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Abstract
Aiming at the problems of many path inflection points, unsmooth paths, and poor local obstacle avoidance in path
planning of inspection robots in static-dynamic scenes under complex geological conditions in coal mine roadways,
a hybrid path planning method based on the improved A∗ algorithm and dynamic window approach (DWA) algo-
rithm is proposed. First, the inspection robot platform and system model are constructed. An improved heuristic
function that incorporates target weight information is proposed based on the A∗ global path planning algorithm.
Additionally, redundant nodes are eliminated, and the path is smoothed using the Floyd algorithm and B-spline
curves. Second, the global path planning A∗ algorithm and the local path planning DWA algorithm are fused. The
dynamic path planning is carried out by setting the key node information of the global path extracted from the
improved A∗ algorithm as the local target point of the DWA algorithm. On this basis, a grid map is established to
simulate and analyze the proposed path planning algorithm. Finally, the autonomous path planning and walking
experiment of inspection robot in simulated roadway environment are carried out. The results show that the hybrid
path planning method based on improved A∗ algorithm and DWA algorithm proposed in this paper is more efficient
and safer, which can meet the motion requirements of inspection robot in coal mine roadway.

1. Introduction
Safe and efficient tunneling of coal mine roadways plays a very important role in coal mining, but the
roadway environment is complex and has a large number of safety hazards, so regular inspections are
essential in order to prevent downtime due to abnormal equipment conditions. The use of traditional
inspection methods is inefficient, time-consuming, and requires manual in-depth on-site measurements,
so the use of robots to participate in the inspection of coal mine equipment is the future direction of
development [1–3]. Compared with traditional manual inspection methods, these robots not only have
high inspection efficiency and can meet the requirements of high-risk environments but also reduce
production costs for enterprises. In the actual inspection operation, the inspection robot must plan the
inspection path to ensure economy and rationality. This planning ultimately reduces the inspection time
and minimizes the energy consumption of the robot [4–6]. Path planning is an important research area for
inspection robots. The goal is to design an optimal path that meets specific constraints, avoids collisions,
and guides the robot from the starting point to the goal point. This ensures that the inspection robot
completes its operations safely and efficiently [7–9].

The current algorithms concerning path planning can basically be divided into three categories:
graph-based algorithms, sampling-based algorithms, and other algorithms [10]. Graph-based search
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algorithms can be mainly categorized into Breadth First Search (BFS) and Depth First Search (DFS)
[11]. Although Breadth First Search algorithms have the advantages of simple implementation and
easy to understand, the number of nodes grows exponentially with increasing depth, which may lead
to problems such as combinatorial explosion, higher space complexity, and the possibility of not find-
ing a solution. The depth-first algorithm requires less space for searching compared to the breadth-first
algorithm, and the algorithmic idea is simpler and easier to understand and implement, but it may be
trapped in a dead loop in some cases and may not be able to find a solution when the depth limit is
unreasonable. Besides, these algorithms are based on traversal or improved traversal logic. In the case
of high-dimensional space and complex constraints, it is also prone to exponential explosion, that is, the
path search process will be very complex, and the time required to find the path will be greatly increased
[12]. Sampling-based planning methods mainly include probabilistic path graph method (PRM) and
rapid search random tree (RRT) [13]. Although PRM algorithm can plan paths using very few sampling
points in some cases, the planned paths are hardly guaranteed to be optimal, and when the environ-
ment is very complex, a large number of sampling points may be required, so its complexity is not
easy to be determined [14]. The RRT algorithm is a relatively efficient algorithm that can better deal
with path planning problems with incomplete constraints, but because the sampling points are randomly
selected, the path planned by the RRT algorithm is not necessarily optimal. In addition to graph-based
search and sampling algorithms, there are several other path planning algorithms inspired by natu-
ral phenomena or organisms, such as genetic algorithms, artificial potential field methods, ant colony
optimization, and dynamic window approaches (DWA). On this basis, many scholars have conducted
extensive research on the path planning of inspection robots. Zhang [15] proposed a real-time look-
ahead algorithm for machining complex curved workpieces with high precision and speed, and verified
the effectiveness of this algorithm through experiments and simulations. Luo [16] introduced a novel
planning method known as the Stepwise Follow-the-Leader (SFTL) algorithm, which utilizes sliding
control points to facilitate sequential movement along the planned path. Tutsoy [17] developed a mul-
tidimensional particle swarm optimization algorithm and a multidimensional genetic algorithm to plan
paths for translational, rotational, and Euler angles, generating the corresponding control signals. This
method demonstrated that the quadrotor accurately follows the generated path while utilizing the max-
imum available rotor speeds. Wang [18] proposed SLAM application systems that integrate multi-line
laser radar and visual perception for various scenarios. This approach effectively addresses the issue of
path planning becoming trapped in local optima within complex environments, thereby enhancing the
inspection efficiency of robots. Bogaerts [19] developed a novel gradient-based optimization strategy
for robotic inspection planning. The algorithm begins with an initial measurement path and iteratively
refines this path to minimize its length while ensuring adequate sensor coverage. Chaves [20] introduced
a path planning algorithm that integrates visual SLAM, specifically designed to plan loop-closure paths
to reduce navigation uncertainty. This approach demonstrated several advantages over existing solutions
for managing navigation uncertainty in long-term autonomous operations. Tan [21] combined the ant
colony algorithm with the particle swarm algorithm and uses the particle swarm algorithm to train the
initial parameters of the ant colony algorithm to plan an optimal path for spot welding robots. Jiang [22]
introduced an adaptive sampling collision-free detection path generation algorithm based on a CAD
computer-aided detection planning system and a coordinate measuring machine.

Despite significant advancements in the research of path planning algorithms, several challenges and
limitations remain in the practical application of these algorithms. This is particularly true in the com-
plex environment of coal mines. As shown in Figure 1, compared with the surface environment, the
complexity of the coal mine tunnel environment is characterized by high temperature and high humid-
ity, dangerous gas, more dust, poor air circulation, and poor lighting environment. At the same time, due
to the narrow operating space and numerous equipment in the underground, the roadway contour, the
surrounding environment obstacles (such as trenches, ramps, and steps) and other elements will greatly
limit the safe and smooth movement of the inspection robot. Therefore, this puts forward more demand-
ing requirements on the environmental adaptability and performance of coal mine roadway inspection
robots.
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Figure 1. Coal mine tunnel environment characteristics.

Combining the environmental characteristics of coal mine roadways and the research results of exist-
ing path planning algorithms, it can be seen that the current algorithms cannot be effectively applied
to coal mining operations. Furthermore, a single global or local planning algorithm is insufficient to
address the challenges of real-time and high-precision obstacle avoidance in both static and dynamic
scenarios. Therefore, integrating two path planning methods should be considered to effectively tackle
these issues.

In this paper, according to the environmental characteristics of the coal mine roadway, the test plat-
form of the inspection robot is built, and the analysis and establishment of the inspection system model
are completed. A hybrid path planning algorithm combining improved A ∗ algorithm and DWA algo-
rithm is proposed. The new heuristic function containing target weight information is used to eliminate
redundant nodes and smooth the path to improve the effect of global path planning. On this basis, guided
by the global path information planned by the improved A ∗ algorithm, the real-time path update and
obstacle avoidance of the robot are realized by combining the DWA local path planning algorithm. The
experimental results show that in the complex coal mine environment, the algorithm can analyze the
local target points in real time and plan the global path, and at the same time perform effective obstacle
avoidance maneuver. This method significantly improves the accuracy and efficiency of the detection
robot path planning.

2. System platform and model development
2.1. System platform
Aiming at the underground degraded roadway environment, an efficient, accurate, and robust inspection
robot test platform is constructed based on lidar and inertial measurement unit, as shown in Figure 2.

The system comprises LiDAR and inertial sensors to gather external data, execute the hybrid path
planning algorithm for the inspection robot on the control board, and transmit motion control commands
to the lower computer control board via the serial port. The lower computer module primarily consists of
an STM32 control board, a motor driver, and an encoder motor. The STM32 control board communicates
with the upper computer control board through the serial port, receives motor speed control instructions
from the upper computer, adjusts the encoder motor speed via the motor driver, and receives encoder
speed feedback to complete the closed-loop motion control. The hardware system utilizes a 24 V lithium
battery to provide a consistent power supply. It powers the LiDAR, upper computer control board, lower
computer control board, and motor drive through a step-down module. The inspection robot employs
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Figure 2. Inspection robot system platform.

Figure 3. Inspection robot motion model.

LiDAR to detect external environmental information and transmits the collected radar point cloud data
to the upper decision-making planning system, facilitating the completion of autonomous navigation
operations.

2.2. System model establishment
The inspection robot operates on a tracked mobile chassis, with motors connected to the active wheels
through a rotary axis. To facilitate the development of the kinematic model, the target speed of the robot
is converted into the target speed of the motors, based on the following assumptions:

The overall weight of the inspection robot is uniformly distributed, and its center of gravity coincides
with the geometric center.

The inspection robot operates on a two-dimensional plane, with no slipping occurring on either side
of the track.

The tracks on both sides of the inspection robot are in full contact with the ground and share identical
parameters, including length, width, and thickness.

The motion model of the tracked inspection robot is established within the world coordinate system,
and its movement is illustrated in Figure 3.

Where XOY is the world coordinate system, xoy is the robot coordinate system, ω is the distance
between the tracks on both sides of the robot, o is the geometric center of the robot, vL and vR are the
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forward velocities of the tracks on both sides of the robot, and θ is the angle between the x-axis of the
robot coordinate system and the positive direction of the X-axis of the world coordinate system.

Then the forward velocity and steering angular velocity of the robot can be expressed as

v = 1

2
(vL + vR) (1)

ω = vR − vL

w
(2)

Taking the geometric center o of the inspection robot as the reference point, the linear velocity and
the normal angular velocity of point o of the inspection robot at any given moment can be expressed as
follows:

x′
o = 1

2
(vL + vR) cos θ (3)

y′
o = 1

2
(vL + vR) sin θ (4)

θ ′
o = vR − vL

w
(5)

At any moment t, the horizontal and vertical coordinates of the geometric center o of the inspection
robot in the world coordinate system are xo(t) and yo(t), respectively, and the position of the robot under
the world coordinate system can be expressed as

xo(t) = 1

2

t∫
0

[vL(t) + vR(t)] cos θo(t)dt (6)

yo(t) = 1

2

t∫
0

[vL(t) + vR(t)] sin θo(t)dt (7)

θo(t) =

t∫
0

[vR(t) − vL(t)] dt

w
(8)

The turning radius R of the inspection robot under the current position is

R = vo

ωo

= vR + vL

2
· w

vR − vL

(9)

The rotation angle of the inspection robot at a specific point is denoted as dα, and the corresponding
arc length is represented by ds. Therefore, the curvature of the trajectory at this point is given by

κ = dα

ds
= x′(t)y′′(t) − x′′(t)y′(t)(√

x′(t)2 + y′(t)2
)3 (10)

According to Eq. (10), the steering curvature of the inspection robot is

κ = ωo

vo

= 2(vR − vL)

w(vR + vL)
(11)

When the inspection robot’s right track reaches its maximum speed, denoted as vR = vmax, the
maximum steering curvature of the robot is

κ = 2(vR − vL)

w (vR + vL)
= 1

w

(
vmax − (2v − vmax)

v

)
= 2

w

(vmax

v
− 1

)
(12)
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3. Hybrid path planning algorithm of inspection robot
3.1. A∗ algorithm problem analysis
The A∗ algorithm conducts a path search from the starting point to the goal point using an evaluation
function. This heuristic path search method significantly reduces redundant node calculations, enhances
the efficiency of the path search, and aims to identify the optimal path. The evaluation function denoted
as f (n), which is defined as follows:

f (n) = g(n) + h(n) (13)

where f (n) denotes the total estimated cost from the initial node to the target node, g(n) denotes the
actual cost from the initial node to the current node n, and h(n) denotes the estimated cost from the
current node n to the target node, which is known as the heuristic function.

The heuristic function distance models commonly used in traditional A∗ algorithm are mainly
Manhattan distance and Euclidean distance.

(1) Manhattan distance
The Manhattan distance is defined as the sum of the absolute differences between the coordinates of

the current node and the target node in a coordinate system. It can be expressed as follows:

h(n) = abs
(
xn − xg

) + abs
(
yn − yg

)
(14)

(2) Euclidean distance
The Euclidean distance is the distance between the current node and the target node, which can be

expressed as

h(n) =
√(

xn − xg

)2 + (
yn − yg

)2 (15)

where xn and yn represent the horizontal and vertical coordinates of the current node, respectively, xg

and yg represent the horizontal and vertical coordinates of the target node, respectively.
Although the A∗ algorithm offers high efficiency, strong robustness, and low complexity, its inherent

algorithmic principles lead to the presence of numerous redundant nodes and inflection points during
the path search process, ultimately diminishing the efficiency of path planning. Furthermore, the design
of the heuristic function significantly impacts the efficiency of path node searches when employing the
A∗ algorithm for path planning [23, 24]. As the path search space expands, the cost of path searching
escalates rapidly, which poses challenges for inspection robots navigating unstructured environments,
such as in coal mine roadways.

3.2. A∗ algorithm problem optimization
3.2.1. Heuristic function optimization
According to the characteristics of the heuristic function distance model commonly used in the tra-
ditional A∗ algorithm, the Manhattan distance is typically greater than the actual distance, while the
Euclidean distance is usually less than the actual distance. Therefore, to bring the value of h(n) closer
to the true cost and to ensure the optimal path while enhancing the efficiency of the path search,
the median of the Manhattan distance and the Euclidean distance is selected as the distance model
for h(n).

The optimized distance model is shown in Figure 4, where d1 and d2 represent the horizontal and
vertical distances from the initial node S to the target node G, respectively. The sum of d1 and d2 is the
Manhattan distance, while the straight-line distance from point S to point G is the Euclidean distance.
The dotted line segment hˆ(n) is the distance model of the optimized heuristic function, and the θ is the
angle between hˆ(n) and the right-angled side of the triangle bounded by the points S and G and the
coordinate axes.

In order to verify the influence of θ on the performance of the A∗ algorithm, comparative exper-
iments were conducted at angles of 30◦, 45◦, and 60◦. As shown in Figure 5, when θ is set to 45◦,
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Figure 4. Optimal distance model of heuristic function.

Figure 5. Comparison of path planning effects under different θ . (a) Comparison of path planning time,
(b) comparison of path planning length.

the A∗ algorithm demonstrates optimal performance in terms of both time and path length for path plan-
ning. Therefore, considering the impact on path planning time and path length, θ is selected as 45◦ for
subsequent analysis.

The optimized distance model hˆ(n) is derived as follows:
When d1 ≥ d2:

h ∧(n) =
√

2d2
2 + d1 − d2 (16)

When d1 ≤ d2:

h ∧(n) =
√

2d2
1 + d2 − d1 (17)

In addition, to enhance the efficiency of heuristic search, the objective tendency function is incorpo-
rated into the heuristic function. The principle of the objective tendency function is expressed as follows:

cross = |dx1 × dy2 − dx2 × dy1| (18)

where dx1 and dy1 represent the horizontal and vertical distances between the current node and the target
node, dx2 and dy2 represent the horizontal and vertical distances between the initial node and the target
node, and cross represents the target tendency function value.

In order to dynamically adjust the path search effectiveness of the target tendency function cross, a
weight factor k is introduced. Consequently, the heuristic function of the final improved A∗ algorithm
can be expressed as follows:

h ∗(n) =
⎧⎨
⎩

(√
2d2

2 + d1 − d2

)
× cross × k, d1 ≥ d2(√

2d2
1 + d2 − d1

)
× cross × k, d1 < d2

(19)

https://doi.org/10.1017/S0263574725000037 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574725000037


8 Congcong Gu et al.

Figure 6. Floyd algorithm principle diagram.

3.2.2. Elimination of redundant nodes
The A∗ algorithm, which optimizes the heuristic function, can efficiently identify a viable path. However,
it may still include some redundant nodes in the planned route. To address this issue, the Floyd algorithm
is employed to eliminate redundant nodes during the path search process of the improved A∗ algorithm,
thereby optimizing the path trajectory [25–27]. The principle of the Floyd algorithm is illustrated in
Figure 6, which effectively determines the shortest distance between two points. By integrating the Floyd
algorithm with the A∗ algorithm, redundant nodes can be removed, and collinear nodes can be merged,
resulting in a path that is not only shorter but also better suited to real-world application scenarios.

According to Figure 6, let L (A, D) represent the shortest distance from point A to point D. If there
is an obstacle between points A and D that cannot be traversed, then L (A, D) = +∞, and the shortest
path from point A to point D is expressed as R (A, D) = A → D.

When the path from point A to point D cannot be passed, insert point B between point A and
point D. If the condition of the following equation is satisfied:

L (A, B) + L (B, D) < L (A, D) (20)

Then the distance and path between point A and point D can be expressed as{
L (A, D) = L (A, B) + L (B, D)

R (A, D) = A → B → D
(21)

At this time, insert point C between point A and point D, if the conditions are met:

L (A, C) + L (C, D) < L (A, B) + L (B, D) (22)

Then the distance and path between point A and point D can be expressed as{
L (A, D) = L (A, C) + L (C, D)

R (A, D) = A → C → D
(23)

Finally, point B is removed to obtain the optimal path from point A to point D, represented as
A→C→D. Consequently, by applying Floyd’s algorithm, the A∗ algorithm can search for the path more
efficiently, reducing unnecessary node processing. This approach not only shortens the robot’s driving
path but also enhances overall work efficiency.

3.2.3. Path smoothing
Although the path optimized by Floyd’s algorithm eliminates redundant nodes and some inflection
points, there are still several inflection points present in the overall driving path of the coal mine roadway
inspection robot. In the unstructured environment of coal mine tunnels, the presence of inflection points
is highly detrimental to the movement of the inspection robot. Therefore, it is essential to smooth these
inflection points along the path. The path planned by the improved A∗ algorithm is smoothed using a
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(a) (b)

Figure 7. The schematic diagram of the planned path before and after the improved A∗ algorithm is
processed by B-spline. (a) The original path (b) after B-spline curve processing.

B-spline curve. The basis function of an n-th degree B-spline curve can be expressed as follows [28]:

Fk,n (u) = 1

n!
n−k∑
j=0

[
(−1)

j Cj
n+1(u + n − k − j)n

]
(k = 0, 1, 2 . . . , n) (24)

of which:

Cj
n+1 = (n + 1)!

j! (n + 1 − j)! (25)

Then the n-th B-spline curve of the ith segment can be expressed as

Hi,n (u) =
n∑

k=0

Gi+kFk,n (u) (i = 1, 2, . . . , m − n, u ∈ [0, 1]) (26)

where n denotes the order of the B-spline curve, m denotes the number of control points, and Gi+k

denotes the coordinate value of the i+k-th control point.
From the path information presented in Figure 7, it is evident that after processing the B-spline curve,

the breakpoints in the original path have been replaced with a smooth curve. As a result, the overall path
is smoother and better aligns with the trajectory requirements of the coal mine roadway inspection robot.

3.3. Local path planning based on DWA algorithm
After the inspection robot moves for a period of time, its position changes are shown in Figure 8.

It is assumed that during a period of time �t, according to the inspection robot motion characteristics,
the motion model of the robot during that period of time can be expressed as⎧⎪⎨

⎪⎩
xt = x + v�t cos (θ)

yt = y + v�t sin (θ)

θt = θ + ω�t

(27)

where x and y represent the coordinate values of the robot in the world coordinate system, respectively,
v represents the moving speed of the robot, and θ represents the rotation angle of the robot.
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Figure 8. The schematic diagram of position change of inspection robot.

3.3.1. Sampling speed
In the DWA algorithm, the robot generates simulated trajectories by sampling in velocity space. The
linear and angular velocities are limited during the velocity sampling in order to prevent the robot from
skidding or not being able to drive due to too large or too small traveling speeds, etc. The sampling
speed of the robot is limited by its own linear and angular velocities and needs to satisfy the following
constraints:

V1 = {v ∈ [vmin, vmax] ∩ ω ∈ [ωmin, ωmax]} (28)

Where vmax and vmin represent the maximum and minimum linear velocities, respectively, ωmax and
ωmin represent the maximum and minimum angular velocities, respectively.

Because the inspection robot platform is driven by a DC motor, affected by the performance of the
motor, the speed that the robot can reach is limited to a window within a time interval. Therefore, there
is a range constraint on the acceleration of the robot, that is, the following constraints are satisfied:

V2 = {(v, ω) |v ∈ [vc − av min�t, vc + av max�t] ∩ ω ∈ [ωc − aω min�t, ωc + aω max�t]} (29)

where vc and ωc represent the linear velocity and angular velocity of the robot, respectively, avmax and
avmin are the maximum acceleration and minimum acceleration of linear motion, respectively, and aωmax

and aωmin are the maximum acceleration and minimum acceleration of rotation, respectively.
During the robot’s movement, it must avoid colliding with obstacles in its environment. By establish-

ing a safety distance threshold, a sampling speed space that ensures the motion safety of the inspection
robot is proposed. The constraints are as follows:

V3 =
{
(v, ω)

∣∣∣v ≤ √
2 × dist(v, ω) × av ∩ ω ≤ √

2 × dist(v, ω) × aω

}
(30)

where dist(v, ω) represents the distance between the robot and the nearest obstacle.
Based on the three constraints mentioned above, the speed range of the robot can be determined.

Specifically, the sampling speed range of the robot’s dynamic window must satisfy the following
conditions:

V = V1 ∩ V2 ∩ V3 (31)

3.3.2. Evaluation function optimization
After the inspection, robot generates simulated trajectories through multiple sets of sampling in the
velocity space, these trajectories represent collision-free, passable paths. However, it is not guaranteed
that each trajectory is the most suitable for the robot’s movement. Therefore, it is essential to select
the most appropriate trajectories using an evaluation function. The evaluation function is expressed as
follows:

G(v, ω) = α · heading(v, ω) + β · dist(v, ω) + γ · vel(v, ω) (32)
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where heading (v, ω) is the azimuth evaluation function, which scores the current trajectory based on
the angular difference between the end of the inspection robot’s current trajectory and the target point
in the facing direction. dist(v, ω) denotes the distance evaluation function, which scores the current tra-
jectory based on the magnitude of the distance between the inspection robot and the nearest obstacle.
vel(v, ω) denotes the velocity evaluation function, which scores the current trajectory based on the veloc-
ity vector corresponding to the current trajectory. α, β, γ are the weight coefficients corresponding to
each evaluation factor.

Considering that the dynamic window method simulates the motion trajectory after sampling multiple
sets of speeds and selects the optimal motion speed based on the results of the evaluation function. In the
actual process, the parameter results of each factor in the evaluation function are large or small, which
may directly cover the effect of other factor terms because of the large parameter results of a certain
factor, so the robot’s motion is made smoother by normalizing each factor of the evaluation function in
order to select the simulated trajectory at the optimal speed. The normalization process is as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

my_heading(i) = heading(i)∑n
i=1 heading(i)

my_dist(i) = dist(i)∑n
i=1 dist(i)

my_vel(i) = vel(i)∑n
i=1 vel(i)

(33)

where my_heading (i), my_dist (i), and my_vel (i) denote the weights of each evaluation factor
normalized to each evaluation factor of the trajectory i to be evaluated, respectively.

3.3.3. Hybrid path planning algorithm
The DWA algorithm demonstrates effective obstacle avoidance capabilities; however, it is prone to
becoming trapped in local optima, which can hinder its ability to reach the target point [29–31]. The
enhanced A∗ algorithm presented in this paper is capable of planning an optimal path when the global
state is known. To prevent the DWA algorithm from succumbing to local optima while facilitating local
dynamic obstacle avoidance, this paper introduces a hybrid path planning algorithm that integrates the
improved A∗ algorithm with the DWA algorithm. This approach not only preserves global optimality
but also addresses the requirements for dynamic obstacle avoidance in robots.

The specific steps involved in the fusion process of the hybrid path planning algorithm are as follows:

(1) Initialize the map information and the robot’s initial position, then plan a globally optimal path
on the map using the improved A∗ algorithm.

(2) Based on the global path information, key nodes are extracted as the local target points for the
DWA algorithm.

(3) The DWA algorithm is employed to sample the speed and generate a simulated trajectory.
Subsequently, based on the new evaluation function, the speed corresponding to the optimal
trajectory is selected to guide the robot toward the target point.

(4) Update the robot’s motion state. First, determine whether the robot has reached the local target
point. If it has not, drive the robot to the local target point. If it has reached the local target point,
assess whether the position is the global target point. If the position is not the global target point,
continue with step (3). Conversely, if the robot has reached the global target point, control the
robot to stop moving.

For the combination of the improved A∗ and DWA algorithms, the following path fusion function has
been constructed:

https://doi.org/10.1017/S0263574725000037 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574725000037


12 Congcong Gu et al.

Figure 9. Environment 1. (a) Traditional A∗ algorithm, (b) Improved A∗ algorithm.

Combine(v, ω) =
√

(x2 − x1)
2 + (y2 − y1)

2 (34)

where (x1, y1) denotes the end coordinates of the motion trajectory simulated by sampling the veloc-
ity, and (x2, y2) denotes the coordinates of the critical nodes of the global path obtained based on the
improved A∗ algorithm.

In order to better combine the improved A∗ algorithm with the DWA algorithm, a new evaluation
function based on global path information is designed based on the evaluation function of the previous
DWA algorithm:

G(v, ω) = α · heading(v, ω) + β · dist(v, ω) + γ · vel(v, ω) + λ · Combine(v, ω) (35)

where λ is the weight factor of the path fusion function Combine (v, ω), the smaller the value of the
path fusion function takes, the closer the end of the local path planning trajectory is to the global path
trajectory.

By establishing a grid map, the simulation experiments of both the improved and unimproved parti-
tioning algorithms are analyzed. First, three distinct environmental scenarios are constructed using the
grid map, and then the simulation tests are conducted based on these scenarios. The results are presented
in Figures 9 to 11. The symbol ‘©’ represents the starting point, ‘�’ denotes the target point, the black
area indicates the obstacle zone, and the white area signifies the passable region.

In three distinct environmental scenarios, the path generated by the improved A∗ algorithm exhibits
fewer inflection points and is smoother compared to the traditional A∗ algorithm. Additionally, at the
inflection points of the path, there is a maintained safety distance from obstacles, which better aligns
with the motion requirements of the robot.

Table 1 presents a comparative analysis of the improved A∗ algorithm and the traditional A∗ algo-
rithm regarding path planning length and time across different environments. As shown in Table 1, the
improved A∗ algorithm proposed in this paper consistently outperforms the traditional A∗ algorithm in
both time and path length across three distinct environments. The combined results indicate that the
path planning time is reduced by 56.08%, while the path length is decreased by 3.05% compared to
the pre-improved path planning. This enhancement significantly improves the efficiency of the robot’s
autonomous navigation.

According to the hybrid path planning of the aforementioned fusion A∗ algorithm and DWA algo-
rithm, the simulation experiment is carried out. The azimuth evaluation function coefficient in the
evaluation function is set to 0.05, the distance evaluation function coefficient is 0.25, the speed evalua-
tion function coefficient is 0.20, and the path fusion function coefficient is 0.15; the initial direction angle
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Table 1. Comparison of path planning length and time of A∗ algorithm before and after
improvement in different environments.

Environment types Path planning algorithm Length (m) Time (ms)
Environment 1 Traditional A∗ algorithm 20.31 19.69

Improved A∗ algorithm 18.85 6.82
Environment 2 Traditional A∗ algorithm 20.34 18.91

Improved A∗ algorithm 20.10 5.20
Environment 3 Traditional A∗ algorithm 26.56 21.81

Improved A∗ algorithm 26.21 14.51

Figure 10. Environment 2. (a) Traditional A∗ algorithm, (b) Improved A∗ algorithm.

Figure 11. Environment 3. (a) Traditional A∗ algorithm, (b) Improved A∗ algorithm.

of the robot is π/4, the maximum forward speed is 2 m/s, and the maximum rotation speed is 0.2 rad/s.
In order to better verify the path planning and real-time obstacle avoidance ability of the hybrid path
planning algorithm, the path planning effects in the known static environment and the unknown dynamic
environment are compared and analyzed. Figure 12 is the experimental results of hybrid path planning
in three different scenarios in a static environment. The blue solid line represents the path planned by
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Figure 12. Simulation results of hybrid path planning algorithm in static environment.

the hybrid path planning algorithm, and the red ‘∗’ represents the key node information of the global
path.

From Figure 12, it is evident that in three distinct environmental scenarios, DWA algorithm is directed
by the global path information generated by the enhanced A∗ algorithm. This allows the robot to navigate
along the globally optimal path, effectively minimizing the risk of becoming trapped in local optima.
Additionally, the path is smoother, facilitating the movement of the inspection robot.

Figure 13 illustrates the results of a dynamic real-time obstacle avoidance simulation using a hybrid
path planning algorithm across three distinct scenarios in an unknown dynamic environment. In each
scene, 1, 2, and 3 unknown dynamic obstacles are introduced, respectively.

From the information presented in Figure 13, it is evident that the hybrid path planning algorithm
effectively avoids dynamic obstacles, even when faced with varying numbers of them. In addition to navi-
gating around known obstacles, the algorithm is capable of avoiding newly emerging unknown obstacles.
This functionality meets the autonomous navigation requirements for coal mine roadway inspection
robots.

4. Experiment results and discussion
The inspection robot is primarily utilized in the coal mine roadway environment. To effectively validate
the autonomous path planning and obstacle avoidance capabilities of the inspection robot in this setting,
this paper first constructs a simulated roadway scene tailored to specific requirements. Subsequently,
it conducts both dynamic and static environment path planning and autonomous navigation experi-
ments, culminating in the collection of simulated roadway data. As illustrated in Figure 14, to accurately
replicate the roadway environment, a scene characterized by low light and uneven terrain is selected,
with several obstacles introduced in the simulated roadway to assess the inspection robot’s autonomous
obstacle avoidance capabilities.

The grid map created using LiDAR scanning of the environment is displayed in Figure 15. In this
map, the white areas represent the passable zones for the inspection robot, while the black areas indicate
impassable obstacles.

4.1. Static environment
In a static environment, the A∗ algorithm plays a crucial role in enabling the inspection robot to complete
the autonomous driving task, as outlined in the hybrid path planning algorithm described above. To
evaluate the reliability of the improved A∗ algorithm, we compare the global path planning effectiveness
of the A∗ algorithm before and after the enhancement through experimental results. The findings are
illustrated in Figure 16.
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Figure 13. Simulation results of hybrid path planning algorithm under different dynamic obstacles.
(a) 1 dynamic obstacle, (b) 2 dynamic obstacle, (c) 3 dynamic obstacle.

It can be found that the path planned by the improved A∗ algorithm is smoother compared to the
traditional A∗ algorithm and has a certain safety distance from the obstacles, which is more favorable
for the robot to walk.

In order to further verify the performance of the improved A∗ algorithm, five groups of different target
points are randomly set up in the experimental environment to compare the path planning time and the
number of inflection points between the traditional A∗ algorithm and the improved A∗ algorithm, and
the experimental results are shown in the Table 2. From the table, it can be found that the path planning
time of the improved A∗ algorithm is significantly less than that of the traditional A∗ algorithm, and
the time of path planning is shortened by 49.60 % compared with that of the pre-improvement path
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Table 2. Comparison of path planning results between traditional A∗ algorithm and
improved A∗ algorithm.

Path planning Number of inflection
Path types Path planning algorithm time (ms) points
Path 1 Traditional A∗ algorithm 68.77 13

Improved A∗ algorithm 35.14 5
Path 2 Traditional A∗ algorithm 62.70 10

Improved A∗ algorithm 32.15 4
Path 3 Traditional A∗ algorithm 52.53 6

Improved A∗ algorithm 21.15 2
Path 4 Traditional A∗ algorithm 29.14 4

Improved A∗ algorithm 15.43 1
Path 5 Traditional A∗ algorithm 28.70 5

Improved A∗ algorithm 18.02 0

Figure 14. Experimental environment.

Figure 15. Simulated roadway map.

planning, and at the same time, the number of path inflection points is less, and the smoothing degree
is higher.

Guided by the global path planning established by the improved A∗ algorithm, the DWA algorithm
is employed to dynamically adjust the path in response to various obstacles in the environment, ensur-
ing real-time obstacle avoidance. The actual movement of the inspection robot, based on the hybrid
path planning algorithm in a known static environment, is illustrated in Figure 17. The left half of
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Figure 16. Comparison of path planning between traditional A∗ algorithm and improved A∗ algorithm.
(a) Path 1, (b) Path 2.

each diagram displays the path planning information of the inspection robot alongside the visual inter-
face showing the robot’s current position. Conversely, the right half depicts the robot’s position within
the actual scene. The green solid line represents the path information generated by the path planning
algorithm, while the blue line indicates the path that the inspection robot has actually traversed.

Based on the information presented in Figure 17, it is evident that the inspection robot can effectively
plan its driving path and navigate safely by employing a hybrid path planning method that combines the
improved A∗ algorithm with the DWA algorithm. Taking the pose deviation as the standard, the initial
pose of the robot is defined as the origin. The position deviation of the actual endpoint and the target
point in the x direction, y direction, and angle is measured multiple times using odometer information
to assess the effectiveness of the inspection robot’s autonomous driving.

In the known static environment, 10 autonomous driving experiments were conducted, and the exper-
imental data were recorded. The results of these experiments are presented in Table 3, where �x
represents the absolute position deviation in the x direction, and �y represents the absolute position
deviation in the y direction.

It can be observed from Table 3 that after the inspection robot reaches the designated target point
along the path planned by the algorithm described in this paper, the maximum positional deviation in
the x-axis direction is 0.101 m, the minimum positional deviation is 0.034 m, and the absolute average
positional deviation is 0.075 m. The maximum position deviation along the y-axis is 0.090 m, while the
minimum position deviation is 0.013 m. The absolute average position deviation is 0.055 m. In terms
of angular position deviation, the maximum is 0.234 radians (13.41◦), the minimum is 0.007 radians
(0.401◦), and the absolute average position deviation is 0.059 radians (3.38◦).

4.2. Unknown dynamic environment
As shown in Figure 18, the validation of hybrid path planning incorporating the improved A∗ algorithm
and the DWA algorithm is carried out based on unknown or partially unknown environments by setting
unknown dynamic obstacles on the traveling path of the inspection robot.
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Table 3. The experimental results of autonomous driving of inspec-
tion robot in static environment are known.

Experimental Angle deviation
times �x (m) �y (m) (rad)
1 0.070 0.068 0.034
2 0.062 0.082 0.031
3 0.101 0.013 0.181
4 0.067 0.031 0.007
5 0.094 0.090 0.021
6 0.085 0.025 0.039
7 0.088 0.070 0.020
8 0.034 0.088 0.013
9 0.059 0.067 0.012
10 0.094 0.018 0.234

Figure 17. The actual driving process in a known static environment.

From Figure 18(a), it is evident that the global path planning A∗ algorithm plays a crucial role in
path planning when there are no unknown dynamic obstacles in the forward direction of the inspec-
tion robot. However, when unknown dynamic obstacles appear in the vicinity of the inspection robot,
the local path planning DWA algorithm becomes essential. The robot promptly adjusts its local path
to avoid obstacles based on the detected obstacle information, as illustrated in Figure 18(b). When an
unknown dynamic obstacle moves around the inspection robot, the DWA algorithm recalibrates the
local path according to the position information of the obstacle within the global map, thereby fulfill-
ing the obstacle avoidance requirement. This adjustment is depicted in Figure 18(c). Consequently, the
experimental results presented in Figure 18 demonstrate that the hybrid path planning approach, which
combines the improved A∗ algorithm with the DWA algorithm, can effectively adapt the path in response
to environmental changes surrounding the inspection robot. This method enables the planning of a safer
and more reliable path that meets practical requirements.

In addition, in order to verify the practical application effect of the hybrid path planning algorithm
that integrates the improved A∗ algorithm and DWA algorithm, pedestrians are added as unknown
dynamic obstacles in the simulated alleyway scenario, and then autonomous obstacle avoidance driv-
ing experiments are carried out based on the inspection robot platform in the unknown dynamic
environment.
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Figure 18. Mixed path planning effect diagram. (a) No unknown dynamic obstacles appeared,
(b) unknown dynamic obstacles appeared, (c) path planning results.

Figure 19. The actual driving process in unknown dynamic environment.

As shown in Figure 19, the path planning results without adding unknown pedestrians and the initial
position of the inspection robot in the actual scene are shown. After the start point and target point are
set for the inspection robot in the completed map model, the inspection robot plans a path from the start
point to the target point based on the hybrid path planning algorithm.

Similar to the known static environment, in order to verify the effect of dynamic obstacles on the
inspection robot’s travel to the target point, autonomous driving experiments were conducted in an
environment containing unknown dynamic obstacles, and the experimental results are shown in Table 4.

As shown in Table 4, after the inspection robot reaches the target point along the planned path in
the unknown dynamic environment, the maximum position deviation in the x axis direction is 0.148 m,
the minimum position deviation is 0.020 m, and the absolute average position deviation is 0.081 m; the
maximum position deviation in the y axis direction is 0.143 m, the minimum position deviation is 0.011
m, and the absolute average position deviation is 0.072 m; the maximum position deviation in the angular
direction is 0.543 radians (31.11◦), the minimum position deviation is 0.001 radians (0.057◦), and the
absolute average position deviation is 0.099 radians (5.67◦). Compared to the known static environment,
the inspection robot occasionally has a larger angular deviation from the target position angle due to the
influence of dynamic obstacles, but the position deviation occurring in the x axis direction and y axis
direction is not much different from the experimental results in the static environment. Combined with
the working principle of LiDAR, the autonomous driving function of the inspection robot used in this
paper can also meet the requirements in an unknown dynamic environment.
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Table 4. Experimental results of autonomous driving of inspection
robot in unknown dynamic environment.

Experimental Angle deviation
times �x(m) �y(m) (rad)
1 0.136 0.033 0.072
2 0.079 0.036 0.178
3 0.111 0.011 0.040
4 0.148 0.028 0.543
5 0.054 0.143 0.001
6 0.084 0.011 0.018
7 0.023 0.305 0.037
8 0.086 0.065 0.089
9 0.073 0.045 0.013
10 0.020 0.052 0.006

5. Conclusion
Aiming at the problem of incomplete state estimation of inspection robots in degraded environments,
such as underground roadways, and the difficulty of realizing automated and unmanned monitoring
of coal mine roadways, research on the autonomous driving technology of inspection robots has been
carried out, and the main conclusions obtained are as follows:

(1) The inspection robot system platform has been constructed, and the analysis and establishment
of the inspection robot system model have been completed. This provides theoretical support for
the realization of autonomous navigation and environmental scanning by the inspection robot.

(2) A hybrid path planning algorithm that integrates an improved A∗ algorithm with DWA algorithm
is proposed. The global path generated by the improved A∗ algorithm serves as a reference,
effectively mitigating the limitations of the DWA algorithm, which is susceptible to local optima.
This method also allows the robot to dynamically avoid obstacles.

(3) A raster map simulating the roadway environment has been established, and experiments on
autonomous path planning and obstacle avoidance have been conducted in both known static and
unknown dynamic environments. These experiments aim to evaluate the autonomous navigation
and real-time obstacle avoidance capabilities of the inspection robot. The results indicate that the
proposed path planning algorithm effectively meets the autonomous navigation requirements of
the inspection robot in the coal mine roadway environment.

Although the proposed algorithm has been validated in a simulated coal mine tunnel environ-
ment, the path planning algorithm presented in this paper is based on a 2D environmental map.
Recognizing that 3D information encompasses additional environmental features that enhance robot
decision-making, Therefore, in the subsequent research, we will carry out the research on the path plan-
ning and autonomous operation algorithm of the inspection robot in the three-dimensional environment,
so as to improve the autonomous operation capability of the inspection robot as well as the level of
intelligence.
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