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Abstract

For a subset S of nonnegative integers and a vector a = (a1, . . . , ak) of positive integers, define the set
V ′S(a) = {a1s1 + · · · + aksk : si ∈ S} − {0}. For a positive integer n, let T (n) be the set of integers greater
than or equal to n. We consider the problem of finding all vectors a satisfying V ′S(a) = T (n) when S is the
set of (generalised) m-gonal numbers and n is a positive integer. In particular, we completely resolve the
case when S is the set of triangular numbers.

2020 Mathematics subject classification: primary 11E12; secondary 11E20, 11P99.
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1. Introduction

For a positive integer m greater than or equal to 3, the polynomial

Pm(x) =
(m − 2)x2 − (m − 4)x

2
is an integer-valued quadratic polynomial and Pm(s) is the sth m-gonal number
for a nonnegative integer s. For a vector a = (a1, a2, . . . , ak) of positive integers, a
polynomial of the form

pm(a) = pm(a)(x1, . . . , xk) = a1Pm(x1) + · · · + akPm(xk)

in variables x1, x2, . . . , xk is called a k-ary m-gonal form (or a k-ary sum of generalised
m-gonal numbers). We say that an integer N is represented by an m-gonal form pm(a)
if the equation

pm(a)(x1, . . . , xk) = N

has an integer solution. The minimum of pm(a), denoted by min(pm(a)), is the smallest
positive integer represented by pm(a). We call an m-gonal form tight universal if it
represents every positive integer greater than its minimum. A tight universal m-gonal

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the
government of Korea (MSIT) (NRF-2021R1C1C2010133).
© The Author(s), 2021. Published by Cambridge University Press on behalf of Australian Mathematical
Publishing Association Inc.

372

https://doi.org/10.1017/S0004972721000903 Published online by Cambridge University Press

http://dx.doi.org/10.1017/S0004972721000903
https://orcid.org/0000-0002-9094-3007
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0004972721000903&domain=pdf
https://doi.org/10.1017/S0004972721000903
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form having minimum 1 is simply called universal. There are several results on the
classification of universal m-gonal forms (see, for example, [2, 6, 7, 8]). Note that
P4(x) = x2 and the classification of universal diagonal quadratic forms can be easily
done by using the Conway–Schneeberger 15 theorem (see [1, 3]).

Recently, the author and Oh [10] studied (positive definite integral) quadratic forms
which represent every positive integer greater than the minimum of the form. We
called such a quadratic form f tight T (n)-universal, where n is the minimum of the
quadratic form f. We classified ‘diagonal’ tight universal quadratic forms, which gives
the classification of tight universal m-gonal forms in the case of m = 4.

We follow the notation and terminologies used in [10]. For n = 1, 2, 3, . . . , we
denote by T (n) the set of integers greater than or equal to n. We say that an m-gonal
form is tight T (n)-universal if it is tight universal with minimum n. In Section 3,
we resolve the classification problem of tight T (n)-universal m-gonal forms in the
following cases:

(i) m = 5, n ≥ 7; (ii) m = 7, n ≥ 11; (iii) m ≥ 8, n ≥ 2m − 5.

In fact, it will be proved that there are ‘essentially’ two tight T (n)-universal
m-gonal forms in the cases (ii) and (iii). It will also be shown that there is a
unique tight T (n)-universal pentagonal form for any n ≥ 7. In addition, we classify
tight T (n)-universal sums of m-gonal numbers (for the definition, see Section 3).
In Section 4, we classify tight universal triangular forms by finding all tight
T (n)-universal triangular forms for every integer n ≥ 3. Universal triangular forms
were classified in [2] and tight T (2)-universal triangular forms were found by Ju
[‘Almost universal sums of triangular numbers with one exception’, submitted for
publication]. To classify tight universal triangular forms, we use the theory of quadratic
forms and adapt the geometric language of quadratic spaces and lattices, generally
following [11, 12]. Some basic notation and terminologies will be given in Section 2.

2. Preliminaries

Let R be the ring of rational integers Z or the ring of p-adic integers Zp for a prime p
and let F be the field of fractions of R. An R-lattice is a finitely generated R-submodule
of a quadratic space (W, Q) over F. We let B : W ×W → F be the symmetric bilinear
form associated to the quadratic map Q so that B(x, x) = Q(x) for every x ∈ W. For an
element a in R and an R-lattice L, we say that a is represented by L over R and write
a −→ L over R if Q(x) = a for some vector x ∈ L.

Let L be a Z-lattice on a quadratic space W over Q. The genus of L, denoted gen(L),
is the set of all Z-lattices on W which are locally isometric to L. The number of
isometry classes in gen(L) is called the class number of L and denoted by h(L). If
an integer a is represented by L over Zp for all primes p (including ∞), then there
is a Z-lattice K in gen(L) such that a −→ K (see [12, 102:5 Example]). In this case,
we say that a is represented by the genus of L and write a −→ gen(L). For a Z-basis
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{v1, v2, . . . , vk} of L, the corresponding quadratic form fL is defined by

fL =
k∑

i,j=1

B(vi, vj)xixj.

If L admits an orthogonal basis {w1, w2, . . . , wk}, then we simply write

L � 〈Q(w1), Q(w2), . . . , Q(wk)〉.

We abuse the notation and the diagonal quadratic form a1x2
1 + a2x2

2 + · · · + akx2
k will

also be denoted by 〈a1, a2, . . . , ak〉. The scale of L is denoted by s(L). Throughout,
we always assume that every Z-lattice is positive definite and primitive in the sense
that s(L) = Z. Any unexplained notation and terminologies on the representation of
quadratic forms can be found in [11] or [12].

Throughout this section, S always denotes a set of nonnegative integers containing
0 and 1, unless otherwise stated. For a vector a = (a1, a2, . . . , ak) ∈ Nk, we define

VS(a) = {a1s1 + a2s2 + · · · + aksk : si ∈ S}

and define V ′S(a) = VS(a) − {0}. For example, if S is the set of squares of integers, then

V ′S(1, 1, 1, 1) = N, V ′S(1, 1, 1) = N − {4a(8b + 7) : a, b ∈ N0}

by Lagrange’s four-square theorem and Legendre’s three-square theorem, respectively.
We denote the set of nonnegative integers by N0 for simplicity. For two vectors
u = (u1, u2, . . . , ur) ∈ Nr and v = (v1, v2, . . . , vs) ∈ Ns, we write

u 
 v (u ≺ v)

if {ui}1≤i≤r is a subsequence (proper subsequence, respectively) of {vj}1≤j≤s. Let n be
a positive integer and let a be a vector of positive integers. We say that a is tight
T (n)-universal with respect to S if V ′S(a) = T (n). When n = 1, we simply say that a is
universal with respect to S. We say that a is new tight T (n)-universal with respect
to S if V ′S(a) = T (n) and V ′S(b) � T (n) whenever b ≺ a. For n1, n2, . . . , nr ∈ N and
e1, e2, . . . , er ∈ N0, we denote by n1

e1 n2
e2 · · ·nr

er the vector

(n1, . . . , n1, n2, . . . , n2, . . . , nr, . . . , nr) ∈ Ze1+e2+···+er ,

where each ni is repeated ei times for i = 1, 2, . . . , r. The first lemma is straightforward.

LEMMA 2.1. Let a, b be vectors of positive integers such that a 
 b and let S, S′ be sets
of nonnegative integers containing 0 and 1 such that S ⊆ S′. Then:

(i) VS(a) ⊆ VS(b);
(ii) VS(a) ⊆ VS′(a);
(iii) VS(u + v) ⊂ VS(u, v) for any u, v ∈ N;
(iv) min(V ′S(a)) = min{ai : 1 ≤ i ≤ k}, where a = (a1, a2, . . . , ak).

LEMMA 2.2. Let a = 1e1 2e2 3e3 be a vector with a positive integer e1 and nonnegative
integers e2 and e3. Assume that VS(a) = N0. Then, for any integer n ≥ 2e3 + 3,
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the vector

b = ne1 n + 11n + 21 · · · 2n − 112ne2

is tight T (n)-universal with respect to S.

PROOF. Let n be an integer with n ≥ 2e3 + 3 and let m be an integer greater than
or equal to n. Then m can be written in the form un + v for a nonnegative integer u
and an integer v with n ≤ v ≤ 2n − 1. To prove the lemma, it suffices to show that
un + v ∈ VS(b). Since

u ∈ N0 = VS(a) = VS(1e1 2e2 3e3 ),

we have

un ∈ VS(ne1 2ne2 3ne3 ).

Since the other cases can be dealt with in a similar manner, we only provide the proof
when

n + 1 ≤ v ≤ e3 + 1 or 2n − e3 − 1 ≤ v ≤ 2n − 1.

By applying Lemma 2.1(iii) e3 times,

VS(3ne3 ) ⊆ VS(n + 1, 2n − 1, n + 2, 2n − 2, . . . , v̂, 3̂n − v, . . . , n + e3 + 1, 2n − e3 − 1),

where the hat symbol ˆ indicates that the component is omitted. It follows that

un ∈ VS(ne1 2ne2 3ne3 )

⊆ VS(ne1 2ne2 n + 112n − 11 · · · v̂1 ̂3n − v1 · · ·n + e3 + 112n − e3 − 11).

Therefore,

un + v ∈ VS(ne1 2ne2 n + 112n − 11 · · · v13n − v1 · · ·n + e3 + 112n − e3 − 11)

⊆ VS(ne1 n + 11n + 21 · · · 2n − 112ne2 ).

This completes the proof. �

For n = 1, 2, 3, . . . , we define vectors xn, yn ∈ Zn+1 by

xn = (n, n, n + 1, n + 2, . . . , 2n − 1), yn = (n, n + 1, n + 2, . . . , 2n).

LEMMA 2.3. Let n be a positive integer and let a = (a1, a2, . . . , ak) ∈ Nk with a1 ≤ a2 ≤
· · · ≤ ak such that V ′S(a) = T (n). Then (n, n + 1, n + 2, . . . , 2n − 1) 
 a. Furthermore, if
2 � S, then xn 
 a or yn 
 a.

PROOF. Since V ′S(a) = T (n),

n = a1 ≤ a2 ≤ · · · ≤ ak. (2.1)

To prove the first assertion, it suffices to show that for any integer v with n + 1 ≤ v ≤
2n − 1, there is an integer jv with 1 ≤ jv ≤ k such that ajv = v. Let v be an integer such
that n + 1 ≤ v ≤ 2n − 1. Since v ∈ V ′S(a), we have v = a1s1 + a2s2 + · · · + aksk for some
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s1, s2, . . . , sk ∈ S. Since v > 0, there is an integer jv with 1 ≤ jv ≤ k such that sjv > 0. If
sl > 0 for some l different from jv, then

v = a1s1 + a2s2 + · · · + aksk ≥ ajv sjv + alsl ≥ ajv + al ≥ 2n

by (2.1) and this is absurd since v ≤ 2n − 1. It follows that sjv = 1 and sl = 0 for any
l � jv. Thus, v = ajv and the first assertion follows.

Now we assume further that 2 � S. Then clearly

2n ∈ VS(a) − VS(n, n + 1, n + 2, . . . , 2n − 1).

From this, one may easily deduce that

(n, n, n + 1, n + 2, . . . , 2n − 1) 
 a or (n, n + 1, n + 2, . . . , 2n − 1, 2n) 
 a.

This completes the proof. �

3. Tight T (n)-universal sums of (generalised) m-gonal numbers

Let m be an integer greater than or equal to 3. We denote the set of (generalised)
m-gonal numbers by Pm (respectively, GPm), that is,

Pm =

{ (m − 2)x2 − (m − 4)x
2

: x ∈ N0

}
, GPm =

{ (m − 2)x2 − (m − 4)x
2

: x ∈ Z
}
.

One may easily check that:

(i) {0, 1} ⊂ Pm ⊆ GPm for any m ≥ 3;
(ii) 2 � Pm for any m ≥ 3;
(iii) 2 ∈ GPm only if m = 5;
(iv) P3 = GP3 = GP6;
(v) P4 = GP4.

PROPOSITION 3.1. Let m be an integer greater than or equal to 8. If n ≥ 2m − 5, then
both xn and yn are tight T (n)-universal with respect to GPm.

PROOF. By [13, Theorem 1.1] and [8, Theorem 3.2], VGPm (1m−4) = N0. From this, one
may easily deduce that VGPm (1e1 2e2 3m−4) = N0 for (e1, e2) ∈ {(2, 0), (1, 1)}. Now the
proposition follows immediately from Lemma 2.2. �

THEOREM 3.2. Let m be an integer greater than or equal to 8. If n ≥ 2m − 5, then
there are exactly two new tight T (n)-universal m-gonal forms.

PROOF. Note that 2 � GPm since m � 5. The theorem follows immediately from the
second assertion of Lemma 2.3 and Proposition 3.1. �

PROPOSITION 3.3. There is only one new tight T (n)-universal pentagonal form for
any n ≥ 7.

PROOF. Note that the vector (1, 3, 3) is universal with respect to GP5 (see [4]). By
Lemma 2.2, the vector (n, n + 1, n + 2, . . . , 2n − 1) is tight T (n)-universal with respect
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to GP5 for any n ≥ 7. Now the proposition follows immediately from the first assertion
of Lemma 2.3. �

PROPOSITION 3.4. There are exactly two new tight T (n)-universal heptagonal forms
for any n ≥ 11.

PROOF. Note that VGP7 (1, 1, 1, 1) = N0 (see [13] or [8, Theorem 1.2]). It follows that
VGP7 (1e1 2e2 34) = N0 for (e1, e2) ∈ {(2, 0), (1, 1)}. The proposition follows immediately
from Lemma 2.2 and the second assertion of Lemma 2.3. �

Let n be a positive integer. Now we define (new) tight T (n)-universal sums of
m-gonal numbers. For an integer m ≥ 3 and a vector a of positive integers, we call
the pair (Pm, a) a sum of m-gonal numbers. We say that (Pm, a) is tight T (n)-universal
if V ′Pm

(a) = T (n). A tight T (n)-universal sum of m-gonal numbers (Pm, a) is called
new if (Pm, b) is not T (n)-universal whenever b ≺ a or, equivalently, V ′Pm

(b) � T (n)
whenever b ≺ a.

PROPOSITION 3.5. Let m be an integer greater than or equal to 3. If n ≥ 2m + 3, then
both (Pm, xn) and (Pm, yn) are tight T (n)-universal.

PROOF. Fermat’s polygonal number theorem says that VPm (1m) = N0. From this,
one may easily deduce that VPm (1e1 2e2 3m) = N0 for (e1, e2) ∈ {(2, 0), (1, 1)}. Now the
tight T (n)-universalities (with respect to Pm) of xn and yn follow immediately from
Lemma 2.2. �

THEOREM 3.6. Let m be an integer greater than or equal to 3. If n ≥ 2m + 3, then
there are exactly two new tight T (n)-universal sums of m-gonal numbers.

PROOF. Note that 2 � Pm. The theorem follows immediately from the second assertion
of Lemma 2.3 and Proposition 3.5. �

4. Tight universal triangular forms

In this section, we classify tight universal triangular forms. As noted in the
introduction, for n = 1, 2, tightT (n)-universal triangular forms were already classified.
We first prove that there are exactly 12 new tight T (3)-universal triangular forms as
listed in Table 1. We also prove that there are exactly two new tight T (n)-universal
triangular forms

Xn = p3(n, n, n + 1, n + 2, . . . , 2n − 1) and Yn = p3(n, n + 1, n + 2, . . . , 2n − 1, 2n)

for any n ≥ 4. We introduce some notation which will be used throughout this section.
Recall that a triangular form is a polynomial of the form

p3(a1, a2, . . . , ak) = a1
x1(x1 + 1)

2
+ · · · + ak

xk(xk + 1)
2

,
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TABLE 1. New tight T (3)-universal triangular forms p3(a1, a2, . . . , ak).

a1 a2 a3 a4 a5 Conditions on a5

3 3 4 5
3 4 4 5 6
3 4 5 5 6
3 4 5 6 a5 6 ≤ a5 ≤ 16, a5 � 14, 15

where (a1, a2, . . . , ak) is a vector of positive integers. For a nonnegative integer g and
a triangular form p3(a1, a2, . . . , ak), we write

g −→ p3(a1, a2, . . . , ak)

if g is represented by p3(a1, a2, . . . , ak). For a positive integer u and a diagonal
quadratic form 〈a1, a2, . . . , ak〉, we write

u
2−→ 〈a1, a2, . . . , ak〉

if there is a vector (x1, x2, . . . , xk) ∈ Zk with (2, x1x2 · · · xk) = 1 such that

a1x2
1 + a2x2

2 + · · · + akx2
k = u.

One may easily see the following observation, which will be used to show the tight
universality of triangular forms: a nonnegative integer g is represented by a triangular
form p3(a1, a2, . . . , ak) if and only if

8g + a1 + a2 + · · · + ak
2−→ 〈a1, a2, . . . , ak〉.

A ternary triangular form p3(a, b, c) is called regular if, for every nonnegative integer
g, the following holds: if 8g + a + b + c −→ 〈a, b, c〉 over Zp for every odd prime p,

then 8g + a + b + c
2−→ 〈a, b, c〉. For more information about regular ternary triangular

forms, we refer the reader to [9].

PROPOSITION 4.1. The quaternary triangular form X3 = p3(3, 3, 4, 5) is tight
T (3)-universal.

PROOF. One may directly check that X3 represents all integers from 3 to 14. Let g be a
positive integer greater than 14 and put g′ = 8g + 15. To show that g is represented by

X3, it suffices to show that g′
2−→ 〈3, 3, 4, 5〉.

Define sets A and B by

A = {u ∈ N : u ≡ 1 (mod 3) or u ≡ 3, 6 (mod 9)},
B = {u ∈ N : u ≡ 2 (mod 8), u ≥ 10}.

We assert that v
2−→ 〈3, 3, 4〉 for any v ∈ A ∩ B. To show the assertion, let v ∈ A ∩ B.

One may easily check that every positive integer in A is represented by the diagonal
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quadratic form 〈3, 3, 4〉 over Z3. Note that 〈3, 3, 4〉 represents all elements in Zp over Zp

for any prime p ≥ 5. Thus, v −→ 〈3, 3, 4〉 over Zp for all odd primes p. Furthermore,
v = 8v′ + 10 for some nonnegative integer v′ since v ∈ B. From these statements and
the fact that the ternary triangular form p3(3, 3, 4) is regular (see [9]), it follows that

v
2−→ 〈3, 3, 4〉. So, we have the assertion.
If we define an odd positive integer d by

d =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 if g′ ≡ 0 (mod 3) or g′ ≡ 2, 8 (mod 9),
3 if g′ ≡ 1 (mod 3),
5 if g′ ≡ 5 (mod 9),

then one may easily check that g′ − 5d2 ∈ A ∩ B. Thus, g′ − 5d2 2−→ 〈3, 3, 4〉. Since d

is odd, it follows that g′
2−→ 〈3, 3, 4, 5〉. This completes the proof. �

We use the following lemma proved by B. W. Jones in his unpublished thesis [5].

LEMMA 4.2 (Jones). Let p be an odd prime and k be a positive integer not divisible
by p such that the Diophantine equation x2 + ky2 = p has an integer solution. If the
Diophantine equation

x2 + ky2 = N (N > 0)

has an integer solution, then it also has an integer solution (x0, y0) satisfying

gcd(x0, y0, p) = 1.

PROPOSITION 4.3. Let g be a positive integer congruent to 5 modulo 8. Assume that g
is congruent to 1 modulo 3 or is a multiple of 9. Then g is represented by the diagonal
ternary quadratic form 3x2 + 4y2 + 6z2.

PROOF. Let L = 〈3, 4, 6〉. The class number h(L) of L is 2 and the genus mate is
〈1, 6, 12〉. From the assumptions, one may easily check that g −→ gen(〈3, 4, 6〉). We
may assume that g −→ 〈1, 6, 12〉 since otherwise we are done. Thus, there is a vector
(x1, y1, z1) ∈ Z3 such that

g = x2
1 + 6y2

1 + 12z2
1.

First, assume that g ≡ 0 (mod 9). One may easily check that x1 ≡ 0 (mod 3) and that
y1 ≡ 0 (mod 3) if and only if z1 ≡ 0 (mod 3). By changing the sign of z1 if necessary,
we may further assume that y1 ≡ z1 (mod 3). Thus, x1 = 3x2 and y1 = z1 − 3y2 with
integers x2 and y2. Now

g = x2
1 + 6y2

1 + 12z2
1

= (3x2)2 + 6(z1 − 3y2)2 + 12z2
1

= 3(x2 + 2y2 − 2z1)2 + 4(3y2)2 + 6(x2 − y2 + z1)2.
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Second, assume that g ≡ 1 (mod 3). If y2
1 + 2z2

1 = 0, then g = x2
1 and this is absurd

since g ≡ 5 (mod 8). Hence, y2
1 + 2z2

1 � 0 and thus, by Lemma 4.2, there are integers
y3 and z3 with gcd(y3, z3, 3) = 1 such that

y2
1 + 2z2

1 = y2
3 + 2z2

3.

Note that x1 � 0 (mod 3) since g ≡ 1 (mod 3). After changing the signs of y3 and z3 if
necessary, we may assume that x1 + y3 + 2z3 ≡ 0 (mod 3). Then

g = x2
1 + 6y2

3 + 12z2
3

= 3
(x1 − 2y3 − 4z3

3

)2
+ 4(y3 − z3)2 + 6

(x1 + y3 + 2z3

3

)2
.

Since x1 − 2y3 − 4z3 ≡ x1 + y3 + 2z3 ≡ 0 (mod 3), we have g −→ L. This completes the
proof. �

PROPOSITION 4.4. The quaternary triangular form Y3 = p3(3, 4, 5, 6) represents all
positive integers except 1, 2 and 16.

PROOF. One may directly check that Y3 represents all integers from 3 to 29 except 16.
Let g be an integer greater than 29 and put g′ = 8g + 18. If we define an odd positive
integer d by

d =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if g′ ≡ 0 (mod 3) or g′ ≡ 5 (mod 9),
3 if g′ ≡ 1 (mod 3),
5 if g′ ≡ 8 (mod 9),
7 if g′ ≡ 2 (mod 9),

then one may easily check that g′ − 5d2 ≡ 1 (mod 3) or g′ − 5d2 ≡ 0 (mod 9).
Furthermore, g′ − 5d2 ≡ 5 (mod 8) since d is odd. Hence, g′ − 5d2 −→ 〈3, 4, 6〉 by
Proposition 4.3. Thus, there is a vector (x, y, z) ∈ Z3 such that g′− 5d2 = 3x2 + 4y2+ 6z2.
One may easily deduce from g′ − 5d2 ≡ 5 (mod 8) that xyz ≡ 1 (mod 2). Thus,

g′
2−→ 〈3, 4, 5, 6〉. This completes the proof. �

COROLLARY 4.5. All of the quinary triangular forms in Table 1 are tight
T (3)-universal.

PROOF. Let Z = p3(a1, a2, a3, a4, a5) be any quinary triangular form in Table 1. One
may see that

(3, 4, 5, 6) ≺ (a1, a2, a3, a4, a5).

From this and Proposition 4.4, it follows that Z represents every integer greater than or
equal to 3 except 16. One may directly check that Z also represents 16. This completes
the proof. �

PROPOSITION 4.6. Every new tight T (3)-universal triangular form appears in
Table 1.

https://doi.org/10.1017/S0004972721000903 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972721000903


[10] Tight universal triangular forms 381

PROOF. Let p3 = p3(a1, a2, . . . , ak) be a new tight T (3)-universal triangular form. By
Lemma 2.3, we have X3 
 p3 or Y3 
 p3.

First, assume that X3 
 p3. From the fact that X3 is tight T (3)-universal and the
assumption that p3 is new tight T (3)-universal, it follows that p3 = X3.

Second, assume that Y3 
 p3. Since Y3 is not T (3)-universal, it follows that
k > 4 and there is a vector ( j1, j2, j3, j4) ∈ Z4 with ( j1, j2, j3, j4) ≺ (1, 2, . . . , k) such that
(aj1 , aj2 , aj3 , aj4 ) = (3, 4, 5, 6). We put A = {u ∈ N : 3 ≤ u ≤ 16, u � 14, 15}. If aj � A for
every j ∈ {1, 2, . . . , k} \ { j1, j2, j3, j4}, then one may easily show that p3 cannot represent
16, which is absurd. Thus, there is an integer j with

j ∈ {1, 2, . . . , k} \ { j1, j2, j3, j4}
such that aj ∈ A. One may check that p3(aj1 , aj2 , aj3 , aj4 , aj) is in Table 1 and thus
it is tight T (3)-universal. It follows that k = 5 and p3 = p3(aj1 , aj2 , aj3 , aj4 , aj) since
otherwise p3 is not new. This completes the proof. �

THEOREM 4.7. For any integer n greater than or equal to 3, the triangular form Xn =

p3(n, n, n + 1, n + 2, . . . , 2n − 1) is tight T (n)-universal.

PROOF. First, assume that n ≥ 6. Let g be an integer greater than or equal to n.
Then g can be written in the form g = un + v for some nonnegative integer u and
an integer v with n ≤ v ≤ 2n − 1. Note that the ternary triangular form p3(1, 1, 4) is
universal and thus it represents u. Thus, un is represented by p3(n, n, 4n). It follows that
un is represented by p3(n, n, n + 1, n + 2, 2n − 3). Thus, if v � {n + 1, n + 2, 2n − 3},
then un + v is represented by p3(n, n, n + 1, n + 2, 2n − 3, v) and thus by Xn. On the
other hand, the ternary triangular form p3(1, 1, 5) is also universal. Hence, un is
represented by p3(n, n, 5n) and thus also represented by p3(n, n, n + 3, 2n − 2, 2n − 1).
From this we deduce that if v � {n + 3, 2n − 2, 2n − 1}, then un + v is represented by
p3(n, n, n + 3, 2n − 2, 2n − 1, v) and thus by Xn.

Second, assume that n = 5. Let g be an integer greater than or equal to 236. We write
g = 15u + v, where u is a positive integer and v is an integer such that 0 ≤ v ≤ 14. Note
that the ternary triangular form p3(1, 1, 3) is regular. For any nonnegative integer w,
both 8 · 3w + 5 and 8(3w + 1) + 5 are represented by 〈1, 1, 3〉 over Z3. Thus, p3(1, 1, 3)
represents every nonnegative integer not equivalent to 2 modulo 3. It follows that
p3(5, 5, 6 + 9) represents every nonnegative integer congruent to 0 or 5 modulo 15.
Hence, if v ∈ {0, 5}, then g = 15u + v −→ p3(5, 5, 6 + 9) and so g −→ p3(5, 5, 6, 9).
One may directly check that the binary triangular form p3(7, 8) represents all integers
in the set

{31, 122, 48, 94, 80, 231, 7, 8, 24}.
If v � {0, 5}, then one may easily see that there is a positive integer a in the above set
such that g − a is a nonnegative integer congruent to 0 or 5 modulo 15. Thus, we have
g − a −→ p3(5, 5, 6 + 9, 7, 8). One may directly check that p3(5, 5, 6, 7, 8, 9) represents
all integers from 5 to 235.

Third, assume that n = 4. Note that the ternary triangular form p3(2, 2, 3) is regular.
From this, one may easily show that it represents every nonnegative integer not
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congruent to 1 modulo 3. Thus, p3(4, 4, 6) represents every nonnegative integer of
the form 6u and 6u + 4, where u ∈ Z≥0. Note that p3(5, 7) represents 5, 7, 15 and 26 as

5 = 5 · 1 + 7 · 0, 7 = 5 · 0 + 7 · 1, 15 = 5 · 3 + 7 · 0, 26 = 5 · 1 + 7 · 3.

From this and the fact that p3(4, 4, 6) represents every nonnegative integer of the form
6u, it follows that p3(4, 4, 5, 6, 7) represents every nonnegative integer of the form

6u + 7, 6u + 26, 6u + 15 and 6u + 5.

One may directly check that p3(4, 4, 5, 6, 7) represents all integers from 4 to 25.
The case of n = 3 was already proved in Proposition 4.1. This completes the

proof. �

THEOREM 4.8. For any integer n greater than or equal to 4, the triangular form
Yn = p3(n, n + 1, n + 2, . . . , 2n) is tight T (n)-universal.

PROOF. First, assume that the integer n is greater than 4. Let g be an integer greater
than or equal to n. We write g = un + v for some nonnegative integer u and an integer
v with n ≤ v ≤ 2n − 1. Since n ≥ 5, there is an integer n1 with 1 ≤ n1 ≤ [n/2] such that
the three integers n + n1, 2n − n1 and v are all distinct. Since the ternary triangular
form p3(1, 2, 3) is universal, every nonnegative integer which is a multiple of n is
represented by p3(n, 2n, 3n) and thus also by p3(n, 2n, n + n1, 2n − n1). It follows that
g = un + v is represented by p3(n, 2n, n + n1, 2n − n1, v). From this and the choice of v,
it follows that g is represented by Yn.

Now we assume that n = 4. Let g1 be an integer greater than or equal to 830. If we
define two odd positive integers α and β as

(α, β) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1, 1) if g1 ≡ 0 (mod 6),
(1, 17) if g1 ≡ 1 (mod 6),
(3, 43) if g1 ≡ 2 (mod 6),
(3, 27) if g1 ≡ 3 (mod 6),
(1, 33) if g1 ≡ 4 (mod 6),
(5, 37) if g1 ≡ 5 (mod 6),

then one may easily check that 8g1 + 30 − 5α2 − 7β2 is a nonnegative integer congru-
ent to 18 modulo 48. Put

s = 8g1 + 30 − 5α2 − 7β2

and let L = 〈4, 6, 8〉. We assert that s
2−→ L. One may easily check that s is locally

represented by L. Note that the class number of L is 2 and the genus mate is

M = 〈2, 4, 24〉. If s −→ L, then we have s
2−→ L since s ≡ 2 (mod 16). Hence, we may

assume that s −→ M. Thus, there is a vector (x, y, z) ∈ Z3 such that

s = 2x2 + 4y2 + 24z2.
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Since s ≡ 0 (mod 3), either xy � 0 (mod 3) or x ≡ y ≡ 0 (mod 3) holds. After changing
the sign of y if necessary, we may assume that x ≡ y (mod 3). If we put x = y − 3x1,
then

s = 2x2 + 4y2 + 24z2

= 2(y − 3x1)2 + 4y2 + 24z2

= 4(x1 + 2z)2 + 6(x1 − y)2 + 8(x1 − z)2.

In the above equation, one may easily deduce that

x1 + 2z ≡ x1 − y ≡ x1 − z ≡ 1 (mod 2)

from the fact that s ≡ 2 (mod 16). Thus, we have s
2−→ L. It follows immediately from

this that

8g1 + 30
2−→ 〈4, 5, 6, 7, 8〉,

which is equivalent to g1 −→ Y4. On the other hand, one may directly check that Y4
represents all integers from 4 to 829. This completes the proof. �

THEOREM 4.9. For any integer n exceeding 3, there are exactly two new tight
T (n)-universal triangular forms Xn and Yn.

PROOF. The result follows immediately from Lemma 2.3 and Theorems 4.7
and 4.8. �
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