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During the 125th European Study Group with Industry held in Limassol, Cyprus, 5–9

December 2016, one of the participating companies, Engino.net Ltd, posed a very interesting

challenge to the members of the study group. Engino.net Ltd is a Cypriot company, founded

in 2004, that produces a series of toy sets – the Engino� toy sets – consisting of a number

of building blocks, which can be assembled by pupils to compose toy models. Depending on

the contents of a particular toy set, the company has developed a number of models that

can be built utilizing the blocks present in the set; however, the production of a step-by-step

assembly manual for each model could only be done manually. The goal of the challenge

posed by the company was to implement a procedure to automatically generate the assembly

instructions for a given toy. In the present paper, we propose a graph-theoretic approach

to model the problem and provide a series of results to solve it by employing modified

versions of well-established algorithms in graph theory. An algorithmic procedure to obtain

a hierarchical, physically feasible decomposition of a given toy model, from which a series of

step-by-step assembly instructions can be recovered, is proposed.

Key words: 05C38, 05C90, 68R10, 94C15.

1 Introduction

Engino� toy models are created by assembling small blocks or bricks together, with the

purpose of helping pupils build technological models creatively and easily so that they

can experiment and learn about science and technology in a playful way. Each of the toy

sets produced by Engino.net Ltd has a specific number of blocks that can be assembled

into many different models. It has been observed that the creative potential of each toy

† MDB acknowledges support from Science Foundation Ireland under research Grant number
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https://doi.org/10.1017/S0956792518000086 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792518000086


Physically feasible decomposition of Engino� toy models 279

set increases exponentially as the number of blocks in the set increases. This is due to

the patented design of the Engino� blocks that allow connectivity on many directions in

three-dimensional (3D) space simultaneously.

To demonstrate the creative potential of its toy sets, the company has developed a large

number of toy models that can be built using the contents of the set. The ingredients

and the connections required to obtain each particular toy model have been recorded in a

database system. Despite the detailed recording, the production of step-by-step instructions

for the assembly of a particular toy model has been proved to be a tedious task that has

to be accomplished manually. This is mainly due to the 3D nature of the models and

the complexity of the interconnections between the blocks, which in many cases impose

a particular order in the steps that have to be taken to assembly the structure. The goal

of the challenge posed by the company during the 125th European Study Group with

Industry was the development of an automatic procedure able to produce step-by-step

assembly instructions manual for every toy model that has been recorded in the company’s

databases.

To accomplish this task, we propose a graph-theoretic approach. Given a toy model, we

associate with it a directed graph whose vertices correspond to the building blocks of the

model and whose edges represent physical connections between the two blocks (see [11]

and references therein). Moreover, in order to partially capture the actual geometry of

the toy model, every edge of the graph is labelled with a vector showing the direction of

the underlying physical connection in 3D space. This labelling of the edges provides an

adequate description of the geometry of the model, for the purposes of our application. It

should be however noted, that the exact geometry of the (possibly multiple) connections

between individual blocks of a particular model has been recorded in full detail and this

information is available at the final stage of the assembly instructions generation.

With this setup, in order to produce the assembly instructions of a given model, we first

apply the reverse process recursively. Given a description of a toy model, and hence its

associated graph, we develop a method to break it apart into clusters of blocks in a manner

that is physically possible. In what follows, we call this procedure a physically feasible

decomposition (PFD) of the model. The result of such a decomposition is a collection

of sub-models or components on which the method can be recursively applied until no

further decompositions are possible. Thus, a characterization of PFD of a model is of

fundamental importance in the decomposition procedure. The outcome of this separation

process is a hierarchical tree structure of components, whose nodes can traversed in a

postorder fashion, to generate an ordered sequence of nodes, which in turn dictate a series

of step-by-step assembly instructions.

The problem of determining a series of steps required to decompose a complex structure

into its constituent components has been the subject of several studies dating back

to the 1980s. This class of problems is termed disassembly sequencing and depending

on the nature of the underlying structure, a number of different approaches has been

employed (see [8] for an extensive survey). The motivation behind the study of disassembly

sequencing originates mainly from the fact that by reversing the steps of a disassembly

sequence, one can obtain an assembly procedure of the structure under the study. In this

respect, disassembly sequences are closely related to the automated generation of assembly

instructions of complex structures (see, for instance [1, 6, 9]).
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The procedure proposed in the present paper can be compared to the one presented

in [9] for the computation of a hierarchical explosion graph. Contrary to the approach

used in [1,9] for the construction of the explosion graph, which detaches individual parts

one-by-one from the structure, and in turn applies a search strategy for the extraction

of the hierarchy of components, our method produces directly a physically feasible

decomposition (PFD) into components along a given spatial direction. As shown in

Section 4, a maximal PFD can be obtained using well-known linear-time algorithms and

the recursive application of this procedure results in a hierarchical decomposition, which

is comparable to the hierarchical explosion graph in [9].

The contents of the paper are organized as follows: In Section 2, we briefly recall

some basic concepts and facts from graph theory required for the development of our

results in the sequel. In the subsequent section, we present the proposed graph-theoretic

framework and through a series of motivating examples we introduce the notion of a

PFD of a toy model. In the same section, we also define the component connectivity graph

(CCG) implied by the removal of a set of edges of the model’s graph and show that

such a removal gives rise to a PFD if and only if the corresponding CCG is a directed

acyclic graph (DAG). In Section 4, we define maximal PFDs along a given direction and

show that such decompositions can be obtained by applying well established, linear-time

algorithms used for the discovery of strongly connected components in directed graphs.

In Section 5, we outline an algorithmic procedure to obtain a hierarchical decomposition

of a given toy model, using as intermediate steps for such a decomposition, maximal

PFDs along appropriately chosen spatial directions. Moreover, at the end of Section 5,

the resulting hierarchical decomposition of the model is utilized to recover a series of

assembly instructions. Finally, in Section 6, we review and summarize our results.

2 Graph theory prerequisites

In this section, we review a number of definitions and facts from graph theory that will

be instrumental in the sequel. Most of these definitions and results can be found in [2,3].

A directed graph G, denoted by G(V , E), is an ordered pair of sets (V , E), where

• V is the set vertices or nodes of G;

• E is the set of directed edges consisting of directed pairs (u, v), where u, v ∈ V .

Moreover, if E is allowed to be a multiset instead of a set, then G(V , E) is a directed

multigraph. On the other hand, if pairs of the form (v, v), (called loops) are not allowed in

E, then G(V , E) is a directed simple graph. Similar definitions can be given in case the edge

set (multiset) has elements undirected pairs of vertices. In such a case, the (multi)graph is

called undirected.

A graph G1(V1, E1) is a subgraph of a given graph G(V , E) if V1 ⊆ V and E1 ⊆ E

consist exclusively of edges having both its endpoints in V1. Moreover, for V1 ⊆ V , we

define the induced subgraph G[V1] as the subgraph of G(V , E), whose vertex set is V1 and

its edge set is the set of all edges of E, having both their endpoints in V1.

In a directed graph G(V , E), a directed (resp. undirected) path of length k, starting

from v0 and ending to vk , is a sequence of vertices v0, v1, . . . , vk , such that (vi, vi+1) ∈ E

(resp. (vi, vi+1) ∈ E or (vi+1, vi) ∈ E), for all 0 � i < k. In case v0 = vk and k > 0 the path
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is called a directed (resp. undirected) cycle. A vertex t ∈ V is said to be reachable from

s ∈ V , if there exists a directed path from s and to t.

A directed graph G(V , E) is set to be a DAG, if it contains no directed cycles, or

equivalently, if there exists no vertex in V , which is non-trivially reachable from itself. A

topological ordering of the vertices of a directed graph G(V , E) is a total ordering of its

vertices v1, v2, . . . , vn, such that for all (vi, vj) ∈ E, i � j holds.

Theorem 2.1 A directed graph G(V , E) is acyclic if and only if a topological ordering of its

vertices exists.

A directed graph G(V , E) is called strongly (resp. weakly) connected if for every pair of

vertices u ∈ V , v ∈ V , there exists a directed (resp. undirected) path from u to v. A

maximal strongly (resp. weakly) connected subgraph of a graph, i.e., a strongly connected

subgraph, which is not a proper subgraph of any other strongly connected subgraph, is

called a strongly (resp. weakly) connected component.

The condensation of a directed graph G(V , E) is a directed graph Gco(Vco, Eco), with

• Vco = {Ci : Ci is a strongly connected component of G(V , E)};
• Eco = {(Ci, Cj) : ∃(u, v) ∈ E such that u ∈ Ci, v ∈ Cj}.

Theorem 2.2 The condensation of any directed graph G(V , E) is a DAG.

A tree is an undirected graph in which every pair of vertices is connected via a unique

path. A rooted tree is a tree having one particular vertex designated as its root node. An

ordered tree is a rooted tree in which an ordering is specified for the children of each

vertex. A binary tree is a rooted tree in which every vertex has at most two children. A

binary tree is full if every node has either zero or two children.

3 Physically feasible decomposition of toy models

We now present the proposed framework for the solution of the decomposition problem

discussed above based on a graph-theoretic approach. Given a toy model M , we associate

to it a directed graph G(V , E), where

• V = {v1, v2, . . . , vn} is the vertex set of G with each vertex vi corresponding to a block

of M ;

• E = {(u, v) : u, v ∈ V} is the edge set of G with each directed edge representing a

connection between two blocks of the model.

Every physical connection between two blocks of the model can be aligned in space to one

particular direction vector, chosen out of a finite collection of directions. For instance, if a

model uses only perpendicular connections between its blocks in 3D space, we can identify

three direction vectors î, ĵ , k̂ along which all connections can be aligned. A connection

between two blocks of the model u, v, aligned to a particular direction d̂ in physical space,

gives rise to a directed edge (u, v) ∈ E, if the vector from u to v points towards the same

direction as d̂.
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Figure 1. Two blocks that can be disconnected (left); blocks 1, 2 cannot be disconnected (right).

Assuming that all the connections of the model M correspond to p, not necessarily

orthogonal, distinct spatial directions d̂i, we can partition the edge set E into a family

of p mutually disjoint sets Ei, i = 1, 2, . . . , p, each of which contains the edges associated

to connections sharing the same direction in space. It should be noted that the physical

connections between the blocks of the toy model M , are assumed to be fixed, meaning

that the resulting construction is rigid and contains no moving or rotating parts. Thus, the

only possible way to separate two connected blocks is to apply opposite forces along the

physical direction d̂i associated to the connection, provided that resulting the displacement

is physically feasible in the sense described in the paragraph that follows. At first this

may seem to be a rather restrictive assumption with respect to the types of toy models it

allows to be constructed, as there are many actual toy compositions in Engino’s collection

involving moving or rotating parts. However, as discussed with representatives of the

company during the 125th ESGI meeting, in most such cases the moving or rotating

parts can either be considered as separate rigid submodels (e.g., a two wheel and axle

submodel), or their connection to the rest of the model is non-fixed (e.g., a pinned joint),

allowing them to be detached from it by pulling them along some non-blocking direction.

In view of this setup, we propose the following principle to describe the conditions under

which a disconnection of two blocks is physically possible.

Physically feasible disconnection of two blocks: In order to disconnect two blocks cor-

responding to vertices v1, v2 ∈ V , connected via an edge (v1, v2) ∈ E aligned to a given

spatial direction d̂i, the blocks v1, v2 must be able to be displaced along the directions

−d̂i, d̂i, respectively, when appropriate opposite forces are applied on the blocks.

The idea behind the above principle is illustrated in the following example.

Example 3.1 Consider the blocks shown in Figure 1. In the left side, the blocks 1, 2 can

be disconnected using two opposite horizontal forces, since their application on the two

blocks will result in displacements along the horizontal direction. If a third block is added

as shown in right side of Figure 1, then the blocks 1, 2 cannot be disconnected by applying

on them opposite horizontal forces, since their displacement is blocked by their vertical

connections to the block number 3.

The idea of disconnecting two blocks of the model in a physically feasible manner

can be easily generalized to describe the corresponding decomposition of a model into

two submodels. In general, the removal of a set of edges along a given direction may
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result into a decomposition of the graph of the model into two or more weakly connected

components. However, not all such removals can be actually applied on the physical model

to decompose it into two or more submodels. This is due to the fact that in certain cases

the physical displacement of the resulting weakly connected components of the model is

blocked by other physical connections, due to the presence of edges not removed in the

current phase.

We can extend the principle of physically feasible disconnection, introduced above, to

the case of the separation of two weakly connected components.

Physically feasible decomposition into two components: The removal of a set of edges,

aligned to a particular space direction d̂i, is physically feasible, if and only if the two

resulting weakly connected components are able to be displaced along the directions

−d̂i, d̂i, respectively, when appropriate opposite forces are applied on these blocks.

For brevity, in what follows, we shall call this decomposition a 2-PFD of the model.

The above decomposition is equivalent to assuming that, during the separation process,

each of the two weakly connected components behaves like a single block, but unlike the

single blocks case, it is possible to have multiple parallel connections between them.

Our next goal is to obtain a characterization of 2-PFD’s that are possible along a given

direction. In this respect, it is instrumental to introduce the notion of the CCG of a

model M , implied by the removal of a set of co-linear edges, which provides a higher

level view of the decomposition.

Definition 3.2 (Component Connectivity Graph) Let G(V , E) be the graph associated to

a model M and Ēi ⊆ Ei a non-empty set of edges, where Ei is the set of all edges of

G(V , E) along the spatial direction d̂i. The CCG, implied by the removal of the edges of

Ēi, is a directed graph, GC(VC, EC ), whose vertices are the weakly connected components

Ci, i = 1, 2, . . . , k, into which G(V , E) is partitioned with the removal of the edges of Ēi.

Two components Ci, Cj are connected via an edge (Ci, Cj) ∈ EC if and only if i �= j, and

there exists an edge (v, u) ∈ Ēi with v ∈ Ci and u ∈ Cj .

We should note that according to the above definition the CCG implied by the removal

of a set of edges Ēi ⊆ Ei is a simple directed graph, since by construction it cannot contain

neither loops nor parallel edges sharing the same source and target vertices. The above

ideas are illustrated in the following example.

Example 3.3 Consider the model shown in Figure 2. The graph G(V , E) of the model is

depicted in Figure 3, where d̂1, d̂2 are respectively the horizontal (left–right) and vertical

(bottom–up) direction vectors.

If we remove all edges along the horizontal direction, i.e., edges (2, 3), (1, 5) and (4, 5),

the graph is decomposed into two weakly connected components C1 = {1, 2, 3, 4} and

C2 = {5} as shown in Figure 4, and the implied CCG by this removal of edges is shown

in Figure 5. Clearly, nothing prevents the displacement of the two components C1, C2

from moving towards −d̂1, d̂1, respectively, when appropriate horizontal forces are applied

on them. Thus, the removal of all horizontal edges implies a 2-PFD of the model.

On the other hand, if we choose to remove all edges along d̂2, we end up with the

weakly connected components C ′
1, C

′
2 shown in Figure 6, and the corresponding CCG is
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Figure 2. A picture of the actual model.
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Figure 3. The graph G(V , E) of the model.
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Figure 4. The graph G(V , E) after the removal of all edges along d̂1.
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C1 C2

Figure 5. The CCG of the model after the removal of all edges along d̂1.

C ′
1

C ′
21

2

4

3 5d̂1

d̂1

d̂1

Figure 6. The graph G(V , E) after the removal of all edges along d̂2.

C ′
1 C ′

2

Figure 7. The CCG of the model after the removal of all edges along d̂2.

the one in Figure 7. Despite the fact that the removal of the four vertical edges separates

the graph into two weakly connected components, it is clear that such a decomposition

is not physically feasible. Obviously, the blocks 2, 3 of C ′
1 cannot be displaced vertically,

because they are ‘trapped’ between the components 1, 4 of C ′
2.

In view of the decomposition along the spatial direction d̂1 shown in Example 3.3,

it becomes apparent that not all the edges removed correspond to a physically feasible

disconnection of two blocks. This is the case with the edge (2, 3) in the graph of Example

3.3, which does not appear in Figure 4 due to its removal. Despite the fact that this edge can

be theoretically removed during the removal of all edges along d̂1, the blocks 2, 3 cannot

be disconnected because the perpendicular connections with blocks 1, 4 obstruct their

horizontal displacement. On the other hand, the edges (1, 5), (4, 5) obviously contribute

actively on the decomposition of the graph into two components C1 and C2, shown in

Figure 8. The distinguishing property between these two types of edges is that the former

has both its endpoints on the same weakly connected component after the removal of all

edges along d̂1, while each of the latter type of edges have their start and end points lying

on distinct components. The edges that actively contribute to the formation of weakly

connected components of a given CCG, will be called physically removable for the given

CCG. A maximal subset of physically removable edges, along a given spatial direction,

can be successfully computed using the technique presented in Section 4.
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C1

C2

1

2

4

3 5d̂1

d̂2

d̂2

d̂2

d̂2

Figure 8. The graph G(V , E) after the removal of all edges along d̂1, which are physically

removable.

Proceeding a step further, we can provide a characterization of 2-PFD’s in terms of

a particular property of the edges connecting the weakly connected components in the

corresponding CCG.

Lemma 3.4 Let M be a toy model with the associated directed graph G(V , E). Assume that

the removal of a non-empty set of edges Ēi ⊆ Ei, where Ei is the set of all edges of G(V , E)

along the direction d̂i, gives rise to the CCG, GC(VC, EC ), where VC = {C1, C2}. Then, the

removal of the edges of Ēi is a 2-PFD of M if and only if EC contains exactly one of the

edges (C1, C2), (C2, C1).

Proof We first note that since Ēi is non-empty, so is EC . Moreover, recall that GC(VC, EC )

is simple, so, EC will either contain exactly one or both (C1, C2), (C2, C1). Assume now

that EC contains both (C1, C2) and (C2, C1). Then, due to the presence of (C1, C2), in order

to separate C1 from C2 we should be able to displace C1 towards −d̂i and C2 towards

d̂i, by applying appropriate opposite forces on C1 and C2. On the other hand, due to

the presence of (C2, C1), in order to accomplish the same task, C1 should be able to

move towards d̂i and C2 towards −d̂i, using again appropriate opposite forces. Obviously,

neither C1 nor C2 can move simultaneously on both spatial directions −d̂i, d̂i. Thus, the

removal of the edges of Ēi, is not a 2-PFD, which proves the ‘only if’ part of the lemma.

Conversely, assume without loss of generality that EC contains only (C1, C2). This

means that, in physical space, the components C1,C2 are connected only on one side,

leaving their externally exposed sides free (see Figure 9). Thus, removing the edges of Ēi

connecting the vertices of C1 to those of C2, will result in a 2-PFD of the model, since C1

can be displaced towards the direction of −d̂i and C2 towards that of d̂i. �

Proceeding a step further, we can generalize the idea of a PFD into the case where the

removal of a set of edges, along a particular spatial direction d̂i, separates the model into

more than two weakly connected components. Assume that after the removal of a set of

edges Ēi ⊆ Ei, we end up with k > 2 components. Such a decomposition is physically
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C1 C2

−d̂i d̂i

Figure 9. 2-PFD of C1, C2.

feasible if we can obtain it by applying a 2-PFD of the original model by removing an

appropriate subset of edges of Ēi, and in turn by repeating 2-PFD procedures on the

resulting submodels, recursively. A PFD giving rise to k > 2 components, that can be

accomplished recursively by applying a series 2-PFD’s, will be called a k-PFD.

The above idea is formalized in the following definition.

Definition 3.5 (k-PFD) Let M be a toy model and G(V , E) its associated directed graph.

Assume that the removal of a non-empty set of edges Ēi ⊆ Ei, where Ei is the set of all

edges of G(V , E) along the direction d̂i, gives rise to the CCG, GC(VC, EC ), consisting of

k � 2 weakly connected components. We say that the removal of the edges Ēi implies a

k-PFD of the model M , if there exists a set of edges Ē0
i ⊆ Ēi, whose removal implies a

2-PFD of M into C1, C2, for which exactly one of the following is true:

• C1 ∈ VC and C2 ∈ VC ;

• C1 ∈ VC and the removal of all edges of Ēi\Ē0
i from C2, implies its (k − 1)-PFD;

• C2 ∈ VC and the removal of all edges of Ēi\Ē0
i from C1, implies its (k − 1)-PFD;

• Cj � VC , for j = 1, 2 and appropriate removal of edges of Ēi\Ē0
i from each one of them,

implies a k1-PFD of C1 and a k2-PFD of C2, such that k1 + k2 = k.

If the removal of any set of edges Ēi ⊆ Ei, results in a CCG with only one weakly

connected component, we say that we have a 1-PFD or a non-PFD of the model.

Remark 3.6 The structure of a k-PFD of a model M can be represented by a full,

ordered, binary tree T , having as its root node the entire vertex set VC . The internal

nodes of T are subsets of VC corresponding to weakly connected components of GC

resulting in each step of the recursive application of 2-PFD’s. Finally, the leaves of T are

the singletons of VC , that is, the components of the CCG corresponding to the k-PFD.

Clearly, by construction each node of T , will have either 0 or 2 children, thus T is full.

Moreover, T can be assumed to be ordered, that is, we distinguish the left and the right

child of each node. According to Lemma 3.4, every 2-PFD separates a weakly connected

component into two child components, connected only in a single direction. In view of

this property, we assign to the left child of each node in T , the child component from

which the edges originate, and to the right child of the node in T , the component to

which the edges terminate.

Our aim is to identify those subsets of edges Ēi ⊆ Ei, that is, sets of edges aligned to

a spatial direction d̂i, whose removal gives rise to a k-PFD of the model. The following

theorem serves as a characterization of this property.
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C1 VC\{C1}

Figure 10. 2-PFD of C1, VC\{C1}.

Theorem 3.7 Let M be a toy model and its associated directed graph G(V , E). Let further

GC(VC, EC ) be the CCG resulting after the removal of a non-empty set of edges Ēi ⊆ Ei,

where Ei is the set of all edges of G(V , E) along the direction d̂i. The removal of the edges

Ēi implies a k-PFD, k � 2 of the model M , if and only if GC is a DAG.

Proof If GC(VC, EC ) is a DAG, then there exists a topological ordering of its vertices

C1, C2, . . . , Ck , that is, an ordering such that for all (Ci, Cj) ∈ EC , i � j holds. In view of

this fact, since C1 is the first in this ordering, there will be only outgoing edges from the

vertices of C1, to those of VC\{C1}. Hence, according to Lemma 3.4 removal of the edges

originating from C1 and terminating to VC\{C1} is a 2-PFD (see Figure 10). Now, if we

denote by G′
C the subgraph of GC induced by VC\{C1}, we may note that C2, . . . , Ck , is

a topological order of its vertices. Hence, C2 can be detached from G′
C through a 2-PFD

following a similar procedure as above. Thus, after k−1 recursive applications of 2-PFD’s,

utilizing appropriate subsets of Ēi, we obtain a decomposition of the model M into k

weakly connected components C1, C2, . . . , Ck , which is a k-PFD.

Conversely, assume that the removal of the set of edges Ēi, implies a k-PFD of the

model and let GC(VC, EC ) be the corresponding CCG. As explained in Remark 3.6 a

k-PFD of a model can be represented by a full, ordered, binary tree T . Moreover, in view

of the way that the left and right children are assigned in each node of T , it is easy to

verify that if (Ci, Cj) ∈ EC , then Ci will appear on T to the left of Cj . Hence, if we order

the leafs of T starting from the leftmost one moving to the right, we get a total order

C1, C2, . . . , Ck , which is clearly a topological ordering of GC(VC, EC ). Thus, GC(VC, EC ) is

acyclic. �

4 Maximal PFD along a spatial direction

In the previous section, a characterization of PFD along a particular spatial direction was

given in terms of the absence of cycles on the implied CCG. In this section, we propose a

method to derive such a maximal acyclic CCG, as the condensation of the graph resulting

after making edges not aligned to the chosen direction, bidirectional. In this respect, we

introduce the following definitions.

Definition 4.1 (Maximal PFD) Let M be a toy model and let G(V , E) be the associated

directed graph. The removal of a set of edges Ēi ⊆ Ei, along a spatial direction d̂i, implies

a maximal PFD of the model along d̂i, if the implied CCG is maximal, that is, any set of

edges Ē′
i , such that Ēi ⊆ Ē′

i ⊆ Ei, implies the same CCG with Ēi.
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Figure 11. The projections of G(V , E) along d̂1 (left), d̂2 (right).

Definition 4.2 (Projection along a direction) Let M be a toy model, G(V , E) its associated

directed graph and let Ei ⊆ E be the set of all edges along the spatial direction d̂i. We

define the projection of G(V , E) along the direction d̂i, to be the graph Gi(V , E ∪Ri), where

Ri contains all the edges of G not in Ei, reversed, that is Ri = {(u, v) : (v, u) ∈ E\Ei}.

We illustrate the above notion via the following example.

Example 4.3 Consider the model presented in Example 3.3 and the corresponding graph

G(V , E) shown in Figure 3. According to Definition 4.2, the projection of G(V , E) along

d̂1 and d̂2 are shown in Figure 11.

We proceed now to the main result of the present section.

Theorem 4.4 Let M be a toy model, let G(V , E) be its associated directed graph and let

Gi
co(V

i
co, E

i
co) be the condensation of the projection Gi(V , E ∪Ri) of G(V , E), along d̂i. Then,

Gi
co(V

i
co, E

i
co) is a CCG corresponding to a maximal PFD along d̂i.

Proof Define the set of edges whose endpoints lie on two distinct strongly connected

components of Gi(V , E ∪ Ri), that is

Ēi = {(u, v) ∈ E : u ∈ Ck, v ∈ Cl, where Ck, Cl ∈ V i
co and k �= l}.

Note that if either (u, v) ∈ E\Ei or (u, v) ∈ Ri, then u, v lie on the same strongly connected

component of Gi(V , E ∪ Ri), because there are edges connecting them in both directions.

Thus, Ēi ⊆ Ei.

If any two vertices u, v ∈ V lie on the same strongly connected component of Gi(V , E ∪
Ri), then there exists a directed path from u to v, whose intermediate vertices lie on the

same strongly connected component with u, v. Every edge on the path that is in Ri, can be

replaced by its ‘reverse’, which lies in E\Ei ⊆ E\Ēi. The rest of the edges on the path, not

in Ri, obviously cannot be in Ēi, since the latter contains edges whose endpoints lie on two

distinct strongly connected components of Gi(V , E ∪Ri). Hence, any two vertices u, v ∈ V

lying on the same strongly connected component of Gi(V , E∪Ri), can be connected via an

undirected path, which lies entirely on the same weakly connected component as u, v, using
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only edges from E\Ēi. Thus, all vertices lying on the same strongly connected component

of Gi(V , E ∪ Ri), belong to the same weakly connected component of G(V , E\Ēi).

Conversely, if any two vertices u, v ∈ V lie on the same weakly connected component of

G(V , E\Ēi), then there exists an undirected path from u to v, whose intermediate vertices

are on the same weakly connected component with u, v. Our aim is to show that there

exists a directed path from u to v in Gi(V , E ∪ Ri). In this respect, the edges on the

undirected path having the correct orientation, that is from u to v, can be used to form

the directed path. If an edge on the undirected path belongs to E\Ei and is oriented from

v to u, then it can be replaced in Gi(V , E ∪ Ri) by its ‘reverse’ that belongs to Ri. On the

other hand, if an edge on the undirected path belongs to Ei, then both its endpoints must

lie in the same strongly connected component of Gi(V , E ∪Ri), otherwise this edge should

be in Ēi, whose elements have been removed from G(V , E\Ēi). In view of this, if such an

edge does not have the desired orientation (i.e., from u to v), we can find a directed path

in Gi(V , E ∪ Ri), with the correct orientation, to replace it. Thus, any two vertices lying

on the same weakly connected component of G(V , E\Ēi), belong to the same strongly

connected component of Gi(V , E ∪ Ri).

In view of the above discussion, it is clear that the strongly connected components of

Gi(V , E ∪ Ri) coincide with the weakly connected components of G(V , E\Ēi). Thus, V i
co

is the vertex set of the CCG implied by the removal of the edges of Ēi from G(V , E).

Further, it is straightforward to verify that the set of edges Ei
co are exactly the edges of

the CCG implied by the removal of the edges of Ēi from G(V , E). Thus, Gi
co(V

i
co, E

i
co) is

a CCG corresponding to the removal of the edges of Ēi. Since the condensation graph

of any directed graph is a DAG, the removal of the edges of Ēi, implies a k-PFD of the

model, where k =
∣
∣V i

co

∣
∣.

To show that the removal of the edges of Ēi, implies a maximal PFD along d̂i, assume

there exists a set of edges Ē′
i , such that Ēi ⊆ Ē′

i ⊆ Ei, implying a PFD of the model along

d̂i. Consider an edge (u, v) ∈ Ē′
i\Ēi, whose endpoints lie on distinct weakly connected

components Cu, Cv , in G(V , E\Ē′
i ), such that u ∈ Cu and v ∈ Cv . Clearly, since (u, v) � Ēi,

it is present in G(V , E\Ēi) and both u, v lie in the same weakly connected component of

the latter. In this case, it is evident from the discussion above that u, v must lie on the

same strongly connected component of Gi(V , E ∪ Ri). Thus, there exists a directed path

from v to u in Gi(V , E ∪ Ri). Now, since u ∈ Cu and v ∈ Cv in G(V , E\Ē′
i ), there exists at

least one edge (v′, u′) ∈ Ē′
i , in the directed path from v to u, such that u′ ∈ Cu and v′ ∈ Cv ,

otherwise Cu, Cv would not be distinct. Hence, the weakly connected components Cu, Cv

are connected in the CCG implied by the removal of the edges of Ē′
i , via to opposite

edges, which in turn implies that such a removal does not imply a PFD. Having arrived

at a contradiction, we conclude that there exists no edge in Ē′
i\Ēi, thus, Ē′

i = Ēi. �

Theorem 4.4 essentially provides a method to obtain a maximal PFD of a given model

along a spatial direction d̂i. According to the above result the CCG corresponding to a

maximal PFD along d̂i coincides with the condensation, Gi(V , E∪Ri), of G(V , E) along this

particular direction. Thus, the components into which a maximal PFD decomposes the

model, coincide with the strongly connected components of the corresponding projection.

The computation of the strongly connected components can be accomplished in linear

time, using Kosaraju’s algorithm [4,12], Tarjan’s strongly connected components algorithm
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C1 C2 C ′
1

Figure 12. The condensations of G(V , E) along d̂1 (left), d̂2 (right).

[14] or Dijkstra’s path-based strong component algorithm [5]. Moreover, Kosaraju’s and

Tarjan’s algorithms also compute a reverse topological ordering of the strongly connected

components of the graph on which it is applied. The topological ordering computed by

these algorithms dictates the order under which the components detected can be detached

from the model in the process of a step-by-step decomposition along the chosen spatial

direction.

Example 4.5 Applying some strongly connected component computation algorithm on

the projections of G(V , E) along d̂1, d̂2, given in Example 4.3, we get respectively the

condensations shown in Figure 12. Clearly, the condensed graph corresponding to the

projection along d̂1, coincides with the CCG shown in Figure 5, and clearly implies

a 2-PFD of the model along this direction. On the other hand, the condensed graph

corresponding to the projection along d̂2, consists of only one component, indicating that

a k-PFD, for k � 2, along d̂2 is not possible.

5 Hierarchical PFD of toy models and assembly instructions generation

In the present section, an outline of the procedure to obtain a recursive, PFD of a given toy

model M is proposed. The key step of the procedure presented in what follows, is based

on both the theoretical analysis presented in Section 3, and the use of well established

algorithmic tools for the detection of strongly connected components in directed graphs,

as shown in Section 4. While each step of the procedure results in a flat collection

of weakly connected components, corresponding to a maximal PFD along some given

spatial direction, the outcome of the overall procedure will be a hierarchical model of

components, i.e., a rooted tree, having as its top-level component the toy model M itself,

and bottom level elements each of the constituent blocks of the model. Having obtained a

hierarchical decomposition of the model, some appropriate tree traversal algorithm may

be applied to reverse the decomposition process and produce a step-by-step assembly

manual. This procedure is outlined at the end of this section.

Using the setup of the previous sections, assume that G(V , E) is the directed graph

associated to the model M . Assume also that each directed edge in E is aligned to one of

the p distinct spatial directions d̂i, i = 1, 2, . . . , p. Finally, assume that maximal PFD(C, i)

is a readily made function taking as its first argument a weakly connected component

of G(V , E) and as its second argument an integer i = 1, 2, . . . , p. The function returns an

ordered list of components C1, C2, . . . , Ck , k � 1, into which C can be decomposed as

the result of a maximal PFD along the direction d̂i. According to the results of Section

4 such a function can be implemented using well-known, linear-time strongly connected

components detection algorithms.
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With this background we define the function HMaxPFD(C), which accepts as

argument a weakly connected component of G(V , E), C , and returns a hierarch-

ical decomposition of the model M . The function HMaxPFD is outlined as

follows:

HMaxPFD(C)

• Call MaxPFD(C, i) for i = 1, 2, . . . , p.

• If for at least one i = 1, 2, . . . , p, the number of components C1, C2, . . . , Ck , returned by

the respective MaxPFD, is greater than 1, then

◦ For j = 1 . . . k.

— Call AppendChild(C,Cj);

— Call HMaxPFD(Cj).

In the above pseudocode, the function AppendChild(C,Cj) is called, which is assumed

to append the subcomponent Cj to C , as its child in the hierarchy of the intended

decomposition. To implement this in practice, would require each of the discovered

components to be able to maintain a list of pointers, pointing from each parent to its

children components. The technical details of such an implementation are out of the

scope of the present paper. Finally, when the argument of HMaxPFD is a single vertex v

(which will necessarily be without edges), we define HMaxPFD(v) = v and the hierarchical

operations terminate there, to then pass to the next branch (if any).

To obtain the tree corresponding to the hierarchical PFD of M , with the associated

graph G(V , E), one has to invoke the function HMaxPFD, using the entire graph G as

its sole argument. To provide a worst case analysis of the complexity of the HMaxPFD

algorithm, we first take into account that each run of MaxPFD(C, i) is essentially a call

of Tarjan’s or a similar algorithm, whose time complexity is O(|V | + |E|), where |V |, |E|
are the number of nodes and edges of the graph to which it is applied. Considering

the worst case scenario, the MaxPFD will be called at most p times, until an actual

decomposition, into two or more subcomponents is obtained. Moreover, at each level of

the resulting hierarchical PFD tree, the total number of nodes (blocks) distributed along

the components C1, C2, . . . , Ck , will be at most n, where n is total number of vertices in G

(blocks in M ). Thus, if we denote by m the total number of edges in G, then the invocation

of MaxPFD(Cj, i), for i = 1, 2, . . . , p, j = 1, 2, . . . , k will take at most O(p(n + m)) steps.

Since the time complexity at each level of the tree is O(p(n + m)), the overall worst case

complexity will occur on a PFD tree that has the maximum possible height, amongst all

the PFD trees with n leaves in total and whose non-leaf nodes have at least two children.

This becomes evident if we take into account the fact that the leaves of a PFD tree

are exactly the components of G that can be no further decomposed, i.e., its individual

blocks. In view of this, the maximum height PFD tree, will be a binary tree where every

non-leaf node has exactly two children, out of which at least one is a leaf. The height of

such a binary tree with n leaves can be easily seen to be n− 1. Thus, the worst case time

complexity is O(np(n + m)).

We illustrate the above procedure in the following example.
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Example 5.1 Consider the toy model of Example 3.3 and its associated graph shown in

Figure 3. Invoking HMaxPFD(G), the procedure will execute as follows:

• Calling MaxPFD(G, 1) returns two components C1, C2 where C1, C2 consist of the

vertices {1, 2, 3, 4} and {5}, respectively.

• Since MaxPFD returned more than one component for i = 1,

• For j = 1,

• C1 is appended as a child of G.

• HMaxPFD(C1) is called.

• MaxPFD(C1, 2) (d̂2 is the only direction available) returns three components, C11, C12

and C13, having as vertex sets {1}, {2, 3} and {4}, respectively.

• Since MaxPFD returned more than one component for i = 2,

• For j′ = 1,

• C11 is appended as a child of C1.

• HMaxPFD(C11) is called, returning C11 since this is a single vertex. Recursion terminates.

• For j′ = 2,

• C12 is appended as a child of C1.

• HMaxPFD(C12) is called.

• MaxPFD(C12, 1) (d̂1 is the only direction available here) returns two components, C121

and C122, having as vertex sets {2} and {3}, respectively.

• Since MaxPFD returned more than one component for i = 1,

• For j′′ = 1,

• C121 is appended as a child of C12.

• HMaxPFD(C121) is called, returning C121 since this is a single vertex. Recursion termin-

ates.

• For j′′ = 2,

• C122 is appended as a child of C12.

• HMaxPFD(C122) is called, returning C122 since this is a single vertex. Recursion termin-

ates.

• For j′ = 3,

• C13 is appended as a child of C1.

• HMaxPFD(C13) is called, returning C13 since this is a single vertex. Recursion terminates.

• For j = 2,

• C2 is appended as a child of G.

• HMaxPFD(C2) is called, returning C2 since this is a single vertex. Recursion terminates.

The resulting hierarchical PFD of the model is depicted in Figure 13. The assembly

instructions for the model can be recovered by applying a depth-first traversal, starting

from the root node of the tree.

Having obtained a hierarchical decomposition of a toy model M , which is essentially

a tree structure like the one shown in Figure 13, we can proceed to the composition of
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Figure 13. The hierarchical PFD of the toy model in Example 3.3.

its nodes to reverse the PFD and produce the assembly instructions. This goal can be

accomplished by employing a tree traversal algorithm, which respects the parent–child

hierarchy, in the sense that each node is visited after its children. The necessity of the

requirement regarding the priority of visits between parents and their children, emerges

from the fact in order to assemble a component, from its constituent subcomponents, i.e.,

the children of the node in the tree, one has to assemble each child component first.

An algorithm appropriate for this task could be a postorder traversal applied on the

hierarchical PFD tree of M . Preorder, inorder and postorder are well-known traversal

procedures that can be applied on ordered binary trees, i.e., rooted trees whose nodes

have at most two children labelled as ‘left’ and ‘right’. A preorder traversal visits first the

parent node, then traverses the left subtree and finally the right subtree. Respectively, the

inorder traversal first traverses the left subtree of a node, then visits the node itself and

finally traverses the right subtree. Postorder traversal, traverses first the left subtree of a

node, then its right subtree and finally it visits the node itself.

While inorder traversal may be ambiguous when applied to a general (non-binary)

ordered tree, preorder and postorder traversals are well defined. Here, we focus on the

generalized version of the postorder traversal algorithm, which is applicable to non-binary

trees. Given a node p in such a tree, the postorder traversal procedure can be defined

recursively as follows:

• Traverse the leftmost child of p.

• Visit the node p.

• Traverse the right sibling of p.

The output of such an algorithm is a series of nodes ordered in such a way that parent

nodes appear in the sequence after all their children. In view of this fact, the sequence

generated by the postorder traversal can be used to generate the assembly instructions of

the toy model M . It should be noted that the leaf nodes of the hierarchical PFD tree

represent individual toy blocks that require no assembly, thus they can be safely neglected

in the instructions generation procedure. On the other hand, the internal nodes of the tree
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represent components of the toy model consisting of an assembly of individual blocks

or other subcomponents, and thus they are the ones for which assembly instructions are

needed. The ingredients required for the assembly of those components are no other than

their child nodes in the hierarchy. If a subcomponent is used as a building block for a

higher level component in the PFD hierarchy, then the former will precede the latter in

the ordered sequence produced by the postorder traversal. Moreover, as noted in Section

1, the exact geometry of the interconnections between any two blocks has been recorded

beforehand. Thus, identifying the blocks from which a component is comprised, provides

enough information to recover the exact geometric structure of each component. As a

result, following the order dictated by the traversal, the assembly instructions of every

subcomponent comprising a higher level component will appear earlier in the assembly

procedure manual, leaving no room for inconsistencies in the flow of instructions.

The procedure is illustrated in the following example.

Example 5.2 Given the hierarchical PFD of Example 5.1, we may apply the postorder

traversal procedure on the tree shown in Figure 13. The outcome of the algorithm is the

following sequence of nodes:

C11, C121, C122, C12, C13, C1, C2, G.

As explained above the leaf nodes C11, C121, C122, C13 and C2 can be safely omitted, since

they require no assembly. Doing so, the sequence of the remaining nodes consists only of

C12, C1 and G, in that particular order.

Thus, the assembly instructions manual in this case should consist of the following

three steps:

(1) Show how C12 is assembled from its children nodes C121, C122.

(2) Respectively, show how C1 can be assembled from C11, C12, C13.

(3) Finally, show how G is assembled from using C1, C2.

6 Conclusions

In this note, we study the problem of automatically producing step-by-step assembly

instructions for Engino� toy models. The assembly manual of a toy model can be

generated by reversing the decomposition process of the model to its constituent blocks.

As explained in Section 2, the disassembly process may under certain circumstances be

blocked due to the presence of particular geometric structures in the interconnections

between blocks. To avoid such situations we propose a graph-theoretic framework for

the analysis of the problem and provide a characterization of the decompositions that

are physically feasible. Moreover, a procedure to obtain maximal PFDs along a given

geometric direction is presented, which can be implemented using well known, linear-time

algorithms for the detection of strongly connected components in directed graphs. Based

on these results, an algorithmic procedure for the hierarchical decomposition of a given

toy model, which takes into account the physical feasibility of the intermediate steps, is

proposed. The final goal of generating a sequence of assembly instructions for the model
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is accomplished, by applying a postorder traversal of the hierarchical decomposition tree,

from which a step-by-step series of instructions can be easily recovered.

As for future extensions that could stem from our presented approach, and future

challenges to be tackled, we remark the following:

• First of all, notice that the connection principle for ENGINO blocks is mainly of binary

type (just like those of LEGO and other toy systems), in the sense that even though some

types of blocks have several male and/or female connectors, thus allowing for several

ways of connecting two given blocks, any connection between two blocks is achieved

by matching at least one pair of male-female connections, resulting in a finite set of

possible relative spatial configurations between the blocks. An important exception to

this is the freely-rotating pivoting connection, which allows for a continuous choice of

the pivot angle, so the set of relative spatial configurations becomes infinite. In this

paper, we have focused on the binary type of connections because of the resulting

finiteness of the set of possible spatial configurations, which allows us to tackle the

problem by defining the connection directions d̂i, i = 1, . . . , p. In future work, the

feature of pivoting connections will be added to our PFD, based on the fact that

pivoting connections during the assembly process must be geometrically feasible, in the

sense that small displacements associated with the rotation degree of freedom about

the pivot point must be allowed to happen. The main difficulty lies in extending the

current definition of the ‘fixed’ connection directions d̂i, i = 1, . . . , p, which will have to

depend on the continuous ‘pivoting’ degrees of freedom.

• From the previous point it follows that our method can be applied to several toy

systems, and even beyond that to industrial assembly processes [10,15] with binary-type

connections as defined above. The main advantage of our method is that it requires

very little geometrical and physical information about the connecting pieces. This is, at

the same time, the main limitation of the method. For example, it does not apply to

assemblies that require three or more hands [13], and more generally it does not deal

with cases when force and torque balances are relevant, as in the problems of grasping

parts (form closure, force closure, etc.) [16]. However, this does not mean our method

cannot be used in combination with these and other advanced assembly features. In

fact, our method could be included as a complementary module in dis-assembly process

planning for existing products in industry. For example, the feature of linearizability [16],

of practical importance in assembly lines, could be incorporated into our method because

it is related to the distribution of internal nodes and leaves in our hierarchical PFD

graphs. And, with a little bit of imagination, our method could potentially find its utility

as a module in the recently discovered molecular assembly processes [7], because these

processes are characterized by constrained geometric arrangements, local interactions

and reduced reactivity.
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