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Dilute suspension of neutrally buoyant particles
in viscoelastic turbulent channel flow
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Direct numerical simulations of viscoelastic turbulent channel flow laden with
neutrally buoyant spherical particles are performed. Two FENE-P viscoelastic and
one Newtonian fluid are examined, and for each the particle-laden configuration
is contrasted to a reference condition without seeding. The size of the particles is
larger than the dissipation length scale, and their presence enhances drag in a manner
that is intrinsically different in the viscoelastic and Newtonian flows. While the
particles effectively suppress the turbulence activity, they significantly enhance the
polymer stresses. The polymer chains are markedly stretched in the vicinity of the
particles, altering the correlation between the turbulence and polymer work that is
commonly observed in single-phase viscoelastic turbulence. At the lower elasticity,
the particles enhance the cycle of hibernating and active turbulence and, in turn, their
migration and volume-fraction profiles are qualitatively altered by the intermittency
of the turbulence. Particle–fluid momentum transfer is investigated by estimating the
local fluid field on a trimmed spherical shell around the individual particles. And by
comparing the particle microstructures, a lower probability of particle alignment in
the streamwise direction is observed in the viscoelastic configuration. This effect is
attributed to a qualitative difference in the conditionally averaged velocity fields in
the vicinity of the particles in the Newtonian and viscoelastic flows.

Key words: particle/fluid flow, polymers, turbulence simulation

1. Introduction

Polymer solutions have been widely used for drag reduction in numerous industrial
and environmental applications (Silberman 1983). In many instances, a dispersed
phase is either intentionally or undesirably present (Doan et al. 1998; Barbati et al.
2016). The combined effects of viscoelasticity, the dispersed phase and turbulence
are mostly unexplored, and render the dynamics of such flows acutely complex.
Previous efforts focused on either one of these elements or the interplay of two.
In the present study, we perform direct numerical simulations of viscoelastic and
Newtonian turbulent channel flows without and with the dispersed phase. All three
effects are therefore present in the simulations and are analysed in detail.

† Email address for correspondence: t.zaki@jhu.edu
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1.1. Viscoelastic turbulent flows
Since the early findings by Toms (1948) that polymer additives can reduce drag, the
interactions of viscoelasticity and turbulence have been extensively studied (Lumley
1969; White & Mungal 2008). When the time scale of the polymer stretch and
relaxation, λ, is comparable to that of the turbulence, polymer chains absorb and
release energy at different spatial and temporal flow scales, disrupt the natural
regeneration cycle of wall turbulence and reduce drag (White & Mungal 2008). At
intermediate levels of drag reduction, the near-wall vortices are damped but the
streamwise fluctuations are enhanced (Dubief et al. 2004). At higher levels, the
streamwise velocity fluctuations diminish and the log-layer mean-velocity gradient is
markedly modified. Dallas, Vassilicos & Hewitt (2010) also confirmed that streamwise
fluctuations weaken as the maximum drag reduction (MDR) state is approached (Virk,
Mickley & Smith 1970). Hairpin packets are also suppressed with increasing elasticity
(Kim et al. 2008; Kim & Sureshkumar 2013). The structural changes in the turbulent
structures are most evident in bypass and natural transition: streaks are stabilized
(Agarwal, Brandt & Zaki 2014; Biancofiore, Brandt & Zaki 2017) and Λ-structures
suppressed (Lee & Zaki 2017). While beyond the present scope, it is noteworthy that
the MDR bound has recently been challenged; the flow is shown to re-laminarize
prior to the MDR state (Choueiri, Lopez & Hof 2018).

The observations from simulations and experiments motivated recent theoretical
studies. Page & Zaki (2014) derived the linear evolution equations governing the
vorticity and polymer-torque perturbations in Oldroyd-B fluids, and classified streaks
as quasi-Newtonian, elastic or inertio-elastic depending on the ratio of the viscous
diffusion and relaxation time scales. Page & Zaki (2015) studied the evolution of a
spanwise vortex in mean shear and discovered a reverse-Orr amplification mechanism:
perturbation in the polymer torque amplify when they are aligned with the background
shear, in contrast to Newtonian flows where the streamfunction only amplifies if there
is a net tilt against the shear. White, Dubief & Klewicki (2018) argued that the
dominance of the viscous term in viscoelastic turbulence is due to eradicated inertial
mechanisms, and not an increase in apparent viscosity.

The literature on the interaction of a dispersed phase with viscoelastic fluids
is mostly limited to dilute concentrations of particles in laminar flows and the
rheological properties of suspensions (Scirocco, Vermant & Mewis 2005; Greco,
D’Avino & Maffettone 2007; Einarsson, Yang & Shaqfeh 2018). Studies dedicated
to turbulence are also in the dilute limit and the particles are smaller than the
Kolmogorov length scale, or in the one-way coupling regime (De Lillo, Boffetta
& Musacchio 2012; Nowbahar et al. 2013). Very recently, Zade, Lundell & Brandt
(2019) experimentally contrasted the particle–turbulence interactions in a duct flow
in both Newtonian and viscoelastic conditions. They reported that the viscoelastic
drag reduction is less effective in the presence of particles and attributed this effect
to the increased particle stresses. Except for that recent study, the modification of
viscoelastic turbulence by finite-size particles is largely unexplored. As a result, it is
not possible to anticipate the effect of the solid phase on interesting phenomenology
such as the alternation of viscoelastic wall turbulence between active and hibernating
states (Xi & Graham 2010) or, even more generally, on the capacity of viscoelasticity
to reduce turbulence drag.

1.2. Particle-laden turbulent flows
The interaction of a solid phase and Newtonian turbulence depends on numerous
parameters including the particle size, density ratio, concentration, shape and
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angularity, deformability, etc. (see Balachandar & Eaton 2010, for a review). When
the particle size is of the order of the dissipation length scale, the flow is locally
Stokesian. In this regime, the Stokes number, defined as the ratio of the particle
response time to the Kolmogorov time scale, determines the modulation of turbulence
by particles at a fixed particle volume and mass ratio; particles with large response
time enhance the decay rate of kinetic energy in isotropic turbulence by exerting a
counter-torque on a local eddy (Ferrante & Elghobashi 2003). In extremely dilute
concentrations in wall turbulence, Pan & Banerjee (1996) reported that the particles
attenuate the Reynolds stress by weakening the ejection–sweep cycles. Marchioli &
Soldati (2002) showed that sweeping motions push the particles from high-speed
streaks towards the wall, while ejections entrain the near-wall particles towards the
outer layer. The relative dominance of the former effect promotes the influx of
particles towards the wall – a phenomenon known as turbophoresis drift (Caporaloni
et al. 1975) which is reportedly attenuated by viscoelasticity due to the weaker
wall-normal fluctuations (Nowbahar et al. 2013). It is also noteworthy that both
numerical (Pan & Banerjee 1997) and experimental (Kaftori, Hetsroni & Banerjee
1994) studies of Newtonian wall turbulence predict that particles smaller than the
dissipation length scale preferentially reside in low-speed near-wall streaks.

Finite-size particles, of the order of the Taylor length scale, markedly alter the
above picture. According to Lucci, Ferrante & Elghobashi (2011), identical particle
response time and concentration but different sizes can lead to different effects on
the turbulent structures. Therefore, the Stokes number cannot alone determine the
particle–turbulence interaction. Naso & Prosperetti (2010) demonstrated that for such
particle sizes, the turbulence is modulated at distances larger than ten times the
thickness of the particle boundary layer – approximately twice the particle diameter.
Cisse, Homann & Bec (2013) examined the local turbulence modulation in the
vicinity of an isolated particle and concluded that the turbulence is promoted in most
directions, but markedly tamed downstream. In channel flow with dilute suspension
(2–5 %) of neutrally buoyant particles, Shao, Wu & Yu (2012) and Picano, Breugem
& Brandt (2015) reported that particles weaken the streamwise streaks, enhance
the cross-stream fluctuations and on the whole increase drag. At higher particle
concentration (∼20 %), the turbulent fluctuations in all directions are reduced in the
buffer and log layers, and the total drag is further increased: the contribution of
the particle stress to the total drag is thus sufficiently high to negate the reduction
in the turbulent shear stress (Picano et al. 2015). It is important to note that the
contribution of the particle stress to the total drag is not simply a rheological effect
due to increased bulk apparent viscosity: Costa et al. (2018) cross-compared direct
numerical simulations (DNS) of semi-dilute neutrally buoyant spheres in a channel
with a Newtonian single-phase configuration with matching apparent viscosity; they
showed that the contribution of the particles to the total drag in the laden case
originates primarily from the particles creating local shear-rate hotspots, particularly
in the near-wall region.

Particle migration, which can appreciably modify wall-bounded shear flows, is
influenced by various parameters. For example, in Newtonian inertial laminar flow, the
early work by Segre & Silberberg (1961) documented the radial migration of isolated
finite-size particles towards an equilibrium position in a straight tube. As the Reynolds
number increases, the equilibrium position shifts outwardly towards the wall (Matas,
Morris & Guazzelli 2004). Another important phenomenon is near-wall layering of
neutrally buoyant spherical particles in both laminar and turbulent Newtonian channel
flows (Yeo & Maxey 2011; Lashgari et al. 2016). This effect is often explained
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by wall lubrication and asymmetric interaction of near-wall particles (Picano et al.
2015). Costa et al. (2016) characterized the wall layer by an effective wall location
and claimed that the dynamics in the outer flow is well described by a single-phase
fluid with a matched apparent viscosity. Fornari et al. (2016) assessed the impact
of particle inertia and size ratio on layering; at a density ratio ∼10 they reported
collision-induced migration towards the channel centre which they attributed to the
near-wall asymmetry. In a very similar configuration, Yu et al. (2017) indicated that
the same trend persists at very dilute concentrations and is therefore not collision
induced. Both studies agreed that at extreme density ratio (∼1000), particle motion
expectedly tends to that of a colloidal Brownian movement irrespective of the
background fluid. An example where the wall layer is depleted is in suspension of
neutrally buoyant oblate or prolate spheroids in Newtonian channel flow (Ardekani &
Brandt 2019).

Particle migration in laminar shear flows is known to be influenced by viscoelasti-
city; it is curious whether and how it is altered in the case of a viscoelastic
turbulence. Early experiments in the laminar regime by Karnis & Mason (1966)
reported that normal stress differences drive an isolated particle towards the channel
centre. Motivated by applications in microfluidic devices, numerous efforts have since
examined the migration of isolated particles in different non-Newtonian conditions,
mostly in the absence of inertia (see D’Avino, Greco & Maffettone 2017, for a
review). More recently, both experimental and numerical studies (e.g. Lim et al.
2014; Li, Karimi & Ardekani 2014) reported that migration towards the channel
centre is also observed in viscoelastic inertial flows.

In the present study, we examine the simultaneous effects of dispersed phase,
viscoelasticity and turbulence by DNS. The computations resolve the flow and polymer
conformation fields of viscoelastic turbulence laden with finite-size neutrally buoyant
particles in a channel. The governing equations, numerical method and computational
set-up are presented in § 2. In § 3, we examine the dominant contributions to the drag
in the newly established stress balance and the modifications to the turbulence. In
§ 4, the focus is directed to the differences in particle dynamics and microstructure
between the Newtonian and viscoelastic conditions. Concluding remarks are presented
in § 5.

2. Governing equations and simulation set-up
Throughout this work, all quantities are non-dimensional unless distinguished by a

‘star’ symbol. For incompressible viscoelastic flows laden with monodisperse spherical
particles, five relevant non-dimensional parameters are defined: (i) the Reynolds
number Re = U∗L∗/ν∗, where ν∗ is the fluid total kinematic viscosity and U∗ and
L∗ are the characteristic velocity and length of the system; (ii) the Weissenberg
number Wi= λ∗U∗/L∗, which is the ratio of the viscoelastic fluid relaxation time λ∗
to the flow time scale L∗/U∗; (iii) the density ratio of the dispersed and fluid phases,
ρ = ρ∗p/ρ

∗

f , which is unity in the present case of neutrally buoyant particles; (iv) the
ratio of the particle diameter to the characteristic length scale of the flow, dp= d∗p/L∗;
and (v) the bulk solid volume fraction of the system, ϕ = NpV∗p /V∗t , where Np, V∗p
and V∗t denote the total number of particles, volume of a particle and the total volume
of the computational domain.

2.1. Governing equations
The Navier–Stokes equations for a dilute polymer solution are,

∇ · uf = 0, (2.1)
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∂uf

∂t
+ uf · ∇uf =−∇p+

β

Re
∇

2uf +
(1− β)

Re
∇ · T +F, (2.2)

where subscript ‘f ’ identifies the fluid phase. The quantity β ≡ µ∗s/(µ
∗

s + µ
∗

p) is the
ratio of the solvent to the total viscosities, the latter defined as the sum of the solvent
µ∗s and polymer µ∗p contributions. In addition to the viscoelastic stress tensor T , a
generic force field F is also included in (2.2). The viscoelastic stress is expressed in
terms of the polymer conformation tensor c, and using the FENE-P model,

∂c

∂t
+ uf · ∇c= c · ∇uf + (c · ∇uf )

T
− T , (2.3)

T =
1

Wi

(
c

ψ
−

I

a

)
; ψ = 1−

tr(c)
L2

max

; a= 1−
3

L2
max

, (2.4)

where Lmax is the maximum extensibility of the polymer chains and I refers to the
unit tensor.

Particles are assumed to undergo rigid-body motion, and therefore no-slip boundary
conditions are imposed at their surfaces ∂Vp,

uf |∂Vp = up +ωp × r, (2.5)

where up and ωp are the particle translational and angular velocities, and r is the
distance vector emanating from the centre of the sphere. The motion of the particles
is governed by the Newton–Euler Lagrangian equations,

ρVp
dup

dt
=

∮
∂Vp

σf · n dA+Fc, (2.6)

ρIp
dωp

dt
=

∮
∂Vp

r× σf · n dA, (2.7)

σf =
β

Re
[−pI + 2E] +

1− β
Re

T , (2.8)

where Ip = πd5
p/60 and Vp = πd3

p/6 are the moment of inertia and the volume of
a spherical particle, while σf is the fluid phase stress tensor. The force Fc results
from particle–particle or particle–wall collisions and n is the outward unit vector at
the particle surface. Lastly, E is the strain-rate tensor of the fluid phase.

2.2. Numerical methodology
The solution of (2.1) and (2.2) is obtained numerically using a control-volume
formulation and a fractional-step algorithm (Rosenfeld, Kwak & Vinokur 1991). The
advection terms are treated explicitly using an Adams–Bashforth scheme, while an
implicit Crank–Nicolson scheme is adopted for the treatment of the diffusion term
and polymer stress.

The algorithm for the numerical solution of the conformation-tensor equations
(2.3) was adopted in a number of high-fidelity simulations of instability waves
and transition (Lee & Zaki 2017; Hameduddin, Gayme & Zaki 2019) as well as
fully turbulent flows (Hameduddin et al. 2018; Hameduddin & Zaki 2019). The
equations are marched in time using a third-order accurate Runge–Kutta method
where the advection and polymer stretch terms are treated using an Adams–Bashforth
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discretization within each sub-step. A semi-implicit method is adopted for the
relaxation term, as suggested by Dubief et al. (2005). A variant of slope-limiting
approach for spatial derivatives proposed by Vaithianathan et al. (2006) is used to
ensure numerical stability without introducing any artificial diffusion. In brief, the
advection term is evaluated using second-order accurate central difference scheme as
long as the conformation tensor remains positive definite; when its smallest eigenvalue
approaches zero, the discretization is replaced by the one-sided difference which
maximizes the minimum eigenvalue (for details, see appendix B by Hameduddin
et al. 2018).

The no-slip boundary conditions at the particle surfaces are enforced using a
variant of the sharp-interface, robust immersed boundary (IB) method described by
Nicolaou, Jung & Zaki (2015). The method was adapted for freely moving particles in
viscoelastic fluids and the algorithm was optimized to take advantage of the geometric
simplicity of the particles for computational efficiency. The IB force is included on
the right-hand side of (2.2), F= FIB, in order to satisfy the no-slip conditions (2.5).
By integrating (2.2) over the volume of a particle and using the divergence theorem,
the surface integral in (2.6) can be replaced by the volume integral (appendix B in
Uhlmann 2005),

ρVp
dup

dt
=−

∫
Vp

FIB dVp +
d
dt

(∫
Vp

uf dVp

)
+Fc; (2.9)

similarly, (2.7) can be rewritten as,

ρIp
dωp

dt
=−

∫
Vp

r×FIB dVp +
d
dt

(∫
Vp

r× uf dVp

)
. (2.10)

Following Breugem (2012), the second terms on the right-hand sides of equations
(2.9) and (2.10) are evaluated over the fluid field occupying the solid domain. A
short-range repulsive force proposed by Glowinski et al. (2001) is used to treat the
particle–particle and particle–wall collisions and the conformation tensor is set to unity
inside the solid domain.

Our numerical tool has been extensively validated in Newtonian turbulence (Lee
et al. 2013), moving-body problems in Newtonian fluids (Nicolaou et al. 2015), and
single-phase viscoelastic turbulence (Lee & Zaki 2017). In addition, we have verified
the accuracy of our numerical tools in three reference configurations: a particle
rotating in Newtonian and viscoelastic simple shear; lateral migration of an isolated
particle in laminar Poiseuille flow; and Newtonian particle-laden turbulent flow in a
channel. Details of these simulations are provided in appendix B.

2.3. Flow configuration
The computational domain is a channel geometry with the streamwise, spanwise and
wall-normal directions aligned with x, z and y coordinates, as illustrated in figure 1.
The bulk velocity U∗b and channel half-height h∗ are selected as the characteristic
velocity (U∗ = U∗b) and length (L∗ = h∗) for outer scaling. Where inner scaling is
adopted, it is denoted by ‘+’ symbol and, unless otherwise stated, is defined based
on the friction velocity u∗τ ≡

√
〈τ ∗wall/ρ

∗

f 〉 and the length l∗τ ≡ ν
∗/u∗τ , where τ ∗wall is the

total wall shear stress. The flow is maintained at constant mass flux, no-slip boundary
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Lz

Ly

Lx

y = 2

xy

z

FIGURE 1. (Colour online) Schematic of the particle-laden simulations. No-slip boundary
conditions uf = 0 are imposed at y = {0, 2}, and periodicity is enforced in the x and z
directions.

Re β, Lmax Wi ϕ (%) Np 1/dp Lx × Ly × Lz Nx ×Ny ×Nz Case Symbol

2800

Newtonian 0 0 0 — 6× 2× 3 96× 192× 80 W0
5 2504 9 6× 2× 3 864× 288× 432 W0P5

FENE-P 15 0 0 — 10× 2× 4.5 160× 192× 120 W15
5 2504 9 6× 2× 3 864× 288× 432 W15P5

β = 0.97

Lmax = 70 25 0 0 — 10× 2× 4.5 160× 192× 120 W25
5 2504 9 6× 2× 3 864× 288× 432 W25P5

TABLE 1. Physical and computational parameters of the simulations. Reynolds number
Re= h∗U∗b/ν

∗ and Weissenberg number Wi= λ∗U∗b/h
∗ are based on the channel half-height

h∗, the bulk velocity U∗b , total kinematic viscosity ν∗ and viscoelastic fluid relaxation time
λ∗. The domain sizes are L{x,y,z} in the {x, y, z} directions, and the number of grid cells is
N{x,y,z}. The noted line types and symbols are adopted in figures, unless otherwise stated.

conditions are imposed at the bottom and top walls y = {0, 2}, and periodicity is
enforced in the two horizontal directions.

Physical and computational parameters of the simulations are provided in table 1.
One Newtonian and two viscoelastic conditions are simulated, each with and without
the presence of neutrally buoyant spherical particles. A designation is introduced in
table 1 to identify each simulation: letter W is followed by the Weissenberg number
Wi and P by the bulk solid volume fraction of the system ϕ(%) in the associated
case. In all simulations the grid cells are uniformly distributed in the streamwise and
spanwise directions. In the wall-normal direction, the grid spacing is uniform in the
particle-laden conditions and a hyperbolic tangent grid stretching is adopted in the
single-phase simulations. In the particle-laden flows, the grid size is dictated by the
required number of grid cells to correctly predict the flow field in the vicinity of the
particles. Following previous studies (Goyal & Derksen 2012; Picano et al. 2015), the
ratio of particle diameter to the grid cell size is set to dp/1x= 16.

The single-phase Newtonian simulation is initialized using a superposition of
laminar Poiseuille flow and small-amplitude random fluctuations which trigger
breakdown to turbulence, while turbulence is triggered in the particle-laden case
naturally due to the presence of the randomly seeded particles. The viscoelastic
conditions are initialized with the velocity and pressure fields from their Newtonian
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200
5.5 %

15.8 %

-20 %
-31 % -30 %

-27 %

6.5 %

Wi = 0 Wi = 15 Wi = 25

150

100

50

0

Re†

FIGURE 2. (Colour online) Friction Reynolds number Reτ . Solid columns are single-phase
conditions and hashed columns are particle-laden cases.

counterparts in the statistically stationary state. Beyond the initial transients,
ensemble-averaged statistics of any mixture quantity 〈o〉 were evaluated, conditioned
on the fluid and particle phases, and denoted 〈o{ f ,p}〉{ f ,p}. The unconditional average
can be reconstructed,

〈o〉 = 〈(1− χ)of 〉 + 〈χop〉 = (1− φ)〈of 〉f + φ〈op〉p, (2.11)

where χ = {0, 1} is a phase indicator of the fluid and solid, and φ = 〈χ〉 is the solid
volume fraction. Averaging is performed in the homogeneous streamwise and spanwise
directions, as well as in time. Note that the subscripts 〈•〉{f ,p} are henceforth dropped
and conditional averaging is implied. Fluctuations in any fluid or particle quantities
are defined relative to their respective means, o′

{f ,p} = o{f ,p} − 〈o{f ,p}〉. Statistics were
collected for sufficiently long periods (e.g. 1800 convective times for case W15P5) in
order to ensure convergence which was verified by comparing results from half and
the total number of samples.

3. Stress balance and turbulence modifications
3.1. Drag modulation and stress budget

The friction Reynolds number Reτ ≡ Re u∗τ/U
∗

b is reported in figure 2. Particle-laden
cases systematically experience higher Reτ relative to their single-phase counterparts.
A similar trend was observed in previous studies of Newtonian flows laden with
dilute and dense suspensions of spherical particles (Picano et al. 2015; Lashgari et al.
2016; Costa et al. 2018). Those studies generally concur that the particle stress is
responsible for the drag enhancement. A curious observation from figure 2 is that the
particle drag enhancement is higher in the low Weissenberg case (15.8 % for W15P5),
in comparison to both the Newtonian (5.5 % for W0P5) and high Weissenberg (6.5 %
for W25P5) cases. In addition, the effectiveness of the polymer to reduce drag in the
low Weissenberg particle-laden case is appreciably diminished in the particle laden
case, ReW15

τ /ReW0
τ < ReW15P5

τ /ReW0P5
τ . At the high Weissenberg condition, however, the

propensity of viscoelasticity to reduce drag appears largely unaffected by the presence
of the particle phase.

The above observations will be examined in detail and explained, starting by an
assessment of the different contributions to the total stress τtot at every wall-normal
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Wi = 25, Ç = 0 %(÷ 10-3)

Wi = 25, Ç = 5 %(÷ 10-3)

(a) (b) (c)

(d) (e) (f)

FIGURE 3. (Colour online) Wall-normal profiles of the stresses defined in (3.1): blue solid
lines ( ) total stress τtot; black solid lines ( ) viscous stress τµ; dotted lines ( )
turbulent Reynolds stress τRe; dash-dotted lines ( ) polymer stress τβ ; square symbols
( ) particle-induced stress τφ . The stresses are plotted in (left axes) outer and (right axes)
wall units.

position,

τRe︷ ︸︸ ︷
−[(1− φ)〈u′fv

′

f 〉 + φ〈u
′

pv
′

p〉] +

τµ︷ ︸︸ ︷
β

Re
(1− φ)

d〈uf 〉

dy

+
(1− β)

Re
(1− φ)〈T xy〉︸ ︷︷ ︸
τβ

+ φ〈σp,xy〉︸ ︷︷ ︸
τφ

= 〈τwall〉(1− y)︸ ︷︷ ︸
τtot

. (3.1)

From left to right, these contributions are the turbulent Reynolds stress τRe, the
viscous stress τµ, the polymer stress τβ and the particle stress τφ . Figure 3 compares
the contribution of each term for different cases in outer (left axis) and inner (right
axis) scaling. As anticipated for the single-phase viscoelastic flows, τRe is significantly
attenuated and the incurred viscoelastic stress τβ is relatively small (figures 3(a), 3(b)
and 3(c)); the net effect is a decrease of the total stress. The addition of particles
to the Newtonian fluid leads to an induced stress which plays a major role in drag
enhancement, while the share of turbulent Reynolds stress is almost unchanged relative
to W0. In contrast, the addition of particles appreciably reduces the contribution of τRe

to the total stress in the viscoelastic cases – an effect that may seem counter-intuitive
at first given that the total drag has increased in W15P5 and W25P5 relative to W15
and W25. The drastic increase in the polymer stresses explains the overall increase in
drag in the presence of the particles. In cases W15P5 and W25P5, τβ is comparable
to the viscous stress contribution near the wall and takes a significant share of the
total stress throughout the channel. On balance, the attenuation of the turbulence
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FIGURE 4. (Colour online) Instantaneous snapshot of particle positions, contours of uf
(vertical plane) and uf −〈uf 〉 (horizontal plane) for case W15P5. For clarity, only 20 % of
particles are shown. Marked area is magnified and reproduced with contours of T xy.

shear stress and the polymer stress enhancement in the vicinity of the particles result
in a less effective drag reduction in case W15P5 relative to W15, and an almost
equal level of drag reduction in cases W25P5 and W25.

The pronounced increase of polymer stress in the particle-laden viscoelastic
configurations arises due to the polymer stretching mechanism which differs from
the single-phase flow. In the latter, polymer chains are stretched by the turbulent
fluctuations. In the two-phase configuration, particles alter the velocity field in
their vicinity and cause local stretching of polymer chains and enhancement of the
associated stresses (figure 4); this effect is examined in detail in § 4.1.

The turbulent stresses τRe in the reference cases W15 and W25 are within 25 %
of one another. And while the addition of the particle phase reduces τRe at both
elasticities, it is much more influential at the higher Weissenberg number: W15P5
experiences a twofold reduction compared to fourfold in case W25P5. This prominent
dissimilarity is a sign of intrinsic differences in particle–turbulence interactions in
W15P5 and W25P5, and calls for further scrutiny of the time-dependent effects that
contribute to this average stress (§ 3.3). Lastly, in all particle-laden cases, a peak in
the particle stress is recorded near y= 0.1, approximately one diameter from the wall,
where the particles are expected to experience high relative velocity with respect to
the fluid. However, the contribution of the particle stress is more evenly distributed
throughout the channel in cases W15P5 and W25P5, relative to the Newtonian W0P5
where it is most relevant in the near-wall region. The persistent contribution in
the outer flow in the viscoelastic cases reinforces a potential change in the role of
particles in the wall-normal momentum transport.

3.2. Mean fluid velocity and Reynolds stress profiles
The mean streamwise fluid velocity profiles are reported in figure 5, in outer and
inner scaling. The characteristic velocity for the latter scaling is based on the viscous
component of the wall shear stress, i.e. u∗µ ≡

√
〈τ ∗µ,wall/ρ

∗

f 〉. In the viscoelastic cases,
〈uf 〉 deviates from the Newtonian turbulent channel-flow profile and approaches the
laminar solution. The deviation from the Newtonian turbulent profile is a signature
of suppressed wall-ward momentum mixing. As described by White et al. (2018),
polymer stress takes over the role of Reynolds stress with respect to inertial mixing,
but is less effective; a reduced level of momentum mixing in the wall-normal
direction eventually results in the modification of the law of the wall. The addition
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FIGURE 5. Mean streamwise fluid velocity in (a) outer and (b) inner units. Line types
as listed in table 1: ( ) W0; ( ) W15; ( ) W25; ( ) W0P5; ( ) W15P5;
( ) W25P5. (a) Marked area is magnified in the inset. (b) Dashed line ( ) is the
Virk asymptote (Virk et al. 1970); dotted line ( ) Newtonian law of the wall 〈u+f 〉 =
2.5 log(y+)+ 5.0; dashed dotted line ( ) laminar Poiseuille profile 〈u+f 〉 = y+.

of particles intensifies this effect to the point where the profile from W25P5 tends
to Virk’s maximum drag reduction asymptote (Virk et al. 1970). This shift can be
an indication that the particles effectively suppress the turbulent fluctuations and,
in turn, the associated momentum mixing. Nevertheless, the impact of particles
on the mean streamwise velocity profile is almost negligible in W0P5. Previous
studies have shown that in semi-dilute particle-laden Newtonian flows, except in the
near-wall region, particles render the mean streamwise velocity profile similar to the
laminar case (Picano et al. 2015; Costa et al. 2018). In the near-wall region, however,
particles are known to accelerate the fluid velocity due to their finite slip (Shao et al.
2012). This effect is weakly apparent in case W0P5 and overshadowed by the strong
modification of the mean streamwise velocity profile due to the turbulence attenuation
in cases W15P5 and W25P5 (inset of figure 5(a)).

The impact of the particle phase on the turbulence fluctuations is captured by the
Reynolds stresses (figure 6). First recall that viscoelasticity alone is known to swell
the streamwise streaks thus resulting in an upward shift of the peak of streamwise
fluctuations; in addition, relative to Newtonian flows, the peak value of the streamwise
stress increases at low/moderate elasticity and reduces at high elasticity (Dallas et al.
2010; Xi & Graham 2012). Figure 6(a) shows that the peak streamwise stresses
for W15 and W25 shift away from the wall, without any significant change in its
value. Particles weaken the streamwise vortices and decrease the peak streamwise
velocity fluctuations in the Newtonian and viscoelastic cases. This effect, associated
with the particle slip velocity acting as a sink of kinetic energy in the coherent
streaks, is substantially intensified in the viscoelastic flows. For the wall-normal and
spanwise stresses, however, the picture is quite divergent. In the near-wall region,
where the particles are the main source of cross-flow fluctuations due to their finite
slip velocity, 〈v′fv

′

f 〉 and 〈w′f w
′

f 〉 are higher in all particle-laden cases relative to the
single-phase counterparts. However, qualitative differences in the impact of particles
on the Newtonian and viscoelastic flows arise away from the wall: while in W0P5,
particles slightly enhance the cross-stream fluctuations, in W15P5 and W25P5 they
attenuate the fluctuations in most of the channel. In the Newtonian case, the particles
redistribute momentum from the streaks to the cross-stream directions by inducing
particle-scale vortices (Shao et al. 2012). Since the streaks are appreciably weakened
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FIGURE 6. Components of the Reynolds stress tensor, where u′f , v
′

f and w′f are the
fluctuations in the streamwise, wall-normal and spanwise fluid velocities. Line types as
listed in table 1: ( ) W0; ( ) W15; ( ) W25; ( ) W0P5; ( ) W15P5; ( )
W25P5.

in viscoelastic flows and, as a result, this effect is muted in W15P5 and W25P5, the
cross-stream fluctuations are also reduced. Moreover, in contrast to the Newtonian
case the presence of particles in viscoelastic flows reduces, rather than enhances, the
turbulent shear stress – a matter that we examine in detail in § 3.3.

3.3. Transient dynamics and conditional statistics
The regeneration cycle of wall turbulence involves (i) formation of streamwise-
elongated streaks, (ii) breakdown of the streaks and (iii) generation of streamwise
vortices which enhance the three-dimensionality of the flow and are followed by a
surge in the wall shear rates. In Newtonian fluids, particles reinforce the generation
of streamwise vortices and promote the wall shear stress (Wang, Abbas & Climent
2018). On the other hand, viscoelasticity alters the cycle by promoting extended
periods of low shear rates known as ‘hibernating’ states, which sporadically give way
to bursts of high shear-rate ‘active’ states of turbulence. Xi & Graham (2012) showed
that once viscoelasticity surpasses a critical value, the stretching of polymer chains
weakens the turbulent fluctuations and in turn contributes to the dominance of the
hibernating state. Due to the lower shear stress associated with hibernating turbulence,
polymer solutions experience a lower turbulent drag in an average sense. In an effort
to determine the influence of the particle phase on this process, we examine the
transient dynamics in our simulations within a similar framework.
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FIGURE 7. Time series of Reτ ,xz. Line types as listed in table 1: ( ) W0; ( ) W15;
( ) W25; ( ) W0P5; ( ) W15P5; ( ) W25P5.

Figure 7 contrasts the time evolutions of the wall-averaged instantaneous friction
Reynolds numbers, Reτ ,xz ≡ Re

√
(1/ρ∗f )〈τ ∗wall〉xz/U∗b , from the different simulations. In

both Newtonian flows, W0 and W0P5, very minimal fluctuations are observed which
is indicative of an active turbulence state. While the hibernating state also exists
in Newtonian flows (Xi & Graham 2010), it is relatively rare and its influence is
overshadowed by the strong dominance of active turbulence. In the low Weissenberg
cases, W15 and W15P5, the fluctuating behaviour of Reτ ,xz signals a competition
between active and hibernating states. Infrequent peaks of Reτ ,xz in W15P5 indicate
that the hibernating state prevails. At high Weissenberg, W25 demonstrates a cyclic
behaviour akin to that of W15, but W25P5 appears dominated by the hibernating state.
In both W15P5 and W25P5, the particles complement the influence of viscoelasticity
by promoting hibernation, or suppressing active turbulence. The drag itself is,
nonetheless, increased in presence of the particles due to the increase in the polymer
stress, as noted in § 3.1.

The mean streamwise velocity profiles were evaluated conditioned on the state
of the turbulence, and the hibernating and active states are contrasted to the
conventional mean in figure 8, for W15 and W15P5. In line with the observations
by Wang, Shekar & Graham (2017), at both Weissenberg numbers the profile of
the hibernating state is closer to Virk’s asymptote, and that of active turbulence is
closer to Newtonian turbulence. In W15P5, the overall average is biased towards
the hibernating state-conditioned profile, in agreement with the scarcity of the active
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FIGURE 8. (Colour online) Wall-normal profiles of the overall and conditional averages
of streamwise velocity for (a) W15 and (b) W15P5. Averages are computed over the
homogeneous streamwise and spanwise directions and (black lines, ) the full sampling
time, (blue lines, ) hibernating states and (red lines, ) active states. Each curve is
normalized by its respective u∗µ.
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FIGURE 9. (Colour online) Wall-normal profiles of the overall and conditional averages
of contributions to the shear stress (3.1). Averages are computed over the homogeneous
streamwise and spanwise directions and (black lines, ) the full sampling time, (blue
lines, ) hibernating states and (red lines, ) active states. (a–c) case W15; (d–f ) case
W15P5.

turbulence instances in figure 7. Figure 9 compares different components of the stress
budget during the hibernating and active turbulence states, for W15 and W15P5.
Without and with particles, during the hibernating state the Reynolds stress τRe is
reduced and the viscous stress τµ increased. Similar to previous studies of single-phase
viscoelastic turbulence (Xi & Graham 2010; Tamano, Graham & Morinishi 2011;
Wang et al. 2017), the share of the polymer stress in W15 increases during the active
state. The effect has been interpreted in terms of the polymer chains being stretched
and relaxed during the active and hibernating states, respectively, giving rise to the
similar trend in polymer and turbulent stresses (Wang et al. 2017). Interestingly,
however, τβ exhibits the opposite behaviour in W15P5: in most of the channel the
contribution of the polymer stress is slightly higher during the hibernating state
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FIGURE 10. (Colour online) Particle migration during the hibernating and active
turbulence states in case W15P5. Time evolution of contours of streamwise- and spanwise-
averaged (top) particle wall-normal velocity, (middle) phase indicator and (bottom)
Reτ ,xz.

relative to the active one. This change in character will be ascribed to the presence
of particles, which will be demonstrated in § 4.1 to be the primary cause of polymer
stretch. In other words, τβ in W15P5 is inherently different from its single-phase
counterpart.

The importance of the particle phase becomes evident when their behaviour is
examined as the turbulence shifts from the hibernating to active state. Figure 10
shows the time dependence of the spatially averaged particle velocity 〈vp〉x,z and
phase indicator 〈χ〉x,z during this shift. Particles gradually migrate towards the channel
centre during the hibernating state. Due to the subdued turbulence activity, momentum
mixing is weak and the mean streamwise velocity tends towards the parabolic profile.
As a result, the particles’ migration towards the channel centre is similar in nature
to their lateral migration in laminar viscoelastic Poiseuille flow (see e.g. Huang et al.
1997; Li, McKinley & Ardekani 2015, and appendix B). As they migrate to the
centre, their streamwise velocity will increase due to the higher local momentum;
however their fluctuating motion is attenuated during the hibernating state due to
the weaker turbulence activity. Migration towards the channel centre continues until
the near-wall region is almost devoid of particles, 〈χ〉xz < 2 %. At this stage, active
turbulence is reinitiated and the particles are pushed back towards the wall by the
fluctuating motions. As a result, the streamwise fluid velocity profile is flattened by
turbulent mixing, and particle fluctuations are once again revived.

Particle migration is key to understanding the increased contribution of the polymer
stress during hibernation (figure 9( f )). Upon closer examination of figures 9( f ) and
10, we observe that this increase takes place only where the particles are more
concentrated, i.e. in the outer region (y > 0.2) during hibernation. In fact, near the
wall, the contribution of the polymer stress is larger during the active state due to
the coexistence of turbulence-induced polymer stretch and the return of the particles
towards the wall as the turbulence is revived.
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FIGURE 11. Wall-normal profiles of (a) solid volume fraction and (b) mean streamwise
particle and fluid velocities. Line types as listed in table 1: ( ) W0P5; ( ) W15P5;
( ) W25P5. (b) Dashed lines correspond to the fluid velocities; Inset shows the mean
relative particle velocities.

4. Particle dynamics and microstructure
4.1. Particle dynamics

The focus in now placed on the particle dynamics, and its connection to the
Newtonian and viscoelastic flow statistics. The solid volume fraction profiles are
reported in figure 11(a). In the Newtonian case, a flat profile in the outer region
signals an even distribution of particles, due to strong turbulent mixing. In viscoelastic
conditions, the solid volume fraction increases away from the wall, and at the channel
centre of case W25P5 exceeds twice its bulk value (ϕ = 5 %). This finding is in line
with the particle migration mechanism explained in § 3.3. Note that this migration
behaviour is due to fluid elasticity. It is therefore inherently different from the
phenomenologically similar migration towards the channel centre that can take place
in Newtonian turbulence, at high solid volume fractions φ > 30 % or density ratios
ρ∗p/ρ

∗

f ≈ 10 (Fornari et al. 2016; Lashgari et al. 2016); that effect is due to a particle
normal stress imbalance in the wall-normal direction. A stabilized layer of particles
is formed near the wall in cases W15P5 and W25P5, and is due to the particle–wall
lubrication effect and asymmetric interactions in that region. The same mechanism
is present in Newtonian particle-laden flows at higher solid volume fractions (Yeo &
Maxey 2011; Lashgari et al. 2016), and is observed here in the viscoelastic cases
despite a highly dilute concentration of particles near the wall.

The mean streamwise particle and fluid velocity profiles are plotted in figure 11(b).
In each case, the mean fluid and particle velocity profiles are in good agreement near
the core of the channel; however, the particle streamwise velocity is larger than that
of the fluid in close vicinity to the wall (y 6 0.5dp, y+ 6 10). A positive particle
slip, loosely defined as the particle velocity relative to the local fluid velocity, is
evident in the viscous sublayer and is due to the particles’ finite rigid-body motion
while the fluid velocity vanishes. Surprisingly, a negative slip velocity is observed near
0.75dp 6 y 6 1.5dp in W15P5 and W25P5 (inset of figure 11(b)). Its interpretation
must, however, be carefully considered in light of the heterogeneity of the particle
distribution which can introduce bias if the simple definition of slip as 〈up〉 − 〈uf 〉 is
adopted.

A more precise definition of the velocity experienced, or seen, by the particles
is required in order to estimate the slip velocity. We adopt the definition proposed
by Kidanemariam et al. (2013): the instantaneous fluid velocity is integrated over a
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FIGURE 12. Probability density function (PDF) of normalized (a,b) perturbation shell
velocity and (c,d) slip velocity. The median of each PDF is marked by a vertical dashed
line. Line types as listed in table 1: ( ) W0P5; ( ) W15P5; ( ) W25P5. The
shell and slip velocities are defined in (4.1) and (4.2). Data are conditionally sampled
for particles at (a,c) y= 1/9 and (b,d) y= 1/3.

spherical shell, S , with diameter equal to 3dp and centred around the particle. In order
to avoid sampling bias due to heterogeneity in y, the shell surface is trimmed by
two wall-parallel planes located at one radius below and above the particle position.
Formally, the shell and particle slip velocities are defined as,

uS =

∮
S
(1− χ)uf dA∮
S
(1− χ) dA

, (4.1)

uslip = up − uS . (4.2)

A shell perturbation velocity can be defined relative to the local mean fluid velocity,
uS − 〈uf 〉. Probability density functions (PDFs) of this quantity are reported in
figure 12 at two heights from the wall, normalized by 〈uf 〉. According to figure 12(a),
a wide range of positive and negative shell perturbation velocities are experienced
by the particles in both the Newtonian and viscoelastic cases, and a slight bias
towards negative values is present for the latter. This trend signals a preferential
concentration of particles in low-speed streaks in the buffer layer (15 6 y+ 6 21),
which is precipitated by sweeping high-speed vortices that displace the particles into
low-speed regions. This phenomenon has been reported for Newtonian wall turbulence,
in the case of point particles (Kaftori et al. 1994; Pan & Banerjee 1997) and small
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FIGURE 13. PDF of the normalized trace of the conformation tensor, sampled for fluid
points at y = 0.15. Solid grey line ( ): W15; black line ( ): W15P5; black dashed
line ( ): sampled points are also constrained to be within a spherical region concentric
with particles and twice their diameter in case W15P5.

particles with size d+p ≈ 5–10 (Kidanemariam et al. 2013; Wang et al. 2018), but
has not been observed for large particles (d+ ≈ 30) (Hetsroni & Rozenblit 1994).
Since turbulence structures, in particular streaks, are inflated by viscoelasticity and
thickened in the enlarged buffer layer, the relative particle size is smaller than in the
Newtonian configuration. As a result, the particles further adapt to the fluid motion
induced by the near-wall streamwise vortices, preferentially residing in the low-speed
streaks. In the log layer (35 6 y+ 6 63), the distribution of normalized shell velocity
perturbation is centred at zero and predictably narrowed (figure 12(b)), in both the
Newtonian and viscoelastic cases.

Figure 12 also reports PDFs of the normalized slip velocity, which are also broad
in the buffer layer and narrower in the log layer. In the former region (figure 12(c)),
viscoelasticity enhances the probability of particles experiencing negative slip.
Together figures 12(a) and 12(c) clarify that the negative relative mean velocities
reported in figure 11(b) in the viscoelastic cases stem from the combination of two
effects: (i) preferential location of particles in the low-speed streamwise velocity
zones and (ii) mean negative slip velocity of particles with respect to their shell
velocity. In the log layer (figure 12(d)), the PDFs of normalized slip velocity are
centred at zero. Although narrow relative to their counterparts in the buffer region,
the widths of all distributions are still non-negligible particularly when compared
to the normalized turbulence fluctuations. Specifically, in all particle-laden cases the
variance of uslip/〈uf 〉 is comparable in magnitude to

√
〈u′f u

′

f 〉/〈uf 〉. This observation
is notable for two reasons: (i) it shows that despite the zero average slip velocity,
particles still act as effective sinks of kinetic energy in the log layer, which explains
their significant role in the reduction of the fluid streamwise velocity fluctuations
(figure 6); (ii) a non-zero slip velocity gives rise to the stretching of polymer chains
in the neighbourhood of the particles.

In § 3.1, the pronounced increase of polymer stress in the presence of particles
was ascribed to stretching of the polymer in their vicinity (figure 3). This assertion
is supported by comparing the PDFs of the normalized trace of the conformation
tensor, tr(c)/L2

max, in cases W15 and W15P5 (figure 13). The comparison is made at
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FIGURE 14. Comparison of particle and fluid velocity fluctuations in the (a) streamwise,
(b) wall-normal and (c) spanwise directions. (d) Comparison of particle mean rotation in
the spanwise direction and fluid vorticity; inset depicts the ratio of the two quantities in
the near-wall region. Line types as listed in table 1: ( ) W0P5; ( ) W15P5; ( )
W25P5. Quantities in the fluid phase are represented by dashed lines.

y= 0.15, where the polymer stress contribution differs dramatically in the two cases
(compare figures 3(b) and 3(e)). The evident dissimilarity between the shapes of the
distributions in figures 13 highlights the qualitative difference in polymer stretching
in the single-phase and particle-laden cases. In the absence of particles, the stretching
of polymer chains, measured by the trace of the conformation tensor, has nearly a
Gaussian distribution. In contrast, in the particle-laden case the distribution is highly
skewed towards more stretched polymer chains. By exclusively considering fluid
points located in the vicinity of the particles, specifically within spheres concentric
with the particles and twice their diameter, the distribution is further skewed towards
higher values, which points to the role of particles in the stretching of polymer
chains.

Statistics of fluctuations in the particle and fluid velocities are plotted in figure 14;
the fluid curves are reproduced from figure 6. In the streamwise direction, a non-
monotonic behaviour is observed in the outer region: low viscoelasticity enhances
the particle fluctuations beyond the Newtonian results but higher Weissenberg number
reverses this effect and yields lower 〈u′pu′p〉 than Newtonian. This trend parallels the
effect on fluid fluctuations, which was discussed in connection with figure 6: elasticity
expands the turbulent structures thus shifting the peak 〈u′f u

′

f 〉 towards the core of the
channel, and ultimately attenuates the magnitude of turbulent fluctuations.
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FIGURE 15. Particle fluctuations in (a) streamwise and (b) wall-normal directions in case
W15P5. Particle averages were performed using ( ) full rigid-body motion and ( )
motion of particle centres only; ( ) fluid fluctuations.

In the Newtonian fluid, all three components of the particle fluctuations are lower
than the fluid ones throughout most of the channel, and the trend reverses near
the wall. For the streamwise and spanwise components the trend reverses in a very
small near-wall layer, and for the wall-normal component the reversal appears at wall
distances below one diameter. In contrast to the Newtonian case, in the viscoelastic
fluids all three components of the particle velocity fluctuations are commensurate
with or exceed the fluid ones. The streamwise component exceeds the fluid values
over a thick near-wall region of similar size to the particle diameter; the wall-normal
particle fluctuations are notably higher than the fluid ones over a large part of the
channel; and the spanwise fluctuations are essentially equal to the fluid ones except
in the close vicinity of the wall where the particle slip velocity is finite.

Since the mean vorticity vector is aligned with the spanwise coordinate, the
particles sustain a mean angular velocity in that direction. The two quantities, namely
the spanwise vorticity and particle angular velocity, are compared in figure 14(d). The
impact of viscoelasticity on the vorticity distribution is also observed in the particle
angular velocities, which are increased in the bulk of the channel relative to the
Newtonian case. When normalized, 〈ωp,z〉/〈ωf ,z〉 is similar for all three cases within
the region y 6 0.2 (inset of figure 14(d)).

The particles’ mean spanwise angular velocity strongly affects their velocity
fluctuations in the x and y directions. This effect is isolated by comparing the
velocity fluctuations of the particle centres to those of the particles in full rigid-body
motion (figure 15); only case W15P5 is considered for brevity since the results are
qualitatively similar to the other conditions. The effect of particles’ rotation on their
streamwise velocity fluctuations appears minimal (figure 15(a)). In the wall-normal
component, however, the impact is much more pronounced: the fluctuations of the
particle centres are at the same level as those in the fluid phase in most of the
channel, and the large peak observed in the full rigid-body results near y ≈ 0.08
nearly vanishes (figure 15(b)). Particle rotation thus plays an important role in
establishing this peak when the full rigid-body motion is considered. In both the
streamwise and wall-normal directions, the fluctuations of the particle centres have
small local maxima near y ≈ 0.17, which are due to the bouncing motion when
particles with high inertia collide with the stabilized layer of particles close to the
wall. This assertion is supported by a large peak in the profile of fluctuations in the
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collision force at the same y position (not shown). Moreover, particles leaving the
near-wall stabilized layer experience a rapid increase in their streamwise velocity,
due to the large mean gradient in the region 0.1 6 y 6 0.2 (see figure 11(b)), which
accounts for the maximum in the fluctuations of the particle centres.

4.2. Particle clustering and microstructure analysis
Even in the simple case of two settling spheres in a quiescent flow, the attraction/repul-
sion of a particle pair in a viscoelastic fluid depends on various factors including
elasticity, inertia, shear thinning/thickening, initial distance and configuration. Despite
these complex features, both experiments and simulations confirm that particle
aggregation is enhanced by normal stresses induced by elasticity (cf. Zenit & Feng
2018, for detailed review). Since particle clustering and wake dynamics, even at
low concentrations, significantly affect the turbulence (Uhlmann & Doychev 2014;
Capecelatro, Desjardins & Fox 2018), we dedicate this section to the study of particle
microstructures in our simulations.

The radial distribution function (RDF) is a common first-order measure of particle
clustering in suspensions (Shaw 2003). It is defined as the average number of particles
〈dN〉 located at a spherical shell of radius r and thickness dr, and which is centred at
the reference particle position Pref . In a homogeneous system of point particles, the
RDF is commonly normalized by the same quantity for a random distribution of points
in the space (Reade & Collins 2000). In our system, however, due to the presence of
a strong heterogeneity in the y direction, as well as the non-overlapping condition for
finite-sized particles, an unbiased analysis calls for a tailored normalization. We define
g(r) in the limit dr→ 0 by,

g(r)= 〈dN(r)〉/〈 dN(r)R〉, (4.3)

dN(r)=
Np∑

m=1

δ(r− |rm|), (4.4)

rm = Pm − Pref , (4.5)

where P and δ(r) are the position vector and Dirac delta function. The averaging
operation is performed over all particles at a given y location at different instances
of time. The superscript ‘R’ indicates that the quantity is measured for a random
distribution of points seeded in the same domain as our DNS dataset, with the
following two additional constraints: (i) the minimum distance between two points is
always larger than a particle diameter (non-overlapping condition); (ii) the distribution
of the points in the y direction matches that of the DNS dataset within 0.5 % error.
The latter condition ensures that g(r) is not biased by the heterogeneity in the
y direction and that any deviation of g(r) from unity is a signature of a local
aggregation/segregation of particles.

Figure 16 shows the RDF in the near-wall and channel centre regions. The value of
g(r) is expectedly high at a separation approximately equal to one particle diameter
in the Newtonian and viscoelastic cases, because the collision force in that region
stabilizes particle pairs. The peak is, however, more than twofold higher in the
viscoelastic cases, which signals an increase in the formation of particle pairs. At the
channel centre, the propensity of elasticity is slightly reduced. The RDF rapidly tends
to the unity at both wall-normal heights, be that for the Newtonian or viscoelastic
flows, which indicates absence of any long-range particle structure.
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FIGURE 16. Radial distribution function (4.3) with reference position in the region (a)
0.8< y< 1.2 and (b) y< 0.4. Line types as listed in table 1: ( ) W0P5; ( ) W15P5;
( ) W25P5.

In laminar viscoelastic flows, particle pairs initially aligned in a cross-stream
configuration experience a strong attraction due to the normal stresses (Goyal &
Derksen 2012; Zenit & Feng 2018). If the initial configuration is alignment in the
streamwise direction, repulsion or attraction of the particle pairs is determined by
their initial distance: a distance larger than a critical value, which itself is inversely
proportional to viscoelasticity, results in repulsion due to the negative wake of
the leading particle. Therefore, provided elasticity is sufficiently high, repulsion
takes place regardless of initial separation (D’Avino, Hulsen & Maffettone 2013). In
suspensions, the co-existence of these effects may give rise to more complex structures
such as particle chains (Zenit & Feng 2018). The microstructure of particles, and
specifically preferential directionality in particle-pair alignment, is examined in our
simulations.

We define the particle-pair distribution function, q(r, ψ, θ), which depends on the
pair separation r, the polar angle ψ relative to the positive z axis and the azimuthal
angle θ measured counterclockwise from the positive x axis,

q(r, ψ, θ)= 〈dN(r, ψ, θ)〉/〈 dN(r, ψ, θ)R〉, (4.6)

dN(r, θ)=
Np∑

m=1

δ(r− |rm|)δ(θ − θm), δ(ψ −ψm), (4.7)

rm = Pref − Pm, (4.8)

ψm = cos−1

(
rm · ez

|rm|

)
; φm = arctan

(
rm · ey

rm · ex

)
, (4.9a,b)

where e{x,y,z} are the unit vectors along the Cartesian coordinates. Similar to the
RDF, averaging is performed over the ensemble of reference particles located at
a given y location at different instances of time, and superscript ‘R’ indicates a
random distribution conditioned in a similar manner as in the computation of the
RDF. Figure 17(a–c) compares q for the different cases at the channel centre. Due to
symmetry at this location, the azimuthal angle is only plotted in the range 0< θ <π.
The narrow stripe with high values of q immediately surrounding the particle, near
r = 1, highlights the strong effect of particle collisions in stabilizing particle pairs.
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FIGURE 17. (Colour online) Particle-pair distribution function q(r, ψ, θ), averaged in the
range −π/8 < ψ − π/2 < π/8. Reference particle is located in the region (a,b,c) 0.8 <
y< 1.2 and (d,e, f ) y< 0.4.

This effect is intensified in the viscoelastic cases, in line with the RDF results. It
should be noted that, due to the absence of shear and slip velocity, we do not observe
any significant preferential alignment of particle pairs near the channel centre in the
Newtonian or viscoelastic cases.

The particle-pair distribution function near the wall is reported in figure 17(d–f ). In
all three panels, two narrow stripes with high values of q are observed immediately
around the particle in the two quadrants π/2<θ <π and 3π/2<θ < 2π. They arise,
respectively, due to the deficit and excess particle phase velocity relative to the local
fluid in the presence of mean shear – an effect that has been reported for suspensions
with a Newtonian carrier fluid (Morris 2009). A relative depletion of particles occurs
in the straining quadrants 0 < θ < π/2 and π < θ < 3π/2, evidenced by a region
of lower probability of finding a particle pair. Viscoelasticity results in two unique
features: (i) the particle-free regions are markedly extended in the streamwise direction
and (ii) q increases at the outer edges of these two regions which indicates that an
inclined alignment with respect to the streamwise coordinate is promoted. In order to
explain these effects, we evaluated the particle-conditioned mean streamwise velocity
〈uf 〉pc relative to 〈uf 〉. A positive and a negative isosurface of 〈uf 〉pc − 〈uf 〉 are shown
in figure 18 for case W15P5. The isosurfaces extend downstream and upstream of
the reference particle, respectively, and their effect is to expel leading and trailing
particles, consistent with the streamwise extended regions of low q in figure 17(b).

4.3. Flow visualization
In order to obtain a precise interpretation of the flow in the vicinity of the particle,
we evaluate the average flow field conditioned on the particle position and also the
particle slip velocity. Figure 19 shows results for particles whose centre is at y =
0.1 and whose slip velocity is uslip = 0.05, from the Newtonian and W15P5 cases.
The conditionally averaged in-plane velocity vectors and contours of their streamwise

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

48
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.483


Particle-laden viscoelastic turbulent channel flow 309

xz

y0.05
-0.02

¯uf˘pc - ¯uf˘

FIGURE 18. (Colour online) Particle-conditioned mean streamwise fluid velocity 〈uf 〉pc
relative to 〈uf 〉, for case W15P5. The conditional average is performed for particles located
at y= 0.2.
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FIGURE 19. (Colour online) Particle-conditioned mean flow field relative to the
unconditional fluid velocity, 〈uf 〉pc − 〈uf 〉. The conditional average is performed for
particles located at y=0.1 and which experience uslip=0.05. Contours show the streamwise
component, and the vectors correspond to the in-plane velocities. (a) W0P5; (b) W15P5.

components are reported after subtracting the mean fluid velocity 〈uf 〉. The flow fields
are dramatically different in the wake regions: a classic backwash behind the particle
is observed in case W0P5; in contrast, a negative zone in the trail of the particle in
case W15P5 signals the presence of a reverse wake which is enfolded by a conical
entraining zone of accelerated fluid. It should be noted that the negative zone in the
contours of 〈uf 〉pc − 〈uf 〉 is a signature of decelerated streamwise velocity only, while
uf is almost never negative in an absolute sense. Similar wake patterns have been
previously observed in experiments (Kemiha et al. 2006) and simulations (Frank &
Li 2006; Goyal & Derksen 2012) of an isolated rising bubble or falling solid sphere
in extensional flows. Compared to those studies, however, the negative wake and the
positive cone are spatially truncated due to the presence of neighbouring particles
in our cases. According to the 2-D axisymmetric numerical simulations by Frank &
Li (2006), where the Reynolds number based on the particle diameter is more than
unity, the opening angle of the conical zone is independent of the Reynolds number,
while it is weakly and inversely correlated with the Weissenberg number. The wake
characteristics in figure 19(b) explain the peculiar particle microstructure observed
in the viscoelastic cases (cf. figure 17): while the negative wake repels the trailing
particles, the entrainment zone stabilizes particle pairs with an inclined alignment with
respect to the streamwise direction.

Figure 20 shows instantaneous plan views of the streamwise component of the
polymer stress tensor at y = 0.1, from cases W15 and W15P5; two isolevels of
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FIGURE 20. (Colour online) Instantaneous contours of the streamwise component of the
polymer stress tensor T xx at y = 0.1. (a): W15; (b) W15P5. Lines are isocontours of
(solid lines ) positive and (dash-dotted lines ) negative streamwise fluid velocity
perturbations, uf − 〈uf 〉. Pink circles mark the positions of particles that are cut by the xz
plane.

streamwise velocity perturbation are also marked. In case W15, the high- and
low-stress regions have similar shapes and length scale as the isolines of velocity
perturbations; the co-location of the stress and velocity perturbations is qualitatively
indicative of the connection between turbulent structures and polymer stretch. It
should be noted that, for the sake of clarity of the visualization, the isolines are
plotted for one positive and one negative value of the velocity perturbation only, and
thus do not represent all the turbulent structures. In contrast, there is no conspicuous
similarity between region of high/low polymer stress regions and the isolines of
velocity perturbations in case W15P5. As a matter of fact, the polymer stress is
mostly concentrated in the vicinity of the particles, which highlights the change in
the dominant stretch mechanism in particle-laden conditions (cf. § 4.1).

Instantaneous visualizations of streamwise flow structures and particle positions are
provided in figure 21. The figure contrasts realizations from the single-phase and
particle-laden simulations, for the Newtonian fluids and at Wi= 15; for the latter case,
the active and hibernating states are shown. These instantaneous fields encapsulate
some important conclusions drawn in the previous sections: (i) particles weaken
the streamwise streaks in Newtonian and viscoelastic flows; (ii) the modulation of
turbulent structures is relatively minimal in the Newtonian case and pronounced
in the viscoelastic flows; (iii) particles migrate towards the channel centre during
hibernating states, and back towards the wall during active intervals. Additionally,
the wake-induced fluid fluctuations are discernible in the near-wall region of the
viscoelastic condition, particularly during the active turbulence period.
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FIGURE 21. (Colour online) Instantaneous contours of uf − 〈uf 〉 in the (a,d) Newtonian
flows, and in the lower Weissenberg viscoelastic cases during (b,e) active and (c, f )
hibernating states. (a–c) Single-phase simulations; (d–f ) two-phase simulations. Particle
positions are visualized in two sub-regions of the domain, near the wall and at channel
centre. The horizontal planes are visualized at y+ ≈ 8 in all cases.

5. Conclusion
The effects of neutrally buoyant spherical particles on viscoelastic turbulent channel

flow were examined using direct numerical simulations. The particles are larger than
the dissipation length scale, and the flow is resolved at the scale of the particles
with an immersed boundary method. The particle-laden cases with bulk solid volume
fraction ϕ= 5 % were compared to their single-phase counterparts, while the Reynolds
number was fixed at Re= 2800 for all cases. Additionally, two different Weissenberg
numbers were considered in comparison to the Newtonian configurations.

The particles enhance the overall drag in the Newtonian and viscoelastic flows,
relative to the single-phase configurations. The drag increase is, however, more
appreciable in the viscoelastic cases; a similar observation was made based on the
recent experimental measurements by Zade et al. (2019). The present simulations
demonstrate that a significant contribution is due to the particles increasing the
polymer stress by stretching the polymer chains in their vicinity.

Despite the overall increase in drag, the turbulence activity is appreciably suppressed
in the presence of particles. In Newtonian flows, the reduction of the streamwise
fluctuations was previously explained by the propensity of the particles to weaken
the streamwise streaks (Shao et al. 2012).

In the viscoelastic cases, the particle attenuation of the turbulent fluctuations is
dramatically higher. We examined this effect in further detail by evaluating conditional
averages of the flow statistics and particle concentration in the hibernating and active
turbulence states: the particles systematically migrated towards the channel centre
during the former and back towards the wall by relatively strong turbulence motions
during the latter. Overall, the particles promote the hibernating state of the turbulence,
thus reducing the average turbulent stresses.

The mean streamwise particle velocity follows the local fluid velocity in most of
the channel, except in the near-wall region. In the viscoelastic cases, the particle

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

48
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.483


312 A. Esteghamatian and T. A. Zaki

mean speed is smaller than that of the fluid above the viscous sublayer. Following
Kidanemariam et al. (2013), we investigated this effect by estimating the velocity
experienced by the particles on a local trimmed spherical shell. We found that particles
tend to preferentially reside in the low-speed regions of the flow; this effect is also
known to take place in Newtonian wall-bounded turbulence for particles of the order
of the Kolmogorov scale (Pan & Banerjee 1997) and up to d+p ≈ 5–10 (Kidanemariam
et al. 2013; Wang et al. 2018). In our simulations, it was observed for larger particles
in the viscoelastic cases d+p ≈ 15, potentially due to the swelling of the turbulent
structures. A comprehensive study of different particle sizes is, nonetheless, required
to further verify this hypothesis. Furthermore, while this phenomenon is accompanied
by the formation of long streaks of particles in the case of Newtonian flows (Pan &
Banerjee 1997), we have not observed such structures in our particle-laden viscoelastic
cases. In contrast, by studying the particle-pair distribution function, we demonstrated
that the probability of finding a particle pair aligned in the streamwise direction is
significantly lower in the viscoelastic cases. This finding was explained by examining
the conditionally averaged velocity field in the vicinity of the particle, which acts to
expel particles leading or trailing the reference one.

The present study highlights the richness of phenomenology in particle-laden
viscoelastic turbulence and motivates new research directions. Studies of controlled
configurations, for example with an isolated particle similar to the Newtonian efforts
by Naso & Prosperetti (2010), are needed. And since particle migration in Newtonian
fluids is known to be dependent strongly on their response time and gravitational
effects (Kidanemariam et al. 2013; Fornari et al. 2016), the influence of these
parameters must be evaluated in the presence of fluid elasticity.
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Appendix A. Conditionally averaged momentum balance
The present derivation follows the general approach by Zhang & Prosperetti (2010),

with an eye to other similar derivations for Newtonian flows (Pope 2000; Picano et al.
2015). For a control volume V∗ Newton’s second law has the form,∫

V∗
[(1− χ)ρ∗f a∗f + χρ

∗

p a∗p] dV∗ =
∮
∂V∗
[(1− χ)σ ∗f + χσ

∗

p ] · n dA∗

+

∫
V∗
[(1− χ)ρ∗f + χρ

∗

p ]g
∗ dV∗, (A 1)

where ρ∗
{f ,p}, a∗

{f ,p} and τ ∗
{f ,p} are the density, acceleration and stress tensor of the fluid

‘f ’ and particle ‘p’. The unit vector n is outwardly normal to the control surfaces ∂V∗,
and g∗ is a generic body force per unit mass equal in both phases. For matching fluid
and particle densities ρ∗f = ρ

∗

p , and in the absence of any body force, the ensemble
average of equation (A 1) is,

ρ∗f

∫
V∗
[(1− φ)〈a∗f 〉 + φ〈a

∗

p〉] dV∗ =
∮
∂V∗
[(1− φ)〈σ ∗f 〉 + φ〈σ

∗

p 〉] · n dA∗. (A 2)
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Using the divergence theorem, the surface integral on the right-hand side of (A 2) is
transformed into a volume integral,

ρ∗f

∫
V∗
[(1− φ)〈a∗f 〉 + φ〈a

∗

p〉] dV∗ =
∫
V∗
∇ · [(1− φ)〈σ ∗f 〉 + φ〈σ

∗

p 〉] dV∗. (A 3)

And since the control volume is arbitrary, (A 3) can be rewritten in differential form,

ρ∗f [(1− φ)〈a
∗

f 〉 + φ〈a
∗

p〉] =∇ · [(1− φ)〈σ
∗

f 〉 + φ〈σ
∗

p 〉]. (A 4)

Assuming continuity for both phases, expanding the material derivatives and
expressing the fluid stress tensor in terms of the solvent and polymer contributions,
equation (A 4) becomes,

(1− φ)
∂〈u∗f 〉
∂t∗
+ (1− φ)〈u∗f · ∇u∗f 〉 + φ

∂〈u∗p〉
∂t∗
+ φ〈u∗p · ∇u∗p〉

=−∇[β(1− φ)〈p∗/ρ∗f 〉] +∇ · [2β(1− φ)ν
∗
〈E∗/ρ∗f 〉]

+∇ · [(1− β)(1− φ)〈T ∗/ρ∗f 〉] +∇ · (φ〈σ
∗

p /ρ
∗

f 〉), (A 5)

or in dimensionless form,

(1− φ)
∂〈uf 〉

∂t
+ (1− φ)〈uf · ∇uf 〉 + φ

∂〈up〉

∂t
+ φ〈up · ∇up〉

=−∇[β(1− φ)〈p〉] +∇ ·
[

2β
Re
(1− φ)〈E〉

]
+∇ ·

[
(1− β)

Re
(1− φ)〈T 〉

]
+∇ · (φ〈σp〉). (A 6)

For statistically stationary flows, the time derivatives of the mean fluid and particle
velocities vanish. In addition, by taking into account that u{f ,p} = 〈u{f ,p}〉 + u′

{f ,p},
equation (A 6) becomes,

(1− φ)〈uf 〉 · ∇〈uf 〉 + (1− φ)∇ · 〈u′f u
′

f 〉 + φ〈up〉 · ∇〈up〉 + φ∇ · 〈u′pu′p〉

=−∇[β(1− φ)〈p〉] +∇ ·
[

2β
Re
(1− φ)〈E〉

]
+∇ ·

[
(1− β)

Re
(1− φ)〈T 〉

]
+∇ · (φ〈σp〉). (A 7)

Exploiting homogeneity in the streamwise and spanwise directions, the mean-
momentum equation in the wall-normal direction reduces to,

d[(1− φ)〈v′fv
′

f 〉]

dy
+

d[φ〈v′pv
′

p〉]

dy
+

d[β(1− φ)〈p〉]
dy

−

d
[

1− β
Re

(1− φ)〈T yy〉

]
dy

−
d[φ〈σp,yy〉]

dy
= 0. (A 8)

Equation (A 8) is integrated in the y-direction between two impermeable walls to
yield,
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(1− φ)〈v′fv
′

f 〉 + φ〈v
′

pv
′

p〉 + β(1− φ)〈p〉 −
1− β

Re
(1− φ)〈T yy〉 − φ〈σp,yy〉

= β(1− φ)〈pwall
〉 −

1− β
Re

(1− φ)〈T wall
yy 〉 − φ〈σ

wall
p,yy 〉. (A 9)

Taking the derivative with respect to x and exploiting homogeneity in the streamwise
direction to eliminate the Reynolds stresses, we obtain

d
dx

[
β(1− φ)〈p〉 −

1− β
Re

(1− φ)〈T yy〉 − φ〈σp,yy〉

]
=

d
dx

[
β(1− φ)〈pwall

〉 −
1− β

Re
(1− φ)〈T wall

yy 〉 − φ〈σ
wall
p,yy 〉

]
. (A 10)

Similarly, the mean-momentum equation (A 7) in the streamwise direction is,

d
dy

[
−(1− φ)〈u′fv

′

f 〉 − φ〈u
′

pv
′

p〉 +
β

Re
(1− φ)

d〈uf 〉

dy
+

+
(1− β)

Re
(1− φ)〈T xy〉 + φ〈σp,xy〉

]
=

d
dx

[
β(1− φ)〈p〉 −

(1− β)
Re

(1− φ)〈T xx〉 − φ〈σp,xx〉

]
. (A 11)

Using (A 10), the right-hand side of equation (A 11) can be rewritten as,

d
dy

[
−(1− φ)〈u′fv

′

f 〉 − φ〈u
′

pv
′

p〉 +
β

Re
(1− φ)

d〈uf 〉

dy

+
(1− β)

Re
(1− φ)〈T xy〉 + φ〈σp,xy〉

]
=

d
dx

[
β(1− φ)〈pwall

〉 −
(1− β)

Re
(1− φ)〈T wall

xx 〉 − φ〈σ
wall
p,xx 〉

−
(1− β)

Re
(1− φ)(〈T yy〉 − 〈T xx〉)− φ(〈σp,yy〉 − 〈σp,xx〉)

]
. (A 12)

Due to the homogeneity in the streamwise direction, d(〈T yy〉 − 〈T xx〉)/dx and
d(〈σp,yy〉 − 〈σp,xx〉)/dx vanish. The remaining terms on the right-hand side of (A 12)
are all associated with the wall and independent of y, while the left-hand side terms
are exclusively a function of y due to homogeneity in the x and z directions. Hence,
it is evident that both sides of (A 12) are constant. In compact form,

dτtot

dy
= const., (A 13)

where τtot is total mean shear stress of the mixture and is a linear function of y only.
Since τtot is symmetric with respect to the channel centre at y= 1, integrating (A 13)
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FIGURE 22. Rotation rate of a sphere in simple shear as a function of the Weissenberg
number: (– – –) experimental measurements by Snijkers et al. (2011); (@) numerical
simulations by Goyal & Derksen (2012); (E) present results.

in y yields,

τtot(y) = −[(1− φ)〈u′fv
′

f 〉 + φ〈u
′

pv
′

p〉] +
β

Re
(1− φ)

d〈uf 〉

dy

+
(1− β)

Re
(1− φ)〈T xy〉 + φ〈σp,xy〉 = 〈τwall〉(1− y). (A 14)

Appendix B. Reference simulations and validation of the algorithm
B.1. Freely rotating sphere in simple shear

Data from experiments (Snijkers et al. 2011) and numerical simulations (D’Avino
et al. 2008; Goyal & Derksen 2012) of a sphere in simple shear are used for
validation of the particle-laden viscoelastic flow solver. Computations are performed
in a rectangular domain with size (4 × 4 × 2)d∗p , and a particle with diameter d∗p is
initially located at the centre. The flow has a constant shear rate γ̇ ∗, and is induced
by two parallel plates located at y∗ = {0, 4d∗p}, moving opposite to one another in
the x direction with the same speed. Periodic boundary conditions are applied in the
x and z directions. In Newtonian fluids at low Reynolds numbers, the shear flow
induces particle rotation at an angular velocity ω∗p,z = γ̇

∗/2. The prescribed Reynolds
number is γ̇ ∗d∗p

2/4ν∗ = 0.025, and the viscosity ratio β = 0.5. Similar to our main
particle-laden simulations, sixteen grid points span the particle diameter.

In viscoelastic flows, Snijkers et al. (2011) showed that the rotation rate of the
sphere monotonically decreases with increasing Weissenberg number, Wi = γ̇ ∗λ∗. As
shown in figure 22, agreement between the experimental results and our numerical
predictions in particle angular velocity is satisfactory. Results from the numerical
simulations by Goyal & Derksen (2012) are also presented for comparison.

B.2. Lateral migration of isolated particle in Poiseuille flow
Migration of a neutrally buoyant spherical particle is simulated in laminar Poiseuille
flow. We first validate our numerical algorithm by predicting the particle equilibrium
position in a Newtonian case. Following Loisel et al. (2013), we set the particle
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FIGURE 23. Comparison of DNS data (solid lines) by Picano et al. (2015) and (symbols)
from the present study. Black and grey colours correspond to bulk solid volume fractions
ϕ = {5, 20}%, respectively. Profiles of (a) mean fluid velocity, (b) solid volume fraction,
(c,d) streamwise and wall-normal velocity fluctuations in the fluid and particles, the latter
plotted in wall units. (c,d) (circles, E) streamwise fluctuations; (squares, p) wall-normal
fluctuations.

d∗p/h
∗ Re β, Lmax El y∗eq/h

∗ y∗eq/h
∗ (Asmolov 1999) y∗eq/h

∗ (Loisel et al. 2013)

1/8 100

Newtonian 0 0.1991 0.2061 0.1916
FENE-P 15/2800 0.2132 — —
β = 0.97 25/2800 0.2211 — —
Lmax = 70

TABLE 2. Parameters of the simulations of isolated particle in Poiseuille flow and the
final equilibrium positions.

diameter to d∗p/h
∗
= 1/8 and the Reynolds number to U∗bh∗/ν∗ = 100. We adopt the

same grid resolution as in the main computations, 1x∗ = d∗p/16. The sizes of the
simulation domain are (16× 16× 4)d∗p in the streamwise, wall-normal and spanwise
directions. The boundary conditions in the horizontal directions are periodic and
no slip is applied at the bottom and top walls. Table 2 summarizes the physical
parameters and the final equilibrium positions in comparison to results reported in
the literature. After the initial transient, the particle reaches an equilibrium position
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y∗eq/h
∗
= 0.1991, which is within the two values reported by Asmolov (1999) and

Loisel et al. (2013).
In order to demonstrate the effect of elasticity on particle migration, we perform

two additional simulations using FENE-P fluids at the same Reynolds number. The
elasticity number El≡Wi/Re= λ∗ν∗/h∗2, viscosity ratio β and maximum extensibility
Lmax are selected such that they match those of cases W15P5 and W25P5. The
computed equilibrium positions of the particles are further away from the wall (see
table 2). This effect is due to the elastic forces which decrease as the particle
approaches the channel centre.

B.3. Newtonian particle-laden turbulent channel flow
Two DNS datasets by Picano et al. (2015) are compared to results using our numerical
algorithm. The configuration and parameters of one dataset are equivalent to those of
case W0P5 in the present study (§ 2.3), while the second dataset has a higher bulk
solid volume fraction ϕ= 20 %. For the latter case, we adopt the soft-sphere potential
with a sub-grid-scale lubrication correction in order to model particle–particle and
particle–wall collisions, similar to Picano et al. (2015). We also adopt the same grid
resolution, 1x= dp/16.

A number of wall-normal profiles are shown in figure 23. Evidently, our numerical
simulations are in good qualitative and quantitative agreement with the reference
results, especially for the higher volume fraction where conditions are more closely
matched. Minor inconsistencies, specifically in the low concentration case and in
particle statistics which require long simulation times for convergence, are sufficiently
small and do not result any bias in related conclusions.
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