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Abstract. We study the independence density for finite families of finite tuples of sets for
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1. Introduction
Let a countably infinite group 0 act on a compact metrizable space X continuously.
Motivated by the consideration in [7] for the naive entropy of measure-preserving actions,
Burton introduced the naive topological entropy of 0y X in [8]. This is also studied in
[11]. For a finite open cover U of X , denote by N (U) the minimal cardinality of subcovers
of U . For any non-empty finite subset F of 0, set U F

=
∨

s∈F s−1U . The naive entropy
of U is defined as

hnv(0, U) := inf
F

1
|F |

log N (U F ),

where F ranges over non-empty finite subsets of 0. The naive entropy of 0y X is defined
as

hnv(0y X) := sup
U

hnv(0, U)

for U ranging over finite open covers of X .
It is known that the naive entropy hnv(0y X) coincides with the classical topological

entropy when 0 is amenable [11, Theorem 6.8]. When 0 is sofic, if hnv(0y X)= 0, then
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the sofic topological entropy of 0y X with respect to any sofic approximation sequence
of 0 is either −∞ or 0 (see [8, Theorem 1.1] and [34, Propositions 4.6 and 4.16]). When
0 is non-amenable, hnv(0y X) is either 0 or∞ [8, Section 2.2]. Thus, for non-amenable
0, the naive entropy just describes the action 0y X as having positive entropy or zero
entropy.

Initiated by the work of Blanchard [3, 4], the local entropy theory developed quickly [5,
6, 10, 12, 23, 25–29, 32–35]. A combinatorial approach was given to this theory in [32]. It
turns out that the combinatorial approach enables us to give a unified treatment for several
dynamical properties. In general, one considers tuples of subsets of X which have large
independence sets in 0 (see Definition 2.1 below) and then localizes to tuples of points
in X for which the tuple of subsets associated to any product neighborhood has large
independence sets. Different largeness then corresponds to different dynamical properties.
For instance, positive density corresponds to positive entropy for actions of amenable
groups [27, 32, 35], infinite sets correspond to untameness [32, 35], and arbitrary large
finite sets correspond to non-nullness [32]. The correspondence between positive density
and positive entropy also holds for actions of sofic groups [34, 35], though the density is
defined using the sofic approximation sequence instead.

A natural question is whether positive naive entropy can be studied using combinatorial
independence. Indeed a notion of density was introduced for tuples of subsets for actions
of any group in [34, Definition 3.1], and the corresponding type of tuples of points in X
was also introduced in [34, Definition 3.2]. However, in general it is impossible to localize
positive density from tuples of subsets to a tuple of points (see Proposition 5.2). The
novelty in this paper is that we shall stay at the level of tuples of subsets and consider finite
families of tuples of subsets instead of a single tuple (see Definition 2.2). It turns out that
this characterizes positive naive entropy (Theorem 2.5) and we can use it to obtain some
interesting properties of actions with positive naive entropy.

The action 0y X is said to be Li–Yorke chaotic [6, 39] if there is an uncountable set
Y ⊆ X such that for any distinct x, y ∈ Y , one has

lim sup
03s→∞

ρ(sx, sy) > 0 and lim inf
03s→∞

ρ(sx, sy)= 0,

where ρ is any given compatible metric on X . Using measure-dynamical techniques,
Blanchard et al showed first that positive entropy implies Li–Yorke chaos for continuous
maps [6]. This was extended to actions of amenable groups [32, Corollary 3.19] and sofic
groups [34, Corollary 8.4] using combinatorial independence. Here using independence
density for finite families of tuples of subsets we extend this implication to actions of all
groups.

THEOREM 1.1. For any countably infinite group 0, any continuous action of 0 on a
compact metrizable space with positive naive entropy is Li–Yorke chaotic.

For sofic groups, in fact Theorem 1.1 is stronger than [34, Corollary 8.4] since there are
actions with zero sofic entropy but positive naive entropy (see the discussion at the end of
§ 5).

For any 0-invariant Borel probability measure µ on X , Bowen introduced the naive
entropy (see [7, Definition 7] and [8, Definition 2.2]) of the measure-preserving action
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0y (X, µ) by

hnv
µ (0y X) := sup

P
inf
F

1
|F |

Hµ(PF ),

where P ranges over finite Borel partitions of X and F ranges over non-empty finite
subsets of 0. Here, for a finite Borel partition Q of X , Hµ(Q) denotes the Shannon
entropy−

∑
q∈Q µ(q) log µ(q). It is easy to check that when 0 is amenable, hnv

µ (0y X)
coincides with the classical Kolmogorov–Sinai entropy (see [11, Theorem 4.2] and [35,
page 198]). When 0 is non-amenable, hnv

µ (0y X) is either 0 or +∞ [7, Theorem 2.13].
Burton showed that one always has hnv

µ (0y X)≤ hnv(0y X) [8, Theorem 1.3].
The action 0y X is called distal [2] if for any distinct x, y ∈ X one has

infs∈0 ρ(sx, sy) > 0, where ρ is any given compatible metric on X . Parry showed first
that distal actions of Z have zero entropy [41]. Since distal actions cannot be Li–Yorke
chaotic, it was observed in [34, Corollary 8.5] that distal actions of sofic groups have sofic
entropy either −∞ or 0. Via reduction to actions of Z, Burton [8, Example 2.2] showed
that if 0 contains an element with infinite order, then any distal action of 0 has zero naive
entropy. From Theorem 1.1 and the above paragraph, we conclude that this holds for all
groups, which answers a question of Bowen [7, Question 8].

COROLLARY 1.2. For any countably infinite group 0, any distal continuous action of 0
on a compact metrizable space X has zero naive topological entropy. If µ is a 0-invariant
Borel probability measure on X, then the action 0y (X, µ) also has zero naive entropy.

The notion of tame actions was introduced by Köhler [36] motivated by Rosenthal’s
characterization of Banach spaces containing `1 [44] and is well studied [1, 9, 13–22, 24,
30, 32, 35, 38, 43]. Denote by C(X) the space of all continuous R-valued functions on X
equipped with the supremum norm. The action 0y X is said to be untame if there are
some f ∈ C(X) and some infinite subset H of 0 such that the map δs 7→ s f for s ∈ H
extends to a linear Banach space isomorphism from `1(H) to the closed linear span of s f
for s ∈ H in C(X). Tameness can also be characterized in terms of the Ellis semigroup of
0y X . Using combinatorial independence it was shown that positive entropy actions are
untame for amenable groups [32] and sofic groups [34]. Here we extend it to all groups in
the context of naive entropy.

THEOREM 1.3. For any countably infinite group 0, tame continuous actions on compact
metrizable spaces have zero naive entropy.

This paper is organized as follows. We introduce the independence density for finite
families of subsets in §2 and show that positive independence density characterizes positive
naive entropy. Theorems 1.1 and 1.3 are proved in §3 and 4, respectively. In §5 we exhibit
an action with positive naive entropy but no non-diagonal orbit IE-pairs. This example
shows that in general one cannot localize positive density from tuples of subsets to a tuple
of points.

Throughout this article, 0 will be a countably infinite discrete group with identity
element e0 , and we fix a continuous action of 0 on a compact metrizable space X . For
any set H we denote by F(H) the set of non-empty finite subsets of H . For each n ∈ N
we write [n] for {1, . . . , n}.
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2. Independence density for families of tuples
In this section we introduce the independence density for finite families of subsets and
prove Theorem 2.5.

For each k ∈ N, denote by Ak the space of all k-tuples of subsets of X . Set A =⋃
k∈N Ak and A≥m =

⋃
k≥m Ak .

Recall the notion of independence sets introduced in [32, Definition 2.1] (see also [35,
Definition 8.7]).

Definition 2.1. For any A= (A1, . . . , Ak) ∈A , we say that J ⊆ 0 is an independence
set for A if for any non-empty finite set F ⊆ J and any map ω : F→ [k] one has⋂

s∈F s−1 Aω(s) 6= ∅.

Definition 2.2. For any finite A⊆A , we define the independence density of A to be the
largest q ≥ 0 such that for every F ∈ F(0) there are some J ⊆ F with |J | ≥ q|F | and
some A ∈A so that J is an independence set for A.

When A consists of a single tuple, Definition 2.2 reduces to [34, Definition 3.1].
We say that A= (A1, . . . , Ak) ∈Ak is pairwise disjoint (respectively closed) if the sets

A1, · · · , Ak are pairwise disjoint (respectively closed). We say that A⊆A is pairwise
disjoint (respectively closed) if each A ∈A is pairwise disjoint (respectively closed).

For covers U and V of X , we denote by U ∨ V the cover of X consisting of U ∩ V
for U ∈ U and V ∈ V . We say that U is finer than V if every item of U is contained in
some item of V . The following lemma is well known; see for example the proofs of [4,
Proposition 1] or [35, Lemma 12.11].

LEMMA 2.3. For any finite open cover U of X, there are n ∈ N and two-element open
covers U1, . . . , Un of X such that

∨n
j=1 U j is finer than U .

Let k ≥ 2 and let Z be a non-empty finite set. Let W be the cover of {0, 1, . . . , k}Z =∏
z∈Z {0, 1, . . . , k} consisting of subsets of the form

∏
z∈Z ({0, 1, . . . , k} \ {iz}), where

iz ∈ [k] for each z ∈ Z . For a set S ⊆ {0, 1, . . . , k}Z we write NS for the minimal number
of sets in W needed to cover S. The following is the major combinatorial fact we need
(see [32, Lemma 3.3] and [35, Lemma 12.13]).

LEMMA 2.4. Let k ≥ 2 and b > 0. There exists c > 0 depending only on k and b such
that for any finite set Z and S ⊆ {0, 1, . . . , k}Z with NS ≥ kb|Z | there is a J ⊆ Z with
|J | ≥ c|Z | and S|J ⊇ [k]J .

The following theorem characterizes positive naive entropy in terms of finite pairwise
disjoint closed families with positive independence density.

THEOREM 2.5. The following are equivalent:
(1) hnv(0y X) > 0;
(2) there is a finite pairwise disjoint closed A⊆A2 with positive independence density;
(3) there is a finite pairwise disjoint closed A⊆A≥2 with positive independence density.

Proof. (1)⇒(2). Suppose that hnv(0y X) > 0. Then hnv(0, U) > 0 for some finite open
cover U of X . By Lemma 2.3, we can find two-element open covers U1, . . . , Un of X
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such that
∨n

j=1 U j is finer than U . We may assume that none of U j contains X . For each
1≤ j ≤ n, write U j as {U j,1,U j,2} and set A j = (X \U j,1, X \U j,2) ∈A2. Then A=
{A1, . . . , An} ⊆A2 is finite pairwise disjoint and closed. We claim that A has positive
independence density. Set b := hnv(0, U)/(n log 2) > 0. Then we have the constant c > 0
in Lemma 2.4 depending only on k = 2 and b. Let F ∈ F(0). Then

hnv(0, U)|F | ≤ log N (U F )≤ log N
( n∨

j=1

U F
j

)
≤

n∑
j=1

log N (U F
j ).

Thus, there is some 1≤ j ≤ n with hnv(0,U)
n |F | ≤ log N (U F

j ). Consider the map ϕ : X→
{0, 1, 2}F defined by

(ϕ(x))(s)=
{

i if sx ∈ X \U j,i for some i ∈ [2],
0 otherwise.

Then Nϕ(X) = N (U F
j )≥ 2b|F |. Therefore, there is some J ⊆ F with |J | ≥ c|F | and

ϕ(X)|J ⊇ [2]J . Then J is an independence set for A j . Thus, A has independence density
at least c.

(2)⇒(3) is trivial.
(3)⇒(1). Let A= {A1, . . . , An} ⊆A≥2 be finite pairwise disjoint closed with

independence density q > 0. For each 1≤ j ≤ n, write A j as (A j,1, . . . , A j,k j ) and set

V j = X \
⋃k j

i=1 A j,i and U j = {A j,1 ∪ V j , . . . , A j,k j ∪ V j }. Then U1, . . . , Un are finite
open covers of X . Set U =

∨n
j=1 U j . We claim that hnv(0, U) > 0. Let F ∈ F(0). Then

there are some J ⊆ F with |J | ≥ q|F | and some 1≤ j ≤ n such that J is an independence
set for A j . We have

N (U F )≥ N (U F
j )≥ N (U J

j )≥ k|J |j

and hence
1
|F |

log N (U F )≥
|J |
|F |

log k j ≥ q log k j ≥ q log 2.

Therefore, hnv(0, U)≥ q log 2> 0. �

Let A⊆A . We say that A′ ⊆A is a simple splitting of A if there are some A ∈A
with A= (A1, . . . , Ak) and some 1≤ j ≤ k and A j = A j,1 ∪ A j,2 such that

A′ = (A \ {A})
∪ {(A1, . . . , A j−1, A j,1, A j+1, . . . , Ak), (A1, . . . , A j−1, A j,2, A j+1, . . . , Ak)}.

We say that A′ ⊆A is a splitting of A if there are A=A1,A2, . . . ,Am =A′ such that
A j+1 is a simple splitting of A j for all 1≤ j ≤ m − 1. Clearly splittings of pairwise
disjoint families are still pairwise disjoint.

We need the following lemma (see [32, Lemma 3.7] and [35, Lemma 12.16]), which
is a consequence of Karpovsky and Milman’s generalization of the Sauer–Perles–Shelah
lemma [31, 45, 47].

LEMMA 2.6. Let k ≥ 1. Then there is some c > 0 depending only on k such that for any
A ∈Ak , any simple splitting {A1, A2} of {A}, and any finite independence set J for A,
there is an I ⊆ J such that |I | ≥ c|J | and I is an independence set for at least one of A1

and A2.
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From Lemma 2.6, we see that for any finite A⊆A with positive independence density,
every simple splitting of A has positive independence density. Via induction we get the
following result.

PROPOSITION 2.7. Let A⊆A be finite with positive independence density. Then every
splitting of A has positive independence density.

3. Positive independence density and Li–Yorke chaos
In this section we prove Theorem 3.4, which shows that positive independence density
implies Li–Yorke chaos.

Notation 3.1. Let E ∈ F(0). For A= (A1, . . . , Ak) ∈Ak , we write AE for the tuple in
Ak|E | consisting of ∩s∈E s−1 Aω(s) for all ω ∈ [k]E in any order.

For K , E ∈ F(0), we say that E is K -separated if the sets K t for t ∈ E are pairwise
disjoint. The following lemma is an analogue of [34, Lemma 8.2].

LEMMA 3.2. Let A⊆A be finite with positive independence density. Let K ∈ F(0).
Then there is some finite A′ ⊆A with positive independence density such that each
element of A′ is of the form AE for some A ∈A and some K -separated E ∈ F(0 \ K )
with |E | = 2.

Proof. Denote by q the independence density of A. Take a K -separated E ∈ F(0 \ K )
with q|E | ≥ 2.

Let F ∈ F(0). Take a maximal E-separated subset F ′ of F . Then E−1 E F ′ ⊇ F and
hence

|F ′| ≥ |F |/|E |2.

Note that |E F ′| = |E | · |F ′|. By assumption we can find a J ⊆ E F ′ with |J | ≥ q|E F ′|
and some A ∈A such that J is an independence set for A. For each t ∈ E , set Jt =

t−1(J ∩ t F ′)⊆ F ′. Since J ∩ t F ′ for t ∈ E is a partition of J , we have∑
t∈E

|Jt | =
∑
t∈E

|J ∩ t F ′| = |J | ≥ q|E F ′| = q|E | · |F ′| ≥ 2|F ′|.

Denote by η the maximum of |Js ∩ Jt |/|F ′| for s, t ranging over distinct elements of
E . Then for each t ∈ E there is some Wt ⊆ Jt with |Wt | ≤ η|F ′| · |E | such that the sets
Jt \Wt for t ∈ E are pairwise disjoint. Thus,

2|F ′| ≤
∑
t∈E

|Jt | =
∑
t∈E

|Wt | +
∣∣ ⋃

t∈E

(Jt \Wt )
∣∣≤ η|F ′| · |E |2 + |F ′|

and hence η ≥ 1/|E |2. Then we can find distinct s, t ∈ E with

|Js ∩ Jt | = η|F ′| ≥ |F ′|/|E |2 ≥ |F |/|E |4.

Note that t (Js ∩ Jt ) ∪ s(Js ∩ Jt )⊆ J and t (Js ∩ Jt ) ∩ s(Js ∩ Jt )⊆ t F ′ ∩ s F ′ = ∅. Thus,
Js ∩ Jt is an independence set for A{s,t}. Therefore, the set A′ consisting of A{s,t} for
A ∈A and distinct s, t ∈ E has independence density at least 1/|E |4. �

From Lemma 3.2, via induction on n, we have the following result.
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LEMMA 3.3. Let A⊆A be finite with positive independence density. Let K ∈ F(0) and
n ∈ N. Then there is some finite A′ ⊆A with positive independence density such that each
element of A′ is of the form AE for some A ∈A and some K -separated E ∈ F(0 \ K )with
|E | = 2n .

Fix a compatible metric ρ on X . For A= (A1, . . . , Ak) ∈Ak , we set

diam(A, ρ)= max
1≤ j≤k

diam(A j , ρ).

For finite A⊆A , we set

diam(A, ρ)=max
A∈A

diam(A, ρ).

For any ε > 0, clearly every finite closed A⊆A has a closed splitting with diameter at
most ε.

For A ∈Ak , we set |A| = k. For s ∈ 0 and A= (A1, . . . , Ak) ∈Ak , we set sA=
(s A1, . . . , s Ak) ∈Ak . The following is an analogue of [32, Theorem 3.18] and [34,
Theorem 8.1].

THEOREM 3.4. Let A⊆A≥2 be finite pairwise disjoint closed with positive independence
density. Then there are some A ∈A and a Cantor set Z contained in the union of the
entries of A such that for any finite set Y ⊆ Z and any map f : Y → Z one has

lim inf
03s→∞

max
y∈Y

ρ(sy, f (y))= 0.

Proof. Take an increasing sequence {e0} ⊆ K1 ⊆ K2 ⊆ · · · of finite subsets of 0 with
union 0. We shall construct, via induction on m, finite Am ⊆A with the following
properties:
(1) A1 ⊆A;
(2) for every m ≥ 2, there are maps πm :Am→Am−1 and ζm :Am→ 0 such that for

every A ∈Am one has |A| = 2|πm(A)| and each entry of πm(A) contains exactly two
entries of ζm(A)A;

(3) when m ≥ 2, for every A ∈Am defining ξm(A) ∈ 0 by s j = ζ jπ j+1π j+2 · · · πm(A)
for all 2≤ j ≤ m and ξm(A)= s2 · · · sm , we have diam(ξm(A)A, ρ)≤ 2−m ;

(4) when m ≥ 2, for every A ∈Am , writing πm(A)= (B1, . . . , B`) and A=
(A1, . . . , A2`), for any map γ : [2`] → [`], there is some

u ∈ 0 \ ξm−1(Am−1)
−1 Km−1ξm−1(Am−1)ζm(A)

such that u A j ⊆ Bγ ( j) for all j ∈ [2`], where ξ1(A1)= {e0};
(5) for every m, Am is pairwise disjoint and closed;
(6) for every m, Am has positive independence density.

Suppose that we have constructed such Am over all m. Removing the elements of Am

with some empty entry, we may assume that the entries of the elements of each Am are all
non-empty. Since each Am is non-empty and finite, the inverse limit space lim

←−m→∞
Am

for the maps πm is non-empty. Thus, we can find Am ∈Am for each m ∈ N such that
πm+1(Am+1)= Am for all m. For any m ≥ 2, set A′m = ξm(Am)Am . Then, for each m ≥
2, A′m ∈A|A1|2m−1 and each entry of A′m contains exactly two entries of A′m+1 by (2),
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and diam(A′m, ρ)≤ 2−m by (3). Denote by Zm the union of the entries of A′m , and set
Z =

⋂
m≥2 Zm . Then Z is a Cantor set. Since ξ2(A2)= ζ2(A2), the entries of A′2 =

ξ2(A2)A2 = ζ2(A2)A2 are contained in the entries of π2(A2)= A1 by (2). Thus, Z ⊆ Z2

is contained in the union of the entries of A1.
Let Y ⊆ Z be finite and let f be a map Y → Z . Let K ∈ F(0) and ε > 0.

Take m ≥ 2 such that distinct elements of Y lie in distinct entries of A′m+1, K ⊆
Km , and 2−m < ε. Write A′m = (B1, . . . , B`) and A′m+1 = (A1, . . . , A2`). Then
there is some map γ : [2`] → [`] such that for any y ∈ Y , if y ∈ A j , then f (y) ∈
Bγ ( j). Set tm = ξm(Am) and tm+1 = ξm+1(Am+1)= tmζm+1(Am+1). Then Am =

(t−1
m B1, . . . , t−1

m B`) and Am+1 = (t−1
m+1 A1, . . . , t−1

m+1 A2`). By (4), there is some u ∈
0 \ ξm(Am)

−1 Kmξm(Am)ζm+1(Am+1) such that ut−1
m+1 A j ⊆ t−1

m Bγ ( j) for all j ∈ [2`].
For every y ∈ Y , say y ∈ A j for some j ∈ [2`], one has tmut−1

m+1 y, f (y) ∈ Bγ ( j) and hence

ρ(tmut−1
m+1 y, f (y))≤ diam(A′m, ρ)≤ 2−m < ε.

Since tmut−1
m+1 6∈ Km , we have tmut−1

m+1 6∈ K . Therefore,

lim inf
03s→∞

max
y∈Y

ρ(sy, f (y))= 0.

We now construct the Am . We set A1 =A. By assumption, (5) and (6) are satisfied
for m = 1. Assume that we have constructed Am with the above properties. Take n ∈ N
such that 2n

≥ 2+ |A|2|A| for all A ∈Am . By Lemma 3.3, we can find a finite A′m ⊆A

with positive independence density such that each element of A′m is of the form AE for
some A ∈Am and some ξm(Am)

−1 Kmξm(Am)-separated E ∈ F(0) with |E | = 2n . Let
A′ ∈A′m and write it as AE as above. Write A as (A1, . . . , A`). Fix distinct s0, s1 ∈

E and take an injection ϕ : [`][2`]→ E \ {s0, s1}. For all 1≤ i ≤ ` and 1≤ j ≤ 2, take
ωi, j : E→ [`] such that ωi, j (s0)= i , ω(s1)= j , and ωi, j (ϕ(γ ))= γ (i + ( j − 1)`) for all
γ : [2`] → [`], and set

Ai, j =
⋂
s∈E

s−1 Aωi, j (s).

Then A′′ := (A1,1, . . . , A`,1, A1,2, . . . , A`,2) ∈A2` is pairwise disjoint and closed,
and every independence set for A′ = AE is an independence set for A′′. The
family Am+1 := {A′′ : A′ ∈A′m} clearly satisfies the properties (5) and (6). Setting
πm+1(A′′)= A and ζm+1(A′′)= s0, the property (2) is verified. For any map γ : [2`] →
[`], we have ϕ(γ )Ai, j ⊆ Aγ (i+( j−1)`) for all 1≤ i ≤ ` and 1≤ j ≤ 2. Since E is
ξm(Am)

−1 Kmξm(Am)-separated and s0 6= ϕ(γ ), we have

ϕ(γ ) 6∈ ξm(Am)
−1 Kmξm(Am)s0 = ξm(Am)

−1 Kmξm(Am)ζm+1(A′′).

Thus, the property (4) also holds. Replacing each A′′ by a suitable closed splitting of {A′′},
we also make (3) hold. This finishes the induction step. �

Now Theorem 1.1 follows from Theorems 2.5 and 3.4.

4. Positive independence density and tameness
It was shown in [34, Theorem 7.1] that if A ∈A has positive independence density, then
A has an infinite independence set. With a minor modification, the proof also works for
finite families in A .
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THEOREM 4.1. Let A⊆A be finite with positive independence density. Then at least one
element of A has an infinite independence set.

The action 0y X is untame exactly when there is a pairwise disjoint closed A ∈A≥2

with an infinite independence set [35, Proposition 8.14]. Then Theorem 1.3 follows from
Theorems 2.5 and 4.1.

5. An action with positive naive entropy but no non-diagonal orbit IE-pairs
For k ∈ N, recall that (x1, . . . , xk) ∈ X k is called an orbit IE-tuple (or orbit IE-pair
when k = 2) if for any product neighborhood U1 × · · · ×Uk of (x1, . . . , xk) in X k , the
tuple (U1, . . . ,Uk) has positive independence density [34, Definition 3.2]. When 0 is
amenable, this is the same as IE-tuples defined in [32, Definition 3.1].

When 0 is amenable, 0y X has positive entropy exactly when X has non-diagonal
IE-pairs (see [32, Proposition 3.9] and [35, Theorem 12.19]). When 0 is sofic and
6 is a sofic approximation sequence for 0, 0y X has positive sofic entropy with
respect to 6 exactly when X has non-diagonal 6-IE-pairs (see [34, Proposition 4.16]
and [35, Theorem 12.39]). For general 0, if X has non-diagonal orbit IE-pairs, then
from Theorem 2.5 we know that 0y X has positive naive entropy. We shall show in
Proposition 5.2 that the converse fails.

Denote by Z0 the integral group ring of 0 (see [42, page 3] and [35, Section 13.1]).
It consists of all functions f : 0→ Z with finite support. Writing f as

∑
s∈0 fss, the

addition and multiplication of Z0 are defined by∑
s

fss +
∑

s

gss =
∑

s

( fs + gs)s,
(∑

s

fss
)(∑

t

gt t
)
=

∑
t

(∑
s

fs gs−1t

)
t. (1)

It also has an involution ∗ defined by(∑
s

fss
)∗
=

∑
s

fs−1s.

For any countable left Z0-module M, its Pontryagin dual M̂ consisting of all group
homomorphisms M→ R/Z under pointwise multiplication and convergence is a compact
metrizable abelian group, and 0 acts on M̂ naturally by continuous automorphisms with
(sϕ)(x)= ϕ(s−1x) for all ϕ ∈ M̂, s ∈ 0, and x ∈M. We refer the reader to [35, 40, 46]
for general information on the study of 0y M̂.

When M= Z0, we may identify M̂ with (R/Z)0 , and the induced 0-action on
(R/Z)0 is the left shift action given by (sx)t = xs−1t for all x ∈ (R/Z)0 and s, t ∈ 0.

For any submodule M′ of M, the restriction map yields a factor map (i.e. a continuous
surjective 0-equivariant map) M̂→ M̂′. For f ∈ Z0, we have the Z0-module Z0/Z0 f
and denote ̂Z0/Z0 f by X f . One may identify X f with the closed 0-invariant subgroup
of (R/Z)0 consisting of x ∈ (R/Z)0 satisfying x f ∗ = 0 [37, page 311], where the
convolution product x f ∗ is defined similar to (1).

LEMMA 5.1. Let a ∈ 0 with infinite order. Then Xa−1 has no non-diagonal orbit IE-pairs.

Proof. Note that Xa−1 = {x ∈ (R/Z)0 : x(a − 1)∗ = 0} consists of exactly those x ∈
(R/Z)0 satisfying xta = xt for all t ∈ 0. Let x and y be distinct points in Xa−1.
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Then xs 6= ys for some s ∈ 0. Take open neighborhoods Vx and Vy of xs and ys in
R/Z respectively such that Vx ∩ Vy = ∅. Denote by Ux (respectively Uy) the set of
z ∈ Xa−1 with zs ∈ Vx (respectively zs ∈ Vy). Then Ux and Uy are neighborhoods of x
and y in Xa−1, respectively. For any distinct k, m ∈ N, if sak z ∈Ux and sam z ∈Uy for
some z ∈ Xa−1, then ze0 = za−k = (sak z)s ∈ Vx and ze0 = za−m = (sam z)s ∈ Vy , which
is impossible. Thus, for any n ∈ N, if J is an independence set for (Ux ,Uy) contained
in {sak

: k = 1, . . . , n}, then |J | ≤ 1. Therefore, (Ux ,Uy) has independence density 0,
whence (x, y) is not an orbit IE-pair of Xa−1. �

Now let F2 be the rank-two free group with generators a and b.

PROPOSITION 5.2. There is an action of F2 on a compact metrizable abelian group
X by continuous automorphisms such that F2 y X has positive naive entropy while X
has no non-diagonal orbit IE-pairs. Furthermore, there is a finite pairwise disjoint
closed A⊆A2 with positive independence density such that no element of A has positive
independence density.

Proof. We shall show that F2 y Xa−1 satisfies the conditions. From Lemma 5.1, we know
that Xa−1 has no non-diagonal orbit IE-pairs.

Note that ZF2 has a free left ZF2-submodule with generators a − 1 and b − 1 [42,
Corollary 10.3.7(iv)] and hence ZF2/ZF2(a − 1) contains a ZF2-submodule isomorphic
to ZF2. Therefore, the action F2 y Xa−1 has a factor F2 y ẐF2 = (R/Z)F2 . As naive
entropy does not increase under taking factors, we conclude that F2 y Xa−1 has positive
naive entropy.

To prove the last assertion of the proposition, assume conversely that every finite
pairwise disjoint closed A⊆A2 with positive independence density has an element with
positive independence density. Take a compatible metric ρ on Xa−1. Since F2 y Xa−1

has positive naive entropy, by Theorem 2.5 there is some finite pairwise disjoint closed
A1 ⊆A2 with positive independence density. By the assumption, there is some A1 ∈A1

with positive independence density. Inductively, assume that we have found some closed
Ak ∈A2 with positive independence density. Take a finite closed splitting Ak+1 ⊆A2

of {Ak} such that diam(Ak+1, ρ)≤ diam(Xa−1, ρ)/2k . By Proposition 2.7, we know
that Ak+1 has positive independence density. Then by assumption we can find some
Ak+1 ∈Ak+1 with positive independence density. In this way we obtain a sequence
{Ak}k∈N of closed elements in A2 such that each Ak has positive independence density and
diam(Ak, ρ)→ 0 as k→∞. Writing Ak = (Ak,1, Ak,2), we may assume that Ak+1,i ⊆

Ak,i for all k ∈ N and i = 1, 2. Then, for each i = 1, 2, the intersection
⋂

k∈N Ak,i is a
singleton {xi }. As A1,1 ∩ A1,2 = ∅, we have x1 6= x2. Then (x1, x2) is a non-diagonal
orbit IE-pair, which is a contradiction. This proves the last assertion of the proposition. �

When 0 is amenable, the independence density for each A ∈A is a limit [35, page 287]
and hence every finite A⊆A with positive independence density has an element with
positive independence density. Proposition 5.2 shows that this fails for F2.

From [34, Propositions 4.6 and 4.16], we know that when 0 is sofic, if 0y X has
positive sofic entropy with respect to some sofic approximation sequence of 0, then X has
a non-diagonal orbit IE-pair. Now let F2 y X be an action in Proposition 5.2. As F2 is
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sofic, X has no non-diagonal orbit IE-pairs, and F2 y X has a fixed point, we conclude
that F2 y X has sofic entropy zero with respect to every sofic approximation sequence of
F2. Thus, results of [34] do not tell us that F2 y X is Li–Yorke chaotic or untame. On
the other hand, since F2 y X has positive naive entropy, Theorems 1.1 and 1.3 imply that
F2 y X is Li–Yorke chaotic and untame.
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