Bull. Aust. Math. Soc. **105** (2022), 372–384 doi:10.1017/S0004972721000903

TIGHT UNIVERSAL TRIANGULAR FORMS

MINGYU KIMD

(Received 22 June 2021; accepted 23 September 2021; first published online 18 November 2021)

Abstract

For a subset *S* of nonnegative integers and a vector $\mathbf{a} = (a_1, \ldots, a_k)$ of positive integers, define the set $V'_S(\mathbf{a}) = \{a_1s_1 + \cdots + a_ks_k : s_i \in S\} - \{0\}$. For a positive integer *n*, let $\mathcal{T}(n)$ be the set of integers greater than or equal to *n*. We consider the problem of finding all vectors \mathbf{a} satisfying $V'_S(\mathbf{a}) = \mathcal{T}(n)$ when *S* is the set of (generalised) *m*-gonal numbers and *n* is a positive integer. In particular, we completely resolve the case when *S* is the set of triangular numbers.

2020 Mathematics subject classification: primary 11E12; secondary 11E20, 11P99.

Keywords and phrases: tight universal form, polygonal number.

1. Introduction

For a positive integer *m* greater than or equal to 3, the polynomial

$$P_m(x) = \frac{(m-2)x^2 - (m-4)x}{2}$$

is an integer-valued quadratic polynomial and $P_m(s)$ is the *s*th *m*-gonal number for a nonnegative integer *s*. For a vector $\mathbf{a} = (a_1, a_2, \dots, a_k)$ of positive integers, a polynomial of the form

$$p_m(\mathbf{a}) = p_m(\mathbf{a})(x_1, \dots, x_k) = a_1 P_m(x_1) + \dots + a_k P_m(x_k)$$

in variables $x_1, x_2, ..., x_k$ is called a *k*-ary *m*-gonal form (or a *k*-ary sum of generalised *m*-gonal numbers). We say that an integer N is represented by an *m*-gonal form $p_m(\mathbf{a})$ if the equation

$$p_m(\mathbf{a})(x_1,\ldots,x_k)=N$$

has an integer solution. The *minimum of* $p_m(\mathbf{a})$, denoted by $\min(p_m(\mathbf{a}))$, is the smallest positive integer represented by $p_m(\mathbf{a})$. We call an *m*-gonal form *tight universal* if it represents every positive integer greater than its minimum. A tight universal *m*-gonal

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the government of Korea (MSIT) (NRF-2021R1C1C2010133).

[©] The Author(s), 2021. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

form having minimum 1 is simply called *universal*. There are several results on the classification of universal *m*-gonal forms (see, for example, [2, 6, 7, 8]). Note that $P_4(x) = x^2$ and the classification of universal diagonal quadratic forms can be easily done by using the Conway–Schneeberger 15 theorem (see [1, 3]).

Recently, the author and Oh [10] studied (positive definite integral) quadratic forms which represent every positive integer greater than the minimum of the form. We called such a quadratic form *f* tight $\mathcal{T}(n)$ -universal, where *n* is the minimum of the quadratic form *f*. We classified 'diagonal' tight universal quadratic forms, which gives the classification of tight universal *m*-gonal forms in the case of m = 4.

We follow the notation and terminologies used in [10]. For n = 1, 2, 3, ..., we denote by $\mathcal{T}(n)$ the set of integers greater than or equal to n. We say that an m-gonal form is tight $\mathcal{T}(n)$ -universal if it is tight universal with minimum n. In Section 3, we resolve the classification problem of tight $\mathcal{T}(n)$ -universal m-gonal forms in the following cases:

(i)
$$m = 5, n \ge 7$$
; (ii) $m = 7, n \ge 11$; (iii) $m \ge 8, n \ge 2m - 5$.

In fact, it will be proved that there are 'essentially' two tight $\mathcal{T}(n)$ -universal *m*-gonal forms in the cases (ii) and (iii). It will also be shown that there is a unique tight $\mathcal{T}(n)$ -universal pentagonal form for any $n \ge 7$. In addition, we classify tight $\mathcal{T}(n)$ -universal sums of *m*-gonal numbers (for the definition, see Section 3). In Section 4, we classify tight universal triangular forms by finding all tight $\mathcal{T}(n)$ -universal triangular forms for every integer $n \ge 3$. Universal triangular forms were classified in [2] and tight $\mathcal{T}(2)$ -universal triangular forms were found by Ju ['Almost universal sums of triangular numbers with one exception', submitted for publication]. To classify tight universal triangular forms, we use the theory of quadratic forms and adapt the geometric language of quadratic spaces and lattices, generally following [11, 12]. Some basic notation and terminologies will be given in Section 2.

2. Preliminaries

Let *R* be the ring of rational integers \mathbb{Z} or the ring of *p*-adic integers \mathbb{Z}_p for a prime *p* and let *F* be the field of fractions of *R*. An *R*-lattice is a finitely generated *R*-submodule of a quadratic space (W, Q) over *F*. We let $B : W \times W \to F$ be the symmetric bilinear form associated to the quadratic map *Q* so that B(x, x) = Q(x) for every $x \in W$. For an element *a* in *R* and an *R*-lattice *L*, we say that *a is represented by L over R* and write $a \to L$ over *R* if $Q(\mathbf{x}) = a$ for some vector $\mathbf{x} \in L$.

Let *L* be a \mathbb{Z} -lattice on a quadratic space *W* over \mathbb{Q} . The genus of *L*, denoted gen(*L*), is the set of all \mathbb{Z} -lattices on *W* which are locally isometric to *L*. The number of isometry classes in gen(*L*) is called the class number of *L* and denoted by *h*(*L*). If an integer *a* is represented by *L* over \mathbb{Z}_p for all primes *p* (including ∞), then there is a \mathbb{Z} -lattice *K* in gen(*L*) such that $a \longrightarrow K$ (see [12, 102:5 Example]). In this case, we say that *a* is represented by the genus of *L* and write $a \longrightarrow \text{gen}(L)$. For a \mathbb{Z} -basis

 $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ of *L*, the corresponding quadratic form f_L is defined by

$$f_L = \sum_{i,j=1}^k B(\mathbf{v}_i, \mathbf{v}_j) x_i x_j.$$

If L admits an orthogonal basis $\{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_k\}$, then we simply write

$$L \simeq \langle Q(\mathbf{w}_1), Q(\mathbf{w}_2), \ldots, Q(\mathbf{w}_k) \rangle.$$

We abuse the notation and the diagonal quadratic form $a_1x_1^2 + a_2x_2^2 + \cdots + a_kx_k^2$ will also be denoted by $\langle a_1, a_2, \ldots, a_k \rangle$. The scale of *L* is denoted by $\mathfrak{s}(L)$. Throughout, we always assume that every \mathbb{Z} -lattice is positive definite and primitive in the sense that $\mathfrak{s}(L) = \mathbb{Z}$. Any unexplained notation and terminologies on the representation of quadratic forms can be found in [11] or [12].

Throughout this section, *S* always denotes a set of nonnegative integers containing 0 and 1, unless otherwise stated. For a vector $\mathbf{a} = (a_1, a_2, \dots, a_k) \in \mathbb{N}^k$, we define

$$V_{S}(\mathbf{a}) = \{a_{1}s_{1} + a_{2}s_{2} + \dots + a_{k}s_{k} : s_{i} \in S\}$$

and define $V'_{S}(\mathbf{a}) = V_{S}(\mathbf{a}) - \{0\}$. For example, if S is the set of squares of integers, then

$$V'_{S}(1, 1, 1, 1) = \mathbb{N}, \quad V'_{S}(1, 1, 1) = \mathbb{N} - \{4^{a}(8b + 7) : a, b \in \mathbb{N}_{0}\}$$

by Lagrange's four-square theorem and Legendre's three-square theorem, respectively. We denote the set of nonnegative integers by \mathbb{N}_0 for simplicity. For two vectors $\mathbf{u} = (u_1, u_2, \dots, u_r) \in \mathbb{N}^r$ and $\mathbf{v} = (v_1, v_2, \dots, v_s) \in \mathbb{N}^s$, we write

$$\mathbf{u} \leq \mathbf{v} \quad (\mathbf{u} \prec \mathbf{v})$$

if $\{u_i\}_{1 \le i \le r}$ is a subsequence (proper subsequence, respectively) of $\{v_j\}_{1 \le j \le s}$. Let *n* be a positive integer and let **a** be a vector of positive integers. We say that **a** is tight $\mathcal{T}(n)$ -universal with respect to *S* if $V'_S(\mathbf{a}) = \mathcal{T}(n)$. When n = 1, we simply say that **a** is universal with respect to *S*. We say that **a** is new tight $\mathcal{T}(n)$ -universal with respect to *S* if $V'_S(\mathbf{a}) = \mathcal{T}(n)$ and $V'_S(\mathbf{b}) \subseteq \mathcal{T}(n)$ whenever $\mathbf{b} < \mathbf{a}$. For $n_1, n_2, \ldots, n_r \in \mathbb{N}$ and $e_1, e_2, \ldots, e_r \in \mathbb{N}_0$, we denote by $\mathbf{n_1}^{e_1} \mathbf{n_2}^{e_2} \cdots \mathbf{n_r}^{e_r}$ the vector

$$(n_1, \ldots, n_1, n_2, \ldots, n_2, \ldots, n_r, \ldots, n_r) \in \mathbb{Z}^{e_1 + e_2 + \cdots + e_r},$$

where each n_i is repeated e_i times for i = 1, 2, ..., r. The first lemma is straightforward.

LEMMA 2.1. Let \mathbf{a}, \mathbf{b} be vectors of positive integers such that $\mathbf{a} \leq \mathbf{b}$ and let S, S' be sets of nonnegative integers containing 0 and 1 such that $S \subseteq S'$. Then:

(i)
$$V_S(\mathbf{a}) \subseteq V_S(\mathbf{b});$$

(ii) $V_{\mathcal{S}}(\mathbf{a}) \subseteq V_{\mathcal{S}'}(\mathbf{a});$

- (iii) $V_S(u + v) \subset V_S(u, v)$ for any $u, v \in \mathbb{N}$;
- (iv) $\min(V'_{S}(\mathbf{a})) = \min\{a_{i} : 1 \le i \le k\}, where \mathbf{a} = (a_{1}, a_{2}, \dots, a_{k}).$

LEMMA 2.2. Let $\mathbf{a} = \mathbf{1}^{e_1} \mathbf{2}^{e_2} \mathbf{3}^{e_3}$ be a vector with a positive integer e_1 and nonnegative integers e_2 and e_3 . Assume that $V_S(\mathbf{a}) = \mathbb{N}_0$. Then, for any integer $n \ge 2e_3 + 3$,

374

the vector

$$\mathbf{b} = \mathbf{n}^{e_1}\mathbf{n} + \mathbf{1}^1\mathbf{n} + \mathbf{2}^1\cdots\mathbf{2n} - \mathbf{1}^1\mathbf{2n}^{e_2}$$

is tight $\mathcal{T}(n)$ -universal with respect to S.

PROOF. Let *n* be an integer with $n \ge 2e_3 + 3$ and let *m* be an integer greater than or equal to *n*. Then *m* can be written in the form un + v for a nonnegative integer *u* and an integer *v* with $n \le v \le 2n - 1$. To prove the lemma, it suffices to show that $un + v \in V_S(\mathbf{b})$. Since

$$u \in \mathbb{N}_0 = V_S(\mathbf{a}) = V_S(\mathbf{1}^{e_1} \mathbf{2}^{e_2} \mathbf{3}^{e_3}),$$

we have

$$un \in V_S(\mathbf{n}^{e_1}\mathbf{2n}^{e_2}\mathbf{3n}^{e_3}).$$

Since the other cases can be dealt with in a similar manner, we only provide the proof when

$$n+1 \le v \le e_3+1$$
 or $2n-e_3-1 \le v \le 2n-1$.

By applying Lemma 2.1(iii) e_3 times,

$$V_{S}(\mathbf{3n}^{e_{3}}) \subseteq V_{S}(n+1,2n-1,n+2,2n-2,\ldots,\widehat{v},\widehat{3n-v},\ldots,n+e_{3}+1,2n-e_{3}-1),$$

where the hat symbol ^ indicates that the component is omitted. It follows that

$$un \in V_{\mathcal{S}}(\mathbf{n}^{e_1} \mathbf{2n}^{e_2} \mathbf{3n}^{e_3})$$

$$\subseteq V_{\mathcal{S}}(\mathbf{n}^{e_1} \mathbf{2n}^{e_2} \mathbf{n} + \mathbf{1}^1 \mathbf{2n} - \mathbf{1}^1 \cdots \widehat{\mathbf{v}^1} \mathbf{3n} - \mathbf{v}^1 \cdots \mathbf{n} + \mathbf{e_3} + \mathbf{1}^1 \mathbf{2n} - \mathbf{e_3} - \mathbf{1}^1).$$

Therefore,

$$un + v \in V_S(\mathbf{n}^{e_1}\mathbf{2n}^{e_2}\mathbf{n} + \mathbf{1}^1\mathbf{2n} - \mathbf{1}^1 \cdots \mathbf{v}^1\mathbf{3n} - \mathbf{v}^1 \cdots \mathbf{n} + \mathbf{e_3} + \mathbf{1}^1\mathbf{2n} - \mathbf{e_3} - \mathbf{1}^1)$$

$$\subseteq V_S(\mathbf{n}^{e_1}\mathbf{n} + \mathbf{1}^1\mathbf{n} + \mathbf{2}^1 \cdots \mathbf{2n} - \mathbf{1}^1\mathbf{2n}^{e_2}).$$

This completes the proof.

For
$$n = 1, 2, 3, \ldots$$
, we define vectors $\mathbf{x}_n, \mathbf{y}_n \in \mathbb{Z}^{n+1}$ by

$$\mathbf{x}_n = (n, n, n+1, n+2, \dots, 2n-1), \quad \mathbf{y}_n = (n, n+1, n+2, \dots, 2n).$$

LEMMA 2.3. Let *n* be a positive integer and let $\mathbf{a} = (a_1, a_2, ..., a_k) \in \mathbb{N}^k$ with $a_1 \le a_2 \le \cdots \le a_k$ such that $V'_S(\mathbf{a}) = \mathcal{T}(n)$. Then $(n, n + 1, n + 2, ..., 2n - 1) \le \mathbf{a}$. Furthermore, if $2 \notin S$, then $\mathbf{x}_n \le \mathbf{a}$ or $\mathbf{y}_n \le \mathbf{a}$.

PROOF. Since $V'_{S}(\mathbf{a}) = \mathcal{T}(n)$,

$$n = a_1 \le a_2 \le \dots \le a_k. \tag{2.1}$$

To prove the first assertion, it suffices to show that for any integer v with $n + 1 \le v \le 2n - 1$, there is an integer j_v with $1 \le j_v \le k$ such that $a_{j_v} = v$. Let v be an integer such that $n + 1 \le v \le 2n - 1$. Since $v \in V'_S(\mathbf{a})$, we have $v = a_1s_1 + a_2s_2 + \cdots + a_ks_k$ for some

 $s_1, s_2, \ldots, s_k \in S$. Since v > 0, there is an integer j_v with $1 \le j_v \le k$ such that $s_{j_v} > 0$. If $s_l > 0$ for some *l* different from j_v , then

$$v = a_1 s_1 + a_2 s_2 + \dots + a_k s_k \ge a_{j_v} s_{j_v} + a_l s_l \ge a_{j_v} + a_l \ge 2m$$

by (2.1) and this is absurd since $v \le 2n - 1$. It follows that $s_{j_v} = 1$ and $s_l = 0$ for any $l \ne j_v$. Thus, $v = a_{j_v}$ and the first assertion follows.

Now we assume further that $2 \notin S$. Then clearly

$$2n \in V_{S}(\mathbf{a}) - V_{S}(n, n+1, n+2, \dots, 2n-1).$$

From this, one may easily deduce that

 $(n, n, n+1, n+2, \dots, 2n-1) \le \mathbf{a}$ or $(n, n+1, n+2, \dots, 2n-1, 2n) \le \mathbf{a}$.

This completes the proof.

3. Tight $\mathcal{T}(n)$ -universal sums of (generalised) *m*-gonal numbers

Let *m* be an integer greater than or equal to 3. We denote the set of (generalised) *m*-gonal numbers by \mathcal{P}_m (respectively, \mathcal{GP}_m), that is,

$$\mathcal{P}_m = \left\{ \frac{(m-2)x^2 - (m-4)x}{2} : x \in \mathbb{N}_0 \right\}, \quad \mathcal{GP}_m = \left\{ \frac{(m-2)x^2 - (m-4)x}{2} : x \in \mathbb{Z} \right\}.$$

One may easily check that:

(i) $\{0, 1\} \subset \mathcal{P}_m \subseteq \mathcal{GP}_m \text{ for any } m \ge 3;$ (ii) $2 \notin \mathcal{P}_m \text{ for any } m \ge 3;$ (iii) $2 \in \mathcal{GP}_m \text{ only if } m = 5;$ (iv) $\mathcal{P}_3 = \mathcal{GP}_3 = \mathcal{GP}_6;$ (v) $\mathcal{P}_4 = \mathcal{GP}_4.$

PROPOSITION 3.1. Let *m* be an integer greater than or equal to 8. If $n \ge 2m - 5$, then both \mathbf{x}_n and \mathbf{y}_n are tight $\mathcal{T}(n)$ -universal with respect to \mathcal{GP}_m .

PROOF. By [13, Theorem 1.1] and [8, Theorem 3.2], $V_{\mathcal{GP}_m}(\mathbf{1}^{m-4}) = \mathbb{N}_0$. From this, one may easily deduce that $V_{\mathcal{GP}_m}(\mathbf{1}^{e_1}\mathbf{2}^{e_2}\mathbf{3}^{m-4}) = \mathbb{N}_0$ for $(e_1, e_2) \in \{(2, 0), (1, 1)\}$. Now the proposition follows immediately from Lemma 2.2.

THEOREM 3.2. Let *m* be an integer greater than or equal to 8. If $n \ge 2m - 5$, then there are exactly two new tight $\mathcal{T}(n)$ -universal *m*-gonal forms.

PROOF. Note that $2 \notin GP_m$ since $m \neq 5$. The theorem follows immediately from the second assertion of Lemma 2.3 and Proposition 3.1.

PROPOSITION 3.3. There is only one new tight $\mathcal{T}(n)$ -universal pentagonal form for any $n \geq 7$.

PROOF. Note that the vector (1, 3, 3) is universal with respect to \mathcal{GP}_5 (see [4]). By Lemma 2.2, the vector (n, n + 1, n + 2, ..., 2n - 1) is tight $\mathcal{T}(n)$ -universal with respect

to \mathcal{GP}_5 for any $n \ge 7$. Now the proposition follows immediately from the first assertion of Lemma 2.3.

PROPOSITION 3.4. There are exactly two new tight $\mathcal{T}(n)$ -universal heptagonal forms for any $n \ge 11$.

PROOF. Note that $V_{\mathcal{GP}_7}(1, 1, 1, 1) = \mathbb{N}_0$ (see [13] or [8, Theorem 1.2]). It follows that $V_{\mathcal{GP}_7}(\mathbf{1}^{e_1}\mathbf{2}^{e_2}\mathbf{3}^4) = \mathbb{N}_0$ for $(e_1, e_2) \in \{(2, 0), (1, 1)\}$. The proposition follows immediately from Lemma 2.2 and the second assertion of Lemma 2.3.

Let *n* be a positive integer. Now we define (new) tight $\mathcal{T}(n)$ -universal sums of *m*-gonal numbers. For an integer $m \ge 3$ and a vector **a** of positive integers, we call the pair $(\mathcal{P}_m, \mathbf{a})$ a sum of *m*-gonal numbers. We say that $(\mathcal{P}_m, \mathbf{a})$ is tight $\mathcal{T}(n)$ -universal if $V'_{\mathcal{P}_m}(\mathbf{a}) = \mathcal{T}(n)$. A tight $\mathcal{T}(n)$ -universal sum of *m*-gonal numbers $(\mathcal{P}_m, \mathbf{a})$ is called new if $(\mathcal{P}_m, \mathbf{b})$ is not $\mathcal{T}(n)$ -universal whenever $\mathbf{b} < \mathbf{a}$ or, equivalently, $V'_{\mathcal{P}_m}(\mathbf{b}) \subseteq \mathcal{T}(n)$ whenever $\mathbf{b} < \mathbf{a}$.

PROPOSITION 3.5. Let *m* be an integer greater than or equal to 3. If $n \ge 2m + 3$, then both $(\mathcal{P}_m, \mathbf{x}_n)$ and $(\mathcal{P}_m, \mathbf{y}_n)$ are tight $\mathcal{T}(n)$ -universal.

PROOF. Fermat's polygonal number theorem says that $V_{\mathcal{P}_m}(\mathbf{1}^m) = \mathbb{N}_0$. From this, one may easily deduce that $V_{\mathcal{P}_m}(\mathbf{1}^{e_1}\mathbf{2}^{e_2}\mathbf{3}^m) = \mathbb{N}_0$ for $(e_1, e_2) \in \{(2, 0), (1, 1)\}$. Now the tight $\mathcal{T}(n)$ -universalities (with respect to \mathcal{P}_m) of \mathbf{x}_n and \mathbf{y}_n follow immediately from Lemma 2.2.

THEOREM 3.6. Let *m* be an integer greater than or equal to 3. If $n \ge 2m + 3$, then there are exactly two new tight T(n)-universal sums of *m*-gonal numbers.

PROOF. Note that $2 \notin \mathcal{P}_m$. The theorem follows immediately from the second assertion of Lemma 2.3 and Proposition 3.5.

4. Tight universal triangular forms

In this section, we classify tight universal triangular forms. As noted in the introduction, for n = 1, 2, tight $\mathcal{T}(n)$ -universal triangular forms were already classified. We first prove that there are exactly 12 new tight $\mathcal{T}(3)$ -universal triangular forms as listed in Table 1. We also prove that there are exactly two new tight $\mathcal{T}(n)$ -universal triangular forms

$$X_n = p_3(n, n, n+1, n+2, \dots, 2n-1)$$
 and $Y_n = p_3(n, n+1, n+2, \dots, 2n-1, 2n)$

for any $n \ge 4$. We introduce some notation which will be used throughout this section. Recall that a triangular form is a polynomial of the form

$$p_3(a_1, a_2, \dots, a_k) = a_1 \frac{x_1(x_1+1)}{2} + \dots + a_k \frac{x_k(x_k+1)}{2},$$

[6]

_					
a_1	a_2	a_3	a_4	a_5	Conditions on a_5
3	3	4	5		
3	4	4	5	6	
3	4	5	5	6	
3	4	5	6	a_5	$6 \le a_5 \le 16, a_5 \ne 14, 15$

TABLE 1. New tight $\mathcal{T}(3)$ -universal triangular forms $p_3(a_1, a_2, \ldots, a_k)$.

where $(a_1, a_2, ..., a_k)$ is a vector of positive integers. For a nonnegative integer g and a triangular form $p_3(a_1, a_2, ..., a_k)$, we write

$$g \longrightarrow p_3(a_1, a_2, \ldots, a_k)$$

if g is represented by $p_3(a_1, a_2, ..., a_k)$. For a positive integer u and a diagonal quadratic form $\langle a_1, a_2, ..., a_k \rangle$, we write

$$u \xrightarrow{2} \langle a_1, a_2, \ldots, a_k \rangle$$

if there is a vector $(x_1, x_2, \dots, x_k) \in \mathbb{Z}^k$ with $(2, x_1x_2 \cdots x_k) = 1$ such that

$$a_1x_1^2 + a_2x_2^2 + \dots + a_kx_k^2 = u.$$

One may easily see the following observation, which will be used to show the tight universality of triangular forms: a nonnegative integer g is represented by a triangular form $p_3(a_1, a_2, ..., a_k)$ if and only if

$$8g + a_1 + a_2 + \dots + a_k \xrightarrow{2} \langle a_1, a_2, \dots, a_k \rangle$$

A ternary triangular form $p_3(a, b, c)$ is called *regular* if, for every nonnegative integer g, the following holds: if $8g + a + b + c \longrightarrow \langle a, b, c \rangle$ over \mathbb{Z}_p for every odd prime p, then $8g + a + b + c \xrightarrow{2} \langle a, b, c \rangle$. For more information about regular ternary triangular forms, we refer the reader to [9].

PROPOSITION 4.1. The quaternary triangular form $X_3 = p_3(3, 3, 4, 5)$ is tight $\mathcal{T}(3)$ -universal.

PROOF. One may directly check that X_3 represents all integers from 3 to 14. Let g be a positive integer greater than 14 and put g' = 8g + 15. To show that g is represented by

*X*₃, it suffices to show that $g' \xrightarrow{2} \langle 3, 3, 4, 5 \rangle$.

Define sets A and B by

 $A = \{u \in \mathbb{N} : u \equiv 1 \pmod{3} \text{ or } u \equiv 3, 6 \pmod{9}\},\$ $B = \{u \in \mathbb{N} : u \equiv 2 \pmod{8}, \ u \ge 10\}.$

We assert that $v \xrightarrow{2} \langle 3, 3, 4 \rangle$ for any $v \in A \cap B$. To show the assertion, let $v \in A \cap B$. One may easily check that every positive integer in A is represented by the diagonal

379

quadratic form (3, 3, 4) over \mathbb{Z}_3 . Note that (3, 3, 4) represents all elements in \mathbb{Z}_p over \mathbb{Z}_p for any prime $p \ge 5$. Thus, $v \longrightarrow (3, 3, 4)$ over \mathbb{Z}_p for all odd primes p. Furthermore, v = 8v' + 10 for some nonnegative integer v' since $v \in B$. From these statements and the fact that the ternary triangular form $p_3(3, 3, 4)$ is regular (see [9]), it follows that $v \xrightarrow{2} (3, 3, 4)$. So, we have the assertion.

If we define an odd positive integer *d* by

$$d = \begin{cases} 1 & \text{if } g' \equiv 0 \pmod{3} \text{ or } g' \equiv 2, 8 \pmod{9}, \\ 3 & \text{if } g' \equiv 1 \pmod{3}, \\ 5 & \text{if } g' \equiv 5 \pmod{9}, \end{cases}$$

then one may easily check that $g' - 5d^2 \in A \cap B$. Thus, $g' - 5d^2 \xrightarrow{2} \langle 3, 3, 4 \rangle$. Since *d* is odd, it follows that $g' \xrightarrow{2} \langle 3, 3, 4, 5 \rangle$. This completes the proof. \Box

We use the following lemma proved by B. W. Jones in his unpublished thesis [5].

LEMMA 4.2 (Jones). Let p be an odd prime and k be a positive integer not divisible by p such that the Diophantine equation $x^2 + ky^2 = p$ has an integer solution. If the Diophantine equation

$$x^2 + ky^2 = N \quad (N > 0)$$

has an integer solution, then it also has an integer solution (x_0, y_0) satisfying

$$gcd(x_0, y_0, p) = 1.$$

PROPOSITION 4.3. Let g be a positive integer congruent to 5 modulo 8. Assume that g is congruent to 1 modulo 3 or is a multiple of 9. Then g is represented by the diagonal ternary quadratic form $3x^2 + 4y^2 + 6z^2$.

PROOF. Let $L = \langle 3, 4, 6 \rangle$. The class number h(L) of L is 2 and the genus mate is $\langle 1, 6, 12 \rangle$. From the assumptions, one may easily check that $g \longrightarrow \text{gen}(\langle 3, 4, 6 \rangle)$. We may assume that $g \longrightarrow \langle 1, 6, 12 \rangle$ since otherwise we are done. Thus, there is a vector $(x_1, y_1, z_1) \in \mathbb{Z}^3$ such that

$$g = x_1^2 + 6y_1^2 + 12z_1^2.$$

First, assume that $g \equiv 0 \pmod{9}$. One may easily check that $x_1 \equiv 0 \pmod{3}$ and that $y_1 \equiv 0 \pmod{3}$ if and only if $z_1 \equiv 0 \pmod{3}$. By changing the sign of z_1 if necessary, we may further assume that $y_1 \equiv z_1 \pmod{3}$. Thus, $x_1 = 3x_2$ and $y_1 = z_1 - 3y_2$ with integers x_2 and y_2 . Now

$$g = x_1^2 + 6y_1^2 + 12z_1^2$$

= $(3x_2)^2 + 6(z_1 - 3y_2)^2 + 12z_1^2$
= $3(x_2 + 2y_2 - 2z_1)^2 + 4(3y_2)^2 + 6(x_2 - y_2 + z_1)^2$

Second, assume that $g \equiv 1 \pmod{3}$. If $y_1^2 + 2z_1^2 = 0$, then $g = x_1^2$ and this is absurd since $g \equiv 5 \pmod{8}$. Hence, $y_1^2 + 2z_1^2 \neq 0$ and thus, by Lemma 4.2, there are integers y_3 and z_3 with $gcd(y_3, z_3, 3) = 1$ such that

$$y_1^2 + 2z_1^2 = y_3^2 + 2z_3^2.$$

Note that $x_1 \not\equiv 0 \pmod{3}$ since $g \equiv 1 \pmod{3}$. After changing the signs of y_3 and z_3 if necessary, we may assume that $x_1 + y_3 + 2z_3 \equiv 0 \pmod{3}$. Then

$$g = x_1^2 + 6y_3^2 + 12z_3^2$$

= $3\left(\frac{x_1 - 2y_3 - 4z_3}{3}\right)^2 + 4(y_3 - z_3)^2 + 6\left(\frac{x_1 + y_3 + 2z_3}{3}\right)^2$.

Since $x_1 - 2y_3 - 4z_3 \equiv x_1 + y_3 + 2z_3 \equiv 0 \pmod{3}$, we have $g \longrightarrow L$. This completes the proof.

PROPOSITION 4.4. The quaternary triangular form $Y_3 = p_3(3, 4, 5, 6)$ represents all positive integers except 1, 2 and 16.

PROOF. One may directly check that Y_3 represents all integers from 3 to 29 except 16. Let *g* be an integer greater than 29 and put g' = 8g + 18. If we define an odd positive integer *d* by

$$d = \begin{cases} 1 & \text{if } g' \equiv 0 \pmod{3} \text{ or } g' \equiv 5 \pmod{9}, \\ 3 & \text{if } g' \equiv 1 \pmod{3}, \\ 5 & \text{if } g' \equiv 8 \pmod{9}, \\ 7 & \text{if } g' \equiv 2 \pmod{9}, \end{cases}$$

then one may easily check that $g' - 5d^2 \equiv 1 \pmod{3}$ or $g' - 5d^2 \equiv 0 \pmod{9}$. Furthermore, $g' - 5d^2 \equiv 5 \pmod{8}$ since *d* is odd. Hence, $g' - 5d^2 \longrightarrow \langle 3, 4, 6 \rangle$ by Proposition 4.3. Thus, there is a vector $(x, y, z) \in \mathbb{Z}^3$ such that $g' - 5d^2 = 3x^2 + 4y^2 + 6z^2$. One may easily deduce from $g' - 5d^2 \equiv 5 \pmod{8}$ that $xyz \equiv 1 \pmod{2}$. Thus, $g' \xrightarrow{2} \langle 3, 4, 5, 6 \rangle$. This completes the proof.

COROLLARY 4.5. All of the quinary triangular forms in Table 1 are tight T(3)-universal.

PROOF. Let $Z = p_3(a_1, a_2, a_3, a_4, a_5)$ be any quinary triangular form in Table 1. One may see that

$$(3, 4, 5, 6) \prec (a_1, a_2, a_3, a_4, a_5).$$

From this and Proposition 4.4, it follows that Z represents every integer greater than or equal to 3 except 16. One may directly check that Z also represents 16. This completes the proof. \Box

PROPOSITION 4.6. Every new tight $\mathcal{T}(3)$ -universal triangular form appears in Table 1.

PROOF. Let $p_3 = p_3(a_1, a_2, ..., a_k)$ be a new tight $\mathcal{T}(3)$ -universal triangular form. By Lemma 2.3, we have $X_3 \leq p_3$ or $Y_3 \leq p_3$.

First, assume that $X_3 \leq p_3$. From the fact that X_3 is tight $\mathcal{T}(3)$ -universal and the assumption that p_3 is new tight $\mathcal{T}(3)$ -universal, it follows that $p_3 = X_3$.

Second, assume that $Y_3 \leq p_3$. Since Y_3 is not $\mathcal{T}(3)$ -universal, it follows that k > 4 and there is a vector $(j_1, j_2, j_3, j_4) \in \mathbb{Z}^4$ with $(j_1, j_2, j_3, j_4) < (1, 2, ..., k)$ such that $(a_{j_1}, a_{j_2}, a_{j_3}, a_{j_4}) = (3, 4, 5, 6)$. We put $A = \{u \in \mathbb{N} : 3 \leq u \leq 16, u \neq 14, 15\}$. If $a_j \notin A$ for every $j \in \{1, 2, ..., k\} \setminus \{j_1, j_2, j_3, j_4\}$, then one may easily show that p_3 cannot represent 16, which is absurd. Thus, there is an integer j with

$$j \in \{1, 2, \ldots, k\} \setminus \{j_1, j_2, j_3, j_4\}$$

such that $a_j \in A$. One may check that $p_3(a_{j_1}, a_{j_2}, a_{j_3}, a_{j_4}, a_j)$ is in Table 1 and thus it is tight $\mathcal{T}(3)$ -universal. It follows that k = 5 and $p_3 = p_3(a_{j_1}, a_{j_2}, a_{j_3}, a_{j_4}, a_j)$ since otherwise p_3 is not new. This completes the proof.

THEOREM 4.7. For any integer *n* greater than or equal to 3, the triangular form $X_n = p_3(n, n, n + 1, n + 2, ..., 2n - 1)$ is tight $\mathcal{T}(n)$ -universal.

PROOF. First, assume that $n \ge 6$. Let g be an integer greater than or equal to n. Then g can be written in the form g = un + v for some nonnegative integer u and an integer v with $n \le v \le 2n - 1$. Note that the ternary triangular form $p_3(1, 1, 4)$ is universal and thus it represents u. Thus, un is represented by $p_3(n, n, 4n)$. It follows that un is represented by $p_3(n, n, n + 1, n + 2, 2n - 3)$. Thus, if $v \notin \{n + 1, n + 2, 2n - 3\}$, then un + v is represented by $p_3(n, n, n + 1, n + 2, 2n - 3, v)$ and thus by X_n . On the other hand, the ternary triangular form $p_3(1, 1, 5)$ is also universal. Hence, un is represented by $p_3(n, n, 5n)$ and thus also represented by $p_3(n, n, n + 3, 2n - 2, 2n - 1)$. From this we deduce that if $v \notin \{n + 3, 2n - 2, 2n - 1\}$, then un + v is represented by $p_3(n, n, n + 3, 2n - 2, 2n - 1, v)$ and thus by X_n .

Second, assume that n = 5. Let g be an integer greater than or equal to 236. We write g = 15u + v, where u is a positive integer and v is an integer such that $0 \le v \le 14$. Note that the ternary triangular form $p_3(1, 1, 3)$ is regular. For any nonnegative integer w, both $8 \cdot 3w + 5$ and 8(3w + 1) + 5 are represented by $\langle 1, 1, 3 \rangle$ over \mathbb{Z}_3 . Thus, $p_3(1, 1, 3)$ represents every nonnegative integer not equivalent to 2 modulo 3. It follows that $p_3(5, 5, 6 + 9)$ represents every nonnegative integer congruent to 0 or 5 modulo 15. Hence, if $v \in \{0, 5\}$, then $g = 15u + v \longrightarrow p_3(5, 5, 6 + 9)$ and so $g \longrightarrow p_3(5, 5, 6, 9)$. One may directly check that the binary triangular form $p_3(7, 8)$ represents all integers in the set

$$\{31, 122, 48, 94, 80, 231, 7, 8, 24\}.$$

If $v \notin \{0, 5\}$, then one may easily see that there is a positive integer *a* in the above set such that g - a is a nonnegative integer congruent to 0 or 5 modulo 15. Thus, we have $g - a \longrightarrow p_3(5, 5, 6 + 9, 7, 8)$. One may directly check that $p_3(5, 5, 6, 7, 8, 9)$ represents all integers from 5 to 235.

Third, assume that n = 4. Note that the ternary triangular form $p_3(2, 2, 3)$ is regular. From this, one may easily show that it represents every nonnegative integer not

congruent to 1 modulo 3. Thus, $p_3(4, 4, 6)$ represents every nonnegative integer of the form 6u and 6u + 4, where $u \in \mathbb{Z}_{\geq 0}$. Note that $p_3(5, 7)$ represents 5, 7, 15 and 26 as

$$5 = 5 \cdot 1 + 7 \cdot 0, \ 7 = 5 \cdot 0 + 7 \cdot 1, \ 15 = 5 \cdot 3 + 7 \cdot 0, \ 26 = 5 \cdot 1 + 7 \cdot 3$$

From this and the fact that $p_3(4, 4, 6)$ represents every nonnegative integer of the form 6u, it follows that $p_3(4, 4, 5, 6, 7)$ represents every nonnegative integer of the form

$$6u + 7$$
, $6u + 26$, $6u + 15$ and $6u + 5$.

One may directly check that $p_3(4, 4, 5, 6, 7)$ represents all integers from 4 to 25.

The case of n = 3 was already proved in Proposition 4.1. This completes the proof.

THEOREM 4.8. For any integer *n* greater than or equal to 4, the triangular form $Y_n = p_3(n, n + 1, n + 2, ..., 2n)$ is tight $\mathcal{T}(n)$ -universal.

PROOF. First, assume that the integer *n* is greater than 4. Let *g* be an integer greater than or equal to *n*. We write g = un + v for some nonnegative integer *u* and an integer *v* with $n \le v \le 2n - 1$. Since $n \ge 5$, there is an integer n_1 with $1 \le n_1 \le [n/2]$ such that the three integers $n + n_1$, $2n - n_1$ and *v* are all distinct. Since the ternary triangular form $p_3(1, 2, 3)$ is universal, every nonnegative integer which is a multiple of *n* is represented by $p_3(n, 2n, 3n)$ and thus also by $p_3(n, 2n, n + n_1, 2n - n_1)$. It follows that g = un + v is represented by $p_3(n, 2n, n + n_1, 2n - n_1, v)$. From this and the choice of *v*, it follows that *g* is represented by Y_n .

Now we assume that n = 4. Let g_1 be an integer greater than or equal to 830. If we define two odd positive integers α and β as

$$(\alpha,\beta) = \begin{cases} (1,1) & \text{if } g_1 \equiv 0 \pmod{6}, \\ (1,17) & \text{if } g_1 \equiv 1 \pmod{6}, \\ (3,43) & \text{if } g_1 \equiv 2 \pmod{6}, \\ (3,27) & \text{if } g_1 \equiv 3 \pmod{6}, \\ (1,33) & \text{if } g_1 \equiv 4 \pmod{6}, \\ (5,37) & \text{if } g_1 \equiv 5 \pmod{6}, \end{cases}$$

then one may easily check that $8g_1 + 30 - 5\alpha^2 - 7\beta^2$ is a nonnegative integer congruent to 18 modulo 48. Put

$$s = 8g_1 + 30 - 5\alpha^2 - 7\beta^2$$

and let $L = \langle 4, 6, 8 \rangle$. We assert that $s \xrightarrow{2} L$. One may easily check that *s* is locally represented by *L*. Note that the class number of *L* is 2 and the genus mate is $M = \langle 2, 4, 24 \rangle$. If $s \longrightarrow L$, then we have $s \xrightarrow{2} L$ since $s \equiv 2 \pmod{16}$. Hence, we may assume that $s \longrightarrow M$. Thus, there is a vector $(x, y, z) \in \mathbb{Z}^3$ such that

$$s = 2x^2 + 4y^2 + 24z^2.$$

Since $s \equiv 0 \pmod{3}$, either $xy \not\equiv 0 \pmod{3}$ or $x \equiv y \equiv 0 \pmod{3}$ holds. After changing the sign of y if necessary, we may assume that $x \equiv y \pmod{3}$. If we put $x = y - 3x_1$, then

$$s = 2x^{2} + 4y^{2} + 24z^{2}$$

= 2(y - 3x₁)² + 4y² + 24z²
= 4(x₁ + 2z)² + 6(x₁ - y)² + 8(x₁ - z)².

In the above equation, one may easily deduce that

$$x_1 + 2z \equiv x_1 - y \equiv x_1 - z \equiv 1 \pmod{2}$$

from the fact that $s \equiv 2 \pmod{16}$. Thus, we have $s \xrightarrow{2} L$. It follows immediately from this that

$$8g_1 + 30 \xrightarrow{2} \langle 4, 5, 6, 7, 8 \rangle,$$

which is equivalent to $g_1 \longrightarrow Y_4$. On the other hand, one may directly check that Y_4 represents all integers from 4 to 829. This completes the proof.

THEOREM 4.9. For any integer *n* exceeding 3, there are exactly two new tight $\mathcal{T}(n)$ -universal triangular forms X_n and Y_n .

PROOF. The result follows immediately from Lemma 2.3 and Theorems 4.7 and 4.8.

References

- [1] M. Bhargava, 'On the Conway–Schneeberger fifteen theorem', *Contemp. Math.* 272 (2000), 27–38.
- [2] W. Bosma and B. Kane, 'The triangular theorem of eight and representation by quadratic polynomials', *Proc. Amer. Math. Soc.* 141(5) (2013), 1473–1486.
- [3] J. H. Conway, 'Universal quadratic forms and the fifteen theorem', *Contemp. Math.* **272** (2000), 23–26.
- [4] F. Ge and Z.-W. Sun, 'On some universal sums of generalized polygonal numbers', *Colloq. Math.* 145 (2016), 149–155.
- [5] B. W. Jones, *Representation by Positive Ternary Quadratic Forms* (PhD Thesis, University of Chicago, 1928).
- [6] J. Ju, 'Universal sums of generalized pentagonal numbers', Ramanujan J. 51(3) (2020), 479–494.
- [7] J. Ju and B.-K. Oh, 'Universal sums of generalized octagonal numbers', J. Number Theory 190 (2018), 292–302.
- [8] D. Kim, 'Weighted sums of generalized polygonal numbers with coefficients 1 or 2', Acta Arith., to appear.
- [9] M. Kim and B.-K. Oh, 'Regular ternary triangular forms', J. Number Theory 214 (2020), 137–169.
- [10] M. Kim and B.-K. Oh, 'Tight universal quadratic forms', Preprint, arXiv:2104.02440 (2021).
- [11] Y. Kitaoka, Arithmetic of Quadratic Forms, Cambridge Tracts in Mathematics, 106 (Cambridge University Press, Cambridge, 1993).

- [12] O. T. O'Meara, Introduction to Quadratic Forms (Springer, New York, 1963).
- [13] Z.-W. Sun, 'A result similar to Lagrange's theorem', J. Number Theory 162 (2016), 190–211.

MINGYU KIM, Department of Mathematics, Sungkyunkwan University, Suwon 16419, Korea e-mail: kmg2562@skku.edu

384