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Flow of a concentrated emulsion with surfactant
through a periodic porous medium
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High-resolution, long-time three-dimensional simulations are presented for slow,
pressure-driven flow of a periodic emulsion of deformable drops through a dense,
simple cubic array of solid spheres (one drop and one particle per periodic cell). The
drops, covered with insoluble, non-diffusive surfactant, are large compared with pores,
and they squeeze with high resistance, very closely coating the solids to overcome
surface tension and lubrication effects. The solid volume fraction is 50 %, the emulsion
concentration cem in the pore space is 36 % or 50 %, the drop-to-medium viscosity ratio
λ is 0.25 to 4. The contamination measure β ≤ 0.1 keeps the linear surfactant model
(assumed in most of the work) physically relevant. The boundary-integral solution requires
extreme resolutions (tens of thousands of boundary elements per surface) achieved
by multipole acceleration with special desingularizations, combined with flow-biased
surfactant transport algorithms for numerical stability. The time-periodic regime is
typically attained after a few squeezing cycles; the motion period is used in the
extrapolation scheme to evaluate critical capillary numbers Cacrit demarcating squeezing
from trapping. Due to Marangoni stresses, even light (β = 0.05) to moderate (β = 0.1)
contaminations significantly reduce the average drop-phase migration velocity (up to 2.8
times, compared with clean drops), especially at small λ = 0.25. In contrast, Cacrit is
weakly sensitive to contamination and levels off completely at β = 0.05. At λ = 0.25
and cem = 0.36, the average drop-phase velocities are much different for lightly and
moderately contaminated emulsions, except for near-critical squeezing when they become
the same. Nonlinear surfactant models (Langmuir, Frumkin) are used to validate the linear
model.
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1. Introduction

This study seeks to explore, through rigorous and accurate hydrodynamical simulations,
the fundamental effects of an insoluble surfactant on emulsion flow of deformable drops
through a porous medium. A particular emphasis is on tight squeezing/trapping conditions,
when the emulsion drops are large compared with interstitial spaces, and have to squeeze
with high resistance, closely coating the porous body skeleton to overcome surface tension
and lubrication effects. This problem is relevant, e.g. to secondary oil recovery (SOR)
– a process where pressure-driven water flooding is used to remove a large portion of
residual oil from an underground reservoir. Contrary to the common view that the oil
transport in these processes is mostly a connected pathway flow of large, macroscopic
banks of the non-wetting phase (oil), Avraam & Payatakes (1995) argued that small ganglia
and drop-traffic flow of the dispersed non-wetting phase are prevalent mechanisms in
oil recovery. Their view was later confirmed in experiments (e.g. Crawford et al. 1997;
Mirchi et al. 2019), which explains the ongoing interest in detailed experimental studies
of drop motion in small-scale, confined prototype geometries (e.g. Olbricht & Leal 1983;
Guido & Preziosi 2010; Huerre et al. 2015) and large-scale emulsion flow of drops through
well-defined skeletons (sandpacks) of porous media (Guillen, Carvalho & Alvarado 2012;
Lu et al. 2018).

From the theoretical viewpoint, it is not obvious at all how the presence of surfactant
on the drop surface(s) affects the overall efficiency of squeezing through a porous
medium and trapping conditions. On the one hand, the surfactant reduces surface tension
and should promote squeezing by making drops more deformable. On the other hand,
the surfactant creates Marangoni stresses acting to tangentially immobilize the drop
surfaces and thereby hamper squeezing. Borhan & Mao (1992) used the axisymmetrical
boundary-integral (BI) method for Stokes flow in conjunction with a convective–diffusive
equation for surfactant to compute the steady-state, pressure-driven single drop motion
along the axis of a straight cylindrical tube (the simplest prototype of confined geometry),
with the linear equation of state (EOS) for the surface tension σ vs the surfactant
concentration Γ . For very rapid surface diffusion resulting in a nearly uniform surfactant
coverage, contamination was found to promote the mobility of large drops. Conversely,
for slow diffusion of surfactant (usually deemed most physically relevant, Eggleton,
Pawar & Stebe 1999), contamination was shown to always retard the drop motion.
Qualitatively the same retardation effect of a nearly non-diffusive surfactant was observed
in three-dimensional (3-D) BI simulations for a single drop in Poiseuille flow between
two parallel walls, with a nonlinear (Langmuir) EOS (Janssen & Anderson 2008). Luo,
Shang & Bai (2018) used a 3-D front-tracking finite-difference method to study a slow
steady-state, pressure-driven motion of a contaminated drop in a straight channel with a
square cross-section; both linear and Langmuir EOS for surfactant were considered. For a
clean-drop deformation, good agreement with the BI solution of Wang & Dimitrakopoulos
(2012) was observed. In the limit of small surface diffusion, a switch from linear to
Langmuir EOS was found to have no perceptible effect on the drop velocity (although this
comparison was made for the elasticity parameter E = 1, larger than typical). Increasing
contamination was found by Luo et al. (2018) to always retard drop motion.

The models of straight capillary tubes/channels in the above simulations are clearly
oversimplifications of the pore geometry in real samples; in particular, these models
of unconstricted pathways cannot describe, in principle, the complete pore blockage
phenomenon and the existence of critical conditions for squeezing to occur. Still, it may
be surprising at first glance that the model predictions of the drop motion retardation due
to surfactant (however small it is in the above simulations) are at odds with practical use
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of surfactants to unblock the residual oil in SOR. Interestingly, Johnson & Borhan (1999)
extended the work of Borhan & Mao (1992) to include the Langmuir and Frumkin EOS for
σ(Γ ). It was shown that the Frumkin model with strongly cohesive interactions between
the surfactant molecules does describe the increase of the drop speed due to contamination
in a wide range of the surface coverage parameter. This qualitative change is due to the
plateau of σ(Γ ) in such a surfactant model suppressing the Marangoni stresses. The effect
is quantitatively moderate, however, and was demonstrated only for an atypically large
surface diffusion. We believe there is another reason why the theoretical predictions of
drop motion retardation due to surfactant should not be considered to be in conflict with
experimental practices. Mirchi et al. (2019) concluded from experiments that the right
type and concentration of surfactant are most beneficial for mobilization of the residual oil,
when they help to break trapped oil clusters into smaller drops (by creating additional steric
barriers), less because of the surface tension reduction. Such scenarios are not included in
the theoretical models, yet explain why it might be appropriate to compare the results
for clean drops with those for contaminated drops, but of a much smaller size. Also note
that, while clean interfaces represent a convenient reference state in theoretical studies,
drops are naturally contaminated in practical applications even before measures are taken
to remobilize them, which further complicates the assessment of the surfactant effects.

Another factor that is poorly understood is the contribution of surfactant solubility to
squeezing dynamics. Johnson & Borhan (2003) developed an axisymmetrical analysis for a
drop moving in a straight cylindrical tube in the presence of soluble surfactant using, again,
the Frumkin surfactant model with strongly cohesive interactions. To greatly simplify the
solution, bulk diffusion was assumed to dominate bulk convection of surfactant. The
results were found to lie somewhere between the limits of clean drops and insoluble
surfactant. More general front-tracking methodologies for interfacial flows with soluble
surfactants have been recently developed (Muradoglu & Tryggvason 2008, 2014). Along
these lines, Luo, Shang & Bai (2019) used a 3-D front-tracking finite-difference method to
study a steady-state, pressure-driven motion of a drop with soluble surfactant in a straight
channel of a square cross-section. Bulk convection was accounted for, but was still limited
to rather small Péclet numbers Peb ≤ 10; drop migration velocities were not presented. To
our knowledge, methods of this kind have not been applied yet to tight squeezing/trapping
of drops in constricted geometries of primary relevance to the present study.

Finally, the work of Alpak et al. (2019) is an example of a very different, modern
approach to large-scale, two-phase flow simulations in porous media, using digital scans
of real limestone and sandstone samples for pore geometry combined with a phase-field
lattice Boltzmann flow solver. Here, a large number of parameters are involved, and
there is clearly a lack of quantitative comparisons with more well-defined yet challenging
problems (like tight drop squeezing/trapping) already solved by alternative methods. In
particular, it is not clear if large banks of the connected non-wetting phase (spanning
almost the entire computational domain) in the simulations of Alpak et al. (2019) are due
to physics, a special flow regime/parameters, or numerical effects.

The present work builds on our prior 3-D BI solutions for a deformable drop motion
through tight constrictions between solid particles (as a model of an emulsion flow
through a granular material, e.g. sandpack). Zinchenko & Davis (2006) developed the
algorithm for a flow-induced, single clean drop squeezing through a rigidly held cluster of
two or three particles (spherical or spheroidal) in an unbounded fluid, using Hebeker’s
(1986) representation for the solid-particle contribution in the BI formulation. This
set-up, although lacking periodic boundaries necessary for emulsion flow simulations,
realistically captures drop–solid interactions on the small scale and was chosen, in
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particular, to develop and test novel BI desingularization tools. These tools were crucial
for successful simulations, where the drop could decelerate by 2–4 orders of magnitude
in the constriction and very closely coat the solids to overcome strong shape resistance
and lubrication forces. Both near-critical squeezing and trapped states were accurately
simulated without drop–solid contact whatsoever. The methodologies from Zinchenko &
Davis (2006) were incorporated into the multidrop–multiparticle algorithm of Zinchenko
& Davis (2008a) for emulsion flow (without surfactant) through a random, densely
packed granular material in a periodic box. Here, due to higher solution gradients in the
constrictions, it was even more important to use high surface resolutions for both drop
and solid surfaces, in addition to desingularization tools from Zinchenko & Davis (2006).
For this reason, multipole acceleration was paramount in the algorithm of Zinchenko &
Davis (2008a) to make it practical for long-time multidrop–multiparticle simulations.
This algorithm was further improved and applied by Zinchenko & Davis (2013) to
systematically study pressure-driven flow of clean (initially) monodisperse emulsions (up
to 100 drops and 36 particles in a periodic box) through a well-defined realistic skeleton
of a dense granular material (the so-called random loose packing of spheres at ≈45 %
porosity) with cascades of multiple drop breakup. Due to computational cost, the study of
Zinchenko & Davis (2013) was limited to matching viscosities of the drops and the carrier
fluid; near-critical conditions (for squeezing to occur) still could not be considered, since
they would require even much higher surface resolutions. Zinchenko & Davis (2008b,
referred to hereafter as paper I) took advantage of the simplified set-up (one drop and
one particle per periodic cell) to reach necessary (high and ultra-high) resolutions and
systematically study pressure-driven flow of a clean periodic emulsion, with matching and
contrast phase viscosities, through a dense cubic lattice of spheres, including near-critical
squeezing and trapping conditions. A review of these studies can be found in Zinchenko
& Davis (2017a). This idealized periodic set-up still captures the essential physics of
drop–solid interaction and near-critical squeezing, although it does not allow for drop
breakup (except for drops of extremely small size). The assumption of the periodic drop
arrangement is less of a limitation than is the periodic porous medium structure; indeed,
the only way for a monodisperse emulsion (of sufficiently large drops) to flow though a
cubic lattice of particles is with one drop per periodic cell.

The goal of our work is to broadly extend the study of paper I to the presence of an
insoluble, non-diffusive surfactant (assuming a linear EOS σ(Γ )) in most of the work),
explore the combined effects of the surface contamination, viscosity ratio, emulsion
concentration and pressure gradient on the drop squeezing kinetics and surfactant
evolution and also evaluate critical capillary numbers demarcating squeezing from
trapping. In addition to the multipole-accelerated BI techniques and desingularization
tools (properly generalized for variable surface tension and Marangoni stresses), it was
crucial for numerical stability to use flow-biased surfactant transport algorithms recently
developed by Gissinger, Zinchenko & Davis (2019) and Gissinger (2020) for contaminated
single drop motion through a free-space cluster of three particles. The present problem
of concentrated emulsion flow through a dense periodic array, however, is numerically
far more challenging due to stronger and more numerous near-field interactions, making
multipole acceleration paramount (while the free-space cluster simulations could proceed
without this, most complex, component). The periodic set-up is the only one to yield
pressure gradient–flow rate relationships, and the physical trends found in the present study
are much different from those for the single drop motion through a finite free-space cluster.

The problem is formulated in § 2, with the numerical method outlined in § 3 and the
Appendix. Numerical results for the linear EOS are discussed in § 4, while § 5 presents
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Figure 1. Initial configurations of the periodic emulsion (cyan) and the solid phase (translucent grey). One
repeat unit cell shown. Characteristic length L is the side of the period cell, and â and ã are the radii of the solid
sphere and non-deformed drop, respectively. Insets show the view along any one of the axes. (a) The system for
an emulsion concentration cem = 0.36 begins with an initially spherical drop equidistant from the surrounding
solid particles. (b) The initial slightly deformed drop shape for cem = 0.5 is obtained by additional swelling.

additional simulations for nonlinear surfactant models (Langmuir, Frumkin) to validate
the use of the linear EOS in the present set-up. Conclusions and some unresolved issues
are discussed in § 6.

2. Problem formulation

Consider a 3-D flow of a periodic concentrated emulsion of deformable, surfactant-laden
non-wetting drops through a dense, simple cubic array of solid spherical particles. The
drops are sufficiently large compared with interstitial spaces, so that there is only one
representative drop S̃ at any instant of time, and one solid particle Ŝ with their centroids
in the periodic cell [0, L)3, where L is the lattice period; the drop non-deformed radius is
ã. The particles of radius â are rigidly held in space, with no-slip boundary condition
u = 0 for the triply periodic fluid velocity u on the particle surface and its periodic
images. The drops are Newtonian, have viscosity μd and a variable surface tension
σ(Γ ) depending on the local surfactant concentration Γ (see below), and they are freely
suspended in a Newtonian continuous phase of viscosity μe. The microscale Reynolds
number is small, and the Stokes equations for an incompressible flow apply. A prescribed
constant average pressure gradient 〈∇p〉 driving the flow is applied, for simplicity, along
a side of the periodic box, namely, in the negative x3 direction (figure 1). Equivalently, it
is convenient to formulate the average pressure gradient condition as F = −〈∇p〉L3 for
the hydrodynamic force acting on the representative solid surface Ŝ (Zinchenko & Davis
2008a,b, 2013).

A representative drop S̃ carries a constant amount

Q =
∫

S̃
Γ dS (2.1)

of insoluble surfactant. The surfactant transport on a deformable surface S̃ obeys the
convective equation

DΓ

Dt
+ Γ ∇s · us + 2kΓ un = 0. (2.2)
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Here, D/Dt is the Lagrangian derivative for a fluid element moving with velocity u =
us + unn along the interface; us and un are, respectively, the tangential velocity and normal
component of u, n is the outward unit normal to S̃, k = (k1 + k2)/2 is the local mean
curvature of S̃ (the average of the two principal curvatures) consistent with the direction of
n and ∇s is the surface gradient operator. In (2.2), we have neglected the surface diffusion,
which is generally deemed extremely small for real surfactants (e.g. Eggleton et al. 1999).
Following Stone (1990), the surfactant transport equation (with or without diffusion) is
often written in the alternative, Eulerian form with the partial derivative ∂Γ/∂t. However,
for an insoluble surfactant residing on a deforming interface only, this derivative does not
have a clear and simple meaning, and so we prefer the well-defined Lagrangian form (2.2).
Of course, this form preserves the total amount of surfactant (2.1).

A traditional, linear EOS σ = σo − RTΓ is assumed for σ(Γ ) in most of our
simulations, with σo being the clean-surface value, R the universal gas constant and T
the uniform absolute temperature (not to be confused with the motion period T in the
rest of the paper). This linear model is deemed appropriate (e.g. Eggleton et al. 1999)
as long as Γ does not approach the maximum packing limit Γ∞. This condition is
usually the case when the surfactant is present as an impurity, not intentionally added
(Eggleton et al. 1999). The surfactant transport (2.2) is coupled to the hydrodynamic
problem (§ 3) through the interfacial stress balances (including the Marangoni stress
∇sσ ). The characteristic surfactant concentration (as if Q was uniformly distributed on an
equivalent spherical drop) is Γeq = Q/(4πã2). Accordingly, the non-dimensional surface
contamination measure β and the ‘equilibrium surface tension’ σeq are defined as (e.g.
Stone & Leal 1990; Milliken, Stone & Leal 1993)

β = RTΓeq

σo
, σeq = σo(1 − β). (2.3a,b)

Although Γeq can be, in principle, arbitrary in the insoluble surfactant formulation, it is
best to associate it with the concentration in thermodynamic equilibrium with the bulk, if
the system were at rest. The solid volume fraction csol was fixed at 0.5 (with â ≈ 0.4924L)
in the present study, near the maximum packing limit of π/6 ≈ 0.5236 for simple cubic
arrays. Two values of cem = 0.36 and 0.5 were considered for the drop-phase volume
fraction in the available space between the solid particles. For cem = 0.36, the initial
drop shape S̃o was simply a sphere of radius ã ≈ 0.711â equidistant from the surrounding
eight solid particles (figure 1a). For cem = 0.5, the spherical drop of the necessary radius
ã ≈ 0.794â would not fit the available space; therefore, the above sphere was expanded
by the artificial ‘swelling algorithm’ (Zinchenko & Davis 2008a) without drop–solid and
drop–drop contacts to obtain a slightly deformed initial shape S̃o (figure 1b) for cem = 0.5
simulations. A uniform surfactant distribution with Γini = (4πã2/S̃o)Γeq was assumed as
an initial condition for (2.2), i.e. Γini = Γeq for cem = 0.36 and Γini = 0.990Γeq for cem =
0.5; in the latter case, the correction factor is close to unity (and this difference could be
neglected in simulations), even though the initial shape S̃o is noticeably non-spherical.

Of most interest is the fully developed time-periodic regime, which is typically attained
after just a few squeezing cycles (§ 4) and is independent of the initial conditions. In
addition to β and cem, two other non-dimensional parameters controlling this regime are
the drop-to-medium viscosity ratio λ = μd/μe and the capillary number

Ca = |〈∇p〉|âã/σeq. (2.4)

The definition (2.4) is consistent with paper I for clean drops.
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The instantaneous drop-phase velocity UD(t), defined as the volume average of the fluid
velocity u over the drop phase, is conveniently expressed by the Gauss theorem through
surface integration (e.g. Zinchenko & Davis 2006)

UD = 1

Ṽ

∫
S̃

un(x)(x − x̃c) dS, (2.5)

where Ṽ and x̃c are the volume and centroid of S̃. The most meaningful physical property
studied here is the time average 〈UD〉 of UD(t) (in the x3 direction) over the established
period of motion, to characterize the efficiency of pressure-driven, drop-phase squeezing
for different λ, β, Ca and cem. Another goal of the present work is to evaluate, with
reasonable accuracy, the critical capillary number Cacrit(λ, β, cem), below which the drop
phase can no longer squeeze through the lattice and would be trapped instead in the
pores. In the range β ≤ 0.1 considered, the linear EOS for surfactant is usually deemed
physically relevant. The range 0.25 ≤ λ ≤ 4 is chosen to demonstrate how sensitive the
squeezing is to contamination with the change in the viscosity ratio. Note that our drops
with cem ≥ 0.36 are large enough to eliminate the possibility of breakup in the present
set-up, even at large Ca. The reason is that the drop interacts with its two neighbouring
images (in front and behind in the x3 direction), thus imposing geometrical constraints and
not allowing the drop to stretch sufficiently for breakup.

Our assumptions of an insoluble and non-diffusive surfactant deserve further
discussion. According to Eggleton et al. (1999), the surfactant surface diffusivities Ds
in aqueous medium are typically ∼10−6 cm2 s−1, while the bulk diffusivities D are
∼5 × 10−6 cm2 s−1 (Ferri & Stebe 1999). Surfactant is even less diffusive in more
viscous liquids. With such small diffusivities, both surface (Pes) and bulk (Pe) Péclet
numbers are very large in porous medium in a broad range of forcing levels |〈∇p〉|. The
adsorption–desorption flux from the bulk is usually written as (e.g. Lin, McKeigue &
Maldarelli 1991; Muradoglu & Tryggvason 2014)

j = kaCs(Γ∞ − Γ ) − kdΓ, (2.6)

where ka and kd are adsorption and desorption coefficients, respectively, and Cs is the bulk
surfactant concentration directly at the interface. The ratio of (2.6) to the diffusive flux
must be unity. On the other hand, following the arguments of Holbrook & Levan (1983),
the diffusive flux for Pe 	 1 is, at most, O(DCs/h), using the diffusive boundary-layer
thickness h = aPe−1/3 for an interface significantly immobilized by surfactant; here a is
the characteristic length scale (drop or particle radius in our case).

The ratio of (2.6) to the diffusive flux is then estimated as

akdΓ∞
DCsPe1/3

[
k
(

1 − Γ

Γ∞

)
− Γ

Γ∞

]
, (2.7)

where k = kaCs/kd is the adsorption number. Note that the prefactor in (2.7) can be
written as BiPe2/3, where Bi = kdΓ∞/U is the Biot number and U is the velocity scale.
If this non-dimensional prefactor tends to infinity, then (at least, for normal values of k)
the term in the brackets must vanish and the diffusion-controlled regime of surfactant
mass transfer is achieved. In this regime, local equilibrium between the bulk sublayer and
the interface is established instantaneously, there is no mass flow to the interface and
the surfactant behaves as though it were insoluble. The surfactant transport in the bulk
becomes uncoupled from the solution, and the condition of zero flux j = 0 just locally
relates Cs and Γ . Note also that the condition akdΓ∞/(DCsPe1/3) 	 1 is weakly affected
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by the velocity scale (through the definition of Pe), and so we use it to justify the insoluble
surfactant model for both supercritical and near-critical squeezing.

From fitting to experimental data for one chosen surfactant (table 1 of Ferri &
Stebe 1999), the factors kdΓ∞/(DCs) are found to be 0.63 × 103, 0.92 × 104 and
0.76 × 104 cm−1, respectively, for three values of Cs = 4.8 × 10−9, 1.4 × 10−8 and
5.3 × 10−8 mol cm−3. The corresponding adsorption numbers k are 0.4, 1.2 and 4.3,
respectively. These estimations make the insolubility assumption realistic for drop radii
of (0.01–0.1) cm or larger, at least for some surfactants.

The insoluble surfactant model creates Marangoni stresses, which can dramatically
reduce the surface mobility (and thereby drop transport), compared with the case of clean
interfaces. It has been argued in the literature that, in real conditions, these stresses can
be greatly mitigated by surfactant solubility. However, the supporting simulations (for a
single drop in extensional flow in Milliken & Leal (1994) and for a pressure-driven single
drop migration in a long cylindrical tube in Johnson & Borhan 2003) were performed for
finite surface diffusion and, most notably, for infinite bulk diffusion (Pe = 0) – quite the
opposite to our case Pe 	 1. Their results were found to lie somewhere between those for
clean drops and for drops with insoluble surfactant.

3. Method

3.1. Solution of the hydrodynamic problem
Boundary-integral formulation. First, the Stokes problem to solve for an instantaneous
drop–solid configuration is made non-dimensional below, using L, |〈∇p〉|â2/μe and σeq
as the length, velocity and surface tension scales, respectively. The non-dimensional
BI formulation is based on Hasimoto’s (1959) triply periodic, second-rank symmetric
Green’s tensor G(x) = {Gik} and the related vector P(x) = (P(1),P(2),P(3)) of pressures
satisfying

∇2G(x) − ∇P(x) =
∑

m

δ(x − m)I, ∇ · G(x) = 0, (3.1a,b)

where the summation is over all lattice points m = (m1, m2, m3) with integer mi.
Unlike the periodic G(x), the fundamental pressure vector P(x) and fundamental
stress components τ

(k)
ij = −P(k)δij + ∇iGkj + ∇jGki contain linearly growing parts. It is

convenient to introduce
τ̆

(k)
ij (r) = τ

(k)
ij (r) − rkδij, (3.2)

which happens to be a triply periodic tensor, symmetric in all indices i, j, k. Excluding
the flow inside the drops through the reciprocal theorem and using the Hebeker (1986)
representation for the solid-particle BI as a proportional combination of single- and
double-layer potentials with the Hebeker density q(x), the flow in the continuous phase
can be written in the non-dimensional form as (Zinchenko & Davis 2008a,b)

ue(y) = F (y) + (λ− 1)

∫
S̃

Q(x) · τ̆ (r) · n(x) dSx

+
∫

Ŝ
q(x) · [

ηG(r) + 2τ̆ (r) · n(x)
]

dSx + C. (3.3)

Here, r = x − y, Q(x) = u(x) − u′(x), u′ is the rigid-body projection of u on S̃, η >

0 is a prescribed Hebeker parameter (see below), C is an additive constant and the
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inhomogeneous term is

F (y) = (ã/â)

Ca

∫
S̃

[2σk(x)n(x) − ∇sσ ] · G(r) dSx. (3.4)

Taking the limits of (3.3) for y → Ŝ and y → S̃ yields a system of second-kind integral
equations for q(x) on the particle and u(x) on the drop surfaces, but these equations do
not determine C . However, C can be excluded from the solution by substituting the BI
equation for q(x) into the non-dimensional form

η

∫
Ŝ

q(x) dS = 1
â2 e3, (3.5)

of the dimensional force balance F = −〈∇p〉L3. The resulting closed system of equations
for q and u is solved by generalized minimal residual (GMRES) iterations at each time
step (simple iterations, i.e. ‘successive substitutions’, are divergent in the squeezing
problems). By design of the Hebeker representation, the splitting parameter η > 0 can
be arbitrary, but this freedom does not affect the solution for u in the limit of infinite
solid surface resolution. Neither η = 0 nor very large η can be used: the first choice
makes the solid-particle contribution (3.3) range deficient (not able to accommodate the
hydrodynamic forces and torques acting on Ŝ), the second choice would lead to first-kind
BI equations found to be ill conditioned in 3-D tight-squeezing problems (Zinchenko &
Davis 2006). As in our prior work on clean-drop squeezing, η = â−1 was close to optimal
for practical resolutions and is used in this study.

Desingularizations. Tight-squeezing conditions, of interest here, necessitate proper
desingularization of the integrands in (3.3) and (3.4) when x ≈ y + m, with x and y either
on the same or different very close surfaces S̃ or Ŝ before successful numerical evaluation
of (3.3) and (3.4). The singularities come from

G(r)  Go(r) = − 1
8π

(
I
r

+ rr
r3

)
, τ̆ (r)  τ o(r) = 3

4π

rrr
r5 , (3.6a,b)

for r → 0, where Go and τ o are the free-space Stokeslet and stresslet, respectively. All the
integrals in (3.3) are desingularized as in paper I (and described in detail in Zinchenko &
Davis 2008a). In particular, in addition to the standard free-space double-layer singularity
subtraction stemming from drop self-interaction, it was sufficient to reduce the remaining
near singularity in the integrand for drop-to-drop and drop-to-solid close contributions
from ∼1/r2 to ∼1/r by the variational method (Zinchenko & Davis 2002). This tool,
although without complete desingularization, has greatly improved the spectral properties
of the discretized BI equations and allowed us to avoid divergence of GMRES iterations
for contrast viscosities λ /= 1 (Zinchenko & Davis 2002). The most crucial solid-to-drop
contribution (i.e. the last integral (3.3) with y ∈ S̃) required full desingularization by
‘high-order near-singularity subtraction’. To this end, a proper linear function was
subtracted from q(x) to fully eliminate the integrand singularity, and the added-back
integrals could be evaluated analytically taking advantage of the spherical particle
shape. The regularized BIs in (3.3) were approximated using high-resolution unstructured
triangulations, both on the drop and particle surfaces. For drop-surface integrations, the
simplest trapezoidal rule with flat mesh triangles was used; the drop-surface curvature
k(x) for (3.4) and the normal vectors are calculated in the mesh triangle vertices by the
best paraboloid-spline method of Zinchenko & Davis (2000).
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For desingularized solid-sphere integrations, a more advanced technique (appendix A
of Zinchenko & Davis 2013) than in paper I was used, which treats mesh triangles
as curved (geodesic). Each mesh triangle contribution to

∫
f (x) dS still required only

values of f at this triangle vertices. Such a local character of approximation helps
robustness of tight-squeezing simulations. This approach to solid-particle integration
was also observed (Zinchenko & Davis 2013) to dramatically improve convergence in
simulations of single-phase flow through a dense cubic array.

In the single-layer capillary contribution (3.4), full desingularization of the integrand
was also mandatory, and it had to be different from that for clean drops due to the
Marangoni stress ∇sσ . To this end, the general identity from Zinchenko & Davis (2017b)
was employed∫

S
f (x) · Go(x − y) dSx =

∫
S

[
f − (n · n∗)f ∗

‖ − ( f ∗
‖ · n)n∗ − f ∗

n n
]

· Go(x − y) dSx

+
∫

S

[
(x − x∗) · n∗] f ∗

‖ · τ o(x − y) · n dSx, (3.7)

valid for an arbitrary vector field f (x) = f ‖(x) + fn(x)n(x) on a smooth closed surface
S, decomposed into the tangential ( f ‖) and normal (fn = f · n) components and for an
arbitrary observation point y ∈ S or outside S. Here, x∗ = y when y ∈ S, and x∗ ∈ S can
be arbitrary when y is outside S. On the right-hand side of (3.7), for brevity, f = f (x)

and n = n(x), while the asterisk denotes the values of n, f ‖ and fn at x∗. If x∗ ∈ S is the
nearest point to y, then both right-hand side integrals (3.7) are always non-singular.

To calculate (3.4) (for y on the drop or the solid surface), the free-space contributions
Go(r + m) to G(r) from all periodic images S̃ + m of S̃ within a threshold distance of
0.25â from y are subtracted, and the resulting integral over S̃ with the remaining, smooth
part of the Green’s function is well approximated by the trapezoidal rule. Each of the
added-back free-space integrals over S̃ + m is handled by (3.7), with x∗ ∈ S̃ + m chosen
as the mesh node (triangle vertex) nearest to y; this mesh is naturally translated from S̃.
The above threshold (and similar cutoffs in other parts of the algorithm) greatly helps to
limit the use of direct point-to-point summations not handled by multipole expansions (see
below).

Multipole acceleration. Even after BI desingularizations, adequate resolution of the
drop, and especially solid, surfaces remains a major issue in tight 3-D drop squeezing
simulations, because of large stresses developing in the lubrication areas. For example,
near-critical clean drop squeezing through a periodic lattice (paper I) could require tens of
thousands of mesh triangles per surface for accurate results. Multipole acceleration tools
were crucial for those simulations to succeed, with speed-up of BI iterations by almost two
orders of magnitude for high resolutions, compared with a direct point-to-point summation
code. The same approach is applied in the present work. Below, we only give a brief
overview. Details are technically involved and cannot be discussed here; they can be found
in Zinchenko & Davis (2000, 2002, 2008a, 2013, 2017b).

Two levels of mesh-node decomposition are used. The higher level consists of entire
drop and particle surfaces, called ‘blocks’. On the lower level, each surface, drop
or solid, is divided into non-overlapping compact patches (figure 2 of Zinchenko &
Davis (2008a) shows the patch construction and appearance). It is generally optimal to
have 200–400 mesh nodes per patch. A sufficient number of free-space contributions
Go(r + m) and τ o(r + m) with integer m (|m| ≤ 3) are subtracted from G(r) and τ̆ (r)
to move singularities of the remaining functions G1(r) and τ 1(r) far away from the
origin. The free-space contribution of each patch to the integrals (3.3) (not included in
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the additional, desingularization terms calculated directly without multipole acceleration)
is expanded in Lamb’s singular series about the patch centre to a sufficiently high order
(∼20) of multipoles. Lamb’s series for the entire surfaces are obtained by merging
the patch expansions via a fast, rotation-based scheme. The free-space contributions
between block/patch images are computed by either singular-to-regular rotation-based
Lamb’s series reexpansion followed by pointwise calculation of regular series, or by direct
pointwise calculation of Lamb’s singular series, or (in rare cases) by direct point-to-point
summations, depending on what is applicable/optimal in terms of series convergence.
Fast-convergent, far-field block-to-block contributions (stemming from G1(r) and τ 1(r))
are always computed by Taylor series expansions about the block centres, with just a few
terms needed. Economical truncation, depending on an intuitive precision parameter ε,
sets a broad spectrum of truncation bounds for multipole operations, allowing us to choose
the optimal branch of calculations in each case. As ε → 0, all multipoles are eventually
included, to secure convergence to the (much slower) solution by standard point-to-point
summations.

The inhomogeneous term (3.4) also requires multipole-accelerated calculation.
However, since (i) it is taken out of BI iterations (ii) the integration in (3.4) is over
the drop surface only and (iii) the drop surface does not require as many mesh nodes
as does the solid surface, we did not pursue maximum efficiency in this case, and used
only one, high level of node decomposition (into the entire surfaces) for simplicity in the
multipole-accelerated scheme for (3.4).

Our approach to multipole acceleration of hydrodynamic BI solutions, already applied
to a large number of emulsion flow problems, is vastly different from the general fast
multipole method (as discussed in Zinchenko & Davis 2008a) and appears to be logically
simpler and more suited for multiphase Stokes problems. In particular, a hierarchy of
mesh-node decomposition by Cartesian cells is not used in our algorithms.

3.2. Surfactant transport
Due to the absence of diffusion in (2.2), upwind-biased numerical schemes had to be used
for surfactant transport to avoid instability and successfully reach a periodic regime in
our long-time simulations, even though these schemes are only first-order accurate in time
and space. One such, most suitable scheme is upwind ‘finite volume’ (FV) (see Gissinger
et al. (2019) and Gissinger (2020)). As in other BI algorithms (e.g. Bazhlekov, Anderson
& Meijer 2003), the drop-mesh nodes xi here have to be advanced with velocities dxi/dt =
V i = u(xi) + wi different from the fluid velocity u in these nodes; the additional tangential
field w is constructed to greatly slow down mesh degradation (see the Appendix) without
distorting the drop shape. The transport equation (2.2) then takes the form (Gissinger et al.
2019)

dΓ

dt
= −∇s · (Γ (u − V i)), (3.8)

for the surfactant concentration evolution in the node i; the curvature term falls out from
(3.8) due to zero normal component of wi. The curvatureless form (3.8) is generally
beneficial, because the surface curvature calculation is unsatisfactory with some methods.
The conservative form (3.8) is then integrated over a small area around xi bounded by
a contour of a dual mesh (cf. Bazhlekov et al. 2003). The necessary flux of Γ (u − V i)
through each contour segment, associated with a neighbouring node j, is approximated in
the upwind fashion through either Γi or Γj depending on the direction of u − V i (in the
spirit of upwind schemes from inviscid fluid modelling, Smolarkiewicz & Szmelter 2005).
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Gissinger et al. (2019) also offered an entirely different numerical scheme, ‘flow-biased
least-squares method’ (FBLS), for surfactant transport on a deformable surface. In the
intrinsic coordinate system (x′

1, x′
2, x′

3) centred at node O = xi, with the x′
3 axis along the

normal n(O), u(x) − u(O) is locally approximated as a linear plus quadratic functions of
x′

1 and x′
1, with five coefficients found by the least-squares fitting of this approximation

to u(xj) − u(O) for the whole set A of mesh nodes xj directly connected to O. For
Γ (x) − Γ (O), however, only a linear approximation Ax′

1 + Bx′
2 is used, with A and B

determined by least-squares fitting this form to Γ (xj) − Γ (O) in a selected subset Asel ⊂
A of neighbours. This Asel is constructed as the maximal subset from the requirement
that (w · ∇sΓ )O on the right-hand side of (3.8) gives a theoretically stable scheme for
advancing the surfactant concentration. Obviously, Asel(O) is dynamic and depends on
the direction of w(O); on average, this subset contains three neighbours. The other part
−Γ ∇s · (u − V i) of the right-hand side of (3.8), which theoretically does not affect the
stability, is calculated at O using the above fluid velocity approximation; again, the surface
curvature cancels out and is not required.

Compared with the upwind FV, the FBLS is geometrically much simpler (since it does
not operate with the topology of the dual mesh) and requires much less programming,
but this simplicity comes at a price. For λ = 0.25 and large Ca (far away from critical
for squeezing), our simulations using upwind FV successfully proceeded to necessary
large times to reach the periodic regime, while simulations with FBLS failed prior to that
stage (β = 0.05 simulations suffered more from this limitation than β = 0.1 simulations
did). So, it appears that the upwind FV algorithm is more universally applicable. In
other cases, FBLS was competitive to large times and was often used to cross-check
the upwind FV simulations; the results for instantaneous UD(t) were always graphically
indistinguishable in the whole time range (with one exception discussed in § 4.2). This
agreement between the two, very different numerical schemes for surfactant transport
(2.2) proves the correctness of both implementations. It is also evidence that the numerical
diffusion (usually associated with upwind-biased schemes) does not come appreciably into
play, and the limit of a non-diffusive surfactant is truly reached in the present simulations
(possibly, due to fine resolutions which had to be used anyway in this work for accurate
hydrodynamic solutions).

Additional, miscellaneous details of the algorithm are outlined in the Appendix. Those
include unstructured mesh generation on the drop and solid surface, dynamic mesh
quality control for drops, time stepping and control of surface overlapping (drop–solid
and drop–drop). No surface contacts would occur, if the problem was solved exactly.
However, even with (ultra-)high resolutions used in our simulations, the latter procedure
(node correction) was still necessary, but it had to be applied only to an extremely small
portion of mesh nodes on the drop surface without perceptible global effects, owing
to desingularization tools. In what follows, the terms ‘moderate’, ‘high’ and ‘ultra-high
resolution’ are reserved, respectively, for the combinations (Ñ�, N̂�) = (11.5K, 20.5K),
(15.4K, 34.6K) and (20.5K, 46K) of the number of mesh triangles on the drop (Ñ�) and
solid (N̂�) surface.

4. Results: linear EOS for surfactant

Unlike the equations of § 3.1, the numerical results below (and in § 5) are made
non-dimensional using, respectively, |〈∇p〉|â2/(45μe) and 45μe/(|〈∇p〉|â) as more
natural velocity and time scales. The factor of 45 accounts for the small permeability
of a dense cubic lattice at cem = 0.5, based on the empirical formula of Carman–Kozeny
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for the average continuous-phase velocity in the absence of drops. The capillary number
is still given by (2.4). The notations Γ and σ , however, are reserved for the dimensional
surfactant concentration and surface tension. In all the numerical examples below, the drop
and continuous phases move downward, consistent with figure 1.

4.1. High viscosity ratio λ = 4

4.1.1. Results for cem = 0.5
As for all parameters in this study, the fully developed periodic regime, in terms of both
drop motion and surfactant distribution, is typically established after just a few squeezing
cycles. Several snapshots during this regime are shown in figure 2 for cem = 0.5, light
contamination β = 0.05 and substantially supercritical Ca = 1.27. The reference time tT
for panel (a) was arbitrarily set to zero (long after the established regime with period of
T = 4.05 was achieved), just to show the subsequent drop and surfactant evolution relative
to this panel. For continuity, it is helpful to focus on a consistent periodic image of the drop
throughout the sequence, which corresponds to the top, middle and bottom drops, for tT =
0, 1.5 and 2.8, respectively. Panel (a) is near the moment of the maximum drop velocity
UD(t), after the drop has almost fully coated the solid particles and is being pushed into
the next pore. Similar to single-drop squeezing through a three-sphere cluster in an infinite
fluid (Gissinger et al. 2019; Gissinger 2020), sharp surfactant gradients can develop, with
regions of depleted surfactant concentration wherever there are near-contact lubrication
layers. In this case, film drainage also occurs between periodic images of the drop (in the x3
direction), resulting in another depleted region within drop–drop near-contact zones (only
two periodic images of the drop are shown for tT = 0 and tT = 2.8). As for clean drops and
essentially supercritical Ca (as in figure 2), the drop-phase velocity UD(t) greatly exceeds
that of the continuous phase. This feature helps to explain why the surfactant in figure 2
is swept toward the trailing end of the drop, and remains almost entirely confined to the
trailing half throughout the periodic regime. The most success that Marangoni stresses
achieve in redistributing surfactant is near the moment of the maximum drop velocity,
where a small amount is pulled downstream, on the drop surface near the interparticle
interstices. The drop reaches its minimum velocity UD(t) near tT = 1.5 (figure 2b), when
it is nearly centred within the pore, and has ‘detached’ from the previous layer of solid
particles and formed a lubrication layer between itself and the next layer. Observing
the near-zero concentration of surfactant on the leading half of the drop at this point
(tT = 1.5), Marangoni stresses evidently do not play a role in the initial formation of the
lubrication layer with the next layer of particles. However, shortly thereafter, as seen at
tT = 2.8, surfactant is advected toward these near-contact regions, allowing Marangoni
stresses to affect the thin-film dynamics and drainage. For the parameters in figure 2,
light contamination β = 0.05 increases the period of motion by 11 %, compared with the
clean-drop case.

Figure 3(a–d) shows different scenarios for the evolution of UD(t) into a periodic regime
for clean (β = 0) and moderately contaminated (β = 0.1) emulsions at cem = 0.5 and less
supercritical Ca than in figure 2. For Ca = 1.111 with surfactant (figure 3a), an accurate
periodic regime is achieved only after 5–6 squeezing cycles (i.e. between the successive
peaks of UD(t)); neither maxima nor minima of UD(t) settle until t ≈ 25. In contrast, for
a clean emulsion at the same Ca (figure 3b), such a regime is established much sooner.
Conversely, for near-critical Ca = 0.873 with surfactant, the periodic regime is already
accurately represented by the first squeezing cycle (figure 3c), while it takes at least
three cycles to establish time periodicity for a clean emulsion at the same Ca = 0.873
(figure 3d). Although it is difficult to formulate a universal rule, slow convergence to a
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tT = 0

(a) (b) (c)

tT = 1.5

tT = 2.8

0 1 Γ/Γeq >3

Figure 2. Snapshots of pressure-driven contaminated emulsion flow through a cubic array of solid particles at
λ = 4, cem = 0.5, β = 0.05 and Ca = 1.27 (moderate resolution). The reference time tT for the leftmost panel
is set to zero, after regular periodic motion with a period T = 4.05 has been achieved. For tT = 0 and 2.8, all
but two periodic images of the drop are hidden. Only portions of the solid spheres (translucent grey) within
one periodic cell are shown.

periodic regime (like in figure 3a) is more likely to be observed for cem = 0.5 with large
λ and Ca, far away from trapping conditions. In the present work, a sufficient number
of squeezing cycles were always simulated to reach time periodicity (and the simulations
were simply stopped at that point).

The most physically relevant property to characterize the efficiency of the drop-phase
transport is the time average 〈UD〉 of UD(t) over the established period of motion and is
shown in figure 3(a–d) by horizontal dashed lines. For substantially supercritical Ca =
1.111, the presence of surfactant reduces 〈UD〉 1.31 times (cf. figures 3(a) and 3(b)). For
smaller Ca = 0.873, the contamination effect to reduce the average drop-phase velocity
is somewhat stronger (1.39 times, cf. figures 3(c) and 3(d)). The Marangoni stress acts
to partially immobilize the drop surface and thereby slow down the drop-phase transport.
The opposite effect of surfactant to alleviate drop squeezing by surface tension reduction
is weaker in this system, especially as trapping is approached (because of smaller surface
tension variations).

All solid lines in figure 3(a–d) are for high-resolution runs. For a convergence test, the
Ca = 0.873 run in figure 3(c) was repeated with moderate resolution (the dotted line).
The results agree well in the whole time range shown, with even smaller differences in
the integral properties. Namely, reducing the surface resolution from high to moderate
increased the established period of motion by only 1.5 %, with an imperceptible effect on
〈UD〉. The convergence is even better for higher, less critical Ca. The high-resolution run
in figure 3(c) (15.4 K mesh triangles on the drop and 34.6 K triangles on the solid surface)
took 30 K time steps to t = 21, and about 6 days by a serial code on a personal Linux
workstation with a 4.2 GHz i7-7700 K processor and pgfortran; the moderate-resolution
run to t = 21 (with 11.5 K elements on the drop and 20.5 K elements on the solid surface)
took approximately 3.5 days.
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Figure 3. Different scenarios for the evolution of the drop-phase velocity to the periodic regime for clean
(β = 0) and moderately contaminated (β = 0.1) emulsions at λ = 4 and cem = 0.5: (a) Ca = 1.111, β = 0.1;
(b) Ca = 1.111, β = 0; (c) Ca = 0.873, β = 0.1; (d) Ca = 0.873, β = 0. In each graph, the solid line is
for high-resolution simulation, and the horizontal dashed line is the corresponding time average over the
established periodic regime. The dotted line in (c) is for moderate resolution.

Figure 4(a) presents a systematic comparison of the average drop-phase velocity 〈UD〉
for clean (β = 0, circles), lightly contaminated (β = 0.05, diamonds) and moderately
contaminated (β = 0.1, squares) emulsions at λ = 4, cem = 0.5 and various capillary
numbers. The clean-drop data are from the simulations of paper I (except that we used
more squeezing cycles here for a slight improvement). For surfactant-laden drops, high
resolution was used for all Ca ≥ 0.873, but increased to ultra-high (as defined in § 3.2)
for the leftmost Ca = 0.818. This change was observed for β = 0.1 to have a very minor
effect (decreasing the period by 0.2 %, and increasing 〈UD〉 by 0.3 %), thus supporting
the convergence analysis in figure 3(c) for a different Ca. Compared with the clean-drop
results, moderate contamination decreases the average drop velocity 1.25 times for Ca =
1.270 and 1.5 times for Ca = 0.818. For light contamination, the surfactant effect is
smaller but still significant (1.11 and 1.35 times velocity reduction for Ca = 1.270 and
Ca = 0.818, respectively). Again, the Marangoni stress, responsible for this reduction, is
seen to be an increasingly dominant mechanism as Ca decreases.

It is of interest to evaluate the critical Ca, below which the emulsion could no longer
squeeze and would be trapped in the pores. It would be exceedingly difficult to find Cacrit
by direct trial-and-error simulations for many Ca because of formidable resolution and

953 A21-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

95
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.951


A.Z. Zinchenko, J.R. Gissinger and R.H. Davis

0.7 0.8 0.9 1.0 1.1
0

0.002

0.004

0.006

0.008

0.010

Ca

(b)

1
/T

3

0.8 0.9 1.0 1.1 1.2 1.3
0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

〈UD〉

Ca

(a)

.

Figure 4. (a) Average drop-phase velocity and (b) inverse cube of the motion period for clean (β = 0, circles),
lightly contaminated (β = 0.05, diamonds) and moderately contaminated (β = 0.1, squares) emulsions at λ =
4 and cem = 0.5. High to ultra-high resolution used for all β /= 0 simulations. The dashed lines in (b) show
extrapolations to the critical capillary numbers 0.730 and 0.734 for β = 0.05 and 0.1, respectively.

CPU time requirements to discern trapping from squeezing. Instead, it was empirically
found in paper I for clean drops that the unlimited growth of the motion period T , as
Ca → Cacrit from above, appears to be well described by T ∼ (Ca − Cacrit)

−1/3, allowing
one to estimate Cacrit by extrapolation. The same approach, used in figure 4(b) for
contaminated emulsions, confirms an approximately linear behaviour of 1/T3 vs Ca as
trapping is approached (barring further deviation from this linear dependence). Linear
extrapolation to zero 1/T3 yields Cacrit ≈ 0.730–0.734, surprisingly independent of the
degree of contamination, even though the squeezing kinetics are much different for
β = 0.05 and 0.1. It is far more difficult to give an accurate estimation of Cacrit for a
surfactant-free emulsion in this particular case λ = 4, cem = 0.5. Using more squeezing
cycles than in paper I to better evaluate the period T yields Cacrit ≈ 0.65 (instead of
0.70 in that paper). This extrapolated value is still unreliable, because it is far from the
data points Ca ≥ 0.794 included in the extrapolation, and so it may be sensitive to the
extrapolation model (which remains empirical); the results in figure 4(b) suffer much less
from this uncertainty. In any case, at λ = 4 and cem = 0.5, the Cacrit for the clean emulsion
is noticeably less than for the contaminated emulsions. The β-independence of Cacrit in
figure 4(b) is likely indicative of the saturation phenomenon (more pronounced for low
viscosity ratio and discussed later in § 4.3), when the global quantities become insensitive
to further increase of the contamination.

To justify the artificial surface overlap control procedure (see the Appendix), the
fractions pds(t) and pdd(t) of the total number Ñ�/2 + 2 of nodes on the drop surface,
which required correction to avoid drop–solid and drop–drop overlap, respectively, were
monitored at each time step. These fractions were then time averaged, after the periodic
regime was established for UD(t). The corresponding quantities 〈 pds〉 and 〈 pdd〉 for the
contaminated emulsions from figure 4 are shown in table 1. Even in the worst case
β = 0.05 and near-critical Ca = 0.818, these fractions, on average, remain very small
(0.005 and 0.002 for 〈 pds〉 and 〈 pdd〉, respectively), so close contacts are ‘almost resolved’,
and our artificial node correction to remove the remaining overlaps does not compromise
the global accuracy. For tight squeezing (i.e. at small Ca), a moderate contamination
(β = 0.1) clearly resists the numerical trend for drop–solid overlap more than light
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Emulsion with surfactant in a periodic porous medium

β = 0.05 β = 0.1

Ca 〈 pds〉 〈 pdd〉 〈 pds〉 〈 pdd〉
1.270 0 0 4.7 × 10−6 0
1.111 3.5 × 10−4 1.0 × 10−4 6.5 × 10−4 1.4 × 10−3

1.032 7.1 × 10−4 3.0 × 10−4 9.0 × 10−4 1.4 × 10−3

0.952 2.4 × 10−3 8.0 × 10−4 1.1 × 10−3 1.7 × 10−3

0.873 4.7 × 10−3 1.5 × 10−3 1.2 × 10−3 1.7 × 10−3

0.818 5.4 × 10−3 2.2 × 10−3 8.6 × 10−4 2.0 × 10−3

Table 1. The values of 〈 pds〉 and 〈 pdd〉 for the contaminated emulsion simulations in figure 4.

contamination (β = 0.05) does (table 1), presumably, due to less mobile interfaces and
thicker lubrication layers in the former case. No node corrections were needed at all for
Ca = 1.270 and β = 0.05, and the drop–solid gap remained between 0.012â and 0.024â
for the entire simulation. For very rare and isolated moments of time, the instantaneous
pds(t) and pdd(t) can be an order of magnitude larger than the averages in table 1, simply
because the occasional active node redistribution (see the Appendix), with its surface
interpolation to keep the displaced nodes on the interface, can conflict with small clearance
from other surfaces/images. Note that pds(t) and pdd(t) are not arbitrary metrics that could
be made vanishingly small by choosing a sufficiently small time step. Repeating selected
simulations with three times smaller time steps gave almost the same statistics of pds(t)
and pdd(t).

The present algorithm can be readily used for any EOS σ(Γ ), but only the linear model
σ = σo − RTΓ is considered in this section, in order to not increase the parameter space.
More realistic, nonlinear surfactant models take a finite packing limit Γ∞ into account,
which would add at least one non-dimensional parameter, elasticity E = RTΓ∞/σo to
the list; following Velankar et al. (2004) and Bazhlekov, Anderson & Meijer (2006),
it is preferred to base E on the clean surface tension, not on σeq, making it a material
property. The limitation Γmax � Γ∞ on the linear model can be rewritten in terms of the
surface tension as 1 − σmin/σo � E (where σmin is the minimum value on the surface),
which allows only modest variations of the surface tension. To probe this limitation for
the simulations from figure 4, we monitored the temporal dynamics of σmin/σo in the most
unfavourable case Ca = 1.270, when the drops move with relatively large deformation
and velocity through the pores, away from critical squeezing conditions. As for UD(t)
(figure 5a), the periodic regime is also well reached for σmin(t) (figure 5b). At the dips,
σmin/σo can be substantially less than unity (0.66 for β = 0.05, and 0.53 for β = 0.1),
but these dips are very short-lived and should not have a dominant effect. It appears more
appropriate to consider the time-averaged σmin/σo (over the established period of motion),
presented in figure 5(b) by the dotted lines, which are much closer to unity. Thus, if the
two conditions

1 − σmin(t)/σo < E, 1 − 〈σmin/σo〉 � E, (4.1a,b)

are met in a linear model simulation, then replacing the linear EOS by a nonlinear model
is not expected to have a substantial effect. For the simulations in figure 5(b), these
limitations read E > 0.34, E 	 0.19 for β = 0.05, and E > 0.47, E 	 0.27 for β = 0.1.
Closer to trapping, conditions (4.1) become somewhat less restrictive. For example, at
Ca = 0.873 in figure 4, we have E > 0.31, E 	 0.14 for β = 0.05, and E > 0.39, E 	
0.19 for β = 0.1. Of course, these are only guidelines, and rigorous simulations using
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Figure 5. The established periodic regime for (a) the drop-phase velocity and (b) minimum surface tension in
the simulations with λ = 4, cem = 0.5 and Ca = 1.270. Lines 1: β = 0; 2: β = 0.05 and 3: β = 0.1. In (a),
one period (with T = 3.65, 4.03 and 4.54 for β = 0, 0.05 and 0.1, respectively) is highlighted bold; only the
vicinity of the period is shown to not overcrowd the graph. In (b), the dotted lines represent the time averages
of σmin/σo (0.810 and 0.734 for β = 0.05 and 0.1, respectively).

nonlinear models are still required to establish the range of validity of the linear EOS in
the present problem and verify the criteria (4.1a,b), which is addressed in § 5. Values of
E ∼ 0.4–0.5 are deemed to be at the upper edge for known surfactants (Eggleton et al.
1999), but there are no theoretical arguments for why they cannot be higher.

4.1.2. Effect of the emulsion concentration
Figure 6 gives an example of simulations for a lightly contaminated emulsion at lower
concentration cem = 0.36, with λ = 4 and Ca = 0.995. The snapshots are taken after the
drop has settled into regular periodic motion, with tT = 0 corresponding to a time moment
in the cycle near the maximum drop velocity. The most obvious difference from the cem =
0.5 simulations is the greater separation (between the periodic drop images) that occurs
when the representative drop is near the pore centre. Contamination has a modest effect
on the integral properties in this case, increasing the motion period T from 2.58 to 2.77,
and decreasing the average drop-phase velocity 〈UD〉 from 0.791 to 0.731, compared with
the surfactant-free emulsion. Also, for the supercritical conditions in figure 6, the drop
phase moves much faster than for cem = 0.5 at the same Ca. It is noteworthy that, despite
much-relaxed squeezing conditions, the drops must still undergo large deformations to
pass through the pore throats and almost fully coat the solid particles in a similar fashion.

4.2. Matching viscosities λ = 1
For λ = 1, the surfactant effect on the squeezing kinetics is more pronounced, even
at cem = 0.36 and light contamination β = 0.05. Figure 7(a) contains systematic
comparisons for the average drop-phase velocity 〈UD〉 between the clean (circles) and
contaminated (diamonds) emulsions. The solid symbols represent our most accurate
simulations for this case, using high (for Ca ≥ 0.549) and ultra-high (for Ca ≤ 0.503)
resolutions (as defined in § 3.2). For β = 0.05, it was verified that lowering the resolution
from ultra-high to high for the two leftmost Ca affects 〈UD〉 by less than 0.3 %–0.4 %, and
the period T by less than 0.1 %. Moderate-resolution results (open diamonds), obtained
for Ca ≥ 0.503, show larger, but still small differences. Thus, all the solid symbol data in
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tT = 0 tT = 1.24

(a) (b) (c)

tT = 2.03

0 1 >3Γ/Γeq

Figure 6. Squeezing behaviour and surfactant distribution for emulsion flow with λ = 4, cem = 0.36,
β = 0.05 and Ca = 0.995.
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Figure 7. (a) Average drop-phase (〈UD〉) and continuous-phase (〈UC〉) velocities and (b) inverse cube of the
motion period for clean (β = 0, circles) and lightly contaminated (β = 0.05, diamonds) emulsions at λ = 1
and cem = 0.36. Solid symbols are for high to ultra-high resolution simulations, open symbols are for moderate
resolution. The dashed lines in (b) show extrapolations to the critical capillary numbers 0.426 and 0.417 for
β = 0 and 0.05, respectively.

figure 7 are deemed highly accurate. The clean emulsion data in figure 7 are also new, to
refine the results from paper I.

The surfactant acts to decrease the average drop-phase velocity 1.37 times for Ca =
0.731, and 1.56 times for Ca = 0.549; again, this effect is due to Marangoni stress and
grows as trapping is approached. The critical Ca was evaluated, again, by plotting 1/T3

vs Ca and linearly extrapolating to zero 1/T3 (figure 7b), to give essentially the same
Cacrit = 0.426 for β = 0, and 0.417 for β = 0.05, regardless of contamination. Here,
0.426 is a refinement of Cacrit = 0.435 obtained in paper I for clean drops; both values
slightly overshoot Cacrit for the contaminated emulsion.
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Figure 8. The drop-phase velocity for λ = 1, cem = 0.36 and β = 0.05: (a) Ca = 0.43, solid line for high
and dotted line for moderate resolutions; (b) Ca = 0.457, solid line for ultra-high and dotted line for high
resolutions.

To corroborate our result Cacrit ≈ 0.417 for the contaminated emulsion, it was still
possible to directly simulate the β = 0.05 squeezing for a slightly higher Ca = 0.43
(figure 8a) with moderate (dotted line) and high (solid line) resolutions. Not surprisingly,
such results are slowly convergent with respect to resolutions and could not be included in
the extrapolation in figure 7(b); further increase in the surface resolution was problematic.
Moreover, the results at this Ca were found for moderate resolution to be strongly
dependent on the choice of the surfactant transport algorithm, both for the instantaneous
UD(t) and the integral properties. No such anomalies were observed for a slightly higher
Ca = 0.457 (figure 8b). A sharp increase of the motion period T from 5.73 to 7.32 (both for
high resolution) with a small change of Ca from 0.457 to 0.43 does confirm, however, that
Ca = 0.43 is indeed very slightly supercritical. Obviously, without the guidance provided
by extrapolation, it would be very problematic to find Cacrit by trial-and-error runs.

Despite some lack of accuracy in the Ca = 0.43 runs, they serve to elucidate the
qualitative feature of the surfactant behaviour peculiar to near-critical squeezing. As shown
in figure 9(a), the surfactant is swept to the leading tip of the drop during a portion of the
squeezing cycle, unlike for away-from-critical squeezing. The reason is that, for Ca ≈
Cacrit, the drop shape is nearly stagnant in the constriction, and so the direction of the
interfacial fluid velocity relative to the drop is dominated by the ambient, pressure-driven
flow of the carrier fluid which drives the surfactant to the leading tip. To support this
explanation, we have additionally calculated the continuous-phase velocity UC(t) and
the relative interfacial velocity field u − UD on the drop surface for the high-resolution
simulation from figure 8(a). Here, UC(t) is defined as the average of the fluid velocity over
the carrier fluid volume (and is highly non-trivial to calculate, as detailed in Zinchenko &
Davis 2008a). At the slow squeezing stage (e.g. at t = 16), the drop-phase moves slower
than does the continuous phase (figure 10a). The corresponding interfacial velocity field
(figure 10(b) at t = 16) is weak, except on the narrow ridges between near-contact zones
with the solid particles, where this flow vigorously drives the surfactant to the leading
tip. Conversely, at the fast squeezing stage (e.g. at t = 20) UD > UC. The corresponding
interfacial flow (figure 10(b) at t = 20) acts in the opposite direction, and on a larger
area, to accumulate the surfactant at the trailing end. As seen from figure 10(a), the drop
phase moves slower than the carrier fluid (roughly two times) for most of the squeezing
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Emulsion with surfactant in a periodic porous medium

1
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Figure 9. Snapshots of drop squeezing for λ = 1, cem = 0.36, β = 0.05 and very near-critical Ca = 0.43
(moderate resolution, period T = 7.55). The surfactant is swept to the downstream half of the drop during
part of the squeezing cycle (t = 11.8, shown from a different angle to reveal the surfactant distribution).

cycle, but UD strongly dominates over UC at other parts of the cycle where the drop is
mostly out of the constriction. As a result, the time average 〈UD〉 exceeds 〈UC〉. For higher
Ca ≥ 0.457, the well-convergent results in figure 7(a) show even a stronger dominance of
〈UD〉 over 〈UC〉. Note that this feature 〈UC〉 < 〈UD〉 was observed in all our emulsion flow
simulations through a granular material, whether it was ordered (paper I) or disordered
(Zinchenko & Davis 2008a, 2013). This trend should theoretically reverse in the limit
Ca → Cacrit, when the drops are blocked completely in the pores, but the carrier fluid still
has some room to flow around the drops; however, this reversal is unlikely to be reached
in feasible simulations. The present study is not focused on UC, but on UD as the main
characteristics of the drop transport.

The surfactant concentration distribution in figure 10(c) helps to elucidate why
the extrapolated critical capillary number in figure 7(b) is practically independent of
contamination. If the pressure-driven drop trapping in the constriction was a hydrostatic
problem in a quiescent liquid (which would be the case, e.g. for gravity-induced trapping)
and the surface tension was uniform (σ = σeq, i.e. Γ = Γeq), then the critical Ca (2.4)
would only depend on the system geometry, namely, on the drop-to-particle size ratio in
our case. Indeed, this Cacrit would be determined, in principle, by the solution of the
3-D Young–Laplace equation for a static drop with yet unknown shape plugged in the
constriction, and yet unknown wetting areas with the solid boundaries. Our problem,
however, is dynamic, and flow on the drop surface, around it and in the lubrication
gaps still exists even at Ca = Cacrit, which creates surfactant concentration gradients,
Marangoni stresses and brings in additional parameters (β and λ). A fully trapped drop
at Ca ≤ Cacrit (and of size comparable to the particle size) is known to be blocked at
the very entrance of the constriction (Zinchenko & Davis 2006; Gissinger et al. 2019;
Gissinger 2020). This situation is well represented by our t = 16 images in figure 10(b,c),
although they are for a slightly supercritical Ca. On most of the drop surface at this time,
Γ happens to be close to Γeq (figure 10c), and it is easy to see from the EOS that σ ≈ σeq
with excellent accuracy throughout the whole surface (except for small lubrication areas
between the drop and the solids). The same must be true at Ca ≤ Cacrit. Also, moderate
surfactant concentration changes in figure 10(c) suggest that the dynamic stresses due to
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Figure 10. (a) Comparison between the drop-phase (solid line) and continuous-phase (dashed line) velocities
for λ = 1, cem = 0.36, β = 0.05 and very near-critical Ca = 0.43 (high resolution). (b) Relative interfacial
velocity u − UD on the drop surface for simulation in (a), viewed along x2; reference vector (black) between
the images represents unit velocity (in scale). (c) Surfactant concentration distribution on the drop surface
from (b).

flow would be overall of minor importance at Cacrit. These arguments help to explain why
contamination has almost no effect on Cacrit (although it strongly affects the kinetics of
squeezing). For the same reasons, Cacrit should be practically insensitive to the viscosity
ratio, which will be demonstrated in the next subsection.

Ratcliffe, Zinchenko & Davis (2012) developed a special algorithm to simulate
gravity-induced trapping of a deformable drop in a 3-D constriction in unbounded
quiescent liquid, based on an artificial ‘time-dependent’ evolution to a steady-state
solution of the Young–Laplace equation; not only the trapped drop shape, but also
wetted areas on the solid boundaries are automatically obtained in this process. As long
as the trapped states are of only interest, this approach is far more efficient than true
time-dependent BI (or other computational fluid dynamics) simulations. Replacing gravity
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β Ca = 0.732 0.640 0.549 0.503 0.457

0 0 2.5 × 10−6 1.9 × 10−4 2.0 × 10−4 8.7 × 10−4

0.05 0 8.1 × 10−5 2.7 × 10−4 8.3 × 10−5 9.5 × 10−5

Table 2. The values of 〈 pds〉 for the high/ultra-high-resolution simulations from figure 7.

with pressure-driven forcing, their method could be adapted to find Cacrit in our problem
and compared with our extrapolation procedure. This task, however, is beyond the scope
of the present paper.

The numerical trend for surface overlapping at λ = 1 and cem = 0.36 is even much
smaller than the one observed in § 4.1 and, again, not suspected to compromise the global
accuracy of the simulations. In table 2, the average fraction 〈 pds〉 of drop-mesh nodes
requiring correction at one time step to avoid drop–solid contact is compared between
the β = 0 and β = 0.05 simulations corresponding to solid symbols in figure 7 (high- and
ultra-high-resolution runs). For Ca = 0.457 and 0.503, slight contamination β = 0.05 acts
to significantly reduce 〈 pds〉, presumably, due to thicker lubrication layers than for clean
drops. Drop–drop contacts were absent altogether for β = 0.05; without surfactant, 〈 pdd〉
was less than 5 × 10−6 for all Ca from table 2.

For λ = 1, cem = 0.36 and β = 0.05, the suggested limitations (4.1a,b) on the validity of
the linear EOS take the form E > 0.33, E 	 0.16 for Ca = 0.732. They are less restrictive
(E > 0.24, E 	 0.08) for the near-critical Ca = 0.457.

4.3. Small viscosity ratio λ = 0.25
The strongest effect of surfactant on the squeezing kinetics is observed for the small
viscosity ratio λ = 0.25. Figure 11(a,b) presents the average drop-phase velocity 〈UD〉
and the inverse cube of the motion period for clean (β = 0, circles), lightly contaminated
(β = 0.05, diamonds) and moderately contaminated (β = 0.1, squares) emulsions, all at
cem = 0.36. The case λ = 0.25 is new and was not covered in paper I even for clean drops.
Except for the leftmost point Ca = 0.457 at β = 0, all the solid symbols, representing the
most accurate results, were obtained with high surface resolution (as defined in § 3.2).
Moderate-resolution simulations (open symbols) show almost indistinguishable results
away from the critical squeezing conditions, and still good convergence as the trapping
is approached. For clean drops at Ca = 0.457, ultra-high resolution (as defined in § 3.2)
was used.

At the largest Ca = 0.732 in figure 11(a), the average drop-phase velocity reduction due
to surfactant is 1.67 times for β = 0.05, and even more significant 2.19 times for moderate
contamination β = 0.1. The most interesting observation is the saturation phenomenon,
namely, as trapping is approached, increasing contamination from β = 0.05 to 0.1 has no
further effect. At the smallest Ca = 0.457 considered and β = 0.1, the drop-phase velocity
reduction due to surfactant is 1.67 times, which is smaller than for Ca = 0.732. The
same velocity reduction at Ca = 0.457 is expected for β = 0.05 due to saturation, even
though the difficult β = 0.05 simulations were not extended to this Ca. Strong drop-phase
velocity reduction due to surfactant in figure 11(a) is, again, achieved with only small
surface tension variations, which supports using the linear EOS; the limitations (4.2) are
quantitatively about the same as for λ = 1.

The inverse cube of the motion period in figure 11(b) shows a nearly linear dependence
on Ca for both clean and moderately contaminated emulsions in the whole range of Ca,
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Figure 11. (a) Average drop-phase velocity and (b) inverse cube of the motion period for clean (β = 0, circles),
lightly contaminated (β = 0.05, diamonds) and moderately contaminated (β = 0.1, squares) emulsions at λ =
0.25 and cem = 0.36. Solid symbols for high to ultra-high, and open symbols for moderate resolution. The
dashed lines in (b) show extrapolations to the critical capillary numbers 0.434 and 0.401 for β = 0 and β = 0.1,
respectively; the clean emulsion results are in the inset.

with reliable extrapolations to Cacrit = 0.434 and 0.401 for β = 0 and 0.1, respectively.
As for λ = 1 (§ 3.2), the presence of surfactant acts to decrease Cacrit, but this effect
is more pronounced here for the small viscosity ratio λ = 0.25. For light contamination
β = 0.05, the dependence of 1/T3 on Ca is more complex, but it also appears to become
linear near trapping due to saturation (figure 11b), suggesting the same Cacrit ≈ 0.401,
as for β = 0.1. Very near Ca = 0.434, the presence of surfactant should accelerate, not
slow down, squeezing, but this delicate trend reversal is unlikely to be reached in feasible
simulations.

The minimum forcing |〈∇p〉| sufficient to push the emulsion through the constrictions
is

σo(1 − β)Cacrit/(ãâ), (4.2)

according to (2.3a,b) and the capillary number definition (2.4). Using Cacrit from
figure 11(b), it is easy to see that drop contamination with β = 0.1 reduces the threshold
(4.2) 1.2 times, compared with the clean-drop case, which indirectly supports the above
trend reversal.

Two final examples illustrate that the surfactant effect on the drop-phase velocity UD
becomes even stronger for a more concentrated emulsion with cem = 0.5. In figure 12,
comparison is given between the clean and moderately contaminated emulsions for two
capillary numbers (a) Ca = 1.270 and (b) Ca = 0.952. Black lines are for β = 0, the red
lines are for β = 0.1. To confirm the numerical convergence, both high (solid lines) and
moderate (dashed lines) resolutions were used for each β and Ca. The corresponding short
horizontal lines of the same colour and pattern stand for time averages of UD(t) over the
established periodic regimes. As expected, 〈UD〉 is even less sensitive to resolutions than
UD(t) is; convergence is good for clean and excellent for contaminated emulsions. For
Ca = 1.27, away from critical, the average drop-phase velocity reduction due to surfactant
is 2.15 times; for a more critical Ca = 0.952, this reduction is 2.83 times. Obviously, the
conditions in figure 12(b) are still far from the trend reversal.

In the latter case with the strongest mobility reduction due to surfactant, it is helpful
to look at the representative drop shape evolution and the vector field of the Marangoni
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Figure 12. Drop-phase velocity for λ = 0.25, cem = 0.5 at (a) Ca = 1.270 and (b) Ca = 0.952. Black lines
for clean (β = 0) and red lines for moderately contaminated (β = 0.1) emulsions. Solid lines for high, and
dashed lines for moderate resolution. The corresponding short horizontal levels of the same colour and pattern
are for the time averages 〈UD〉.

stress ∇sσ during the periodic cycle. Both are shown in figure 13, with Marangoni
stresses in ≈240 selected nodes of the triangular mesh on the drop surface. The stress
magnitude |∇sσ | can be compared with the characteristic scale σo/ã presented for each
panel by the length of the reference vector (this length is chosen to be graphically different
for different panels just for presentation purposes, to avoid too large field vectors). For
t = 6.75, there are still small dimples from near-contact drop interaction with the previous
layer of solid spheres, and the drop has not yet entered the next constriction. At this
time, |∇sσ | reaches ≈0.74σo/ã in the dimple regions, but is much smaller elsewhere due
to low value of β = 0.1. At the slow squeezing stage (t = 8 and 9), when the drop is
well inside the next constriction, the dimples are larger, but the Marangoni stresses are
weaker, not exceeding ≈ 0.3σo/ã. For t = 10, the drop is largely out of the constriction
and the Marangoni stresses are stronger again, reaching ≈ 0.78σo/ã in the rear parts
of the dimples. It is notable how relatively small Marangoni stresses, acting in critical
areas against the direction of surfactant accumulation, can reduce the average drop-phase
velocity by a factor of 2.8, compared with a clean emulsion.

4.4. Periodic vs cluster set-up
The qualitative trends found in this work for emulsion squeezing in the periodic set-up are
much different from those for a flow-induced motion in unconfined non-periodic settings.
Specifically, a comparison was made with the case of a single contaminated drop pushed
through a tight isolated cluster of three solid spheres forming an equilateral triangle and
rigidly held in an unbounded fluid (Gissinger et al. 2019; Gissinger 2020). First, in the
unconfined cluster set-up, adding surfactant always accelerated squeezing, opposite to the
average drop-phase velocity reduction due to surfactant found here. Second, Cacrit values
were quite significantly lowered by contamination (until saturation), while we have found
only minor effects of surfactant on Cacrit in the periodic set-up. Also, for the cluster set-up,
decreasing Ca was observed to delay saturation, opposite to the trend in our figure 10. To
partially understand and reconcile these stark differences, it is instructive to look at the
flow field u∞(x) that would exist in each geometry without the drop phase. In the cluster
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t = 6.75

(a) (b)

(c) (d )

t = 8

t = 9 t = 10

Figure 13. Drop shape evolution and the Marangoni stress ∇sσ (red arrows) during the periodic cycle for the
high-resolution simulation from figure 12(b) with β = 0.1. The view is along the x2 direction, the drop moves
downward. A reference vector (black) for each panel has the length of σo/ã.

set-up of Gissinger et al. (2019), the constriction is the stagnation zone, and |u∞(x)| at the
hole centre is 22 times smaller than far away from the cluster (as the flow more easily goes
around the cluster). In contrast, single-phase flow through a simple cubic array behaves
more like a channel flow accelerating in the narrow throats (as the flow has limited ability
to steer from the −〈∇p〉 direction); in the coordinate system of figure 1, |u∞(L/2, L/2, 0)|
is more than two times larger than |u∞(L/2, L/2, L/2)|. Combined with no slip on the
solids, this observation explains much larger gradients of u∞(x) in the constrictions of
the periodic set-up than in the cluster hole. Accordingly, when the contaminated drops are
present, we can expect larger surfactant concentration gradients and Marangoni stresses
in our geometry, compared with the cluster geometry. These Marangoni stresses play a
dominant role to immobilize the drop surfaces and thereby slow down the drop-phase
transport. In the cluster set-up, the opposite effect of surfactant to alleviate drop squeezing
by surface tension reduction appears to dominate.
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Figure 14. Drop-phase velocity for (a) λ = 0.25, cem = 0.5, β = 0.1, Ca = 0.952 and (b) λ = 0.25, cem =
0.36, β = 0.05, Ca = 0.549. Red dashed lines for linear, and blue solid lines for Langmuir surfactant (with
E = 0.5 in (a) and E = 0.25 in (b)). The corresponding short horizontal levels of the same colour and pattern
are for the time averages 〈UD〉. Moderate resolution.

5. Results: nonlinear surfactant models

It is natural to ask if the linear EOS σ = σo − RTΓ , used so far in our simulations to
predict strong drop mobility reduction due to surfactant, is still physically relevant to
describe such strong effects. The order-of-magnitude estimations (4.1a,b) on the validity
of the linear EOS are only guidelines, and they do not replace rigorous simulations with
more realistic models for σ(Γ ) to fully address this issue. To this end, the linear EOS
simulation from figure 12(b) (where the average mobility reduction is the strongest, 2.83
times) was repeated using the Langmuir model

σ = σo + RTΓ∞ ln(1 − Γ/Γ∞). (5.1)

This model takes a finite packing limit Γ∞ into account, and adds the non-dimensional
elasticity parameter E = RTΓ∞/σo to the list; for Γ � Γ∞, the linear EOS is recovered.
With a realistic value of E = 0.5 (i.e. when the initial, uniform surface coverage is 20 % of
Γ∞), figure 14(a) demonstrates good agreement for the drop-phase velocity trajectories
UD(t) between the linear (red dashed line) and Langmuir (solid blue line) surfactant
models. Remarkably, the agreement is even much better for the integral properties of the
established periodic regime. Most importantly, the average drop-phase velocity (presented
in figure 14(a) by the corresponding horizontal lines of the same pattern and colour) is
practically the same in the two simulations (0.522 for the linear, and 0.514 for the Langmuir
model).

Such close agreement between the two surfactant model predictions is not accidental,
and it is confirmed in figure 14(b) for a different set of λ = 0.25, cem = 0.36, β = 0.05 and
Ca = 0.55, with smaller contamination and drop volume fraction. For this set, the linear
EOS predicts the twofold average drop mobility reduction due to surfactant (figure 11a).
As can be seen from figure 14(b), the drop velocity trajectory UD(t) for this linear EOS
simulation (dashed red line) is indeed very close to the result from the Langmuir model
(solid blue line) with the elasticity parameter E = 0.25 (quite representative of a typical
surfactant). The agreement, again, becomes perfect for the average drop-phase velocity
(solid and dashed horizontal lines in figure 14(b), barely distinguishable), with 〈UD〉 ≈
0.629–0.631 in both simulations.
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Figure 15. Snapshots from the Langmuir model simulation (corresponding to the blue solid line in figure 14a)
shown at three close time moments. The left images are for the whole drop–solid configuration, the right images
show the shape and surfactant concentration distribution for one representative drop at the same time moments.
The Cartesian axes x1, x2, x3 are along the sides of the periodic box; the drop-phase motion is along x3.

The a priori estimations (4.1a,b) for the validity of the linear EOS to accurately
represent the Langmuir model simulation would require E > 0.6, E 	 0.24 for
figure 14(a), and E > 0.29, E 	 0.11 for figure 14(b). Judging by figure 14, these
estimations are somewhat conservative, and the linear EOS is adequate in a broader range
of surfactant elasticities E.

Figure 15 helps to further explain the success of the linear EOS. In this figure, the
snapshots from the Langmuir model simulation (corresponding to the blue solid line in
figure 14a) are shown at three successive and close time moments t = 6.60, 6.74 and 6.94.
The left images are for the whole drop–solid configuration, the right images show the
shape and surfactant concentration distribution for one representative drop in the periodic
box at the same time moments. The view angle is approximately the same for the left
and right images; the Cartesian axes x1, x2, x3 are along the sides of the periodic box (cf.
figure 1), and the drop-phase motion is along x3. The time moment t = 6.74 corresponds to
the peak surfactant concentration Γ = 3.9Γeq (i.e. 0.78Γ∞) reached in the periodic cycle.
The linear EOS would be clearly inadequate for this Γ . However, such peak concentration
in the Langmuir model simulation is observed only on a small portion of the drop surface,
and only during a small portion t ≈ 6.74 of the periodic cycle. The two other drop images
in figure 15, at t = 6.60 and 6.94, demonstrate that, away from t = 6.74, the surfactant
concentrations quickly fall to much smaller values on the entire surface, typical of the
rest of the periodic regime. The deficiency of the linear EOS, therefore, does not have
a global effect, which explains close agreement with the Langmuir model simulation
in figure 14(a), especially for 〈UD〉 and other integral properties. Thus, both models
identically predict strong drop mobility reduction due to surfactant.
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The Langmuir EOS (5.1) does not take interactions between the surfactant molecules
into account. A more general form is the Frumkin model

σ = σo + RTΓ∞

[
ln

(
1 − Γ

Γ∞

)
− ξ

2

(
Γ

Γ∞

)2
]

, (5.2)

with ξ > 0 for repulsive and ξ < 0 for cohesive interactions. The form (5.2), as is,
becomes unphysical for ξ < −4, since it does not capture correctly the phase transition (at
large enough Γ ) and coexistence of the gaseous and liquid-expanded states of surfactant
(Ferri & Stebe 1999), with a characteristic plateau of σ(Γ ). Known remedies to simulate
this plateau include constructing a tie line between the two states (Ferri & Stebe 1999),
or using piecewise Langmuir-type expressions for σ(Γ ) (Pawar & Stebe 1996). Johnson
& Borhan (1999) used (5.2) with ξ = −4 to simulate pressure-driven motion of a single
drop along the axis of a long straight cylindrical tube. They showed that strong cohesive
interactions between the surfactant molecules somewhat counter the retardation effect on
the drop migration predicted by the Langmuir model simulation; both effects, however,
are numerically small for unconstricted tubes.

To explore the effect of the Frumkin model (5.2) in the present set-up of emulsion
flow through a porous medium with strong constrictions, we extended the Langmuir
model simulations in figure 14(a) to ξ = −2, −2.5, −3 and −3.5. The results are
〈UD〉 ≈ 0.543, 0.554, 0.561 and 0.595, respectively (in addition to 〈UD〉 ≈ 0.514 for ξ = 0
in figure 14a); the run ξ = −4 did not succeed. Still, it is safe to conclude that cohesive
interactions have little enhancing effect, and the drop-phase mobility reduction with
Frumkin surfactant (compared with the clean-drop case) is almost as strong as with
Langmuir or linear surfactant.

A known problem with hydrodynamical simulations for non-dilute surfactant is the
physical deficiency of all EOS σ(Γ ), allowing for negative surface tension, when Γ

is sufficiently close to Γ∞, and thereby leading to a crash. It is sometimes argued
that Marangoni stresses would always prevent this event from happening. In contrast,
Bazhlekov et al. (2006), in their simulations for a single drop with Langmuir surfactant
in unbounded simple shear, did observe surface tension reaching zero, which was not a
numerical effect. In the present runs, with the initial, uniform surface coverage limited to
20 % of Γ∞, the Langmuir model did not lead to such difficulties, but the Frumkin model
was more restrictive. In particular, it was not possible to extend the long-time simulations
in figure 14(b) to Frumkin surfactant with negative ξ = O(1). We are not aware of any
EOS for surfactant free from the above drawback.

6. Discussion

Pressure-driven flow of a concentrated periodic emulsion of deformable drops with
surfactant through a dense simple cubic array of solid particles has been simulated, one
drop and one particle per a periodic cell. This set-up serves as a simplified yet relevant
prototype of flow through more realistic, disordered porous media, making it possible to
simulate extreme squeezing conditions near trapping. A model of insoluble, non-diffusive
surfactant is assumed, and the surfactant transport is coupled to hydrodynamics through
the Marangoni stress in the interfacial force balance. The Reynolds number is small,
and the Stokes problem for a drop-particle configuration is rigorously solved at each
time step by a multipole-accelerated BI algorithm. The drops are large compared with
interstitial spaces and squeeze with high resistance, closely coating the solids to overcome
surface tension and lubrication effects. In addition to proper BI desingularizations, such
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simulations have required extreme drop and solid-particle resolutions (tens of thousands
of boundary elements per surface) making multipole acceleration paramount. Also
crucial was using recent flow-biased algorithms for non-diffusive surfactant transport
on a deformable surface (Gissinger et al. 2019; Gissinger 2020) to overcome numerical
instability. Two vastly different transport schemes gave indistinguishable results, as the
evidence that numerical diffusion (usually associated with upwind algorithms) did not
appreciably come into play, and the limit of a non-diffusive surfactant (deemed most
physically relevant, Eggleton et al. 1999) was truly reached in the simulations.

The focus of this study is on the established time-periodic regime (typically attained
after just a few squeezing cycles) and related integral properties: the motion period and
the time-averaged drop-phase velocity 〈UD〉 – the main characteristics of the emulsion
transport through the porous medium under a specified average pressure gradient 〈∇p〉.
A linear EOS σ = σo − RTΓ is assumed in most simulations. The non-dimensional
parameters controlling the motion period and 〈UD〉 are the solid volume fraction cs (fixed
at 0.5 in this study, close to the packing limit of π/6), emulsion volume fraction cem in the
pore space, drop-to-medium viscosity ratio λ, the contamination measure β = RTΓeq/σo
and the capillary number Ca = |〈∇p〉|âã/σeq based on the particle and non-deformed drop
radii, and the equilibrium surface tension. The range β ≤ 0.1 considered keeps the linear
model for σ(Γ ) physically relevant. The motion period is used in the extrapolation scheme
to evaluate the critical capillary number Cacrit(λ, β, cem) below which the drop phase can
no longer pass through and would instead become trapped in the pores.

In the periodic set-up, adding surfactant always reduces 〈UD〉, compared with the
clean-drop case studied in Zinchenko & Davis (2008b). For λ = 4 and cem = 0.5, this
velocity reduction is 1.11–1.35 times (depending on Ca) for light contamination β = 0.05,
and 1.25–1.50 times for moderate contamination β = 0.1. Although squeezing kinetics
does depend on β, Cacrit ≈ 0.730–0.734 is, surprisingly, the same for β = 0.05 and 0.1.

For λ = 1, the drop-phase velocity reduction due to surfactant is significant, 1.37–1.56
times (depending on Ca) even at smaller emulsion concentration cem = 0.36 and light
contamination β = 0.05. In contrast, Cacrit ≈ 0.417 for β = 0.05 is almost the same as
0.426 for clean drops at this λ and cem. Close examination of the surfactant distribution
demonstrates the behaviour peculiar to near critical squeezing. Namely, the surfactant
is swept to the leading tip of the drop during a portion of the squeezing cycle (unlike
for away-from-critical squeezing, where the surfactant always travels to the trailing tip).
Consistent with this observation, for most of the near-critical squeezing cycle, the drop
phase moves slower than does the carrier fluid, but the opposite is true for the other parts
of the cycle, so, on average, the drop phase travels faster than the continuous phase.

The strongest effect of surfactant on squeezing kinetics is observed for the small
viscosity ratio λ = 0.25, together with a saturation phenomenon at cem = 0.36. For
Ca = 0.73, away from critical, the drop-phase velocity reduction is 1.7 times for β =
0.05, and 2.2 times for β = 0.1. As trapping is approached, however, increasing β

from 0.05 to 0.1 has less and less effect, and the two degrees of contamination give
almost the same, twofold velocity reduction when Ca ≈ 0.5. The critical capillary number
Cacrit ≈ 0.401 for β = 0.05 and 0.1 is only slightly less than the clean emulsion value
of 0.434. This finding confirms that (for a fixed solid volume fraction cs = 0.5), Cacrit
is mostly affected by the emulsion concentration cem and is much less dependent on the
surface contamination and viscosity ratio, even though the squeezing kinetics is strongly
sensitive to λ and, especially, to the presence of surfactant. For λ = 0.25 and β = 0.1,
the contamination effect on 〈UD〉 grows even further for a higher emulsion concentration
cem = 0.5, up to 2.8 times drop-phase velocity reduction due to surfactant.
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In contrast to drop motion retardation by surfactant, universally observed in this study,
the forcing threshold |〈∇p〉| to mobilize trapped drops is decreased with adding surfactant
(most noticeably, 1.2 times for λ = 0.25 with β = 0.1). Accordingly, there must be a
cross-over to the regime where surfactant accelerates squeezing. However, this delicate
transition would be most difficult to simulate and was not attempted.

The above, nearly universal character of the Cacrit (at least for β ≤ 0.1) discovered
in this work is likely due to nearly hydrostatic conditions for emulsion drops trapped
at Ca ≤ Cacrit, even though there still remains pressure-driven flow on the interfaces,
inside and around the drops, including thin lubrication films. This view is confirmed
by almost uniform surface tensions observed in one simulation for Ca very close to
critical. Our extrapolated Cacrit, however, hinge on the empirical scaling (Ca − Cacrit)

−1/3

for the squeezing time at Ca ≈ Cacrit, which is well confirmed by our simulations, but
lacks theoretical justification. As discussed by Ratcliffe, Zinchenko & Davis (2010) and
Gissinger, Zinchenko & Davis (2021), there are many fundamental differences between
(flow- or gravity-induced) drop squeezing through constrictions and gravity-induced
bubble motion through a cylindrical tube studied by Bretherton (1961). A specific
difficulty for 3-D problems is that, for a drop squeezing along curved solid surfaces,
the wetting points limiting the lubrication area become (yet unknown) wetting lines in
three dimensions, and they move as the drop squeezes, thus creating a complex solution
domain for lubrication analysis. For this and other reasons, it is problematic, if possible at
all, to apply Bretherton’s type of asymptotic analysis to our squeezing problems, and we
have to rely instead on high-fidelity numerical simulations, with necessary extreme surface
resolutions for near-critical squeezing.

The practical independence of Cacrit of the contamination measure β, if confirmed by
future studies in a wider range of surface coverage (with nonlinear surfactant models), may
be consequential. Such universality would explain and predict how adding surfactant can
greatly mitigate the trapping threshold by reducing σeq (even though, away from critical
conditions, surfactant-laden drops can travel much slower than do clean drops due to
Marangoni stresses).

To validate the use of the linear EOS in the present set-up, additional simulations
were performed for λ = 0.25 using nonlinear surfactant models. When the initial, uniform
surface coverage by surfactant is 20 % of the maximum packing, the average drop-phase
velocity predicted by the Langmuir model is practically indistinguishable from the linear
model prediction, even though a local Γ occasionally comes close (0.78Γ∞) to the
maximum packing surfactant concentration during the periodic cycle. Hence, both models
identically predict strong average velocity reduction due to surfactant, 2–2.8 times for
β = 0.05–0.1. Cohesive interactions between the surfactant molecules have the opposite,
but small, remobilizing effect, and so the average drop-phase mobility reduction with
Frumkin surfactant (compared with the clean-drop case) is almost as strong as with
Langmuir or linear surfactant.

The qualitative trends found in this work for emulsion squeezing in the periodic set-up
are much different from those for flow-induced motion in unconfined periodic settings.
Specifically, a comparison was made with the case of a single contaminated drop pushed
through a tight isolated cluster of three solid spheres forming an equilateral triangle
and rigidly held in an unbounded fluid (Gissinger et al. 2019; Gissinger 2020). In the
cluster simulations, adding surfactant always accelerated squeezing, Cacrit values were
quite significantly lowered by contamination (until saturation), and decreasing Ca was
observed to delay saturation. These differences stem from very different geometries of
the flow field driving drops into constrictions. To understand how well the periodic (vs
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cluster) set-up can represent qualitative effects of surfactant on emulsion flow through
a disordered porous medium, it would be relevant, albeit challenging, to extend the
multidrop–multiparticle simulations of Zinchenko & Davis (2013) for the presence of
insoluble surfactant.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Alexander Z. Zinchenko https://orcid.org/0000-0001-7925-6567;
Jacob R. Gissinger https://orcid.org/0000-0003-0031-044X;
Robert H. Davis https://orcid.org/0000-0003-2143-1785.

Appendix. Miscellaneous details of the algorithm

Mesh control. To overcome a common difficulty with quick mesh degradation, if the
mesh nodes were advected with the fluid velocity, a proper tangential field wi was
added to u(xi). Following the idea of ‘passive mesh stabilization’ (initiated in Zinchenko,
Rother & Davis (1997) and used thereafter in different versions, e.g. Zinchenko &
Davis 2000, 2008a, 2013), the node velocities V i = dxi/dt to be used in the shape
update are constructed at each time step to globally minimize a form of ‘kinetic mesh
energy’ F(x1, V 1, x2, V 2, . . .) under the constraints (V i − ui) · ni = 0 provided by the
BI solution. Since the drops are neither crooked nor excessively elongated in the present
simulations, the same non-adaptive form of F, as in paper I was sufficient, which only
controls the rate of change of distances between the connected nodes and the rate of
mesh triangle collapse. With passive stabilization, there is still a very slow drift towards
lower mesh quality (with node depletion/overcrowding and ‘skinny’ triangles), which
was fully corrected by occasional (every 50–100 steps) active node redistribution to
iteratively minimize a form of ‘potential mesh energy’ E(x1, x2, . . .) (which also controls
the internode distances and mesh triangle quality), as described in Zinchenko & Davis
(2008a,b). The active node redistribution was accompanied by quadratic interpolations
for the shape (to keep the displaced nodes on the surface), fluid velocity (to provide
a good initial approximation for BI iterations at the next time step) and surfactant
concentration. Unlike in other BI/front-tracking algorithms (e.g. Cristini, Bławzdziewicz
& Loewenberg 2001; Tryggvason et al. 2001), no topological mesh changes (node
addition/subtraction/reconnection) were necessary. Without passive mesh stabilization, it
would be much less efficient to do active node redistribution alone. Figure 2 from paper I
gives an idea of the mesh quality maintained in our simulations.

Control of surface overlapping. Theoretically, in the absence of singular molecular
forces (not included herein), thin films prevent drop–solid and drop–drop contacts. Even
for subcritical conditions, when the drop phase is trapped in the pores, there remains
the pressure-driven tangential flow on the interfaces to pump fluid into the gaps (Nemer
2003; Nemer et al. 2004), thus preventing surface contacts. High-resolution simulations
of flow-induced, single drop squeezing through a tight free-space cluster of two or three
spheres (Zinchenko & Davis 2006) did demonstrate the existence of small, but non-zero
drop–solid gaps, for both supercritical and subcritical conditions.

In the present set-up of tight pressure-driven squeezing through a periodic lattice, it
would require much larger, unrealistic resolutions to fully eliminate all surface overlaps.
Instead, for very fine but still manageable resolutions, we add the same artificial tool of
node correction at each time step, as in paper I (and detailed in Zinchenko & Davis 2008a)
to prevent drop–solid contacts. Let δds

min be a small threshold (set to 0.0045â in the present
work). Every mesh node y ∈ S̃ finding itself at a distance less than δds

min from the solid
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phase (measured in the direction of the normal n(y) to the drop surface) is simply pushed
back along −n(y) to make this distance equal to δds

min. In this operation, the target node
position is easily calculated analytically, taking advantage of the spherical particles shape.

For viscosity ratios λ = 1 and 4 studied for clean drops in paper I, there was also a
very small numerical trend at cem = 0.5 for drop overlapping with its images (in front
and behind in the x3 direction, see e.g. figure 2), but it did not hamper the solution to
sufficiently large times and could be ignored. In the present work, however, with λ = 0.25
added for both clean and contaminated drops, this trend was stronger and, if left untreated,
was observed to destroy the solution early. To prevent drop–drop overlaps, basically the
same approach as in Zinchenko & Davis (2013) was applied. A smaller threshold δdd

min =
0.002â (than δds

min) is set to control drop–drop overlaps. All nodes y ∈ S̃ already subject
to the above drop–solid correction are now skipped. To calculate the distance δdd(y) from
y along n(y) to the nearest point of the image surfaces, the nearest intersection of this
direction with flat mesh triangles on the images is found as the first approximation. The
image surface is then better approximated by a paraboloid near this intersection point to
refine δdd(y). Every node y ∈ S̃ with δdd(y) < δdd

min is pushed back by the distance (δdd
min −

δdd(y))/2 along −n(y). Here, the 1/2 factor is a slight improvement over (Zinchenko &
Davis 2013) to make the node correction even less intrusive yet sufficient to keep δdd(y)
close to δdd

min.
Importantly, the above node corrections are applied to an extremely small portion of

the drop-mesh nodes (as the numerical examples in § 4 show) due to desingularizations
and high resolutions used. So, close surface interactions are ‘almost resolved’ and a
tiny portion of the nodes requiring correction do not affect the global quantities of
interest; the latter is also confirmed in § 4 by the global convergence with respect to
resolutions. Drop–solid close interactions are the most important to handle accurately,
and our high-order near-singularity subtraction plays a crucial role to reduce the trend
of drop–solid overlapping. The drop–drop close interactions are not so critical to resolve
(unless the surfaces are fully immobilized by surfactant or the viscosity ratio λ is very
high), which was recently confirmed by emulsion channel flow simulations (Zinchenko
& Davis 2021), even at extreme drop volume fractions; the reason is the absence of
singular tangential lubrication between drops. Here, for accurate global simulations, it
is far more important to accurately resolve the capillary contributions (3.4) (which create
shape resistance to squeezing) than the thin-film thickness between the drops.

Time stepping and rescaling. The variable, stable time step was controlled by the
empirical rule (5.12) from Zinchenko & Davis (2008a), roughly proportional to the
capillary number and minimal node-to-node distance, and inversely proportional to local
surface curvatures. The non-dimensional proportionality factor KΔt in that rule was ≈ 7
for λ = 4, but had to be reduced 12 times in the λ = 0.25 runs for stability; this change
is mostly due to much faster temporal changes in the low viscosity ratio simulations. In
either case, extreme surface resolutions necessitated very small time steps, according to the
Courant stability limitation, so that the economical Euler marching scheme was sufficient
to make the time integration error negligible compared with the surface triangulation
effects. Each time step required ∼5–8 BI iterations, on the average.

A usual drop shape rescaling about the drop centroid and the surfactant concentration
rescaling were applied at each time step to avoid cumulative errors and keep strictly
constant both the drop volume and the total amount (2.1) of surfactant. The rescaling
factors were extremely close to one (to within ∼10−7–10−8), and reached this limit with
the drop-surface refinements.
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Surface resolutions. A standard technique (Zinchenko et al. 1997) was used to prepare
almost uniform, unstructured non-adaptive solid particle discretizations into N̂� triangular
elements (with N̂�/2 + 2 triangle vertices), starting from either a regular icosahedron or
dodecahedron, followed by a series of refinements. Likewise, the initial spherical drop
surface was triangulated non-adaptively into Ñ� elements (for cem = 0.5 it had to be
additionally expanded by the swelling algorithm, without the change in the mesh topology,
to start simulations). Due to a large number of near-contact zones around the drop, adaptive
meshes would hardly be beneficial. Throughout the paper, the terms ‘moderate’, ‘high’ and
‘ultra-high resolution’ are reserved for the combinations (Ñ�, N̂�) = (11 520, 20 480),
(15 360, 34 560) and (20 480, 46 080), respectively.
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