 2 and when n = 2, these are actually di¬erent functions on O
and locally they are the only continuous eigenvalue branches over BC

S through ¶ ¤
(see remark 5.7).

Remark 3.14. There hold results for BR
S similar to theorem 3.12 and remark 3.13.
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For use in the sequel, we mention that the set T of all separated real BCs can
be written as

T =

»µ
cos ¬ sin ¬ 0 0

0 0 cos  sin 

¶
; ¬ 2 R¯

( º Z);  2 R¯
( º Z)

¼
(3.21)

and geometrically is a smooth torus (in BR
S , BC

S , BR and BC). The diagonal circle
in T will always be denoted by C , i.e.

C =

»µ
cos ¬ sin ¬ 0 0

0 0 cos ¬ sin ¬

¶
; ¬ 2 R

¯
( º Z)

¼
: (3.22)

To end this section, let us discuss some group actions on spaces of BCs. Given
³

G H

K L

´
2 GL(4; R); (3.23)

where G, H , K, L 2 M2£2(R), the well-de ned map

[A j B] 7! [AG + BK j AH + BL] (3.24)

is a di¬eomorphism of BR (onto itself). Thus the group GL(4; R) acts on BR from
the right. In particular, the subgroup

»³
G 0

0 L

´
; G; L 2 SL(2; R)

¼
(3.25)

of GL(4; R) actually acts on BR
S as onto di¬eomorphisms and also on T as onto

di¬eomorphisms. Moreover, for any G 2 GL(2; R), the action of

diag(G; I) =:

³
G 0

0 I

´
(3.26)

on BR leaves OR
6 and T invariant; and for any ª 2 SL(2; R), the action of diag(ª ; I)

on BR
S leaves the open and dense subset BR

S \ OR
6 of BR

S invariant. When there is
no confusion, the image of a real BC [A j B] under the action of diag(G; I) will be
abbreviated as [A j B]°G, while the image of a subset S of BR will be written as
S°G.

Similarly, the group GL(4; C) acts on BC from the right, the subgroup

fdiag(zG; H); z 2 C; jzj = 1; G; H 2 SL(2; R)g (3.27)

of GL(4; C) acts on BC
S , and the notations [A j B]°zG, S°zG have their obvious

meanings.
Note that from above, T°G = T for any G 2 SL(2; R). Moreover, there holds the

following basic fact.

Proposition 3.15. If G and H are in SL(2; R), then C °G = C °H if and only if
G = §H.

Proof. The fact is equivalent to the claim that if G is in SL(2; R), then C °G = C if
and only if G = §I. The latter can be proved as follows. Let G 2 SL(2; R), then
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C °G = C if and only if

(g12 g21) + (g12 + g21) cos(2¬ ) + (g22 g11) sin(2 ¬ ) = 0 on [0; º ); (3.28)

which, together with G 2 SL(2; R), amount to G = §I .

4. Characteristic curve and ¸-surfaces

In this section, we will characterize the set of complex BCs that have a complex
number ¶ as an eigenvalue of geometric multiplicity 2, the set of complex BCs
that have ¶ as an eigenvalue, the set of real BCs that have a real number ¶ as an
eigenvalue, the set of self-adjoint complex BCs that have ¶ as an eigenvalue and the
set of self-adjoint real BCs that have ¶ as an eigenvalue. Some direct applications
using these sets are presented. We also give a  rst geometric description of each of
these sets when it is not a point.

Theorem 4.1. Let ¶ be a complex number. Then, among all the complex boundary
conditions, [© (b; ¶ ) j I] is the unique one that has ¶ as an eigenvalue of geometric
multiplicity 2.

Proof. A complex BC [A j B] has ¶ as an eigenvalue of geometric multiplicity 2 if
and only if

A = B© (b; ¶ ); (4.1)

which implies that [A j B] is not a separated complex BC and that det B 6= 0: if
det B = 0, i.e. if the two rows of B are linearly dependent, then we can assume
that the second row of B is 0, and hence the second row of A is also 0, which is
impossible. So, the only BC that has ¶ as an eigenvalue of geometric multiplicity 2
is the one [© (b; ¶ ) j I ].

Definition 4.2. We will call the complex curve

¶ 7! [© (b; ¶ ) j I ]; ¶ 2 C (4.2)

in OC
6 » BC the complex characteristic curve or characteristic surface for the equa-

tion (1.1) and denote it by DC, while the analytic real curve

¶ 7! [© (b; ¶ ) j I ]; ¶ 2 R (4.3)

in BR
S \ OR

6 » BR will be called the real characteristic curve for the equation and
given the notation DR.

Theorem 4.1 implies that any complex BC not on DC only has eigenvalues of geo-
metric multiplicity 1. Note that BC has complex dimension 4, while DC » BC is just
an analytic subset of complex dimension 1. So, it is very rare for a complex BC to
have an eigenvalue of geometric multiplicity 2. Moreover, since BC

S has dimension 4
(even BR

S has dimension 3) and DR » BR
S » BC

S is only a one-dimensional analytic
subset, it is also very rare for a self-adjoint complex BC (even a self-adjoint real BC)
to have an eigenvalue of geometric multiplicity 2.
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Next, we want to determine all the complex BCs that have a  xed ¶ 2 C as an
eigenvalue. Let EC

¶ be the set of these BCs, i.e.

EC
¶ = f[A j B] 2 BC; det(A + B© (b; ¶ )) = 0g: (4.4)

Then ER
¶ has its obvious meaning and, when ¶ 2 R,

ER
¶ = ER

° © (b; ¶ )

= f[A© (b; ¶ ) j B]; [A j B] 2 ERg
= f[A j B© (b; ¶ ) 1]; [A j B] 2 ERg; (4.5)

where

ER = f[A j B] 2 BR; det(A + B) = 0g: (4.6)

Direct calculations yield

ER =

»µ
¹ cos ½ + 1 ¹ sin ½ 1 0

² cos ½ ² sin ½ + 1 0 1

¶
; ¹ ; ² 2 R; ½ 2 R¯

( º Z)

¼

[
»µ

1 0 ¹ cos ½ 1 ¹ sin ½

0 1 ² cos ½ ² sin ½ 1

¶
;

¹ ; ² 2 R; ½ 2 R¯
( º Z);

1 ¹ cos ½ ² sin ½ = 0

¼

[
»µ

cos ½ sin ½ 0 0

0 0 cos ½ sin ½

¶
; ½ 2 R

¯
( º Z)

¼

=

»µ
¹ cos ½ + 1 ¹ sin ½ 1 0

² cos ½ ² sin ½ + 1 0 1

¶
;

¹ ; ² 2 R; ½ 2 R¯
( º Z);

1 + ¹ cos ½ + ² sin ½ = 0

¼

[
»µ

1 0 ¹ cos ½ 1 ¹ sin ½

0 1 ² cos ½ ² sin ½ 1

¶
; ¹ ; ² 2 R; ½ 2 R

¯
( º Z)

¼

[
»µ

cos ½ sin ½ 0 0

0 0 cos ½ sin ½

¶
; ½ 2 R

¯
( º Z)

¼
: (4.7)

Similarly, for ¶ 2 C,

EC
¶ = EC

° © (b; ¶ )

= f[A© (b; ¶ ) j B]; [A j B] 2 ECg
= f[A j B© (b; ¶ ) 1]; [A j B] 2 ECg; (4.8)

where

EC = f[A j B] 2 BC; det(A + B) = 0g

=

»µ
¹ z1 + 1 ¹ z2 1 0

² z1 ² z2 + 1 0 1

¶
; ¹ ; ² 2 C; (z1; z2) 2 CP1

¼

[
»µ

1 0 ¹ z1 1 ¹ z2

0 1 ² z1 ² z2 1

¶
;

¹ ; ² 2 C; (z1; z2) 2 CP1;

1 ¹ z1 ² z2 = 0

¼

[
»µ

z1 z2 0 0

0 0 z1 z2

¶
; (z1; z2) 2 CP1

¼
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=

»µ
¹ z1 + 1 ¹ z2 1 0

² z1 ² z2 + 1 0 1

¶
;

¹ ; ² 2 C; (z1; z2) 2 CP1;

1 + ¹ z1 + ² z2 = 0

¼

[
»µ

1 0 ¹ z1 1 ¹ z2

0 1 ² z1 ² z2 1

¶
; ¹ ; ² 2 C; (z1; z2) 2 CP1

¼

[
»µ

z1 z2 0 0

0 0 z1 z2

¶
; (z1; z2) 2 CP1

¼
; (4.9)

CP1 = (C2) ¤
= ¹ with (C2) ¤ = C2 n f(0; 0)g and the equivalence relation ¹ being

de ned as follows: (z1; z2) ¹ (z3; z4) if (z1; z2) = k(z3; z4) for some k 2 C. Therefore,
we have proven the following result.

Theorem 4.3.

(i) The characteristic surface determines all the eigenvalues for each complex
boundary condition in the explicit manner given in (4.8) and (4.9); the real
characteristic curve determines all the real eigenvalues for each real boundary
condition in the explicit manner given in (4.5){(4.7).

(ii) Each EC
¶ is the image of EC under a di® eomorphism of BC given by a Lie

group action, which sends ER to the corresponding ER
¶ when ¶ is real.

Remark 4.4. From the point of view of di¬erential topology, the subsets EC
¶ , ¶ 2 C,

of BC are the same as EC, and the subsets ER
¶ , ¶ 2 R, of BR are the same as ER.

This means that the shapes of the sets EC
¶ and ER

¶ do not depend on the actual
di¬erential equation in question.

Remark 4.5. The subsets ER
¶ , ¶ 2 R, of BR and EC

¶ , ¶ 2 C, of BC are solely deter-
mined by © (b; ¶ ), and no more information about the equation is needed. Moreover,
the way in which © (b; ¶ ) determines ER

¶ or EC
¶ is independent of the equation in

question. In other words, the eigenvalues of the complex BCs are determined by
the equation via an intermediate and geometric object|the characteristic surface
DC, and the real eigenvalues of the real BCs are determined by the equation also
via an intermediate and geometric object|the real characteristic curve DR. This
observation implies the following result.

Corollary 4.6.

(i) Let ¶ ¤ and ¶ # be two complex numbers. If there is a complex boundary con-
dition having ¶ ¤ and ¶ # as eigenvalues of geometric multiplicity 2, then any
complex boundary condition having one of ¶ ¤ and ¶ # as an eigenvalue must
have both of them as eigenvalues. Moreover, the converse holds: if every com-
plex boundary condition having one of ¶ ¤ and ¶ # as an eigenvalue actually
has both of them as eigenvalues, then there is a complex boundary condition
having both ¶ ¤ and ¶ # as eigenvalues of geometric multiplicity 2.

(ii) The results in (i) stil l hold if only real boundary conditions and real eigenval-
ues are considered.

For example, for the Fourier equation y00 = ¶ y on [0; 1], any complex BC
having one of (2 º )2; (4º )2; (6 º )2; : : : ; as an eigenvalue must have all of them
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as eigenvalues, and any complex BC having one of º 2; (3 º )2; (5 º )2; : : : ; as an
eigenvalue must have all of them as eigenvalues. This is because the BC [I j I]
has (2º )2; (4 º )2; (6 º )2; : : : ; as eigenvalues of geometric multiplicity 2 and the BC
[ I j I] has º 2; (3 º )2; (5 º )2; : : : ; as eigenvalues of geometric multiplicity 2. Of
course, the complex BCs having (2 º )2; (4 º )2; (6º )2; : : : ; as eigenvalues are pre-
cisely the ones in EC, while the BCs having º 2; (3 º )2; (5 º )2; : : : ; as eigenvalues are
exactly the ones in EC

°( I).

Remark 4.7. Theorem 4.3 raises the following question: how can one determine
the di¬erential equation (1.1), i.e. its coe¯ cient functions p, q and its weight func-
tion w, using the geometric properties of the real characteristic curve? We will come
back to this topic in a later paper.

Remark 4.8. Since each EC
¶ is an algebraic variety in BC = G4;2(C), the converse

in corollary 4.6 holds under a weaker assumption. Moreover, if G1 and G2 are in
SL(2; R), then the intersection of EC

°G1 and EC
°G2 is generically of real dimen-

sion 5; : : : ; if G1, : : : , and G8 are in SL(2; R), then the intersection of EC
°G1,

: : : , and EC
°G8 is generically empty. Thus, given an equation, it is very `rare’ for a

 xed set of eight real numbers to be eigenvalues of a complex BC at the same time.
Similarly, given an equation it is also very `rare’ for a  xed set of  ve real numbers
to be eigenvalues of a real BC at the same time. The following result clearly has a
®avour along these lines.

Theorem 4.9. Assume that p, w > 0 almost everywhere on (a; b). Then the eigen-
values of the separated real boundary conditions determine the real characteristic
curve and, hence, the eigenvalues for every complex boundary condition.

Proof. Assume that we know the eigenvalues of each BC in T , i.e. we know the
circle ER

¶ \ T in T for every ¶ 2 R. By (4.5) and (4.7), for each ¶ 2 R, © (b; ¶ ) is
among the elements ª of SL(2; R) such that

ER
¶ \ T = C ° ª : (4.10)

Thus, proposition 3.15 says that for any ¶ 2 R, the circle ER
¶ \ T in T determines

© (b; ¶ ) up to a sign. Since the real characteristic curve DR is analytic, the family

fER
¶ \ T g ¶ 2 R (4.11)

of circles in T determines the whole curve DR globally up to a sign. On the other
hand, by theorem 3.1 in [2], the entries of © (b; ¶ ) are always positive when ¶ is
su¯ ciently negative. Therefore, the family (4.11) actually determines the whole
DR uniquely. Since © (b; ¶ ) is an entire matrix function of ¶ , DR determines the
characteristic surface DC, and hence the eigenvalues of every complex BC.

Remark 4.10. By theorem 4.9, there is a duality between the family (4.11) of
circles in T and the real characteristic curve in BR

S \ OR
6 .

Now, let us look at some geometric aspects of the sets EC
¶ » BC, ¶ 2 C, and

ER
¶ » BR, ¶ 2 R. For this purpose, we only need to look at EC and ER, by (4.5)

and (4.8). On the way to achieve this purpose, we will use the concept of bottles :
for a manifold M , an M -bottle is a singular quotient space N that one obtains
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from M £ [0; 1] via modelling M £ f0g by an equivalence relation on M to form a
subset of N containing the singular points of N and modelling M £ f1g by another
equivalence relation on M to form a (smooth) submanifold of N .

Proposition 4.11.

(i) The set ER is a singular submanifold of BR of dimension 3. Its only singular
point is the boundary condition [I j I ] and its tangent fan there is generated
by the torus

»³
cos ¼ + cos ½ sin ¼ sin ½ 0 0

sin ¼ + sin ½ cos ½ cos ¼ 0 0

´
; ¼ ; ½ 2 R

¯
(2 º Z)

¼
(4.12)

in T[Ij I] OR
6 . Moreover, ER is a torus-bottle with a point top and a torus

bottom, while the map gluing its side to its bottom is the restriction to the
torus

f(x1; x2; x3; x4) 2 R4; x2
1 + x2

2 = x2
3 + x2

4 = 1
2
g » S3 (4.13)

of the natural projection from S3 to RP3 when this torus is regarded as the
side torus.

(ii) The set EC is a singular complex submanifold of BC of complex dimension 3.
Its only singular point is the boundary condition [I j I] and its tangent fan
there is generated by the manifold

S3 £ S2 =

»³
z1 z2 0 0

² z1 ² z2 0 0

´
;

z1; z2; ² 2 C; j ² j 6 1;

(1 + j² j2)(jz1j2 + jz2j2) = 1

¼

[
»³

± z3 ± z4 0 0

z3 z4 0 0

´
;

z3; z4; ± 2 C; j ± j < 1;

(1 + j± j2)(jz3j2 + jz4j2) = 1

¼
(4.14)

in T[Ij I] OC
6 . Moreover, EC is an (S3 £ S2)-bottle with a point top and an

S2 £ S2 bottom, while the map gluing its side S3 £ S2 to its bottom S2 £ S2 is
the Hopf ¯bration from S3 to S2 times the identity map from S2 to S2.

Proof. Here we only prove part (i), while part (ii) can be proved similarly.
De ne a function f : OR

6 ! R by

f ([A j I ]) = (a11 1)(a22 1) a12a21: (4.15)

Then ER \ OR
6 is the zero set of f and the gradient rf of f has length

krfk([A j I]) =
q

(a22 1)2 + a2
21 + a2

12 + (a11 1)2; (4.16)

which is never zero away from [I j I]. This proves the smoothness of ER at its
points in OR

6 n f[I j I ]g. Similarly, ER is smooth at its points in OR
1 n f[I j I ]g.

Since ER n (OR
6 [ OR

1 ) = C » OR
2 [ OR

5 , to see the smoothness of ER at these points
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we only need to notice that

ER \ OR
2 =

»µ
1 a12 0 b12

0 a22 1 b22

¶
;

a12; a22; b12; b22 2 R;

a12 + a22 + b12 + b22 = 0

¼
;

ER \ OR
5 =

»µ
a11 1 b11 0

a21 0 b21 1

¶
;

a11; a21; b11; b21 2 R;

a11 + a21 + b11 + b21 = 0

¼
:

9
>>>=

>>>;
(4.17)

Hence ER n f[I j I]g is a three-dimensional submanifold of BR. There are curves
in ER through [I j I ] yielding the four linearly independent tangent vectors

³
1 0 0 0

0 0 0 0

´
;

³
0 1 0 0

0 0 0 0

´
;

³
0 0 0 0

1 0 0 0

´
;

³
0 0 0 0

0 1 0 0

´
2 T[Ij I] OR

6

(4.18)

of ER at [I j I]. Thus E is singular at [I j I ].
For each ¹ > 0, the set

f[A j I] 2 ER; (a11 1)2 + a2
12 + a2

21 + (a22 1)2 = 4 ¹ 2g (4.19)

of points in ER \ OR
6 having distance 2 ¹ to [I j I ] can be written as

f[K( ¹ ; ¼ ; ½ ) j I ]; ¼ ; ½ 2 R¯
(2 º Z)g; (4.20)

where

K( ¹ ; ¼ ; ½ ) =

³
¹ (cos ¼ + cos ½ ) + 1 ¹ (sin ¼ sin ½ )

¹ (sin ¼ + sin ½ ) ¹ (cos ½ cos ¼ ) + 1

´
; (4.21)

and hence is always a smooth torus. Thus the tangent fan of ER at [I j I] is
generated by the torus in (4.12).

Using the functions g, h : OR
1 ! R de ned by

g([I j B]) = (b11 + 1)(b22 + 1) b12b21; h([I j B]) = b11b22 b12b21 (4.22)

for B 2 M2£2(R), we can show that (ER n OR
6 ) \ OR

1 is a two-dimensional subman-
ifold of BR and, hence, of ER. Since ER n (OR

6 [ OR
1 ) = C » OR

2 [ OR
5 again, to see

the smoothness of ER n OR
6 at these points we only need to notice that

(ER n OR
6 ) \ OR

2 =

»µ
1 a12 0 0

0 a22 1 b22

¶
;

a12; a22; b22 2 R;

a12 + a22 + b22 = 0

¼
;

(ER n OR
6 ) \ OR

5 =

»µ
a11 1 0 0

a21 0 b21 1

¶
;

a11; a21; b21 2 R;

a11 + a21 + b21 = 0

¼
:

9
>>>=

>>>;
(4.23)

Thus ER n OR
6 is a two-dimensional submanifold of ER and, hence, is the limit set of

the subset in (4.20) of ER \ OR
6 as ¹ ! +1. Therefore, ER n OR

6 is a quotient space
of a torus and ER is a torus-bottle with ER n OR

6 as its bottom.
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If cos ½ 6= 0, then 2¹ cos ½ + 1 6= 0 for su¯ ciently large ¹ and

[K( ¹ ; ¼ ; ½ ) j I ] =

2

664
1 0

¹ (cos ½ cos ¼ ) + 1

2 ¹ cos ½ + 1

¹ (sin ¼ sin ½ )

2 ¹ cos ½ + 1

0 1
¹ (sin ¼ + sin ½ )

2 ¹ cos ½ + 1

¹ (cos ¼ + cos ½ ) + 1

2 ¹ cos ½ + 1

3

775

!

2

64
1 0

cos ¼ cos ½

2 cos ½

sin ¼ sin ½

2 cos ½

0 1
sin ¼ + sin ½

2 cos ½

cos ¼ + cos ½

2 cos ½

3

75 as ¹ ! +1; (4.24)

if cos ½ = 0 and cos ¼ 6= 0, then sin ½ = §1 and

[K( ¹ ; ¼ ; ½ ) j I ] =

µ
¹ cos ¼ + 1 ¹ (sin ¼ ¨ 1) 1 0

¹ (sin ¼ § 1) ¹ cos ¼ + 1 0 1

¶

=

µ
cos ¼ + 1=¹ sin ¼ ¨ 1 1=¹ 0

0 1=¹ sin ¼ § 1 cos ¼ 1=¹

¶

!
µ
cos ¼ sin ¼ ¨ 1 0 0

0 0 sin ¼ § 1 cos ¼

¶

=

µ
cos ¼ sin ¼ ¨ 1 0 0

0 0 cos ¼ (sin ¼ ¨ 1)

¶
as ¹ ! +1;

(4.25)

if cos ½ = cos ¼ = 0, then either

[K( ¹ ; ¼ ; ½ ) j I ] =

µ
1 0 1 0

§2 ¹ 1 0 1

¶
=

µ
1 0 1 0

1 §1=2¹ 0 ¨1=2 ¹

¶

!
µ
1 0 1 0

1 0 0 0

¶
=

µ
1 0 0 0

0 0 1 0

¶
as ¹ ! +1 (4.26)

or

[K( ¹ ; ¼ ; ½ ) j I ] =

µ
1 ¨2¹ 1 0

0 1 0 1

¶
=

µ
¨1=2¹ 1 §1=2 ¹ 0

0 1 0 1

¶

!
µ
0 1 0 0

0 1 0 1

¶
=

µ
0 1 0 0

0 0 0 1

¶
as ¹ ! +1: (4.27)

Hence two distinct rays

f[K( ¹ ; ¼ 1; ½ 1) j I ]; ¹ > 0g and f[K( ¹ ; ¼ 2; ½ 2) j I ]; ¹ > 0g (4.28)

go to the same limit as ¹ ! +1 if and only if

1p
2

(cos ¼ 1; sin ¼ 1; cos ½ 1; sin ½ 1) =
1p
2

(cos ¼ 2; sin ¼ 2; cos ½ 2; sin ½ 2): (4.29)

Therefore, the bottom ER n OR
6 is di¬eomorphic to a torus in RP3, and when it is

identi ed with this torus, the map gluing ER \ OR
6 to the bottom ER n OR

6 is the
restriction of the natural projection from S3 to RP3.
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Finally, let us look at the set SC
¶ of all self-adjoint complex BCs that have a

given ¶ as an eigenvalue and the set SR
¶ of all self-adjoint real BCs that have ¶

as an eigenvalue. They will be called the ¶ -solid (in BC
S) and ¶ -surface (in BR

S),
respectively. Note that

SC
¶ = EC

¶ \ BC
S ; SR

¶ = ER
¶ \ BR

S ; (4.30)

and that if we set

SC = f[A j B] 2 BC
S ; det(A + B) = 0g;

SR = f[A j B] 2 BR
S ; det(A + B) = 0g;

)

(4.31)

then

SC
¶ = SC

° © (b; ¶ ) = f[A j B© (b; ¶ ) 1]; [A j B] 2 SCg;

SR
¶ = SR

° © (b; ¶ ) = f[A j B© (b; ¶ ) 1]; [A j B] 2 SRg:

)

(4.32)

Moreover, direct calculations yield

SC =

»µ
ei³ â( ³ ; a12; a21) ei ³ a12 1 0

ei ³ a21 ei³ ~a( ³ ; a12; a21) 0 1

¶
;

³ 2 R¯
( º Z); a12; a21 2 R; a12a21 6 sin2 ³

¼
[ C ;

SR =

»µ
1 §

p
a12a21 a12 1 0

a21 1 ¨
p

a12a21 0 1

¶
;

a12; a21 2 R; a12a21 6 0

¼
[ C ;

9
>>>>>>>>>>=

>>>>>>>>>>;

(4.33)

where

â( ³ ; a12; a21) = cos ³ §
q

sin2 ³ a12a21;

~a( ³ ; a12; a21) = cos ³ ¨
q

sin2 ³ a12a21:

9
>=

>;
(4.34)

In the following proposition, by a collapsed torus we mean a singular surface ob-
tained from a torus by shrinking exactly one position of the revolving circle of the
torus to a point, the only singular point of the surface. A collapsed torus is also
a sphere with two points glued together. Moreover, we also mention that for each
point [K j I ] of BR

S \ OR
6 , the tangent space T[Kj I] BR

S » T[Kj I] OR
6 of BR

S at
[K j I] can be written as

T[Kj I] BR
S =

»
1p
2

³
¬  + ® 0 0

 ® ¬ 0 0

´
K; ¬ ;  ; ® 2 R

¼
; (4.35)

and for each [ei³ K j I ] 2 BC
S \ OC

6 ,

T[ei³ Kj I] BC
S =

»
ei ³

p
2

³
¬ + ī  + ® 0 0

 ® ¬ + ī 0 0

´
K; ¬ ;  ; ® ; ¯ 2 R

¼

» T[ei³ Kj I] OC
6 : (4.36)
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Theorem 4.12.

(i) For each ¶ 2 R, the ¶ -solid SC
¶ is the image of SC under the left action of

© (b; ¶ ) on BC
S, and the action sends SR to the ¶ -surface SR

¶ .

(ii) For each ¶ 2 R, the ¶ -surface SR
¶ in BR

S is a collapsed torus with the collapsed
point being [ © (b; ¶ ) j I ] and the tangent cone there being the cone

»
¹

³
cos ¼ sin ¼ + 1 0 0

sin ¼ 1 cos ¼ 0 0

´
© (b; ¶ ); ¹ 2 R; ¼ 2 R

¯
(2º Z)

¼
(4.37)

in T[© (b;¶ )j I] BR
S » T[© (b;¶ )j I] OR

6 .

(iii) For each ¶ 2 R, the ¶ -solid SC
¶ is a 3-sphere with two points (on the 2-sphere

corresponding to SR
¶ ) glued together to become the point [ © (b; ¶ ) j I] and its

tangent cone there is the cone

»
¹

³
cos ½ cos ¼ + i sin ½ cos ½ sin ¼ + 1 0 0

cos ½ sin ¼ 1 cos ½ cos ¼ + i sin ½ 0 0

´
© (b; ¶ );

¹ 2 R; ½ 2 R¯
( º Z); ¼ 2 R¯

(2 º Z)

¼
(4.38)

in T[© (b;¶ )j I] BC
S » T[© (b;¶ )j I] OC

6 .

Proof. We only need to prove parts (ii) and (iii) for SR and SC, respectively.
By (4.20), there holds

SR = f[I j I ]g [ f[K( ¹ ; ¼ ) j I]; ¹ 2 R; ¹ 6= 0; ½ 2 R¯
(2 º Z)g [ C ; (4.39)

where

K( ¹ ; ¼ ) =

³
1 + ¹ cos ¼ ¹ sin ¼ + ¹

¹ sin ¼ ¹ 1 ¹ cos ¼

´
: (4.40)

So, SR is smooth away from [I j I] and C , it is singular at [I j I], and its tangent
cone at [I j I ] is given by (4.37) with © (b; ¶ ) removed. To see the smoothness of
SR at the points in C , we only need to notice that

SR \ OR
2 =

»µ
1 x1 x2 0 x2

0 x2 1 x1 x2

¶
; x1; x2 2 R

¼
;

SR \ OR
5 =

»µ
x1 + x2 1 x1 0

x1 0 x1 x2 1

¶
; x1; x2 2 R

¼
:

9
>>>=

>>>;
(4.41)

Note that the circle C can be written as
»µ

1 sin ¬ cos ¬ 0 0

0 0 sin ¬ 1 cos ¬

¶
; ¬ 2 ( 1

2 º ; 5
2 º )

¼
[ fNg; (4.42)

where N denotes the Neumann{Neumann BC, or as
»µ

cos ¬ 1 + sin ¬ 0 0

0 0 cos ¬ 1 sin ¬

¶
; ¬ 2 ( 1

2 º ; 3
2 º )

¼
[ fDg; (4.43)
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where D stands for the Dirichlet{Dirichlet BC. The BC [K( ¹ ; ¼ ) j I ] is close to a
separated BC if and only if j¹ j is su¯ ciently large. When ¼ 2 ( 1

2
º ; 5

2
º ),

[K( ¹ ; ¼ ) j I ] =

µ
1 sin ¼ cos ¼ 1=¹ 0 1=¹

0 1=¹ sin ¼ 1 cos ¼ 1=¹

¶

!
µ
1 sin ¼ cos ¼ 0 0

0 0 sin ¼ 1 cos ¼

¶
(4.44)

as j ¹ j ! +1; and when ¼ 2 ( 1
2 º ; 3

2 º ),

[K( ¹ ; ¼ ) j I ] =

µ
1=¹ + cos ¼ sin ¼ + 1 1=¹ 0

1=¹ 0 1=¹ cos ¼ sin ¼ 1

¶

!
µ
cos ¼ 1 + sin ¼ 0 0

0 0 cos ¼ 1 sin ¼

¶
(4.45)

as j ¹ j ! +1. Thus the circle

f[K( ¹ ; ¼ ) j I ]; ¼ 2 R
¯

(2 º Z)g; (4.46)

where ¹ 6= 0, in SR n C uniformly approaches the circle C as ¹ ! +1 or 1, and
hence SR is a collapsed torus.

Using the function f de ned on BC
S \ OC

6 by

f([ei³ K j I]) = (k11 + k22)e i ³ e 2i ³ (4.47)

if ³ 2 R¯
( º Z) and K 2 SL(2; R), one can prove that SC is smooth away from

[I j I ] and C , since that part of SC is a level set of f and the gradient of f never
vanishes there. To see the smoothness of SC at the points in C , we only need to
notice that

SC \ OC
2 =

»µ
1 a12 0 ·z

0 z 1 b22

¶
;

a12 2 R; z 2 C; b22 2 R;

a12 + z + ·z + b22 = 0

¼
;

SC \ OC
5 =

»µ
a11 1 ·z 0

z 0 b21 1

¶
;

a11 2 R; z 2 C; b21 2 R;

a11 + z + ·z + b21 = 0

¼
:

9
>>>=

>>>;
(4.48)

For each ¹ > 0, the set of points in SC \ OC
6 having distance 2 ¹ to [I j I] can be

written as

f[ei³ K + ( ¹ ; ¼ ; ³ ) j I]; ¼ 2 R
¯

(2 º Z); ³ 2 [0; º ); sin ³ 6 ¹ g

[ f[ei³ K ( ¹ ; ¼ ; ³ ) j I]; ¼ 2 R¯
(2 º Z); ³ 2 [0; º ); sin ³ 6 ¹ g; (4.49)

where

K + ( ¹ ; ¼ ; ³ ) =

³
cos ³ +

p
¹ 2 sin2 ³ cos ¼

p
¹ 2 sin2 ³ sin ¼ + ¹p

¹ 2 sin2 ³ sin ¼ ¹ cos ³
p

¹ 2 sin2 ³ cos ¼

´
;

K ( ¹ ; ¼ ; ³ ) =

³
cos ³

p
¹ 2 sin2 ³ cos ¼

p
¹ 2 sin2 ³ sin ¼ ¹p

¹ 2 sin2 ³ sin ¼ + ¹ cos ³ +
p

¹ 2 sin2 ³ cos ¼

´
:

9
>>>>=

>>>>;

(4.50)
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Thus SC is singular at [I j I ] and its tangent cone there is the one given in (4.38)
with © (b; ¶ ) removed. As in the last paragraph, for every ³ 2 [0; º ),

[ei³ K + ( ¹ ; ¼ ; ³ ) j I ] !
µ
1 sin ¼ cos ¼ 0 0

0 0 sin ¼ 1 cos ¼

¶
;

[ei ³ K ( ¹ ; ¼ ; ³ ) j I ] !
µ
1 sin ¼ cos ¼ 0 0

0 0 sin ¼ 1 cos ¼

¶

9
>>>=

>>>;
(4.51)

uniformly as ¹ ! +1 if ¼ 2 ( 1
2 º ; 5

2 º ), and

[ei³ K + ( ¹ ; ¼ ; ³ ) j I ] !
µ
cos ¼ 1 + sin ¼ 0 0

0 0 cos ¼ 1 sin ¼

¶
;

[ei ³ K ( ¹ ; ¼ ; ³ ) j I ] !
µ
cos ¼ 1 + sin ¼ 0 0

0 0 cos ¼ 1 sin ¼

¶

9
>>>=

>>>;
(4.52)

uniformly as ¹ ! +1 if ¼ 2 ( 1
2 º ; 3

2 º ). Hence, for each ³ 2 (0; º ),

C [ f[ei ³ K + ( ¹ ; ¼ ; ³ ) j I ]; ¹ > sin ³ ; ¼ 2 R
¯

(2 º Z)g

[ f[ei³ K ( ¹ ; ¼ ; ³ ) j I]; ¹ > sin ³ ; ¼ 2 R
¯

(2º Z)g (4.53)

is a 2-sphere. Moreover, for any ¹ > 0 and ¼ 2 R¯
(2 º Z),

lim
³ ! º

[ei³ K + ( ¹ ; ¼ ; ³ ) j I ] = [K ( ¹ ; ¼ ; 0) j I ];

lim
³ ! º

[ei ³ K ( ¹ ; ¼ ; ³ ) j I ] = [K + ( ¹ ; ¼ ; 0) j I]:

9
=

; (4.54)

Therefore, SC is a 3-sphere with two two points glued together and its only singular
point is on SR.

Remark 4.13. The surface SR is an algebraic variety in the Grassmann manifold
G2(R4), while SC is a real algebraic variety in the complex Grassmann manifold
G2(C4). Moreover, the subsets given in (4.49) of SC are spheres when 0 < ¹ < 1
and tori when ¹ > 1.

5. Analyticity of continuous eigenvalue branches

In this section we investigate the smoothness of continuous eigenvalue branches
under some assumptions on their multiplicities. As an application of the results
obtained here and one of the main ideas used in their proofs we show that when
w > 0 almost everywhere on (a; b), the algebraic and geometric multiplicities of an
eigenvalue for a separated real BC are equal.

Theorem 5.1. Let A = [A j B] be a complex boundary condition with a simple
eigenvalue ¶ ¤ 2 C. Then

2X

j;k = 1

fjk@ ¶ ¿ jk(b; ¶ ¤ ) 6= 0; (5.1)
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the continuous simple eigenvalue branch ¤ through ¶ ¤ is analytic, and its di® erential
at A is given by

d ¤ jA ((H j L)) =

2X

j;k = 1

(cjkhjk + djk ljk)

¿ 2X

j;k = 1

fjk@ ¶ ¿ jk(b; ¶ ¤ ) (5.2)

for any (H j L) 2 TA BC, where the coe± cient matrices C, D and F are de¯ned by

C = Aa + Ba © (b; ¶ ¤ )a; D = Ba + Aa © (b; ¶ ¤ )T; F = BTAa (5.3)

with Xa being the accompanying matrix of a matrix X .

Proof. The continuous simple eigenvalue branch ¤ through ¶ ¤ is the solution to the
equation

¢ X ( ¶ ) = det(X + Z© (b; ¶ )) = 0 (5.4)

on ¶ for X = [X j Z ] su¯ ciently close to A. Since ¶ ¤ is simple, we have

¢ 0
A ( ¶ ¤ ) 6= 0: (5.5)

Direct calculations using (5.4) and (5.3) yield

¢ 0
A ( ¶ ¤ ) =

2X

j;k = 1

fjk@ ¶ ¿ jk(b; ¶ ¤ ); (5.6)

and hence (5.1) holds. Then (5.4) and (5.5), together with the analyticity of © in
¶ , the analyticity of BC and the implicit function theorem, imply that the solution
¤ to (5.4) is analytic. Moreover, for any (H j L) 2 TA BC, from (5.4) and (5.3) one
deduces

³ 2X

j;k = 1

fjk@ ¶ ¿ jk(b; ¶ ¤ )

´
d ¤ jA ((H j L)) =

2X

j;k = 1

(cjkhjk + djk ljk); (5.7)

which, together with (5.1), prove (5.2).

We can restrict our attention to the space BC
S of self-adjoint complex BCs. There

eigenvalues are all real and similar results in the real category hold. However, Kong
and Zettl in [5] have proven the continuous di¬erentiability of continuous eigenvalue
branches over BC

S through an eigenvalue of geometric multiplicity 1 for a coupled BC
in BC

S and of continuous eigenvalue branches over the space T of separated real BCs,
where all eigenvalues are of geometric multiplicity 1. The following theorem uni es
and generalizes their results.

Theorem 5.2. Assume that w > 0 almost everywhere on (a; b) and let A be a self-
adjoint complex boundary condition with an eigenvalue ¶ ¤ of geometric multiplic-
ity 1. Then any continuous eigenvalue branch over BC

S through ¶ ¤ is di® erentiable
at A.

Proof. The method used in [5] still applies to this general set-up.
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Now we are ready to discuss the relations between the algebraic and geometric
multiplicities of an eigenvalue. First, we have the following general result.

Proposition 5.3. The multiplicity of an eigenvalue is greater than or equal to its
geometric multiplicity.

Proof. It su¯ ces to prove that the multiplicity of any eigenvalue ¶ ¤ of geometric
multiplicity 2 is at least 2. By theorem 4.1, we only need to show that as an eigen-
value for [ © (b; ¶ ¤ ) j I], ¶ ¤ has multiplicity greater than 2. Now the characteristic
function is given by

¢ ( ¶ ) = 2 ¿ 22( ¶ ¤ ) ¿ 11( ¶ ) + ¿ 21( ¶ ¤ ) ¿ 12( ¶ ) + ¿ 12( ¶ ¤ ) ¿ 21( ¶ ) ¿ 11( ¶ ¤ ) ¿ 22( ¶ ):
(5.8)

Here we have omitted b from the argument of each ¿ jk. Using (2.7), one then
directly veri es that ¢ 0( ¶ ¤ ) = 0. Thus, ¶ ¤ has multiplicity greater than 2.

Next, we establish the following result, whose proof uses theorem 5.2 and the
main idea in the proof of theorem 5.1.

Theorem 5.4. Assume that w > 0 almost everywhere on (a; b). Then the algebraic
and geometric multiplicities of an eigenvalue for a separated real boundary condition
are equal, i.e. the eigenvalue is (real and) simple.

Proof. If ¶ ¤ is an eigenvalue for a separated real BC A, say

A =

µ
1 a12 0 0

0 0 1 b22

¶
; (5.9)

then a12, b22 2 R,

v =

³
0 0 0 1

0 1 0 0

´
2 TA BC

S » TA OC
2 ; (5.10)

and ¶ ¤ has geometric multiplicity 1. Consider a smooth curve s 7! A(s) 2 BC
S such

that A(0) = A and A0(0) = v. Let ¤ be a continuous eigenvalue branch over BC
S

through ¶ ¤ . Then ¤ (A(s)) is di¬erentiable at s = 0 by theorem 5.2, and, from
¢ A(s)( ¤ (A(s))) ² 0, one deduces

¢ 0
A ( ¶ ¤ ) d ¤ jA (v) = 2: (5.11)

Thus ¢ 0
A ( ¶ ¤ ) 6= 0, i.e. ¶ ¤ is simple.

Combining theorem 5.4 above and theorem 4.2 in [2] yields the following result.
Note that even though the whole paper [2] uses the assumptions p, w > 0 almost
everywhere on (a; b), theorem 4.2 there clearly holds without the condition p > 0
almost everywhere on (a; b).

Theorem 5.5. Assume that w > 0 almost everywhere on (a; b). Then the algebraic
and geometric multiplicities of an eigenvalue for an arbitrary self-adjoint boundary
condition are equal.
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Remark 5.6. There is a proof of theorem 5.5 which does not rely on any result
from [2]. In other words, theorem 5.5 can be regarded as a consequence of the
di¬erentiability of the continuous eigenvalue branches over BC

S when they have
geometric multiplicity 1 and some geometric descriptions of DR and SR

¶ in x 4.
Hence theorem 5.5 can be generalized to the case of eigenvalue problems for higher-
order ordinary di¬erential equations, which will be addressed in a forthcoming
publication. Moreover, we would like to mention that theorem 5.5 can be proved
without using the di¬erentiability of eigenvalue branches over BC

S (actually, this part
can be replaced by some arguments involving only the de nitions of multiplicities
and some descriptions about DR, EC

¶ and SR
¶ in x 4).

Remark 5.7. Assume that w > 0 almost everywhere on (a; b). If ¶ ¤ is a double
eigenvalue for a BC A 2 BC

S , then A = [ © (b; ¶ ¤ ) j I ] 2 DR by theorems 5.5 and 4.1.
Each BC in BC

S n DR (or just in BR
S n DR) su¯ ciently close to A has exactly two

eigenvalues near ¶ ¤ and they are simple. So, ¶ ¤ is on two continuous eigenvalue
branches over BC

S (or just over BR
S) and they are locally unique. These continuous

eigenvalue branches are in general not di¬erentiable at A (see x 7 of [6]).

Remark 5.8. Assume that w > 0 almost everywhere on (a; b). Let ¶ ¤ be an eigen-
value of geometric multiplicity 1 for A 2 BC

S and u a normalized eigenfunction for
¶ ¤ , i.e. an eigenfunction for ¶ ¤ satisfying

Z b

a

u(t)·u(t)w(t) dt = 1: (5.12)

Then ¶ ¤ is simple by theorem 5.5. Hence there is a continuous eigenvalue branch ¤
(over BC, not just over BC

S) through ¶ ¤ and, by theorem 5.1, ¤ is analytic. Moreover,
the method used in the proof of the formulae (4.4){(4.7) in [5] actually yields the fol-
lowing more general forms of the formulae: when A is coupled, i.e. A = [ei ³ K j I]
for some ³ 2 R¯

( º Z) and K 2 SL(2; R), we have

TA BC = TA OC
6 = f(ei³ KH j 0); H 2 M2£2(C)g (5.13)

and for each (ei³ KH j 0) 2 TA BC (not necessarily tangent to BC
S at A), there holds

d ¤ jA ((ei³ KH j 0)) = ·u[1](a) ·u(a)
¢

H

³
u(a)

u[1](a)

´
; (5.14)

when A is given by (5.9), there holds

d ¤ jA ((H j L)) = u[1](a) u[1](b)
¢ ³h12 l12

h22 l22

´ ³
u[1](a)

u[1](b)

´
(5.15)

for any (H j L) in

TA BC = TA OC
2 =

»³
0 h12 0 l12

0 h22 0 l22

´
; h12; h22; l12; l22 2 C

¼
; (5.16)

when

A =

µ
1 a12 0 0

0 0 b21 1

¶
; (5.17)
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there holds

d ¤ jA ((H j L)) = u[1](a) u(b)
¢ ³h12 l11

h22 l21

´ ³
u[1](a)

u(b)

´
(5.18)

for any (H j L) in

TA BC = TA OC
3 =

»³
0 h12 l11 0

0 h22 l21 0

´
; h12; h22; l11; l21 2 C

¼
; (5.19)

when

A =

µ
a11 1 0 0

0 0 1 b22

¶
; (5.20)

there holds

d ¤ jA ((H j L)) = u(a) u[1](b)
¢ ³h11 l12

h21 l22

´ ³
u(a)

u[1](b)

´
(5.21)

for any (H j L) in

TA BC = TA OC
4 =

»³
h11 0 0 l12

h21 0 0 l22

´
; h11; h21; l12; l22 2 C

¼
; (5.22)

when

A =

µ
a11 1 0 0

0 0 b21 1

¶
; (5.23)

there holds

d ¤ jA ((H j L)) = u(a) u(b)
¢ ³h11 l11

h21 l21

´ ³
u(a)

u(b)

´
(5.24)

for any (H j L) in

TA BC = TA OC
5 =

»³
h11 0 l11 0

h21 0 l21 0

´
; h11; h21; l11; l21 2 C

¼
: (5.25)

Therefore, at a self-adjoint complex BC A, the derivative of the continuous eigen-
value branch through a simple eigenvalue for A is always a quadratic form in u(a),
u[1](a), u(b) and u[1](b) if the canonical coordinate systems on BC are used. These
formulae will be needed in [7].

The formulae (5.14), (5.15), (5.18), (5.21) and (5.24) are equivalent to special
cases of (5.2). The equivalence can be established using (2.7), (2.8) and (5.12). It
seems that the method used in the proof of the formulae (4.4){(4.7) in [5] only
works when the complex BC is self-adjoint (see also [6]).

To end our discussion, we give an example to show that the algebraic and geo-
metric multiplicities of an eigenvalue are di® erent in general.
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Example 5.9. Consider the Fourier equation y00 = ¶ y on the interval [0; 1]. Let
¶ ¤ = (nº )2 with an integer n > 0. Then direct calculations using (2.8) and (2.7)
yield that

¬ 11( ¶ ¤ ) = 1
2
; ¬ 12( ¶ ¤ ) = 0; ¬ 22( ¶ ¤ ) =

1

2 ¶ ¤
;

¢ 0
A ( ¶ ¤ ) =

¹

2 ¶ ¤
[(1 ¶ ¤ ) sin ¼ + (1 + ¶ ¤ ) sin ½ ];

9
>>=

>>;
(5.26)

where A = [K( ¹ ; ¼ ; ½ ) j © (b; ¶ ¤ ) 1] 2 ER
¶ ¤

n DR, with K( ¹ ; ¼ ; ½ ) de ned by (4.21)
for some ¹ > 0 and ¼ , ½ 2 R¯

(2 º Z). Thus, when

sin ½ =
¶ ¤ 1

¶ ¤ + 1
sin ¼ ; (5.27)

the eigenvalue ¶ ¤ for A has geometric multiplicity 1 and algebraic multiplicity at
least 2.

Finally, we want to present some corollaries to theorems 3.5, 3.8 and 5.4 and give
an example to illustrate each of them. These corollaries relate the eigenvalues of
separated BCs and those of coupled BCs, as mentioned in the introduction.

Corollary 5.10. Assume that w > 0 almost everywhere on (a; b). Let A be a
separated real boundary condition, n > 0 an integer, and N » C a bounded domain
containing n eigenvalues r1; r2; : : : ; rn for A such that its boundary does not con-
tain any eigenvalue for A. Then there exists a neighbourhood O of A in BC such
that each complex boundary condition in O has exactly n eigenvalues in N and they
are simple. Moreover, these eigenvalues are given by the simple eigenvalue branches
through r1; r2; : : : ; rn, respectively.

Proof. These conclusions are direct consequences of theorem 3.5, remark 3.6 and
theorem 5.4.

To illustrate the above corollary, we have the following example, in which (and in
the rest of this paper) ¶ D N

0 ; ¶ D N
1 ; ¶ D N

2 ; : : : , denote the eigenvalues for the Dirichlet{
Neumann BC

µ
1 0 0 0

0 0 0 1

¶
(5.28)

and ¶ ND
0 ; ¶ ND

1 ; ¶ ND
2 ; : : : , stand for the eigenvalues for the Neumann{Dirichlet BC

µ
0 1 0 0

0 0 1 0

¶
: (5.29)

Example 5.11. Assume that p, w > 0 almost everywhere on (a; b). Let n > 0 be
an integer and set

A(s) =

µ
c1es 0 1 0

0 c2e s 0 1

¶
(5.30)
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for s 2 R, where c1, c2 2 C are non-zero constants. Then

A(s) =

µ
c1 0 e s 0

0 c2e s 0 1

¶
!
µ
c1 0 0 0

0 0 0 1

¶
=

µ
1 0 0 0

0 0 0 1

¶
(5.31)

as s ! +1. Thus, for any real constants · 1, · 2, · 3 and · 4 satisfying · 1 < ¶ D N
0 ,

¶ D N
n < · 2 < ¶ D N

n+ 1, · 3 < 0 and · 4 > 0, A(s) has exactly n + 1 eigenvalues
z0(s); z1(s); : : : ; zn(s) in the rectangle

fz 2 C; · 1 < Re z < · 2; · 3 < Im z < · 4g (5.32)

when s is su¯ ciently large, they are simple and continuous in s, and

lim
s ! + 1

zk(s) = ¶ D N
k (5.33)

for k = 0; 1; : : : ; n. Similarly, for any real constants ¸ 1, ¸ 2, ¸ 3 and ¸ 4 satisfying
¸ 1 < ¶ ND

0 , ¶ ND
n < ¸ 2 < ¶ ND

n + 1, ¸ 3 < 0 and ¸ 4 > 0, A(s) has exactly n + 1 eigenvalues
z0(s); z1(s); : : : ; zn(s) in the rectangle

fz 2 C; ¸ 1 < Re z < ¸ 2; ¸ 3 < Im z < ¸ 4g (5.34)

when s is su¯ ciently negative, they are simple and continuous in s, and

lim
s ! 1

zk(s) = ¶ ND
k (5.35)

for k = 0; 1; : : : ; n.

Corollary 5.12. Assume that w > 0 almost everywhere on (a; b). Let A be a
separated real boundary condition, n > 0 an integer, and N » C a bounded do-
main containing n eigenvalues r1; r2; : : : ; rn for A such that its boundary does not
contain any eigenvalue for A. Then there exists a neighbourhood O of A in BR

such that each boundary condition C 2 O has exactly n eigenvalues in N and they
are real and simple. Moreover, these eigenvalues are given by the continuous simple
eigenvalue branches over BR through r1; r2; : : : ; rn, respectively.

Proof. This re nement of the restriction to BR of an application of corollary 5.10
is a direct consequence of corollary 5.10 and theorem 3.8.

The following example is a re nement of a special case of example 5.11.

Example 5.13. Assume that p, w > 0 almost everywhere on (a; b). Let n > 0 be
an integer and set

A(s) =

µ
res 0 1 0

0 e s 0 1

¶
(5.36)

for s 2 R, where r 2 R is a non-zero constant. Then the conclusions of exam-
ple 5.11 hold and, in addition, the eigenvalues z0(s); z1(s); : : : ; zn(s) are real for
any su¯ ciently large or su¯ ciently negative s. Note that A(s) is not self-adjoint if
r 6= 1.

One can also write down a result for the self-adjoint BCs that is similar to
corollary 5.10, which can be found in [7] and will be used in [8] to give a proof of
the inequalities in [2] without referring to the periodic case.
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