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1. Introduction

In [19], Zilber introduced, and studied deeply, a class of exponential fields now known

as Zilber fields. There are many novelties in his analysis, including a reinterpretation

of Schanuel’s Conjecture in terms of Hrushovski’s very general theory of predimension

and strong extensions. By now there is no need to spell out yet again all his ingredients

and results (see [6, 19]). The most dramatic aspect is that his fields satisfy Schanuel’s

Conjecture and a beautiful Nullstellensatz for exponential equations. Moreover, in each

uncountable cardinal there is a privileged such field, satisfying a countable closure

condition and a strengthened Nullstellensatz. Privileged means that the structure in each

uncountable cardinal is unique up to isomorphism. The one in cardinal 2ℵ0 is called B
by us. Zilber conjectured that B ∼= C as exponential fields. This would, of course, imply

that C satisfies Schanuel’s Conjecture, and Zilber’s Nullstellensatz, which seem far out

of reach of current analysis of several complex variables.

Zilber fields are constructed model theoretically, and they have no visible topology

except an obvious exponential Zariski topology. Zilber’s countable closure condition is

somehow an analogue of the separability of the complex field, and the fact that any finite

system of exponential equations has only countably many isolated points. Isolation in C
relates, via the Jacobian criterion, to definability and dimension in B; see [19].
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We have undertaken a research programme of taking results from C, proved using

analysis and/or topology, and seeking exponential–algebraic proofs in B. An early success

was a proof in B of the Schanuel’s Nullstellensatz [6], proved in C [13] using Nevanlinna

theory. More recently, in [7], we derived, in an exponential–algebraic way, Shapiro’s

Conjecture from Schanuel’s Conjecture, thereby getting Shapiro’s Conjecture in B. In

the present paper, we put the ideas of [7] to work on some problems connected to the

Identity Theorem of complex analysis [5, Theorem 3.7, p. 78]. That fundamental theorem

says in particular that, if the zero set of an entire function f has an accumulation point,

then f ≡ 0. We specialize to exponential functions, and face the obvious difficulty that

the concept of accumulation point has no general meaning in Zilber fields.

We prove, not only for Zilber fields, but for the much more general classes of LEC-fields

and LECS-fields (see § 2) various results proved for C using the Identity Theorem. Our

replacement techniques come from diophantine geometry. Our results are not confined to

ones proved in C using the Identity Theorem; see for example Theorem 6.2. This theorem

is not true for all entire functions; see § 4.1. An analysis of the location of the zeros of

exponential polynomials in the complex plane was obtained by Pólya et al. (see, e.g.,

[17]) in terms of lines in the plane determined by the polynomial itself. For more recent

work on this, see [9]. Notice that this analysis makes no sense in Zilber fields, as the very

notion of a line (defined over R) makes no sense.

2. Exponential fields and exponential polynomials

We will be working over an algebraically closed field K of characteristic 0, with a surjective

exponential map to K× whose kernel is an infinite cyclic group written as 2π iZ, as if

we were in C. In fact, here π has a well-defined meaning; see [14]. We will call these

fields LEC-fields. In some cases, we will assume that the field K satisfies the following

transcription of Schanuel’s Conjecture with transcendental number theory.

(SC) If α1, . . . , αn ∈ K , then

tr.d.Q(α1, . . . , αn, eα1 , . . . , eαn ) > l.d.Q(α1, . . . , αn),

where tr.d.Q stands for transcendence degree over Q and l.d.Q stands for Q-linear

dimension.

We will refer to these fields as LECS-fields. The class of LECS-fields includes the

exponential fields introduced by Zilber in [19].

We will consider exponential polynomial functions over K of the following form:

f (z) = λ1eµ1z + · · ·+ λN eµN z, where λi , µi ∈ K . (1)

The set of these polynomials forms a ring E under the usual addition and multiplication

operations. We will study subsets of the zero set of polynomials in E . We will denote the

zero set of f by Z( f ).
We recall some basic definitions and results for the exponential polynomials in the ring

E . The units in E are of the form λeµz , where λ,µ ∈ K , and λ 6= 0.

Definition 2.1. An element f in E is irreducible if there are no non-units g and h such

that f = gh.
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Definition 2.2. Let f =∑N
i=1 λi eµi z be an exponential polynomial. The support of f ,

denoted by supp( f ), is the Q-space generated by µ1, . . . , µN .

Definition 2.3. An exponential polynomial f (z) in E is simple if dim(supp( f )) = 1.

It is easily seen that, up to a unit, a simple exponential polynomial is a polynomial in

eµz , for some µ ∈ K . An important example of a simple exponential polynomial is sin(π z).
A simple polynomial f can be factored, up to a unit in E , as f =∏(1− aeµz), where

a, µ ∈ K . If a simple polynomial f has infinitely many roots, then by the Pigeon-hole

Principle one factor of f , say 1− aeµz , has infinitely many zeros, and these are of the

form z = (2kπ i − log a)/µ with k ∈ Z, for a fixed value of log a.

We will refer to λ1eµ1z + λ2eµ2z (or to the equivalent form 1− aeµz) as a simple

polynomial of length 2. We have a complete description of the zero set of these

polynomials.

Lemma 2.4. If f (z) = λ1eµ1z + λ2eµ2z, then Z( f ) has dimension less than or equal to 2

over Q. Moreover, Z( f ) = A f +ZB f , where A f = log(−λ−1
1 λ2)

µ1−µ2
and B f = 2iπ

µ1−µ2
. So, the

zero set of f is a translate of a rank-1 free abelian group.

It seems that the first to consider a factorization theory for exponential polynomials

over C was Ritt, in [18]. His original idea was to reduce the factorization of an exponential

polynomial to that of a classical polynomial in many variables by replacing the variables

with their powers. Let f (z) = λ1eµ1z + · · ·+ λN eµN z be an exponential polynomial where

λi , µi ∈ C, and let b1, . . . , bD be a basis of the Z-module spanned by µ1, . . . , µN . Let

Yi = ebi z , with i = 1, . . . , D. If each µi is expressed in terms of the bi , then f (z)
is transformed into a classical Laurent polynomial F(Y1, . . . , YD) ∈ Q(λ)[Y1, . . . , YD].
Clearly any factorization of f produces a factorization of F(Y1, . . . , YD).

In general, an irreducible classical polynomial F(Y1, . . . , YD) can become reducible after

a substitution of the variables by powers.

Definition 2.5. A polynomial F(Y1, . . . , YD) is power irreducible if, for each n1, . . . , nD
in N−{0}, F(Y n1

1 , . . . , Y nD
D ) is irreducible.

Notice that if f is irreducible in E then the associated polynomial F(Y1, . . . , YD) is
power irreducible.

Ritt saw the importance of understanding the ways in which an irreducible classical

polynomial F(Y1, . . . , YD) can become reducible when the variables are replaced by their

powers. His analysis gave the following result.

Theorem 2.6. Let f (z) = λ1eµ1z + · · ·+ λN eµN z, where λi , µi ∈ C. Then f (z) can be

written uniquely up to order and multiplication by units as

f (z) = S1 · . . . · Sk · I1 · . . . · Im,

where the S j are simple polynomials with different supports and the Ih are irreducible

in E.
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In our setting, we use an analogous result for exponential polynomials as in (1) over

any algebraically closed field of characteristic 0 carrying an exponentiation (see also [8]).

Notice that the factorization theorem of Ritt is a result on the free E-ring over exponential

fields, and need not involve any analysis of the zero set of an exponential polynomial.

3. Zero sets in C

We are interested in putting restrictions on infinite subsets of the zeros sets of certain

totally defined functions, such as exponential functions. These satisfy special properties

such as Schanuel’s Nullstellensatz (see [6] and [13]). For such functions in C, one may

use the Identity Theorem to get information about the zero set. We show below that, in

some cases that we list, and related ones, the topology on C is not needed, and the use

of Identity Theorem can be replaced by diophantine geometry. Here are the examples we

will consider.

(1) Let X ⊆ Q. There is a unique copy of the field of rationals in K , since it is a

characteristic 0 field. We will say that a subset X of the rationals accumulates if

there exists a Cauchy sequence of distinct elements of X . Note that this makes

sense, since the definition is given inside Q, and in Q there is a perfectly good

notion of a Cauchy sequence. Q clearly accumulates in this sense, while Z and 1
N Z,

where N ∈ N−{0}, do not. Note that we are not explicitly considering the question

whether a subset X of Q that accumulates has an accumulation point in a Zilber

field, although it has an accumulation point in C.

(2) Let U be the multiplicative group of roots of unity. This has an invariant meaning

in any algebraically closed field. In C, any infinite subset of U has an accumulation

point in C, since it is a subset of the unit disc, which is compact. In our more

abstract situation the subset accumulates if it is infinite.

(3) Let X be an infinite subset of a cyclic group 〈α〉 (under multiplication). In C, we

have the following three cases.

Case 1. If ‖α‖ = 1, then X has an accumulation point on the unit circle, by

compactness. If an entire function f vanishes on X , then f ≡ 0.

Case 2. If ‖α‖ < 1, then {αn : n > 0} has 0 as an accumulation point, and, if

X ∩ {αn : n > 0} is infinite, then X has 0 as an accumulation point. Again we

conclude that, if f is an entire function and vanishes on X , then f ≡ 0. If, however,

X ∩ {αn : n > 0} is finite, there is nothing we can say for a general entire function

f , since X need not have an accumulation point in C (so Weierstrass’ work [5,

Theorem 5.14, p. 170] allows X to be the zero set of a non-identically zero entire

function). Nevertheless, if we restrict f to be of type (1), α is subject to severe

constraints, relating to work of Győry and Schinzel on trinomials; see [12]. This is

proved in § 6, assuming Schanuel’s Conjecture. The proof works uniformly for C,

and B (assuming (SC) for C), and indeed for a much wider class of E-fields (the

LECS-fields).

Case 3. ‖α‖ > 1. This is dual to Case 2, replacing α by 1
α

, and is treated accordingly

in § 6.
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(4) Let X be a finite-dimensional Q-vector space. In C, we fix a basis, and identify

X with Qn , where n is the dimension of the space. Then we extend the definition

given in (1) of a Cauchy sequence to the case n > 1 using the supremum metric.

This gives us a notion of a subset of X accumulating. Notice that the notion does

not depend on the choice of the basis, by elementary matrix theory.

4. Results about general infinite set of zeros

We are going to employ some of the arguments used in [7] for the proof of Shapiro’s

Conjecture from Schanuel’s Conjecture. Here, we are principally interested in conditions

on an infinite set X in order for it to be contained in the zero set of some exponential

polynomial. We will use these results in § 6 to deal with the case of an infinite set of roots

X contained in an infinite cyclic group.

The assumptions we have through this section are as follows.

1. K is an LECS-field.

2. X is an infinite subset of K .

3. tr .d.Q(X) = M <∞.

4. X is contained in the zero set of some exponential polynomial f in E .

Our objective is to understand the strength of these assumptions. In order to do this,

we proceed through various reductions, roughly following [7].

Reduction 1. We apply Ritt Factorization (Theorem 2.6) to f in E , and we use the

Pigeon-hole Principle to go to the case of X infinite and f either irreducible or simple of

length 2. We will consider the case of f simple at the end of the section, and for now we

assume f to be irreducible until further notice.

Reduction 2. This involves the very first step in our proof of Shapiro’s Conjecture from

Schanuel’s Conjecture (see § 5 of [7]). Here, we have the hypothesis that the transcendence

degree of X is finite, in contrast to our previous paper on Shapiro’s Conjecture, where

we had to prove that the set of common zeros of two exponential polynomials have finite

transcendence degree. Both in [7] and in this paper, Schanuel’s Conjecture is crucial.

We also use the same notation, and for convenience we recall the following.

(i) D = l.d.Q(µ1, . . . , µN ).

(ii) δ1 = tr .d.Q(λ1, . . . , λN ).

(iii) δ2 = tr .d.Q(µ1, . . . , µN ).

(iv) L is the algebraic closure of Q(λ).
(v) G D

m is the multiplicative group variety.

Let α1, . . . , αk ∈ X be solutions of f (z) = 0. An upper bound for the linear dimension

of the set {α jµi : 1 6 j 6 k, 1 6 i 6 N } over Q is Dk. This is the actual dimension D
when k = 1. We exploit the fact that Schanuel’s Conjecture puts restrictions on k for

the above linear dimension to be Dk. Let F(Y1, . . . , YD) be the Laurent polynomial over

L associated to f . The condition F(Y1, . . . , YD) = 0 defines an irreducible subvariety V
of G D

m of dimension D− 1 over L (here we use that f is irreducible in E , and hence

https://doi.org/10.1017/S1474748014000231 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748014000231


76 P. D’Aquino et al.

F(Y1, . . . , YD) is power irreducible). We get the following easy estimates:

tr.d.Q(µα1, . . . , µαk, eµα1 , . . . , eµαk ) 6 M + δ2+ δ1+ k(D− 1).

By Schanuel’s Conjecture, the above transcendence degree is greater than or equal to

l.d.Q(µα1, . . . , µαk), so if this dimension is k D we get

k D 6 M + δ2+ δ1+ k(D− 1).

Hence, k 6 M + δ2+ δ1.

Reduction 3. We now appeal, as in [7], to work of Bombieri et al. [2] on anomalous

subvarieties.

If α ∈ X , we write ebα for the tuple (eb1α, . . . , ebDα). The variety V contains all points

of the form (eb1α, . . . , ebDα) for α ∈ X . We consider points α1, . . . , αk ∈ X for k > δ1+
δ2+M , so among bα1, . . . , bαk there are non-trivial linear relations over Q, and hence

the linear dimension over Q of bα1, . . . , bαk is < Dk. The point (ebα1 , . . . , ebαk ) in the

Dk-space lies on V k .

The non-trivial Q-linear relations on the b jαr induce algebraic relations between the

eb jαr . These latter relations define an algebraic subgroup 0α of (G D
m )

k of dimension d(α)
over Q and codimension Dk− d(α). The dimension d(α) is strictly connected to the linear

dimension of the b jαr .

The point (ebα1 , . . . , ebαk ) lies on 0α ∩ V . Let Wα be the variety of the point

(ebα1 , . . . , ebαk ) over L. Now, we examine the issue when Wα is anomalous in V k . See

[2] for definitions and properties of anomalous subvarieties.

Suppose that Wα is neither anomalous nor of dimension 0. Then, in particular,

dim Wα 6 dim(V k)− codim (0α), i.e., dim Wα 6 k(D− 1)− (Dk− d(α)) = d(α)− k.

Schanuel’s Conjecture implies that d(α) 6 d(α)− k+ δ1+M + δ2; hence k 6 δ1+M + δ2.

So, if k > δ1+M + δ2, then Wα is either anomalous or of dimension 0.

Reduction 4. Suppose that such a Wα has dimension 0. Then all the eb jαr are algebraic

over L. So, tr.d.Q(ebα1 , . . . , ebαk ) 6 δ1. Moreover, tr .d.Q(bα1, . . . , bαk) 6 δ2+M . So, by

Schanuel’s Conjecture,

d(α) 6 δ1+ δ2+M. (2)

Reduction 5. We worked locally with α, and now we have to work independently of
α. Notice that, under permutations of the α the two properties, namely that Wα has

dimension 0, or Wα is anomalous, are invariant. Suppose that l.d.Q(X) is infinite. Choose

an infinite independent subset X1 of X . Let k > δ1+ δ2+M , and α = (α1, . . . , αk),

with α1, . . . , αk distinct elements of X1, hence linearly independent over Q. Then Wα

cannot have dimension 0, since d(α) > k and (2) holds. Thus, for any k-element subset

{α1, . . . , αk} of X1, Wβ is anomalous in V k for any permutation β of (α1, . . . , αk). We thin

X to X1, and we work with X1.

Reduction 6. We work with X1, which we still call X . Let k be minimal such that, for any

k+ 1 elements η1, . . . , ηk+1 of X , the variety of the point (ebη1 , . . . , ebηk+1) is anomalous

in V k+1. From [2], it follows that there is a finite collection 8 of proper tori H1, . . . , Ht
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in G D(k+1)
m such that each maximal anomalous subvariety of V k+1 is a component of the

intersection of V k+1 with a coset of one of the Hi . We now discard much information. For

each Hi , we pick one of the multiplicative conditions defining it. These define a finite set

{J1, . . . , Jt } of codimension 1 subgroups so each anomalous subvariety is contained in one

of them. Now, exactly as in [7], by using Ramsey’s Theorem and Schanuel’s Conjecture

yet again, we get an infinite X2 ⊆ X so the Q-linear dimension of X2 is finite.

Reduction 7. Without loss of generality, we can assume that the set X of solutions of the

exponential polynomial f is infinite and of finite linear dimension over Q. Each α in X
gives rise to a solution (eµ1α, . . . , eµNα) of the linear equation λ1Y1+ · · ·+ λN YN = 0. We

change the latter to the equation

(−λ1

λN

)
Z1+ · · ·+

(−λN−1

λN

)
Z N−1 = 1, (3)

where Z j stands for
Y j
YN

. Note that (e(µ1−µN )α, . . . , e(µN−1−µN )α) is a solution of (3). In

[7, Lemma 5.6], we observed that distinct α give distinct roots of (3), unless f is a

simple polynomial. The finite dimensionality of X implies that the multiplicative group

generated by the e(µ j−µN )α for α ∈ X and j = 1, . . . , N − 1 has finite rank. We can then

apply a basic result on solving linear equations over a finite rank multiplicative group,

due to Evertse, Schlickewei, and Schmidt in [10]. From this result it follows that only

finitely many solution of (3) of the form (e(µ1−µN )α, . . . , e(µN−1−µN )α), for α ∈ X , are

non-degenerate. We then thin X again to an infinite set, which we still call X , generating

infinitely many degenerate solutions of (3). For any proper subset I of {1, . . . , N − 1} with

|I | > 1, let

f I =
∑

j∈I

(−λ j

λN

)
e(µ j−µN )z .

By repeated applications of the Pigeon-hole Principle and the Evertse, Schlickewei, and

Schmidt result in [10], we construct a finite chain of subsets I j of {1, . . . , N − 1} so f I j has

infinitely many common solutions with f . For cardinality reasons, we have to reach an I j0
of cardinality 2 whose corresponding polynomial is simple of length 2. By our result [7,

Theorem 5.7], we get that f divides a simple polynomial, and so f is necessarily simple.

Recall that in Reduction 1 we postponed the discussion for simple polynomials, and we

did the reductions for irreducible polynomials in E . Now we have reached the conclusion

that only a simple polynomial can satisfy assumptions 1–4 of this section. We have then

proved the following.

Theorem 4.1 (SC). Let f be an exponential polynomial in E. If Z( f ) contains an infinite

set X of finite transcendence degree, then f is divisible by a simple polynomial. Every

infinite subset of the zero set of an irreducible polynomial has infinite transcendence degree

(and hence infinite linear dimension).

Remark 4.2. Notice that the above theorem and Lemma 2.4 give the following

conclusions.
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1. (SC) If an exponential polynomial f vanishes on an infinite set X of finite transcendence

degree, then in fact X has finite linear dimension.

2. (Unconditionally) If f vanishes on an infinite set X of finite dimension, that dimension

has a bound depending only on the number of simple factors of length 2 dividing f .

The above results also imply that the zero set of an irreducible exponential polynomial

cannot contain an infinite set of finite linear dimension over Q. This does not depend on

Schanuel’s Conjecture. So, there is no irreducible exponential polynomial f such that

Z( f ) contains an infinite set of algebraic numbers. If Z(g) contains an infinite set of

finite dimension and g is simple of length 2, then this dimension has to be at most 2.

4.1. The case of subsets of Q
An immediate consequence of the above results is that, if f is an exponential polynomial

whose zero set contains an infinite subset X of rationals, then f is divisible by a simple

polynomial. We can then assume without loss of generality that f is simple. We now

show that the elements in X have bounded denominators. Indeed, factor f into simple

polynomials f1, . . . , fk of length 2, and let X i = X ∩ Z( fi ). For any i , X i ⊆ Z( fi )∩Q,

and, moreover, X i ⊆ A fi +ZB fi in the notation of Lemma 2.4. If q1, q2 ∈ X i , then

q1− q2 = (k− h)B fi for some k, h ∈ Z. Hence, B fi ∈ Q, and so also A fi ∈ Q. This implies

that there is Ni ∈ N such that X i ⊆ (1/Ni )Z. So, X has bounded denominators, since

X = X1 ∪ · · · ∪ Xk .

There is a recently published paper by Gunaydin [11] about solving in the rationals

exponential polynomials in many variables X = (X1, . . . , X t ) over C of the form

s∑

i=1

Pi (X)e((X ·αi )), (4)

where Pi (X) ∈ C[X ] and αi ∈ Ct . His result is the following.

Theorem 4.3 ([11]). Given P1, . . . , Ps ∈ C[X ] and α1, . . . , αs ∈ Ct , there is N ∈ N>0 such

that, if q ∈ Qt is a non-degenerate solution of

s∑

i=1

Pi (X)e((X ·αi )) = 0,

then q ∈ ( 1
N Z)t .

He makes no reference to any other exponential field, but we have verified that his

results hold for exponential polynomials as in (4) over an LEC-field.

His conclusion for f (z) in a single variable implies that the rationals in the zero set of

the function do not accumulate. So we have an algebraic proof of a result proved for C
via analytic methods.

Open problem. It is a natural question to ask if the result of Theorem 4.3 can be extended

to an arbitrary exponential polynomial with iterations of exponentiation over an LEC-field

or more generally for a Zilber field.
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If Zilber’s Conjecture is true, there is no exponential polynomial in this general sense

vanishing on a set of rationals which has an accumulation point. Note that there are

infinite subsets of Q with unbounded denominators, without accumulation points, e.g.,

X =
{

mn

pn
: pn is nth prime, mn ∈ N, and n <

mn

pn
< n+ 1

}
.

It seems inconceivable to us that there is a non-trivial exponential polynomial vanishing

on X . The classic Weierstrass Theorem (see [5]) provides a non-trivial entire function

vanishing on X , but the usual proof gives a complicated infinitary definition.

In the special case of exponential polynomials over C of the form

s∑

i=1

λi eµi e2π i z
,

Theorem 4.3 is true, because otherwise the polynomial

s∑

i=1

λi eµiw

would have infinitely many roots of unity as solutions. We prove in the next section that

this cannot happen unless the polynomial is identically zero.

5. Case of roots of unity

Let U denote the set of roots of unity. We know that an entire function over C cannot

have infinitely many roots of unity as zeros unless it is identically zero. Let K be an

LECS-field.

Theorem 5.1. If f (z) ∈ E over K vanishes on an infinite subset X of U, then f (z) is the

zero polynomial in E.

Proof. From Theorem 4.1, f is necessarily simple, and so X is of finite linear dimension

over Q. Hence, X lies in a finite extension of Q, and it is a very well-known fact that

any finitely generated field F of characteristic 0 cannot contain infinitely many roots of

unity; see [3]. So we get a contradiction.

Notice that the above result is unconditional; Schanuel’s Conjecture has not been used.

5.1. Torsion points of elliptic curves

We generalize the above argument to the case of coordinates of torsion points of an

elliptic curve E over any fixed number field F .

We consider the affine part of E given as usual by an equation that is cubic in x and

quadratic in y. Let tor(E) be the set of torsion points of E . Notice that not all torsion

points of E are in F . Define π1 as the projection to the x-coordinate, and π2 as the

projection to the y-coordinate. Let X be an infinite subset of π1(tor(E))∩ Z( f ). Then

X is contained in Falg (see [15]), and also in Qalg. From the reductions of § 4, assuming
(SC), the set X is finite dimensional over Q, and hence there is a finite extension L of
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F which contains X . L is of finite dimension over Q, say d. Now, each y in π2(tor(E))
associated to an element of X is quadratic over L, and so each torsion point of E belongs

to an extension of Q of degree at most 2d. Recall that for each n the group of n-torsion

points of an elliptic curve E is isomorphic to Z/nZ⊕Z/nZ.

In Merel’s paper [16], the following major result on a uniform bound on the order of

torsion points of an elliptic curve over a number field is proved.

Theorem 5.2. For all d ∈ Z, d > 1, there exists a constant n(d) > 0 such that, for all

elliptic curves E over a number field F with [F : Q] = d, any torsion point of E(F) is of

order less than n(d).

The bound in Merel’s result depends only on the dimension of the number field, and

not on the particular number field we are considering. We apply Merel’s result to number

fields of dimension greater than d and at most 2d, and we get that there can be only

finitely many torsion points. We have then proved the following result.

Theorem 5.3 (SC). Let f be an exponential polynomial in E. If X ∩ Z( f ) has infinite

cardinality, then f is identically zero.

A natural generalization of Theorem 5.3 is stated in the following.

Open Problem: Is the intersection of an infinite set of solutions of a non-zero exponential

polynomial with the x-coordinates of the torsion points of an abelian variety over Q
finite?

The crucial obstruction is that as far as we know there is not an analogous result to

Merel’s for abelian varieties. Using simply the reduction of § 4, we obtain that, if X is

the set of x-coordinates and y-coordinates of torsion points of an abelian variety over

Q, then the intersection of X with the zero set of an exponential polynomial f is finite

unless f is identically zero (no use of Merel’s result is needed here).

6. Case of an infinite cyclic group

In this section, we examine the case of an infinite X ⊆ Z( f ) such that X ⊆ 〈α〉, where

α ∈ K . Clearly, the transcendence degree of X is finite, and by Theorem 4.1, without loss

of generality, we can assume that f is simple (modulo Schanuel’s Conjecture). We are

going to show that some power of α is in Z. Without loss of generality, by the classical

factorization of 1-variable polynomials, f can be chosen to be of length 2.

In this section, we will often use the following basic thinning and reduction argument

for the set X of solutions using the Euclidean reduction.

Euclidean reduction. Suppose that αr ∈ X for some r ∈ N (when r is negative, we work

with 1
α

). Let s0 < r such that there are infinitely many m with αrm+s0 ∈ X . Via a change

of variable, we work with the polynomial g(z) = f (αs0 z), which vanishes on an infinite

subset of 〈αr 〉. If f is simple, of length 2, then also g is simple, of length 2. Hence, by

Lemma 2.4, Z(g) is the translate Ag +ZBg, where Ag and Bg are in K , and in general

different from A f and B f , respectively. In what follows, it will not make any difference

if we work with either f or g. The infinite set X of solutions of f contains a translate X ′
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of an infinite subset of Z(g). We will not make any distinction between the two, and we

will still use the notation X for X ′.

Lemma 6.1. Let α ∈ K× and α 6∈ U. Suppose that the set X ∩ 〈α〉 is infinite. If, for some

r 6= 0 in Z, αr ∈ Q, then αr ∈ Z or 1
αr ∈ Z.

Proof. Using the Euclidean reduction, we can assume that there are infinitely many m
with αrm rational solutions of g. Choose two of them, say αrm1 and αrm2 , so αrm1 =
Ag + k Bg and αrm2 = Ag + h Bg, for some k, h ∈ Z. Moreover, αrm1 6= αrm2 , since α 6∈ U.

Clearly, Ag and Bg are rationals. We now use the result in § 4.1, and we get a contradiction

unless either αr ∈ Z or 1
αr ∈ Z.

Theorem 6.2. Let f ∈ E. Suppose that X ⊆ Z( f ), X is contained in the infinite cyclic

group generated by α, and that X is infinite. Then f is identically zero unless αr ∈ Z for

some r ∈ Z.

Proof. As already observed, f is simple, of length 2, and so Z( f ) = A f +ZB f . Hence

X has linear dimension over Q less than or equal to 2. In particular, α is a root of

infinitely many trinomials over Q, and so it is algebraic, with minimum polynomial p(x)
dividing infinitely many trinomials. By work of Györy and Schinzel in [12], there exists

a polynomial q(x) ∈ Q[x] of degree 6 2 such that p(x) divides q(xr ) for some r .

If q(x) is linear, then αr is rational, and we have finished, thanks to Lemma 6.1.

If q(x) is quadratic, then αr ∈ Q(
√

d) for some d ∈ Q. By Euclidean reduction, we reduce

to the case of a simple polynomial g of length 2 for which the corresponding Ag and Bg
are in Q(

√
d). Using again Euclidean reduction, we can assume without loss of generality

that α ∈ Q(
√

d). The polynomial g may have changed, but we will continue to refer to it

as g. Note that, if Q(
√

d) = Q, then α ∈ Q, and so by Lemma 6.1 either α ∈ Z or 1
α
∈ Z.

So, we can assume that Q(
√

d) 6= Q.

We will also drop the subscript g from Ag and Bg in the rest of the proof, since no

confusion can arise.

Claim 1. Either α or 1/α is an algebraic integer in Q(
√

d).

Proof of the Claim 1: Suppose that α is not an algebraic integer in Q(
√

d). By a basic

result in algebraic number theory (e.g., see [4, Chapter 1]), there is a valuation v on

Q(
√

d) such that v(α) < 0. If, for infinitely many positive m ∈ Z, αm ∈ X , then there is

no lower bound on the valuations of elements of X . We get a contradiction, since, for

all m, αm = A+ km B for some km ∈ Z, and v(A+ km B) > min{v(A), v(B)}. So the v of

elements of X have to be bounded below. If there exist infinitely many integers m such

that αm ∈ X are negative then apply the same argument to 1
α

.

Let αm ∈ X so αm = A+ km B for some km ∈ Z, and let σ be a generator of the Galois

group of Q(
√

d) over Q. Then σ(α)m = σ(A)+ km · σ(B). The norm function is defined

as Nm(α) = α · σ(α). So,

Nm(α)m = Nm(A)+ T r(A · σ(B))km + Nm(B)k2
m,

where T r denotes the trace function. The polynomial Nm(A)+ T r(A · σ(B))x + Nm(B)x2

is over Q. By Euclidean reduction with r = 3 and some s0 with 0 6 s0 < 3, the equation
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Nm(αs0)y3 = Nm(A)+ T r(A · σ(B))x + Nm(B)x2 (5)

has infinitely many integer solutions of the form (Nm(α j ), km j ), for m j = 3 j + s0 and

j ∈ Z. Notice that, according to the sign of the infinitely many m, we work either with

α or with 1
α

. If the polynomial

P(x) = Nm(A)+ T r(A · σ(B))x + Nm(B)x2

has non-zero discriminant, then (5) defines (the affine part of) an elliptic curve over Q,

and by Siegel’s Theorem (see [1]) we get a contradiction.

It remains to consider the case when the discriminant of P(x) is zero, i.e.,

(T r(A · σ(B)))2− 4Nm(A · B) = 0. In this case, we have

P(x) = Nm(B)
(

x + T r(A · σ(B))
2Nm(B)

)2

,

where − T r(A·σ(B))
2Nm(B) is the multiple root, and equation (5) becomes

Nm(αs0)y3 = Nm(B)
(

x + T r(A · σ(B))
2Nm(B)

)2

. (6)

Equation (6) has infinitely many rational solutions of the form
(

Nm(α j ), km j +
T r(A · σ(B))

2Nm(B)

)
, (7)

where j varies in Z. By the change of variable x 7→ x + T r(A·σ(B))
2Nm(B) , and dividing by

Nm(αs0), we transform equation (6) to one of the form y3 = cx2, where c = Nm(B)
Nm(αs0 )

∈ Q×.

The equation defines a rational curve which we now parameterize.

Claim 2. The rational solutions of y3 = cx2 are of the following form:
{

x = θ3c−5

y = θ2c−3 (8)

with θ ∈ Q.

Proof of the Claim 2: Consider the p-adic valuation vp for some p. Suppose that y3 = cx2

with x, y ∈ Q. Then we have

(1) 3vp(y) = 2vp(x)+ vp(c), and so vp(y) = vp

(( x
y

)2c
)

(2) 15vp(y) = 10vp(x)+ vp(c), and so vp(x) = vp

(( y5

x2

)3c−5
)
.

Hence,

x = θ3c−5 and y = ξ2c, for some θ, ξ , and so ξ6c3 = θ6c−9. Therefore, (ξ/θ)6 = c−12,

and this implies that ξ/θ = ±c−2, i.e., ξ = ±θc−2. Notice that in the equation y3 = cx2

the variable x occurs in even power while the variable y occurs in odd power, so we get

the following parameterization of the curve y3 = cx2:
{

x = ± θ3c−5

y = θ2c−3.
(9)
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We have then obtained that all the rational solutions of y3 = cx2 are of the form in (9)

for θ rational. From (7) and (9), it follows that, for infinitely many j ∈ N,

(
Nm(α j ), km j +

T r(A · σ(B))
2Nm(B)

)
= (θ2

m j
c−3, θ3

m j
c−5), (10)

for θm j ∈ Q. Hence km j = θ3
m j

c−5− T r(A·σ(B))
2Nm(B) .

We have then that there are infinitely many j ∈ N such that (α j )3αs0 = A+ km j B,

where as before m j = 3 j + s0. Now we consider the new curve in y and θ ,

y3αs0 = θ3c−5 B+
(

A− T r(A · σ(B))
2Nm(B)

B
)
. (11)

We now distinguish two cases.

Case 1: A− T r(A·σ(B))
2Nm(B) B = 0. Let m,m′ ∈ Z, m 6= m′, and let both belong to X . Then

αm 6= αm′ and

αm−m′ =
(
θm

θm′

)3

,

and, by Lemma 6.1, we complete the proof in this case.

Case 2: A− T r(A·σ(B))
2Nm(B) B 6= 0. Dividing both sides of equation (11) by αs0 , we obtain a new

elliptic curve defined on the number field Q(
√

d). In this case, we apply a generalization

of Siegel’s Theorem (see [1]) to the new elliptic curve defined on Q(
√

d). Fix a prime

ideal P in Q(
√

d). Then, by (10), we have that

vP (θm j ) >
1
3

(
5vP (c)+min

{
0, vP

(
T r(A · σ(B))

2Nm(B)

)})
.

For all but finitely many prime ideals P, we have both vP (c) and vP
( T r(A·σ(B))

2Nm(B)

)
> 0. So

there is a finite set S of prime ideals P in Q(
√

d) so all vP (θm j ) are S-integers. Recall

also that αs0 is an integer in Q(
√

d), so we get a contradiction with Siegel’s Theorem.

We are now able to characterize those infinite subsets of an infinite cyclic group which

may occur as zero set of an exponential polynomial in E . In particular, this polynomial

is divisible by a simple polynomial.

Corollary 6.3. The following characterization holds:

{α ∈ K : |〈α〉 ∩ Z( f )| = ∞ for some f ∈ E} = {α ∈ K : αr ∈ Z for some r ∈ Z−{0}}.

Proof. (⊆) This inclusion follows from previous theorem.

(⊇) Clearly α is algebraic over Q. Suppose that r ∈ Z and r > 0. Then, for any s > r ,

αs ∈ Z. Let j0 < r , and consider the infinitely many integers of the form s = rq + j0 as q
varies in N. Then the polynomial f (z) = 1− eµz , where µ = α j02iπ , has infinitely many

roots in 〈α〉. If r < 0, then use the same argument for 1
α

.
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