
GPS Satellite Velocity and
Acceleration Determination using

the Broadcast Ephemeris

Jason Zhang1, Kefei Zhang1,2, Ron Grenfell1, Rod Deakin1

1 (RMIT University Melbourne)
(Email : kefei.zhang@rmit.edu.au)

2 (China University of Mining Technology, Xuzhou)

Satellite velocity determination using the broadcast ephemeris is discussed and it is pointed
out that the conventional rotation matrix method involves a complicated process of com-

putation. This paper proposes an alternative method using a simple differentiator to derive
satellite Earth-Centred-Earth-Fixed (ECEF) velocity from the ECEF satellite positions
that are calculated using the standard ICD-GPS-200 algorithm. The proposed algorithm

simplifies the velocity transformation procedure, and therefore provides a good alternative.
It is demonstrated that t1 mm/s per axis ECEF satellite velocity is achievable by using the
first-order central difference of a Taylor series approximation.

A closed-form formula is also derived for the determination of GPS satellite ECEF ac-
celeration using the broadcast ephemeris. This formula is capable of accuracies better than
t0.1 mm per second squared in each axis. With such a high accuracy of satellite acceleration

in real-time, it is possible to detect the line-of-sight range acceleration precisely and as such
it is concluded that a GPS receiver can be considered as a precise accelerometer.

The success of the position differential method implies that real-time satellite ECEF
velocities can be directly derived through numerical differentiation of the position poly-

nomials. This is desirable for GPS velocity determination applications which require
high output rate results in real-time. The derived closed-form formula for GPS satellite
ECEF acceleration would benefit those who attempt to use a GPS receiver as an accurate

accelerometer in real-time.
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1. INTRODUCTION. GPS can be used in precise velocity and acceleration
determination applications as varied as automobile brake system testing, athlete
monitoring, airborne gravimetry and GPS/INS integration. In such applications,
a GPS satellite is a moving signal source in space, from which the relative motion
between the satellite and a receiver is sensed in terms of the Doppler shift and its
change rate. The velocities and accelerations of at least four GPS satellites must be
determined and taken as known values before velocity and acceleration of a user
can be determined.

The principle of velocity determination using GPS Doppler measurements has
been presented by e.g. Misra and Enge (2001) and Hofmann-Wellenhof et al. (2001).

THE JOURNAL OF NAVIGATION (2006), 59, 293–305. f The Royal Institute of Navigation
doi:10.1017/S0373463306003638 Printed in the United Kingdom

https://doi.org/10.1017/S0373463306003638 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463306003638


Acceleration determination using GPS Doppler rates is proposed by Kleusberg et al.
(1990), followed by Jekeli (1994) and Jekeli and Carcia (1997). With the Selective
Availability (SA) turned off and the advancement of GPS receiver technology, it is
now possible for a user to get his/her precise velocity in sub-centimetre per second
level in a standalone mode and in real-time (Simsky and Boon, 2003, Zhang et al.,
2004). However, it is reported that real-time acceleration determination may be
affected by the accuracy of the satellite acceleration estimation using the broadcast
ephemeris (Kennedy, 2003).

The GPS orbit parameters are formatted according to the user Interface Control
Document ICD-GPS-200c (ARINC, 2000), wherein the satellite Earth-Centred-
Earth-Fixed (ECEF) position algorithms are well presented. However the calculation
of satellite ECEF velocity and acceleration using the broadcast ephemeris is not
described in the ICD-GPS-200c. This paper discusses how to get satellite ECEF
velocity and acceleration using the GPS broadcast ephemeris. It briefly describes
the ‘‘natural satellite ’’ orbital system, and addresses its difference from the ICD-
GPS-200c orbital system. The main differences between the two systems affect the
way that the broadcast ephemeris is constructed (e.g. broadcast parameterisation)
and the consequent changes to the coordinate transform procedures. For instance,
there is no change rate of the argument of perigee in the GPS navigation message.
Although the ICD-GPS-200c scheme can effectively represent a satellite’s positions in
its short arc orbit whilst reducing the payload of satellite navigation message, it is
rather complicated to transform orbital satellite velocities to the ECEF system when
the rotation matrix method is adopted.

A simple alternative method is presented, which uses the first-order central differ-
ence of a Taylor series approximation of the satellite ECEF positions. The velocity
through ECEF position differentiation is numerically identical to the velocity
obtained through the rotation matrix method and close to the precise velocity from
the International GPS Service (IGS) SP3 precise ephemeris (Spofford and Remondi,
2004) at t1 mm/s level.

A closed-form ECEF satellite acceleration formula is also derived by the rotation
matrix method. It is demonstrated that the discrepancies of the accelerations derived
from the rotation matrix method and the IGS SP3 precise ephemeris are within
t0.1 mm/s2 per axis. It is concluded that the proposed algorithms for GPS satellite
ECEF velocity and acceleration determination can achieve accuracies of millimetres
per second (mm/s) and millimetres per second squared (mm/s2) respectively in
real-time.

2. SATELLITE ORBIT REPRESENTATION BY KEPLERIAN
PARAMETERS. A satellite orbiting the Earth follows Keplerian laws. How-
ever, due to the Earth’s non-central gravity field, attractions from the Sun, Moon
and other disturbing forces, there are perturbations in the GPS orbit. Figure 1 illus-
trates the Keplerian orbital elements and a satellite position. The satellite’s position
in an ideal, non-perturbed orbit can be represented by:

’ size and shape of the ellipse : semi-major axis a and eccentricity e ;
’ orientation of the orbital plane relative to the Earth: orbit inclination I and

longitude of the ascending node V ;
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’ orientation of the ellipse in the orbital plane: argument of perigee v ;
’ satellite position in the ellipse : true anomaly U ; and
’ a reference time: t (time passes the perigee), or toe (time of the reference

ephemeris)

2.1. Satellite position, velocity and acceleration in the ‘‘natural ’’ orbital
plane. The ‘‘natural ’’ satellite orbital plane system is defined by the origin located
at one focus of the elliptical orbit, which corresponds to the position of the mass
centre of the Earth. The x-axis and y-axis are coincident with the major and minor
axes of the orbital ellipse respectively. Figure 2 illustrates the natural orbital plane
system where the positive x-axis passes through perigee.

A satellite position in the natural orbital plane system can be expressed (Beutler,
1998, Misra and Enge, 2001) by
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where: a is the semi-major axis of the satellite orbit ; e is the eccentricity of the orbit ; E
is the orbital eccentric anomaly; r is the instantaneous distance between the satellite
and the centre of the Earth; and U is the true anomaly.

A satellite velocity in the natural orbital plane system is given by (ibid)

_~rr~rr=
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where n is the mean motion of the satellite. The satellite acceleration in the orbital
plane system is (ibid)

€~rr~rr=x
GM

r3
�~rr (3)

where G is the universal gravitational constant and M is the Earth’s mass.
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Figure 1. Keplerian elements and satellite orbit.
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From Figure 1, it can be seen that the transformation of the Cartesian components
of a satellite position vector ~rr from the orbital plane coordinate system to the
ECEF system may be carried out by three rotations in the following order:

’ a first rotation by the argument of the perigee v ;
’ a second rotation by the angle of inclination I ; and
’ finally a rotation by the angle of the longitude of ascending node V.

The corresponding transform equation is

~rrECEF=R3(xV) � R1(xI) � R3(xv)~rr (4)

where Rn(h) is the rotation matrix, the subscript n=1,3 corresponding to the rotation
axes of x, z respectively. The rotation matrixes R3,(h) R1(h) are expressed in the forms
of (cf., Farrell and Barth, 1999, p.34)

R1(h)=
1 0 0
0 cos h sin h
0 xsin h cos h

2
4

3
5 R3(h)=

cos h sin h 0
xsin h cos h 0

0 0 1

2
4

3
5 (5)

2.2. ICD-200 orbital coordinate system. The user algorithm for GPS satellite
ECEF position determination from the broadcast ephemeris has been well docu-
mented in the ICD-GPS-200c. It is important to stress that the orbital coordinate
system used in the ICD-GPS-200c (ICDorb) is different from the above ‘‘natural ’’
orbital system. The ICDorb system has the positive x-axis passing through the
ascending node of the orbital plane rather than perigee. The difference is reflected
mainly in the parameterisation and calculation of the three pairs of amplitudes of
harmonic correction terms for the sinusoid correction models of the argument of
latitude, orbit radius and inclination angle, see Equations (16) and (17). By such a
coordinate system definition, one only requires two rotations to transform a position
from the orbital system to the ECEF system, i.e.

~rrECEF=R3(xVc) � R1(xI) �~rrICDorb � Re
i �~rrICDorb (6)

Earth centre   perigee
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Figure 2. Satellite position in the orbital plane coordinate system.
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where Ri
e is defined as the rotation matrix from the ICDorb to the ECEF. According

to ICD-GPS-200c, the rotation matrix has the following form

Re
i=

cosVc xsinVc cosI sinVc sinI
sinVc cosVc cosI xcosVc sinI
0 sinI cosI

0
@

1
A (7)

where Vc is the corrected right ascension of the ascending node, calculated by:

Vc=V0+( _VVx _VVe)tk+ _VVe � toe (8)

where: V0 is the right ascension of the ascending node at reference time; _VV is the
change rate of the right ascension; _VVe is the angular change rate of the Earth’s
rotation; tk is the calculation time; and toe is the reference time of the ephemeris
parameters.

To better represent the satellite positions in the orbit, three change rate parameters
are used to describe the linear change characteristics of the satellite mean motion n,
Vc, and I respectively. These change rate parameters are vitally important for the
ECEF satellite velocity and acceleration determination.

The adoption of ICD-GPS-200c orbit representation scheme for use by the GPS
Control Segment has some advantages: firstly, the satellite position calculation is
more effective given the fact that the GPS orbit is near circular and the effective orbit
representation time is short (2y3 hours), there are only two rotations to transform
an orbital position into the ECEF system; secondly, there is no need to introduce
another parameter, i.e., the change rate of the argument of perigee thus reducing
the payload of navigation message. Since perigee itself is hard to be defined in orbits
with small eccentricities (Montenbruck and Gill, 2000, p.30), the adopted broadcast
orbit representation scheme not only alleviates the navigation payload but also
avoids the difficulty in provision of the change rate of the argument of perigee.
However, as will be discussed later, it is rather complicated when satellite velocity
needs to be determined.

3. TRANSFORM GPS ORBITAL VELOCITY TO ECEF. The trans-
formation of a GPS satellite velocity from the ICDorb system to the ECEF may be
simply given through the differentiation of Equation (6) by:

_~rr~rrECEF= _RRe
i � ~rrICDorb+Re

i � _~rr~rrICDorb (9)

where; _RRe
i is the first derivative of the rotation matrix Ri

e with respect to time; _~rr~rrICDorb

is the velocity of the satellite in ICDorb system. These are the two unknowns that
must be resolved prior to getting the ECEF velocity.

3.1. Determination of _RRe
i . The first derivative of the rotation matrix _RRe

i with
respect to time can be determined from the broadcast ephemeris parameters without
any difficulty. The procedures are as follows:

The derivatives of the corrected longitude of ascending nodeVc and the inclination
I are required. These can be done simply through their own definitions by:

_VVc= _VVx _VVe

_II= _ii
(10)
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where _ii is IDOT, the inclination change rate that is one of the parameters in the
broadcast ephemeris.
Differentiating Equation (7) with respect to time, and then substituting the above
rates, we have

_RRe
i=

xsinVc � _VVc xcosVc cosI � _VVc+sinVc sinI � _II cosVc sinI � _VVc+sinVc cosI � _II
cosVc � _VVc xsinVc cosI � _VVcxcosVc sinI � _II sinVc sinI � _VVcxcosVc cosI � _II

0 cosI � _II xsinI � _II

0
B@

1
CA

(11)

The magnitude of _II is in the order of 10x10 to 10x12 radians (cf. Gurtner, 2001)
while the magnitude of the sinI and cosI terms are less than 1.0, so Equation (11)
can be simplified by neglecting those _II terms without losing numerical precision to
become

_RRe
i=

xsinVc � _VVc xcosVc cosI � _VVc cosVc sinI � _VVc

cosVc � _VVc xsinVc cosI � _VVc sinVc sinI � _VVc

0 0 0

0
@

1
A (12)

3.2. Determination of _~rr~rrICDorb. The satellite coordinate in ICDorb system is
calculated by

~rrICDorb=
XICDorb

YICDorb

� �
=

rc cosVc
rc sinVc

� �
(13)

where rc is the corrected radius and Vc is the corrected argument of latitude respect-
ively. Note that the subscript c is used to indicate that they are ‘‘corrected’’ and
calculated relative to the ascending node. These two variables can be calculated as:

rc=a(1xe cosE )+dr (14)

Vc=U+v+dU (15)

where dr, dU are the harmonic perturbation corrections given by:

dr=crc � cos2(U+v)+crs � sin2(U+v) (16)

dU=cuc � cos2(U+v)+cus � sin2(U+v) (17)

where crc, crs, cuc, cus are the harmonic perturbation parameters in the broadcast
ephemeris for rc and Vc respectively. It is evident from the above equations that
the ICDorb system has the positive x-axis passing through the ascending node and
the broadcast ephemeris is parameterized accordingly.

The orbital velocity can be obtained by differentiating Equation (13) with respect
to time

_~rr~rrICDorb=
_XXICDorb
_YYICDorb

� �
= _rrc cosVcxrc sinVc � _VVc

_rrc sinVc+rc cosVc � _VVc

� �
(18)

Equation (18) shows that the derivatives of rc and Vc should be determined prior to
the calculation of satellite velocity in the ICDorb coordinate system.

298 JASON ZHANG AND OTHERS VOL. 59

https://doi.org/10.1017/S0373463306003638 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463306003638


3.2.1. _rrc Derivation. _rrc may be derived by differentiating Equation (14) with
respect to time. The differentiation could be carried out in two steps. The first step
is to differentiate the first term in the right hand side of (14) as:

[a(1xe � cosE)]0=a � e � sinE � _EE (19)

where the superscript prime (k ) is a differentiation operator and _EE may be obtained
from Kepler’s equation (Marshall, 2002) or simply by comparison of Equations (1)
and (2)

_EE=
n

1xe � cosE (20)

It can also be numerically computed along with the solution of Kepler’s equation in
an alternative form as:

_MM= _EE � (1xe � cosE )� _EE=
_MM

1xe � cosE (21)

The second step is to get the derivative of the second term, dr, in the right hand side
of Equation (14) by differentiating Equation (16), and treating v as a constant :

[dr]0=x2[crc � sin2(U+v)xcrs � cos2(U+v)] _UU (22)

where the change rate of the true anomaly _UU, is still unknown. To comply with
Kepler’s second law (the radius vector sweeps out equal areas in equal time)

rc
2 _UU � dt=a

ffiffiffiffiffiffiffiffiffiffiffi
1xe2

p
� n � dt (23)

leads to:

_UU=
a

ffiffiffiffiffiffiffiffiffiffiffi
1xe2

p
� n

rc 2
(24)

3.2.2. _VVc Derivation. _VVc, the derivative of the argument of latitude with respect
to time, can be derived in a similar manner by differentiating Equation (15) and
holding v as a constant once again:

_VVc= _UU+[dU]0 (25)

where the only unknown quantity is the second term in the right hand side. This may
be easily obtained by differentiating Equation (17), treating v as a constant :

[dU]0=x2[cuc � sin2(U+v)xcus � cos2(U+v)] _UU (26)

3.2.3. Implementation program. A C++ implementation of the above velocity
algorithm can be found in the source code skyplot.cpp from the National Geodetic
Service (NGS) website (Marshall, 2002). It is embedded in function bccalc(…) in the
program file of skyplot.cpp. Recently, an independent program using the same
algorithm has been presented by Remondi (2004) at the NGS website. The velocity
algorithm is described in detail in this paper as derivation of satellite ECEF acceler-
ation requires some of the equations in the velocity determination.
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The computation of the GPS satellite velocity in the ICDorb system is ‘‘compli-
cated’’ as can be seen by inspection of the source codes of skyplot.cpp. The com-
plexity is caused mainly by the method of determining change rates of the corrected
radius and the corrected argument of latitude, which is due to the ICD-GPS-200’s
orbital system and its effects on the representation of harmonic perturbation
parameters. The process of calculating _EE also contributes to the complexity of the
algorithm. Note that treatingv as a constant at several steps of the derivation process
may cause an error in the resultant ICDorb velocity.

Tables 1 and 2 list both velocity and acceleration (for PRN 07 on 20 August 2002)
derived using the NGS SP3 precise ephemeris and the rotation method respectively. It
is useful to point out that, although the precise ephemeris is defined with reference
to the mass centre of a satellite, which differs from the antenna centre to which the
broadcast ephemeris is referenced, the velocities can be directly compared with each
other. It can be seen from Tables 1 and 2 that although there are small biases in each
axis, the velocities derived from the broadcast ephemeris agree with the precise
ephemeris within t1 mm/s in each axis.

4. TRANSFORM ORBITAL ACCELERATION TO ECEF. Since the
orbital acceleration formula is expressed as a function of the position vector, which

Table 1. Acceleration and velocity from the NGS SP3 precise positions and velocities (PRN07, 20 August

2002. Accelerations are obtained using the first-order central difference of a Taylor series approximation

of SP3 velocities).

Time Ax (m/s2) Ay (m/s2) Az (m/s2) Vx (m/s) Vy (m/s) Vz (m/s)

22:19:01 0.2055 x0.3022 0.1413 329.9513 x888.5965 x2997.0555

22:19:02 0.2054 x0.3022 0.1414 330.1568 x888.8987 x2996.9141

22:19:03 0.2054 x0.3022 0.1414 330.3622 x889.2009 x2996.7727

22:19:04 0.2053 x0.3023 0.1415 330.5676 x889.5032 x2996.6312

22:19:05 0.2053 x0.3023 0.1415 330.7729 x889.8055 x2996.4897

22:19:06 0.2052 x0.3023 0.1416 330.9782 x890.1078 x2996.3481

22:19:07 0.2052 x0.3023 0.1417 331.1834 x890.4101 x2996.2064

22:19:08 0.2051 x0.3023 0.1418 331.3886 x890.7124 x2996.0646

22:19:09 0.2051 x0.3024 0.1418 331.5937 x891.0147 x2995.9228

22:19:10 0.2050 x0.3024 0.1419 331.7988 x891.3171 x2995.7809

Table 2. Acceleration and velocity from the rotation method using the broadcast ephemeris.

(PRN07, 20 August 2002)

Time Ax (m/s2) Ay (m/s2) Az (m/s2) Vx (m/s) Vy (m/s) Vz (m/s)

22:19:01 0.2055 x0.3022 0.1412 329.9518 x888.5962 x2997.0552

22:19:02 0.2054 x0.3022 0.1413 330.1573 x888.8985 x2996.9138

22:19:03 0.2054 x0.3022 0.1413 330.3627 x889.2007 x2996.7724

22:19:04 0.2053 x0.3022 0.1414 330.5680 x889.5030 x2996.6309

22:19:05 0.2053 x0.3022 0.1415 330.7733 x889.8052 x2996.4894

22:19:06 0.2052 x0.3022 0.1415 330.9786 x890.1075 x2996.3478

22:19:07 0.2052 x0.3023 0.1416 331.1838 x890.4098 x2996.2061

22:19:08 0.2051 x0.3023 0.1417 331.3890 x890.7121 x2996.0643

22:19:09 0.2051 x0.3023 0.1417 331.5941 x891.0145 x2995.9225

22:19:10 0.2050 x0.3023 0.1418 331.7992 x891.3168 x2995.7807
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is independent of the orbital plane orientation, the transformation is much easier,
see Equation (3). One only needs to account for the second derivative of the
rotation matrix Ri

e with respect to time, and then the acceleration transformation
can be carried out through differentiating Equation (9) with respect to time. This
leads to:

€~rr~rrECEF= €RRe
i �~rrICDorb+2 _RRe

i � _~rr~rrICDorb+Re
i � €~rr~rrICDorb (27)

where €RRe
i is the second derivative of the rotation matrix Ri

e. Taking €II and those _II terms
as zero, and €VV, €VVe and therefore €VVc as zero as well, the second derivative of the
rotation matrix can be derived from Equation (11) as:

€RRe
i=

xcosVc � _VVc
2 sinVc � _VVc

2 � cosI xsinVc � _VVc
2 � sinI

xsinVc � _VVc
2 xcosVc � _VVc

2 � cosI cosVc � _VVc
2 � sinI
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Figure 3. Residuals of the accelerations obtained from the closed-form formula and the precise

ephemeris SP3 velocities using the first-order central difference of a Taylor series approximation

(PRN=07, 22:18:56y22:20:32, 08/20/2002).
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Figure 4. Residuals of the position-differenced ECEF satellite velocities compared with the

velocities from the SP3 precise ephemeris (PRN=07, 22:19:00y22:21:00, 08/20/2002).

NO. 2 GPS SATELLITE VELOCITY DETERMINATION 301

https://doi.org/10.1017/S0373463306003638 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463306003638


In Equation (27), the satellite position vector~rrICDorb is readily derived by Equation
(13) ; Ri

e and _RRe
i are given by Equations (7) and (12) respectively ; _~rr~rrICDorb can be

calculated from Equation (18), and the ICDorb acceleration can be obtained in
terms of _~rr~rrICDorb by Equation (3). Since the perturbations of the satellite orbit
have been accounted for by the harmonic correction terms provided by the broad-
cast ephemeris, Equation (27) is capable of delivering accurate GPS satellite
accelerations.

The acceleration from the IGS precise ephemeris is extremely accurate and can be
accepted as a true quantity. The accelerations obtained using Equation (27) from the
broadcast ephemeris have better than t0.1 mm/s2 per axis accuracy when compared
with the accelerations from the SP3 precise ephemeris, which is evidenced by Figure 3
(Table 1 and Table 2 as well). Thus the derived formula can be confidently used in
real-time. This overcomes the concerns raised by Kennedy (2003) about the accuracy
of real-time precise acceleration determination applications using GPS due to the
accuracy limitations of the broadcast ephemeris. It is understandable that even
the broadcast ephemeris is capable of achieving such a high acceleration accuracy
since physically, the satellite movement in the orbit is highly stable ; and mathemat-
ically the large radius of GPS orbit in the denominator of Equation (3) can greatly
suppress the error propagation.

5. ALTERNATIVES TO GET ECEF SATELLITE VELOCITY
AND ACCELERATION. It is well known that ECEF satellite positions
from the broadcast ephemeris have an accuracy of t1 my5 m. Due to error
propagation, the straightforward method of differentiating the ECEF positions to
get the satellite ECEF velocity may lead to a large error. The resultant velocity
could be very noisy because of the amplification of the differentiation process.
However, due to the complexity of the velocity algorithm, the position method is
tested using the first-order central difference of a Taylor series approximation:

_~rr~rrECEF(t)=
~rrECEF(t+Dt)x~rrECEF(txDt)

2Dt
(29)

where t is the time of the calculation epoch, Dt is the time interval, which is set as
one second. Unexpectedly the results are close to the precise velocity of IGS SP3
ephemeris by better than t1.0 mm per second per axis, this can be reflected by
Figure 4 which shows the performance of this position differencing method. Once
again the differential scenario even works well in the satellite orbit !

The promising results of the ECEF satellite velocity obtained through differen-
tiation are explained by the realisation that the errors associated with the orbit
positions are not Gaussian white. Potential systematic bias and correlated errors of
the satellite ECEF positions due to the errors in the broadcast ephemeris have been
significantly mitigated through the differentiation process.

Given the excellent performance of the position-differentiation method for
ECEF velocity determination, it is sensible to test the performance of the differential
method for acceleration determination, i.e.

€~rr~rrECEF(t)=
_~rr~rrECEF(t+Dt)x _~rr~rrECEF(txDt)

2Dt
(30)
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where Dt is set to one second again. Figure 5 illustrates that the performance
of the differential procedure is very good. However, the results are inferior in
performance when compared with the accelerations derived from the closed-form
formula.

The differentiator used here is a simple Finite Impulse Response (FIR) filter. The
frequency response of the FIR differentiator is shown in Figure 6. It approximates
the ideal differentiator in lower frequencies which better suits the GPS satellite
dynamics in its high orbit. Since even an ideal differentiator has a fixed phase delay,
the central difference gives the velocity exactly at the desired epoch. Setting Dt to
one second gives t0.5 as the filter coefficient, which can further suppress the errors
associated with the two positions.

Thus a practical alternative of satellite ECEF position, velocity and acceleration
determination algorithm from the broadcast ephemeris is proposed as follows:

’ to get positions of ~rrECEF(t)and ~rrECEF(ttDt) by using the ICD-GPS-200c
algorithm;

’ to calculate velocity by using the position differentiation method, see Equation
(29); and

’ to determine acceleration by using the closed-form rotation formula of
Equation (27).

Since the GPS orbit is relatively stable and predictable, polynomial techniques
have been widely used to interpolate GPS orbital positions in real-time applications.
The polynomial interpolation can greatly accelerate the calculation process of
satellite positions. The success of the position differential method implies that, when
a polynomial interpolation is used to represent satellite positions, the precise
satellite ECEF velocity can be directly obtained through numerical differentiation
of the polynomial coefficients. This could contribute to those applications where
precise velocities are required at high output rates in real-time. VBOX (2004) is a
typical example of such applications whereby positions and velocities of a car are
output at a rate of 100 Hz to facilitate the automobile breaking tests.

6. CONCLUSIONS. GPS satellite orbit system defined by the ICD-GPS-200
differs from the natural satellite orbit system. This difference affects the orbital
parameterisation and the algorithms to transform orbital positions to ECEF system.
Although the way of broadcast parameterisation has advantages in ECEF satellite
position calculation, it is complicated in the determination of ECEF satellite
velocity.

This paper proposed an alternative method using a simple differentiator to derive
ECEF satellite velocity from the ECEF satellite positions that are calculated using
the standard ICD-GPS-200 algorithm. It is demonstrated that t1 mm/s per axis
ECEF satellite velocity is achievable by using the first-order central difference of
a Taylor series approximation. A closed-form formula is also derived for the deter-
mination of GPS satellite ECEF acceleration using the broadcast ephemeris. This
formula is capable of achieving an accuracy of better than t0.1 mm per second
squared in each axis. With such a high accuracy of satellite acceleration in real-time,
it is possible to detect the line-of-sight range acceleration accurately and therefore
to use a GPS receiver as a precise accelerometer.
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The proposed algorithm on the GPS satellite ECEF velocity determination
simplifies the velocity transformation procedure, and therefore provides a good
alternative. The success of the position differential method implies that real-time
satellite ECEF velocities can be directly derived through numerical differentiation of
the position polynomials. This is favourable for real-time GPS velocity determination
applications which require high output rate results. The derived closed-form formula
for GPS satellite ECEF acceleration would benefit those who attempt to use a GPS
receiver as an accurate accelerometer in real-time.
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