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Abstract

For a subset S of nonnegative integers and a vector a = (ay,...,a;) of positive integers, define the set
Vi(a) = {ays; + -+ +arsy - s; € S} — {0}. For a positive integer n, let 7 (n) be the set of integers greater
than or equal to n. We consider the problem of finding all vectors a satisfying Vg(a) = 7 (n) when S is the
set of (generalised) m-gonal numbers and n is a positive integer. In particular, we completely resolve the
case when S is the set of triangular numbers.

2020 Mathematics subject classification: primary 11E12; secondary 11E20, 11P99.
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1. Introduction
For a positive integer m greater than or equal to 3, the polynomial

(m—2)x* = (m — 4)x
2
is an integer-valued quadratic polynomial and P,(s) is the sth m-gonal number
for a nonnegative integer s. For a vector a = (aj,as,...,a) of positive integers, a
polynomial of the form

P,(x) =

pm(a) = pm(a)(xl, co X)) = alpm(xl) +--+ akPm(xk)

in variables x1, X2, . . ., X is called a k-ary m-gonal form (or a k-ary sum of generalised
m-gonal numbers). We say that an integer N is represented by an m-gonal form p,,(a)
if the equation

pm@)x1, ..., x0) =N

has an integer solution. The minimum of p,,(a), denoted by min(p,,(a)), is the smallest
positive integer represented by p,,(a). We call an m-gonal form tight universal if it
represents every positive integer greater than its minimum. A tight universal m-gonal
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form having minimum 1 is simply called universal. There are several results on the
classification of universal m-gonal forms (see, for example, [2, 6, 7, 8]). Note that
P4(x) = x> and the classification of universal diagonal quadratic forms can be easily
done by using the Conway—Schneeberger 15 theorem (see [1, 3]).

Recently, the author and Oh [10] studied (positive definite integral) quadratic forms
which represent every positive integer greater than the minimum of the form. We
called such a quadratic form f tight T (n)-universal, where n is the minimum of the
quadratic form f. We classified ‘diagonal’ tight universal quadratic forms, which gives
the classification of tight universal m-gonal forms in the case of m = 4.

We follow the notation and terminologies used in [10]. For n =1,2,3,..., we
denote by 7 (n) the set of integers greater than or equal to n. We say that an m-gonal
form is tight 7 (n)-universal if it is tight universal with minimum s. In Section 3,
we resolve the classification problem of tight 7 (n)-universal m-gonal forms in the
following cases:

m=5n>7, @)m=7n>1l; @{i)m=>8, n>2m->5.

In fact, it will be proved that there are ‘essentially’ two tight 7 (n)-universal
m-gonal forms in the cases (ii) and (iii). It will also be shown that there is a
unique tight 7 (n)-universal pentagonal form for any »n > 7. In addition, we classify
tight 7 (n)-universal sums of m-gonal numbers (for the definition, see Section 3).
In Section 4, we classify tight universal triangular forms by finding all tight
7 (n)-universal triangular forms for every integer n > 3. Universal triangular forms
were classified in [2] and tight 7 (2)-universal triangular forms were found by Ju
[‘Almost universal sums of triangular numbers with one exception’, submitted for
publication]. To classify tight universal triangular forms, we use the theory of quadratic
forms and adapt the geometric language of quadratic spaces and lattices, generally
following [11, 12]. Some basic notation and terminologies will be given in Section 2.

2. Preliminaries

Let R be the ring of rational integers Z or the ring of p-adic integers Z,, for a prime p
and let F be the field of fractions of R. An R-lattice is a finitely generated R-submodule
of a quadratic space (W, Q) over F. We let B: W x W — F be the symmetric bilinear
form associated to the quadratic map Q so that B(x, x) = Q(x) for every x € W. For an
element @ in R and an R-lattice L, we say that a is represented by L over R and write
a — L over R if Q(x) = a for some vector x € L.

Let L be a Z-lattice on a quadratic space W over Q. The genus of L, denoted gen(L),
is the set of all Z-lattices on W which are locally isometric to L. The number of
isometry classes in gen(L) is called the class number of L and denoted by A(L). If
an integer a is represented by L over Z, for all primes p (including oo), then there
is a Z-lattice K in gen(L) such that a — K (see [12, 102:5 Example]). In this case,
we say that a is represented by the genus of L and write a — gen(L). For a Z-basis
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{vi,va,..., v} of L, the corresponding quadratic form f; is defined by

k
fu= ZB(Vi,Vj)Xin-
ij=1

If L admits an orthogonal basis {w;, Wa, ..., Wi}, then we simply write

L =(Q(w1), Q(W2), ..., Q(Wg)).

We abuse the notation and the diagonal quadratic form alx% + azxg +- 4 akxi will
also be denoted by (aj,as,...,a;). The scale of L is denoted by s(L). Throughout,
we always assume that every Z-lattice is positive definite and primitive in the sense
that s(L) = Z. Any unexplained notation and terminologies on the representation of
quadratic forms can be found in [11] or [12].

Throughout this section, S always denotes a set of nonnegative integers containing
0 and 1, unless otherwise stated. For a vector a = (a1, as,...,ay) € N¥, we define

Vs(a) = {ais1 + arsy +--- +aisi @ s; € S}
and define V¢(a) = Vs(a) — {0}. For example, if S is the set of squares of integers, then
Vi, ,1,1) =N, Vi(1,1,1) =N-{4°@8b+7):a,b e Ny}

by Lagrange’s four-square theorem and Legendre’s three-square theorem, respectively.
We denote the set of nonnegative integers by Ny for simplicity. For two vectors
u=(up,u,...,u,) e N and v = (vi,vy,...,vs) € N¥, we write

u<v (um<v)

if {u;}1<i<, is a subsequence (proper subsequence, respectively) of {v;}i<j<,. Let n be
a positive integer and let a be a vector of positive integers. We say that a is tight
T (n)-universal with respect to S if Vg(a) = 7 (n). When n = 1, we simply say that a is
universal with respect to S. We say that a is new tight T (n)-universal with respect
to S if Vi(a) = 7(n) and Vi(b) C 7 (n) whenever b < a. For ny,n,,...,n, € N and
e1,e,...,e, € Ny, we denote by n;°'np* - - - n,.* the vector

(B, s NN, 0y Ry . ) € ZEVF2TFer
where each n; is repeated e; times for i = 1,2, ..., 7. The first lemma is straightforward.

LEMMA 2.1. Let a, b be vectors of positive integers such that a < b and let S, S’ be sets
of nonnegative integers containing 0 and 1 such that S C S’. Then:

(i) Vs(@) < Vs(b),

(i) Vs(a) C Vg (a);

(i) Vs(u +v) C Vs(u,v) for any u,v € N;

(iv) min(Vi(a)) = min{q; : 1 <i <k}, wherea = (a1, ay, ..., a).

LEMMA 2.2. Let a = 19293 be a vector with a positive integer e; and nonnegative
integers e, and e3. Assume that Vs(a) = No. Then, for any integer n > 2es + 3,
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the vector
b=nn+1'n+2"...2n-12n"
is tight T (n)-universal with respect to S.

PROOF. Let n be an integer with n > 2e3 + 3 and let m be an integer greater than
or equal to n. Then m can be written in the form un + v for a nonnegative integer u
and an integer v with n < v < 2n — 1. To prove the lemma, it suffices to show that
un +v € Vg(b). Since

u€eNy= Vs(a) = V5(1812e23e3),
we have
un € Vs(n®2n3n%).

Since the other cases can be dealt with in a similar manner, we only provide the proof
when

n+l<v<es+1 or 2n—e3s—-1<v<2n-1.
By applying Lemma 2.1(iii) e3 times,
Vs(3n®) C Vs(n+ 1,2n — 1,n+2,2n—2,...,'\7,3;—\v,...,n+e3 +1,2n—e3 — 1),
where the hat symbol " indicates that the component is omitted. It follows that

un € Vg(n°'2n*3n%)
CVem2n”n+1'2n—1'---vi3n—v'...n+es+1'2n—e;— 1))
Therefore,

1

un+veVsm2n“n+12n-1"---v'3n-v'--.n+e3+12n-e;-1"

C Vsm“n+1'n+2'--.2n-1'2n%).

This completes the proof. |
Forn =1,2,3,..., we define vectors X,,y, € 7+l by
X,=mnn+1,n+2,...,2n-1), y,=mn+1Ln+2,...,2n).
LEMMA 2.3. Let n be a positive integer and leta = (ay, as, . .., a;) € NCwitha, < a» <

<o < ay such that Vg(a) = T (n). Then (n,n + 1,n +2,...,2n — 1) < a. Furthermore, if
2¢S, thenx, <aory, <a.

PROOF. Since V¢(a) = T (n),
n=ay <ay<---<a. 2.1

To prove the first assertion, it suffices to show that for any integer v withn+ 1 <v <
2n — 1, there is an integer j, with 1 < j, < k such that a;, = v. Let v be an integer such
thatn + 1 <v < 2n - 1.Since v € V((a), we have v = ays; + azsy + - - - + aisy for some
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51,82,...,5 € 8. Since v > 0, there is an integer j, with 1 < j, < k such that s;, > 0. If
s; > 0 for some [ different from j,, then

V=aisi +axsy + -+ agsg 2 a8, +ais; > aj, +a; > 2n

by (2.1) and this is absurd since v < 2n — 1. It follows that 5;, = 1 and s; = 0 for any
! # j,. Thus, v = a;, and the first assertion follows.
Now we assume further that 2 ¢ S. Then clearly

2neVg(@) — Vs(n,n+ 1,n+2,...,2n-1).
From this, one may easily deduce that
n,nn+1,n+2,....,2n—1)<a or (mn+1,n+2,...,2n—1,2n) <a.

This completes the proof. |

3. Tight 7 (n)-universal sums of (generalised) m-gonal numbers

Let m be an integer greater than or equal to 3. We denote the set of (generalised)
m-gonal numbers by P,, (respectively, GP,,), that is,

3 (m—2)x* — (m — 4)x
7)’”_{ 2

One may easily check that:

i {0,1} c P, € GP,, for any m > 3;
(i) 2 ¢ P, forany m > 3;

(iii) 2 € GP,, only if m = 5;

(iv) P3 =GP3 = GPs;

(V) Ps=GPs.

PROPOSITION 3.1. Let m be an integer greater than or equal to 8. If n > 2m — 5, then
both x,, and y, are tight 7 (n)-universal with respect to GP,,.

PROOF. By [13, Theorem 1.1] and [8, Theorem 3.2], Vgpm(l’"*“) = Ny. From this, one
may easily deduce that Vgpm(l‘”ZEZSm*“) =Ny for (e, e2) € {(2,0),(1,1)}. Now the
proposition follows immediately from Lemma 2.2. ]

(m—2)x* — (m — 4)x :er}.

:xeNo}, gsom={ :

THEOREM 3.2. Let m be an integer greater than or equal to 8. If n > 2m — 5, then
there are exactly two new tight T (n)-universal m-gonal forms.

PROOF. Note that 2 ¢ GP,, since m # 5. The theorem follows immediately from the
second assertion of Lemma 2.3 and Proposition 3.1. ]

PROPOSITION 3.3. There is only one new tight T (n)-universal pentagonal form for
anyn>"1.

PROOF. Note that the vector (1,3, 3) is universal with respect to GP5 (see [4]). By
Lemma 2.2, the vector (n,n + 1,n+ 2,...,2n — 1) is tight 7 (n)-universal with respect
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to GP5 for any n > 7. Now the proposition follows immediately from the first assertion
of Lemma 2.3. o

PROPOSITION 3.4. There are exactly two new tight T (n)-universal heptagonal forms
foranyn > 11.

PROOF. Note that Vgp.(1,1,1,1) = Ny (see [13] or [8, Theorem 1.2]). It follows that
Vgp7(16126234) = Ny for (e, e2) € {(2,0), (1, 1)}. The proposition follows immediately
from Lemma 2.2 and the second assertion of Lemma 2.3. O

Let n be a positive integer. Now we define (new) tight 7 (n)-universal sums of
m-gonal numbers. For an integer m > 3 and a vector a of positive integers, we call
the pair (P,,, a) a sum of m-gonal numbers. We say that (P, a) is tight 7 (n)-universal
if V;Dm (@) = 7 (n). A tight 7 (n)-universal sum of m-gonal numbers (#,,,a) is called
new if (., b) is not 7 (n)-universal whenever b < a or, equivalently, Vq’gm(b) cT(n)
whenever b < a.

PROPOSITION 3.5. Let m be an integer greater than or equal to 3. If n > 2m + 3, then
both (P, X,) and (P, yn) are tight T (n)-universal.

PROOF. Fermat’s polygonal number theorem says that Vp (1) = Ny. From this,
one may easily deduce that Vp (1°1293™) = Ny for (e, e2) € {(2,0), (1, 1)}. Now the
tight 7 (n)-universalities (with respect to #,,) of x, and y, follow immediately from
Lemma 2.2. |

THEOREM 3.6. Let m be an integer greater than or equal to 3. If n > 2m + 3, then
there are exactly two new tight T (n)-universal sums of m-gonal numbers.

PROOF. Note that 2 ¢ P,,. The theorem follows immediately from the second assertion
of Lemma 2.3 and Proposition 3.5. ]

4. Tight universal triangular forms

In this section, we classify tight universal triangular forms. As noted in the
introduction, for n = 1,2, tight 7 (n)-universal triangular forms were already classified.
We first prove that there are exactly 12 new tight 7 (3)-universal triangular forms as
listed in Table 1. We also prove that there are exactly two new tight 7 (n)-universal
triangular forms

X, =psn,n,n+1,n+2,...,2n—1) and Y,=ps(n,n+1,n+2,...,2n—1,2n)

for any n > 4. We introduce some notation which will be used throughout this section.
Recall that a triangular form is a polynomial of the form

x1(xp + 1) v X (X + 1)

p3lai,ay,....ar) = a 2 T
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TABLE 1. New tight 7 (3)-universal triangular forms p3(a;,as, ..., a).
a, a, asz as das Conditions on as
3 3 4 5
3 4 4 5 6
3 4 5 5 6
3 4 5 6 as 6<as<16,as+ 14,15

where (aj, as, ..., ax) is a vector of positive integers. For a nonnegative integer g and
a triangular form ps(ay, a, .. ., ai), we write

g — ps3lay,az, ..., ar)
if g is represented by ps(aj,as,...,a;). For a positive integer # and a diagonal
quadratic form {ai, as, ..., ay), we write
2
u—{a,a,...,a)
if there is a vector (x|, X2, . .., xx) € Z¥ with (2, x1x2 - - - x;) = 1 such that

alx% +a2x§ + - +akx,% =U.

One may easily see the following observation, which will be used to show the tight
universality of triangular forms: a nonnegative integer g is represented by a triangular
form ps(ay, as,. .., a;) if and only if

2
8g+a +ay+---+a,— {(a,az,...,a.).

A ternary triangular form ps(a, b, ¢) is called regular if, for every nonnegative integer

g, the following holds: if 8¢ +a + b + ¢ — (a, b, c) over Z, for every odd prime p,
2

then 8¢ + a + b + ¢ — (a, b, c¢). For more information about regular ternary triangular

forms, we refer the reader to [9].

PROPOSITION 4.1. The quaternary triangular form Xz = p3(3,3,4,5) is tight
T (3)-universal.

PROOF. One may directly check that X3 represents all integers from 3 to 14. Let g be a
positive integer greater than 14 and put g’ = 8g + 15. To show that g is represented by
X3, it suffices to show that g’ i> (3,3,4,5).
Define sets A and B by
A={wueN:u=1(mod3)oru=3,6(mod9)},
B={ueN:u=2(modS8), u> 10}

2
We assert that v — (3, 3,4) for any v € A N B. To show the assertion, let v e A N B.
One may easily check that every positive integer in A is represented by the diagonal
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quadratic form (3, 3, 4) over Z3. Note that (3, 3, 4) represents all elements in Z,, over Z,,
for any prime p > 5. Thus, v — (3,3, 4) over Z,, for all odd primes p. Furthermore,
v = 8" + 10 for some nonnegative integer v’ since v € B. From these statements and
the fact that the ternary triangular form ps(3,3,4) is regular (see [9]), it follows that

v i> (3,3,4). So, we have the assertion.
If we define an odd positive integer d by

1 ifg’=0(mod3) or ¢ =2,8 (mod?9),
d=13 if g =1 (mod 3),
5 ifg’ =5 (@mod9),

2
then one may easily check that g’ — 5d> € AN B. Thus, g’ — 5d*> — (3,3,4). Since d
2
is odd, it follows that g — (3, 3,4, 5). This completes the proof. |
We use the following lemma proved by B. W. Jones in his unpublished thesis [5].
LEMMA 4.2 (Jones). Let p be an odd prime and k be a positive integer not divisible

by p such that the Diophantine equation x* + ky> = p has an integer solution. If the
Diophantine equation

¥ +k?=N (N>0)
has an integer solution, then it also has an integer solution (xy, yo) satisfying

ged(xo, yo, p) = 1.

PROPOSITION 4.3. Let g be a positive integer congruent to 5 modulo 8. Assume that g
is congruent to 1 modulo 3 or is a multiple of 9. Then g is represented by the diagonal
ternary quadratic form 3x* + 4y* + 627,

PROOF. Let L =(3,4,6). The class number A(L) of L is 2 and the genus mate is
(1,6,12). From the assumptions, one may easily check that g — gen((3,4,6)). We
may assume that g — (1, 6, 12) since otherwise we are done. Thus, there is a vector
(x1,1,21) € Z* such that

g=x1+6y" + 1277

First, assume that g = 0 (mod 9). One may easily check that x; = 0 (mod 3) and that
y1 = 0 (mod 3) if and only if z; = 0 (mod 3). By changing the sign of z; if necessary,
we may further assume that y; = z; (mod 3). Thus, x; = 3x; and y; = z; — 3y, with
integers x; and y,. Now

g= x% + 6y% + 121%
= (3x2)% + 6(z1 — 3y2)* + 1277
= 3(xy + 22 — 221)% + 4(3y2)* + 6(xz — y2 + 21)°.
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Second, assume that g = 1 (mod 3). If y§ + 2z} = 0, then g = x7 and this is absurd
since g = 5 (mod 8). Hence, yf + 21% # 0 and thus, by Lemma 4.2, there are integers
v3 and zz with ged(ys3, z3, 3) = 1 such that

Vi +22) = y3 + 223

Note that x; # 0 (mod 3) since g = 1 (mod 3). After changing the signs of y3 and z3 if
necessary, we may assume that x; + y3 + 2z3 = 0 (mod 3). Then

g= x% + 6y§ + 12z§

- 2y3 —4z3\? +y3+ 2232
_ 3(961 V3 Z3) +4(ys —23) + 6(761 Y3 Z3) ‘
3 3
Since x| — 2y3 —4z3 = x; + y3 + 223 = 0 (mod 3), we have g — L. This completes the
proof. o

PROPOSITION 4.4. The quaternary triangular form Ys = p3(3,4,5,6) represents all
positive integers except 1, 2 and 16.

PROOF. One may directly check that Y3 represents all integers from 3 to 29 except 16.
Let g be an integer greater than 29 and put g’ = 8g + 18. If we define an odd positive
integer d by

1 ifg’ =0(@mod3) or g’ =5 (mod9),

3 if g’ =1 (mod 3),

5 ifg’ =8 (mod9),

7 if g’ =2 (mod9),

then one may easily check that g’ — 54> =1 (mod 3) or g’ —5d> =0 (mod 9).
Furthermore, g’ — 5d> = 5 (mod 8) since d is odd. Hence, g’ — 5d> — (3,4, 6) by
Proposition 4.3. Thus, there is a vector (x, y, z) € Z* such that g'— 5d* = 3x* + 4y + 67°.
One may easily deduce from g’ — 54> =5 (mod 8) that xyz =1 (mod 2). Thus,

g i> (3,4,5, 6). This completes the proof. O

COROLLARY 4.5. All of the quinary triangular forms in Table 1 are tight
T (3)-universal.

PROOF. Let Z = ps(ay, ay, a3, as, as) be any quinary triangular form in Table 1. One
may see that

(3,4,5,6) < (a1, a2, a3, a4, as).

From this and Proposition 4.4, it follows that Z represents every integer greater than or
equal to 3 except 16. One may directly check that Z also represents 16. This completes
the proof. ]

PROPOSITION 4.6. Every new tight 7 (3)-universal triangular form appears in
Table 1.

https://doi.org/10.1017/5S0004972721000903 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972721000903

[10] Tight universal triangular forms 381

PROOF. Let p3 = p3(ai,as,...,a;) be a new tight 7 (3)-universal triangular form. By
Lemma 2.3, we have X3 < p3 or Y3 < ps.

First, assume that X3 < p3. From the fact that X3 is tight 7 (3)-universal and the
assumption that p; is new tight 7 (3)-universal, it follows that p3 = X3.

Second, assume that Y3 < p3. Since Y3 is not 7 (3)-universal, it follows that
k > 4 and there is a vector (i, /2,/3,j4) € 7* with (J1sJ25J35Ja) < (1,2, ..., k) such that
(@, a,,a;,,a;,) = (3,4,5,6). Weput A = {u e N:3 <u < 16,u # 14,15}. If q; ¢ A for
everyj e {1,2,...,k}\ {Jj1,/2,/3,j4}, then one may easily show that p3 cannot represent
16, which is absurd. Thus, there is an integer j with

JEAL2, kN 12,7304}

such that a; € A. One may check that ps(a;,,a;,,a;,a;,,a;) is in Table 1 and thus
it is tight 7 (3)-universal. It follows that k = 5 and p3 = ps(a;,,a;,,a;,,a;,, a;) since
otherwise ps is not new. This completes the proof. ]

THEOREM 4.7. For any integer n greater than or equal to 3, the triangular form X,, =
pi(n,n,n+ 1,n+2,...,2n— 1) is tight T (n)-universal.

PROOF. First, assume that n > 6. Let g be an integer greater than or equal to n.
Then g can be written in the form g = un + v for some nonnegative integer u and
an integer v with n < v < 2n — 1. Note that the ternary triangular form ps(1,1,4) is
universal and thus it represents u. Thus, un is represented by p3(n, n, 4n). It follows that
un is represented by ps(n,n,n+ 1,n+2,2n—3). Thus, if v¢ {n+ 1,n+2,2n - 3},
then un + v is represented by ps(n,n,n+ 1,n+2,2n — 3,v) and thus by X,. On the
other hand, the ternary triangular form ps3(1,1,5) is also universal. Hence, un is
represented by p3(n, n, 5Sn) and thus also represented by p3(n,n,n +3,2n—2,2n - 1).
From this we deduce that if v ¢ {n + 3,2n — 2,2n — 1}, then un + v is represented by
pis(n,n,n+3,2n—2,2n — 1,v) and thus by X,,.

Second, assume that n = 5. Let g be an integer greater than or equal to 236. We write
g = 15u + v, where u is a positive integer and v is an integer such that 0 < v < 14. Note
that the ternary triangular form ps(1, 1, 3) is regular. For any nonnegative integer w,
both 8 - 3w + 5 and 8(3w + 1) + 5 are represented by (1, 1, 3) over Zs. Thus, p3(1, 1, 3)
represents every nonnegative integer not equivalent to 2 modulo 3. It follows that
p3(5,5,6 +9) represents every nonnegative integer congruent to 0 or 5 modulo 15.
Hence, if v € {0,5}, then g = 15u+v — p3(5,5,6 +9) and so g — p3(5,5,6,9).
One may directly check that the binary triangular form p3(7, 8) represents all integers
in the set

{31,122,48,94, 80, 231, 7, 8, 24}.

If v ¢ {0, 5}, then one may easily see that there is a positive integer a in the above set
such that g — a is a nonnegative integer congruent to 0 or 5 modulo 15. Thus, we have
g—a— p3(5,5,6+9,7,8). One may directly check that ps3(5,5, 6,7, 8,9) represents
all integers from 5 to 235.

Third, assume that n = 4. Note that the ternary triangular form p3(2, 2, 3) is regular.
From this, one may easily show that it represents every nonnegative integer not
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congruent to 1 modulo 3. Thus, p3;(4,4,6) represents every nonnegative integer of
the form 6u and 6u + 4, where u € Z5(. Note that p3(5,7) represents 5, 7, 15 and 26 as

5=5147-0,7=5-0+7-1,15=5-347-0,26=5-1+7-3.

From this and the fact that p3(4,4, 6) represents every nonnegative integer of the form
6u, it follows that p3(4,4,5, 6,7) represents every nonnegative integer of the form

6u+7, 6u+26, O6u+15 and O6u-+S5.

One may directly check that p3(4,4,5, 6,7) represents all integers from 4 to 25.
The case of n =3 was already proved in Proposition 4.1. This completes the
proof. ]

THEOREM 4.8. For any integer n greater than or equal to 4, the triangular form
Y,=ps(n,n+ 1,n+2,...,2n) is tight T (n)-universal.

PROOF. First, assume that the integer n is greater than 4. Let g be an integer greater
than or equal to n. We write g = un + v for some nonnegative integer u and an integer
vwithn < v < 2n— 1. Since n > 5, there is an integer n; with 1 < n; < [n/2] such that
the three integers n + n;, 2n —n; and v are all distinct. Since the ternary triangular
form p;(1,2,3) is universal, every nonnegative integer which is a multiple of n is
represented by p3(n,2n,3n) and thus also by ps(n,2n,n + ny,2n — ny). It follows that
g = un + visrepresented by ps(n,2n,n + ny,2n — ny, v). From this and the choice of v,
it follows that g is represented by Y,.

Now we assume that n = 4. Let g be an integer greater than or equal to 830. If we
define two odd positive integers a and S as

(1,1) ifg; =0 (mod 6),
(1,17) ifg; = 1 (mod 6),
(3,43) if g; =2 (mod 6),
(3,27) if g; =3 (mod 6),
(1,33) if g =4 (mod 6),
(5,37) ifg; =5 (mod 6),

(@.p) =

then one may easily check that 8g; + 30 — 5a% — 757 is a nonnegative integer congru-
ent to 18 modulo 48. Put

s = 8g; + 30— 50° — 78’

2
and let L = (4,6,8). We assert that s — L. One may easily check that s is locally
represented by L. Note that the class number of L is 2 and the genus mate is

2
M =(2,4,24). If s — L, then we have s — L since s = 2 (mod 16). Hence, we may
assume that s — M. Thus, there is a vector (x,y, z) € Z> such that

s =207 + 4y? + 2472,
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Since s = 0 (mod 3), either xy # 0 (mod 3) or x = y = 0 (mod 3) holds. After changing
the sign of y if necessary, we may assume that x = y (mod 3). If we put x =y — 3xy,
then

s = 2x% + 4y? + 2472
=2(y = 3x1)* + 4y* + 2477
= 4(x; +22)> + 6(x; — ) + 8(x1 — 2)°.

In the above equation, one may easily deduce that

x1+2z=x1—y=x;—z=1(mod?2)

2
from the fact that s = 2 (mod 16). Thus, we have s — L. It follows immediately from
this that

8¢, + 30 —> (4,5,6,7,8),

which is equivalent to g; — Y4. On the other hand, one may directly check that Y,
represents all integers from 4 to 829. This completes the proof. ]

THEOREM 4.9. For any integer n exceeding 3, there are exactly two new tight
T (n)-universal triangular forms X,, and Y,,.

PROOF. The result follows immediately from Lemma 2.3 and Theorems 4.7
and 4.8. o
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