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Abstract

Laser-produced high-energy-density plasmas may contain strong magnetic fields that affect the energy transport, which
can be nonlocal. Models which describe the magnetized nonlocal transport are formally complicated and based on
many approximations. This paper presents a more straightforward approach to the description of the electron transport
in this regime, based on the extension of a reduced entropic model. The calculated magnetized heat fluxes are
compared with the known asymptotic limits and applied for studying of a magnetized nonlocal plasma thermalization.
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1. INTRODUCTION

Magnetic fields play an important role in astrophysics (Gre-
gori et al., 2012; Marocchino et al., 2015) and may affect the
transport properties of high-energy-density plasmas in labo-
ratory conditions (Clark et al., 2000; Stamper et al., 1971).
In laser-produced plasmas, magnetic fields can be self-

generated (Kingham & Bell, 2002) or externally imposed
(Froula et al., 2007). In the inertial confinement fusion con-
text, external magnetic fields may limit energy losses from
the central hot spot or guide the energy flux to the central
part of the target (Cuneo et al., 2012; Strozzi et al., 2012).
External fields could also modify the target symmetry
during implosion, as well as the energy transfer through
heat conduction zone. The electron conduction model imple-
mented in the majority of radiation hydrodynamic codes is
based on the assumption of a small deviation from the
local thermodynamic equilibrium (Spitzer & Härm, 1953;
Braginskii, 1965). But, if the electron mean free path
(MFP) exceeds a fraction of the temperature gradient
length, this assumption is no more valid and a nonlocal

theory is required (Malone et al., 1975). This is a common
case in the inertial confinement fusion context.
Kinetic codes (Bell et al., 2006; Tzoufras et al., 2011) are

able to describe nonlocal transport, even in magnetized plas-
mas. However, they are too computationally expensive to
provide results in the time scale of interest for hydrodynamics,
either by a direct computation or by coupling themwith hydro-
dynamic codes. For this reason, simplified descriptions, which
capture the main features of nonlocal transport, have been de-
rived (Bell, 1985; Manheimer et al., 2008). We refer to them
as nonlocal models.
The description of magnetic field effects on the electron

heat transport is complicated (Braginskii, 1965; Epperlein
& Haines, 1986). It involves tensor transport coefficients,
which account for flux limitation effects and flux rotation.
One of the most frequently used nonlocal electron transport
model (Meezan et al., 2004; Hu et al., 2008; Marocchino
et al., 2013; Craxton et al., 2015), proposed by Schurtz,
Nicolaï and Busquet (SNB) (Schurtz et al., 2000), is based
on a simplified kinetic approach: the nonlocal electron con-
tribution is computed using a diffusion equation, resolved
with a multigroup scheme on energy. It has been generalized
to the magnetized nonlocal regime, thanks to a phenomeno-
logical modeling of the induced electric field (Nicolaï et al.,
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2006). Nevertheless, despite this simplification, the model
remains too complex and not reliable to be used in practice.
In this paper, we propose to approach the problem in a dif-

ferent way, by using a first-principles model, already tested in
the nonlocal regime (Del Sorbo et al., 2015b), without mag-
netic fields. This model, the so-called M1, is based on a sim-
plified Fokker–Planck (FP) equation, developed on angular
moments and closed with the local angular entropy maximi-
zation principle, which is different from the standard spheri-
cal harmonic development. Such a closure has already been
tested for strongly anisotropic beams of particles (Touati
et al., 2014) in domains of fast ignition (Del Sorbo et al.,
2015a) and radiotherapy (Caron et al., 2015). The M1
model presents the best properties to be generalized for the
study of the magnetized nonlocal transport due to its
simple and numerically stable mathematical structure.
The M1 predictions for a magnetized electron energy

transport are studied in a broad range of parameters covering
the local as well as nonlocal regime. It is shown that the
model results agree with known asymptotic expressions.
The model is applied to studying the evolution of a thermal
wave in the magnetized nonlocal regime.
The paper is organized as follows. In Section 2, an over-

view of unmagnetized and magnetized local transport
models is presented. In Section 3, we derive the entropic
model using the induced electric field response developed
in Section 4. The model is applied in Section 5, to recover
the local limit and compare it with known theoretical results.
The nonlocal limit is presented in Section 6. In Section 7, the
model is applied for studying of evolution of magnetized
thermal waves. The conclusions are presented in Section 8.

2. LOCAL ELECTRON TRANSPORT THEORIES

The electron heat flux can be calculated knowing the electron
distribution function (EDF):

�q =
∫
R3

d3v
mev2

2
�v fe. (1)

The EDF temporal evolution is given by the Landau–FP
equation (Landau & Lifshitz, 1981)

∂
∂t

+ �v · �∇+ �a · �∇v

( )
fe = ∂ fe

∂t

( )
coll

, (2)

where t is the time, �v is the velocity, �a = e/me(�E + �v/c × �B)
is the Lorentz acceleration, function of the electric �E, and
magnetic �B fields. The elementary charge is e, the electron
mass is me, the light speed is c, and (∂ fe/∂t)coll is a term ac-
counting for collision modeling.
The classical theory of electron transport is based on the

assumption of a small deviation from the local thermody-
namic equilibrium, that is, the EDF is composed of the Max-
wellian distribution fme = ne/(2πv2th)3/2 e−v2/(2v2th) and a linear
anisotropic perturbation, in the velocity direction �Ω = �v/v.

Here, ne is the electron density, Te is the electron temperature,
and vth =

�������
Te/me

√
is the thermal velocity. In this approxima-

tion, the EDF reads

fe = fme + 3
4π

�Ω · �f1, (3)

where �f1 is the first angular moment of the EDF, such that

‖�f1‖≪ fme .
TheMaxwellian hypothesis for main part of EDF, yields to

the so-called local transport theory.
A local theory of the magnetized electron transport has

been derived by Braginskii (1965) and further corrected by
Epperlein and Haines (1986). Approximate solutions of the
local FP equation allowed us to calculate thermoelectric co-
efficients for all magnetohydrodynamic processes. These co-
efficients provide a relation between the electric field, the
temperature gradient, the current, and the electron heat
flux. They read respectively (Braginskii, 1965; Epperlein &
Haines, 1986; Nicolaï et al., 2006):

�E = −
�∇pe
ene

+
�je × �B

cene
+ ��α ·

�je
e2n2e

− ��β ·
�∇Te
e

(4)

and

�qB = −��k · �∇Te − ��β ·�je
Te
e
, (5)

where the current is provided by the stationary Ampere’s law

�je =
c

4π
�∇ × �B. (6)

In Eqs (4) and (5), ��α, ��β, and ��k are second-order tensors, which
respectively account for the electrical resistivity, thermoelec-
tric, and thermal conductivity. Applied to a generic vector �V ,
this tensor quantities (generically denoted by ��Ψ) can be ex-
pressed in terms of components relative to the magnetic
field unitary vector b̂ = �B/B, as

��Ψ · �V = Ψ∥b̂ · (b̂ · �V) − Ψ⊥b̂ × (b̂ × �V)± Ψ∧b̂ × �V, (7)

where the negative sign applies only to the case ��Ψ = ��α. The
symbols ∥, ⊥ mean parallel and perpendicular to the mag-
netic field, while ∧ means the direction perpendicular to
the magnetic field and the generic vector.

The Braginskii’s transport theory is a practical way to ac-
count for magnetic effects in hydrodynamic codes. The nu-
merical value for the transport coefficients has been later
improved by Epperlein & Haines (1986). They have reduced
the error on Braginskii’s coefficients up to 15%, deducing
them numerically.

The role of magnetic fields in electron transport is
characterized by a magnetization parameter (the Hall
parameter), which is a product of the electron collision time

τe = n−1
e = 3

������
meT3

e

√
/(4 ���

2π
√

neZe4Λei), where Λei is the
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Coulomb logarithm, and the electron gyrofrequency ωB=
eB/(mec).
In the limit ωBτe= 0, the Braginskii’s theory reduces to the

Spitzer and Härm (SH) theory (Spitzer & Härm, 1953). The
Ampere’s law Eq. (6) is replaced by the zero current condition
�je = −e

�
R3d3v�v fe = 0, so the electric field Eq. (4) becomes

�ESH = −Te
e

�∇ne
ne

+ ξ
�∇Te
Te

( )
, (8)

with ξ(Z )= 1+ β= 1+ 3/2(Z+ 0.477)/(Z+ 2.15). For
simplicity we consider electrons as a perfect gas with pe=
neTe. Then, the electron heat flux (5) contains only one
term, with the thermal conductivity.

3. REDUCED ENTROPIC MODEL

The purpose of this paper is to describe the combined effect
of nonlocal transport and of magnetic fields on the heat flux.
The SH theory predicts that the heat is transported by

suprathermal electrons having the velocity ∼3.7 times
higher than the thermal velocity (Schurtz et al., 2000).
Since the MFP varies as∝ v4, the heat is transported by elec-
trons having the collision length 187 times larger than the
thermal MFP. These electrons can penetrate deeply into the
plasma and can deposit their energy far away from where
they have been originated. In this case, the local thermody-
namic equilibrium cannot be reached. In particular, if the
MFP is long compared with the temperature gradient
length (λe >2 × 10−3LT), the local theory is no more valid
and the heat transport becomes nonlocal, requiring a kinetic
treatment (Bell et al., 2006; Tzoufras et al., 2011).
Using kinetic codes, the complexity of combining nonlo-

cal and magnetic effects mainly limits the analysis to kinetic
temporal scales (few tenths of collision times) and to a re-
duced number of dimensions. The entropic model M1 (Del
Sorbo et al., 2015b), based on a reduced FP equation has
been modified in such a way that it can be coupled with mag-
netohydrodynamic codes, thus extending the analysis to long
hydrodynamic times and to multidimensional geometries. In
particular, our purpose is to test the validity of this improved
version of the entropic model, in the magnetized nonlocal
regime.

Since the electrons transporting the heat are suprather-
mal, following (Albritton et al., 1986; Del Sorbo et al.,
2015b), we limit our analysis to fast electrons colliding
with thermal ions and electrons. The collision integral is
taken in a simplified form, proposed by Albritton et al.
(Albritton, 1983; Albritton et al., 1986) and applied in
(Del Sorbo et al., 2015b) to unmagnetized plasmas. More-
over, following to (Dubroca et al., 2010; Touati et al.,
2014), we developed the EDF in angular moments and
retain the first two moments in the M1 approximation.
As the electron collision time is short compared with
the characteristic hydrodynamic time, we solve a station-
ary kinetic equation at each hydrodynamic time step.
Then the system of kinetic equations for two angular mo-
ments of the EDF writes:

Third equation presents a closure relation of the second
angular moment. It is derived by maximizing the local an-
gular entropy

HΩ(�x, v) = −
∫
S2
d2Ω( fe log fe − fe) ∀(�x, v), (10)

imposing the dependence on the first two moments. Here
��I is the second-order identity tensor, and �Ωv = �f1/ f0.

Starting from the kinetic point of view, the hydrodynamics
can be constructed from the maximization of the local entro-
py

�
R+dvv2HΩ(�x, v) ∀�x. The maximization of the local an-

gular entropy Eq. (10) is less restrictive, it presents a
compromise which allows us to account for kinetic effects
in a mesoscopic way.
The M1 model can be coupled to a multidimensional mag-

netohydrodynamic code as follows: at every time step of a
magnetohydrodynamic simulation it is initialized by the hy-
drodynamic parameters (temperature, density, and magnetic
field) which are used to compute the EDF. The latter can
be easily integrated to obtain the heat flux. We stress that
the M1 model does not perform any distinction between
local and nonlocal populations, but it computes the EDF of
the plasma as a whole with the constraint of the hydrody-
namic temperature. For more details, see also Section 4 of
(Del Sorbo et al., 2015b).

v �∇ · �f 1 −
e�E

mev2
· ∂
∂v

v2�f 1
( )

= neev
∂
∂v

f0 − fm0
( )

v �∇ · ��f 2 −
e

mev2
∂
∂v

v2��f 2 · �E
( )

+ e

mev
f0��I − ��f 2

( )
· �E + e

mec
�f 1 × �B = neev

∂
∂v

�f 1 − (nee + nei)�f 1.

��f 2 =
1
3
��I +

�Ω
2
v

2
1+ �Ω

2
v

( ) �f 1 ⊗ �f 1
�f
2
1

− 1
3
��I

( )[ ]
f0.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(9)
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Only one other attempt to describe the nonlocal magne-
tized regime on the multidimensional hydrodynamic scale
has been published: the generalization of the SNB model
to magnetized plasmas (Nicolaï et al., 2006). This model,
however, presents many limitations. In fact, the SNB
model resolves a diffusion equation, which, in the magne-
tized regime, is complicated due to the spatial anisotropy
and the appearance of many new terms. These terms are treat-
ed phenomenologically, still remaining very complex: the
energy-diffusion matrix for the numerical solution is non-
symmetric and so difficult to invert. On the contrary, the
M1 model, which is based on a system of convective equa-
tions, remains as simple as in the unmagnetized case, de-
scribed in (Del Sorbo et al., 2015b), presenting an easier
mathematical form, which is numerically solved explicitly
on energy.
In addition to the temperature gradient, magnetic fields

add a new direction of anisotropy to the thermal transport.
Being a first moment model, the M1 model is limited to
the description of one direction of anisotropy; hence it is
valid if thermoelectric effects are negligible. Fortunately,
this occurs frequently in laser–matter interactions.

4. ELECTRIC AND MAGNETIC FIELD
CALCULATIONS

The EDF strongly depends on the electric and magnetic
fields. The electric field �E needs to be evaluated self-
consistently while solving the kinetic Eq. (9).
The inputs of the M1 model are the hydrodynamic vari-

ables. Once they are acquired (from the previous temporal
step of a hydrodynamic simulation or externally imposed),
the electric field can be computed by iterating the solution
of the system (9), starting from the zero or local value. The
iteration process can be summarized as follows:

• �E is evaluated from the previous iteration step;
• Equation (9) are solved for f0 and �f1 by using the evalu-

ated �E field;
• f0 and �f1 are used to calculate macroscopic quantities,

such as �q and �je, from which we deduce �E.

The process is stopped when the electric field converges.
The reader should be careful to do not confuse the time

step of a hydrodynamic simulation from the iteration step
in the resolution of system (9). Note also that the latter is for-
mally stationary.
The magnetic field �B is considered in the system (9) as an

external source, which is assumed constant at the kinetic tem-
poral scale (∼ τe).

4.1. Unmagnetized Plasmas

In case of unmagnetized plasmas, without external sources,
Eq. (6) reduces to �je = 0. This condition implies that there
are two opposite electron fluxes: suprathermal electrons

which transport the heat and a slower return current flux.
Since the second flux involves lower velocities, it is less sus-
ceptible to nonlocal effects (Nicolaï et al., 2006). Thus, for
weakly nonlocal conditions, the electric fields could be deter-
mined from the local Eq. (8).

In the case of strong temperature gradients, the model
needs to account for nonlocal corrections to the electric
field. Under the assumption of a Lorentz gas and of a weak
anisotropy (P1 approximation), the second equation of the
system (9) reads

v

3
�∇f0 − e�E

3me

∂
∂v

f0 = −nei �f1. (11)

A nonlocal electric field can be derived by applying the zero
current condition. It has been extended to low-Z plasmas (Del
Sorbo et al., 2015b):

�ENL = − ξ

2.5
me

6e

�∞
0

�∇ f0v7dv�∞
0 f0v5dv

. (12)

As shown in (Del Sorbo et al., 2015b), for low-Z plasmas, the
last expression is valid in the limit �∇Te/Te ≫ �∇ne/ne. This
condition is often respected in practice. In the extreme case
of Z= 1 and �∇Te/Te≪ �∇ne/ne, the error is ∼30%, smaller
than the one committed by models which assume local elec-
tric fields.

4.2. Magnetized Plasmas

In magnetized plasmas, the zero-current condition is replaced
by the stationary Ampere’s law (6). Unfortunately, it is not
anymore possible to find an analytic expression for the elec-
tric field from Eqs. (9).

Magnetic fields tend to localize the transport (Brantov
et al., 2003; Nicolaï et al., 2006). Following the example of
unmagnetized plasma, one may calculate electric fields in
the local approximation, given by Eq. (4). However, it is not
sufficient in the nonlocal regime. We improve this relation
by using the plasma parameters updated from solution of the
kinetic equation: the electron density nK = �∞

0 dvv2 f0 and
the electron pressure pK = 2/3

�∞
0 dvv

2εf0. These quantities
differ from classical hydrodynamic ones because they are
computed by averaging the EDF and not by solving the hy-
drodynamic equations. According to the perfect gas equation
of state, the kinetic electron temperature reads TK= pK/nK.
Using these definitions in Eq. (4), the expression for the
local-kinetic electric field reads

�ELk = −
�∇pK
enK

+
�je × �B

cenK
+ ��αK ·

�je
e2n2K

− ��βK ·
�∇TK
e

. (13)

The kinetic electrical resistivity is defined in function
of the kinetic–hydrodynamic quantities (Del Sorbo, 2015):
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��αK = ��α(nK, TK) = menK/τe(TK, nK)��αcK, where ��αcK is the di-
mensionless electric resistivity (Epperlein & Haines, 1986).
While solving the kinetic system (9), the electric field as a

function of f0 and �f1 is computed by iterations, according to
Eq. (13), till convergence. Note that this new formulation does
not add any degree of complexity with respect to Eq. (12):
both are integrals of the EDF and both can be computed by iter-
ating the solution of the system (9) till the field convergence.
The electric field (13) is the one that will be used along the

paper.
For the treatment of magnetic fields, we consider two time

scales: the hydrodynamic scale, much longer than the kinetic
one. At the kinetic scale, magnetic fields are considered
constant, while they vary at the hydrodynamic temporal
scale according to the magnetohydrodynamic equations. In
the M1 model, they can be externally imposed or provided
from the magnetohydrodynamic simulation to which it
should be coupled. This treatment is the same used in the
SNB model (Nicolaï et al., 2006) and in the Braginskii’s
theory (Braginskii, 1965). Note that the addition of these
fields does not require any modification to the numerical
structure developed in (Del Sorbo et al., 2015a).

5. LOCAL REGIME OF MAGNETIZED PLASMAS

The M1 model, as well as the Braginskii’s theory, has been
presented in a multidimensional formalism. However, in
what follows the analysis will be limited to one and two di-
mensions because our aim is to couple transport models to
the CHIC code (Breil &Maire, 2007), a two-dimensional hy-
drodynamic code.Nevertheless, nomodifications are required
in order to generalize the M1 model to three dimensions.
Let us first study the local regime of magnetized plasmas.

We consider a fully ionized plasma, with a constant density,
characterized by a steep temperature gradient

Te(x) = |T0 − T1|
2

2
π
arctan

x

δNL

( )
+ 1

[ ]
+ T1, (14)

with T0= 5 keV, T1= 0.5 keV, and δNL= 500 μm. The
system is simulated in one dimension (x-direction) with a
perpendicular magnetic field (z-direction). For reasons of
comparison with theory, we consider the Hall parameter
ωBτe constant along the plasma; thus the magnetic field
varies along with the electron collision time:

Bz = mec

eτe
ωBτe. (15)

We consider two perfect gas plasmas, one with Z= 1 and
ne= 1023 cm−3 and the second with Z≫ 1 (Z= 79) and
ne= 4 × 1022 cm−3.
The thermal conductivities are compared with the theoret-

ical predictions (Braginskii, 1965; Epperlein & Haines,
1986) in the central plasma region. This comparison is per-
formed in the limit of temperature gradient dominance, as

it is demonstrated in Appendix A. The heat flux has the fol-
lowing form:

qBx ≈ −k⊥
∂
∂x

Te,

qBy ≈ −k∧
∂
∂x

Te.

⎛
⎜⎝ (16)

Figure 1a presents a dependence of the normalized thermal
conductivity kc⊥ = k⊥me/neTeτe versus the Hall parameter,
for different values of the ion charge Z. As ωBτe increases,
kc⊥ decreases. In accordance to Eq. (16), this corresponds to a
decrease of the heat flux in the x-direction. In the crossed di-
rection ( y-axis), shown in Figure 1b, the flux (as the conduc-
tivity) increases with the magnetization, till a maximum at
ωBτe≈ 0.1− 1 (depending on the ion charge) and decreases
for larger values of the Hall parameter.
A description of the flux rotation and limitation, induced by

magnetic fields, can be provided by using a simplified FP
model. Using the Krook collision operator (Bhatnagar et al.,
1954), under the assumption of a Lorentz gas and a P1 approx-
imation, the first two angular moments in the system (9) read

v �∇ · �f 1 −
e�E

mev2
· ∂
∂v

v2�f 1
( )

= −nee f0 − fm0
( )

v

3
�∇ f0 − e�E

3me

∂
∂v

f0 + e

mec
�f 1 × �B = −nei�f 1.

⎛
⎜⎜⎜⎝ (17)

Inverting the system we recover the first moment (Nicolaï
et al., 2006):

�f1 = −λ∗ei

1+ ωBλ
∗
ei

v

( )2 1+ ωBλ
∗
ei

v
b̂×

( )
�∇− e�E

mev

∂
∂v

( )
f0. (18)

In the latter equation, the electron–ion MFP λei= vth/nei has
been replaced with the interpolation (Nicolaï et al., 2006;
Del Sorbo et al., 2015b)

λ∗ei =
Z + 0.24
Z + 4.2

λei, (19)

in order to account for low ionization number plasmas. We in-
terpret ωBλ

∗
ei/v as a kinetic version of the Hall parameter and

assumeωBλ
∗
ei/v∼ωBτe, as a leading term in the local limit.Ac-

cording to Eq. (1), Eq. (18) asserts that the heat flux is reduced
by a factor 1+ (ωBτe)

2, in the direction of the temperature gra-
dient, while, by a factor ωBτe/[1+ (ωBτe)

2], in the crossed di-
rection, between the temperature gradient and the magnetic
field. Thus, the flux is always reduced by the magnetization,
in the direction of the temperature gradient, and it is increased
forωBτe≤ 1 and reduced forωBτe≥ 1, in the crossed direction.
Figure 1a shows that the model M1 agrees with the theory

(Epperlein & Haines, 1986), in the prediction of a flux limita-
tion along the x-direction, due to a magnetic field. In the
high-Z limit, the electron–electron collisions become
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negligible and the M1 model agrees with the Braginskii’s and
EH theory.
In the low-Z limit, the M1 model weakly departs from the

Braginskii’s theory for ωBτe∼>10. However, for such a strong
Hall parameter, the magnetic field already strongly reduces
the heat flux and this difference is not too important.
Also in the y-direction, shown in Figure 1b, the M1 model

agrees with the Braginskii’s theory in the high-Z limit. In the
low-Z limit, it presents some differences when the effect of
magnetic fields is weak. They are due to the inaccuracies
of our collision operator, which are more visible for low-Z
values. However, in this limit, the effect of the crossed heat
transport is small.
Figures 1 demonstrate that magnetic fields are responsible

for two effects: flux limitation and flux rotation. By present-
ing the heat flux in the form of Eq. (16), we define the heat
flux limitation due to magnetic fields as

|�qB|
|�qSH|

=
���������
k2⊥ + k2∧

√
kSH

. (20)

The rotation angle is defined as θ = arctan qBy/qBx
( ) = arctan

kc∧/k
c
⊥

( )
.

The magnetic field reduces the absolute value of the heat
flux, as it is shown in Figure 1c. Our model agrees in the de-
scription of the flux limitation, also in the low-Z limit. The
main differences between the model and the theory (Epper-
lein & Haines, 1986) are in the flux rotation angle, shown in
Figure 1d. The figure shows that despite of some differences,
the M1 model agrees with the theoretical predictions: the
magnetic field tends to rotate the flux and the rotation
angle increases with the Hall parameter. For Hall parameters
higher than 1, the rotation angle approaches 90°.

6. MAGNETIZED NONLOCAL HEAT TRANSPORT

The magnetized transport is studied in the nonlocal regime,
for plasmas characterized by one temperature gradient and
periodically modulated temperatures.

6.1. Magnetized Transport Along and Across the
Temperature Gradient

In this section, we analyze a particular case, in which both
magnetization and nonlocal effects influence the heat flux.
We assume a magnetic field, in the z-direction, given by

Fig. 1. Dependence of dimensionless local thermal conductivities, on the Hall parameter. The M1 model (points) is compared with the Bra-
ginskii’s (Braginskii, 1965) (continuous line) and the EH theory (Epperlein & Haines, 1986) (dashed line), for the conductivity in the direc-
tion perpendicular to the magnetic field (a), crossed between the temperature gradient and the magnetic field (b), for the flux reduction (c), and
for the flux rotation (d). Comparison is presented for Z= 1 (blue) and Z≫ 1 (red), ��kc = ��kme/(neTeτe) is normalized to local quantities.
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Eq. (15), with a constant Hall parameter ωBτe= 0.5. Periodic
boundary conditions are assumed in the y-direction.
We consider a fully ionized hydrogen plasma of a constant

density ne = 1023cm−3. The temperature profile is given by
Eq. (14) where T0= 5 keV, T1= 0.5 keV, and δNL= 5 μm.
The fluxes are normalized to the modulus of the maximum
SH flux q0= 86 PW/cm2 and the length to the maximum
MFP λ0 = 3( ����

π/2
√ )(T2

0/4πneZe
4Λei) ≈ 5.98 μm. The degree

of non-locality of the system is λ0/LT= 0.67 and the thermo-
electric conduction is negligible.
In order to demonstrate the magnetic field effect on the

nonlocal transport, we compare the local and nonlocal
models with several magnetization parameters.
Figure 2a shows the heat flux along the temperature gradi-

ent. The difference between the local and nonlocal models is
larger for small ωBτe: the SH result is farther from the un-
magnetized M1 result than the Braginskii’s flux from the
magnetized M1, which almost coincide. The magnetic
fields in the direction of temperature gradient reduce the non-
local effect. On the contrary, the nonlocal effects are stronger
in the perpendicular direction, as shown in Figure 2b. In this
case, they limit the heat flux and displace it toward the colder
region. So, the nonlocal transport reduces the flux rotation
due to the magnetic field.
We have seen that the effect of the magnetized nonlocal

heat transport is to reduce both nonlocal and magnetic ef-
fects. This can be explained by considering the magnetiza-
tion effectively experienced by an electron with a velocity v:

ωBλ
∗
ei

v
=

���
2
9π

√
ωBτe

v

vth

( )3 Z + 0.24
Z + 4.2

, (21)

while its effective MFP is λ∗ei/[1+ (ωBλ
∗
ei/v)2]. The latter is

reduced by magnetic fields for all velocities. A reduction of
MFP implies a reduction of the nonlocal parameter λe/LT to
∼ λe/{LT[1+ (ωBτe)

2]}, which necessarily leads to the re-
duction of nonlocal effects.

In Figures 3a and 3b, we plot the heat flux integrand func-
tions ∝ v5�f1, computed in the cold and central regions,
denoted by dashed vertical lines in Figure 2a. The local
theory predicts the presence of two peaks along the direction
of the temperature gradient f1x. A positive peak at low veloc-
ities corresponds to the return current and a negative peak at
higher velocities corresponds to the main heat flux. In the
central region, variations of f1x are small corrections. In the
cold region of the unmagnetized plasma a hot nonlocal
flux is deposited (higher peak of Fig. 3a), inducing a
strong modification of the heat flux integrand function, com-
pared with the magnetized case, closer to local predictions.
This is due to the reduction of the effective MFP by the mag-
netic field. The first moment EDF in the crossed direction f1y,
plotted in Figures 3a and 3b, for the magnetized plasma,
shows the flux rotation. It becomes dominant for suprather-
mal velocities, especially close to the central region. The
maximum flux contribution is displaced to the lower veloci-
ties, in comparison with the value 3.7vth, predicted by the
SH theory.
In the local regime, electrons which transport the heat

(v ≈ 3.7vth) experience a magnetization of ≈ 3.2 ωBτe. In
the nonlocal case, the characteristic velocity of these elec-
trons decreases (Epperlein & Short, 1992). In fact, the heat
flux is given by a product of the density of electrons d3vfe
in the differential volume d3v and their energy flux ε�v. If
the gradients become sharper, more electrons with a lower
MFP (lower velocities) are present in the front of the gradi-
ent. This implies a decrease of the effective Hall parameter
experienced by these electrons and so a decrease of the
heat flux magnetization. According to Figure 3b, in the cen-
tral region, the heat flux characteristic velocity along the tem-
perature gradient is ||(vx= 2vth, vy= 2.5vth)||≈ 3.2vth, which
implies a reduction of the experienced magnetization to
≈ 2.1ωBτe.
The EDFs in the unmagnetized and magnetized regimes,

computed with the M1 model are shown in Figure 4 in the

Fig. 2. Nonlocal heat fluxes, versus the x-coordinate, for a plasma with a temperature gradient in the x-direction, magnetic fields in the
z-direction, and periodic boundary conditions in the y-direction. The flux x-component is plotted in (a) and the y-component in (b).
In black is shown the temperature profile, in cyan the local unmagnetized theory (ωBτe= 0), in green the local magnetized one
(ωBτe= 0.5), in blue the nonlocal M1 model for ωBτe= 0, and in red the nonlocal M1 model for ωBτe= 0.5. Vertical lines denote regions
where the kinetic analysis is performed.
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region shown in Figures 2a and 2b by the vertical lines. In the
unmagnetized case the EDF presents a direction of aniso-
tropy toward the colder region of the plasma (180°), due to
electrons transporting the heat. Magnetic effects reduce this
anisotropy and induce a drift of electrons in the y-direction
(Hall effect), affecting the macroscopic transport. Same ef-
fects are visible in the central region, but in this case the
Hall current is dominant, due to a stronger electric field.
The total EDFs are the ones shown in Figures 4c (unmagne-
tized plasma) and 4d (magnetized plasma). Note that the Hall
parameter experienced by a particle with a velocity ||(vx=
2.5vth, vy= 2.5vth)||≈ 3.5vth is 1.4, corresponding to the
rotation angle= arctan[ f1y(2.5vth)/ f1x(2.5vth)] ≈ 70° (see
Fig. 1d).

6.2. Temperature Modulation in a Magnetized Plasma

Epperlein and Short (1991) proposed a test for the study of non-
local transport.We extend it to the case of a magnetized plasma.

We consider a fully ionized beryllium plasma, with a cons-
tant density 4.5 × 1022cm−3 and the periodic temperature
modulation

Te(x) = T0 + T1 sin(kx), (22)

with T0= 1 keV and T1= 0.1 keV. The magnetic field is ap-
plied in the perpendicular direction (z), with a constant Hall
parameter. Periodic boundary conditions are applied to the x-
and y-directions. The length is normalized by the MFP λ0≈
0.17 μm.

According to Eq. (A3), thermoelectric effects can be ne-
glected, because the error induced in the local regime, at
x= 0, for ωBτe= 1, is only 0.04% (ne= 2.2 × 1013 s−1)
and even lower in the nonlocal transport regime, which expe-
riences a lower magnetization.

The Hall parameter is varied from the unmagnetized case
(ωBτe= 0), to ωBτe= 1, for different values of kλ0, focusing
on the flux limitation, where the modulus of fluxes is maxi-
mum. The heat flux limitation is shown in Figure 5 by nor-
malizing the heat flux on the maximum value of the SH flux.

The analysis shows that the nonlocal flux limitation is re-
duced, increasing the Hall parameter. This confirms the re-
duction of nonlocal effects due to the reduction of the
effective MFP, as described in the previous section. In partic-
ular, the flux magnitude is nearly unmagnetized for ωBτe=
0.1 and nearly local for ωBτe= 1.

Figure 5 provides a new and simple way to see the com-
bined effect of nonlocal and magnetized transport.

7. THERMAL WAVE PROPAGATION IN
MAGNETIZED PLASMAS

The purpose of this section is to describe a propagation of a
thermal wave in a magnetized plasma, in the conditions of

Fig. 3. Magnetized and unmagnetized integrand functions of the heat flux ∝v5�f1, in the cold (a) and central (b) regions, denoted by
dashed lines in Figure 4d. They are plotted as functions of the velocity modulus. The magnetized flux is split in f1x, in the x-direction
(continuous line) and f1y, in the y-direction (dotted line).

Fig. 4. Unmagnetized (ωBτe= 0) and magnetized ωBτe= 0.5 dimensionless
logarithm of the EDF, respectively plotted in (a) and (b), for the cold region
of the plasma and in (c) and (d), for the central region of the plasma. The
analysis is performed in function of the velocity modulus (radial direction
of the xy-plane) and of the velocity angle with respect to the temperature gra-
dient (x-axis), in the cold region and in the central region, as indicated by
vertical lines, in Figures 2a and 2b.
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nonlocal transport. For that, the M1 electron transport model
is coupled to the hydrodynamic code CHIC (Breil & Maire,
2007). We consider a fully ionized beryllium plasma of cons-
tant density 4.5 × 1022 cm−3. The initial electron temperature
distribution is given as

Te(x, y) = Te(x)e
−

y4

y4max θ(x) xmax

2x

( ) p(y)−1

+ θ(−x)
[ ]

, (23)

with θ as the Heaviside function, p( y)= 3exp [ y2/(Lxmax)],
L= 200 μm, T0= 5 keV, T1= 1 keV, δNL= 5 μm, and
xmax= ymax= 100 μm are the lengths of the target along x-
and y-axes. The initial temperature profile is shown in the
background of Figure 6, as a color plot. The plasma is simu-
lated with symmetric conditions at the boundaries.
The magnetization ωBτe is constant in space and time. The

magnetic field varies according to Bz(x, y, t)=mec/[eτe(x, y,
t)]ωBτe. This choice is not an assumption of the model but

just an artifice in order to simplify the analysis and to facilitate
a comparison with the Braginskii’s theory. In principle, the
M1model is able to dealwith anymagnetic field configuration.
The electron heat transport generates a thermal wave, which

smoothen the temperature gradient, till to reach a constant tem-
perature at the thermal equilibrium. A temporal evolution of
the temperature is given by the heat equation for electrons

3
2
ne

∂
∂t
Te + �∇ · �q = 0, (24)

assuming the perfect gas approximation. In this example, the
maximum gradient length is LT≈ 11 μm. So the characteristic
hydrodynamic time is τhydro∼ LT/cs≈ 24 ns, where
the acoustic velocity is cs =

��������
ZT0/mi

√ = 0.46 μm/ps. On
the other hand, the characteristic time of thermal diffusion is
τdiff ∼ neL2T/χ ≈ 1.3 ps, where χ∼ nev2thτe is an effective ther-

mal conductivity, with τe = 3

��
π

2

√
m1/2

e T3/2
0

4πneZe4Λei
≈ 0.11 ps and

vth =
�������
Te/me

√
≈ 30 μm/ps. Since τhydro > τdiff, the hydrody-

namic motion can be neglected.
According to Eq. (A3), thermoelectric effects can be ne-

glected, making an error of ∼0.3% for ωBτe= 10.
In what follows we compare the time evolution of the

system, using three models for the heat flux �q: the Bragin-
skii’s theory, the M1 and the SNB model, in different re-
gimes of magnetization. Equation (24) is solved for the
temperature, injecting at each temporal step the heat flux �q
predicted by the corresponding transport model. The analysis
is performed for dimensionless quantities. The temperature is
normalized by the initial maximum of the temperature profile
T0= 5 keV, the space by the maximum MFP λ0≈ 3.15 μm
and the heat fluxes over the maximum of the magnitude of
the initial SH heat flux q0= 40 PW/cm2.

7.1. Analysis of Initial Conditions

Figures 6 show electron heat fluxes induced by the initial
electron temperature profile, appearing in background, as a
color plot. Fluxes are computed for increasing values of

Fig. 5. Generalization of the ES test to magnetized plasma. Modulus of the
heat flux, normalized to the maximum of the modulus of the SH flux, are
given as functions of both nonlocal parameter (kλ0) and Hall parameter
ωBτe. Circles indicate the sampled points, while the color background is a
linear fit among these points.

Fig. 6. Initial distribution of the electron temperature and heat fluxes, for ωBτe= 0 (a), 0.1 (b), and 0.5 (c). The initial electron temperature
profile is shown by the background colors and arrows indicate heat fluxes predicted by different models: the Braginskii’s theory (in black),
the M1 (in white), and the SNB model (in green).
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the Hall parameter (constant in space) and are represented as
arrows. The Braginskii’s, the M1 and the SNB models are re-
spectively represented in black, white and green.
Figure 6a, corresponding to the case ωBτe= 0, shows that

the local heat flux is always perpendicular to the temperature
gradient. The case of a weak magnetization (ωBτe= 0.1),
reported in Figure 6b, shows a local flux rotation, respect
to the unmagnetized case. Increasing the magnetization
(ωBτe > 0.1), we can see another effect: a reduction of the
local flux. These two effects become dominant in Figure 6c,
for ωBτe= 0.5. Finally, for a high degree of magnetization
(ωBτe≫ 1), the flux is suppressed.

Figure 6a shows the main effects of unmagnetized nonlo-
cal transport, described in the previous chapter. A flux limi-
tation can be seen near x≈ 0, the preheating near x≈−5 and
the rotation is negligible. The M1 and the SNB models quite
well agree in the description of nonlocal fluxes.

When a small magnetization is imposed (ωBτe= 0.1), the
direction of heat flux deviates from the direction of the tem-
perature gradient, due to magnetic fields. The flux rotation, in
nonlocal models, appears weaker compared with the local
case. This qualitative effect can be seen in both M1 and
SNB models; however, they slightly differ in the value of
this rotation. The M1 model corresponds to a smaller one,

Fig. 7. Plasma electron temperature distribution, after 45 τe. Dashed lines indicate the regions where line-outs have been performed.
Panels (a) and (b) correspond to the case without magnetic field, respectively using SH and M1 models. Panels (c) and (d) correspond
to ωBτe= 0.1, respectively, using Braginskii’s and M1 models. Panels (e) and (f) to ωBτe= 0.5, respectively using the Braginskii’s
and M1 models. The SNB model has not been reported since, in this case, the differences from the M1 model are small and not easily
visible in two dimensions.
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compared with the SNB model. For both models, the flux re-
duction, due to magnetic fields, becomes important for
ωBτe= 0.5. This confirms that nonlocal fluxes are less affect-
ed by magnetic fields, compared with their local counter-
parts. This conclusion is in accordance with the studies
presented in Figure 6 of (Brantov et al., 2003).
For a strong magnetization (ωBτe= 0.5), nonlocal

models approach the local predictions. These models super-
pose in the case of flux suppression (Del Sorbo, 2015)

(ωBτe≫ 1). This is in accordance with the results plotted
in Figure 5, where λ0/LT= 0.1 kλ0. This behavior is due
to a reduction of the MFP, induced by magnetic fields
(Nicolaï et al., 2006).

7.2. Temporal Evolution

Equation (24) conserves the total energy in the simulation
box, regardless of the model used.

Fig. 8. Cuts along the x- (a,c,e) and y-directions (b,d,f) of the temperature profiles shown in Figure 7, with ωBτe= 0 (a) and (b), ωBτe=
0.1 (c) and (d). The case ωBτe= 0.5 has not been shown since no sensible variations between models appear yet. The temperature is pre-
dicted by the local (cyan lines), the SNB (green lines) and the M1 (blue lines) models.
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Electrons, in the hot region, have avelocity∼vth =
�������
T0/me

√
≈ 3 × 109 cm/s. Themaximumdistance of the simulation box
is 45 λ0 (diagonal direction). In the unmagnetized regime,
electrons take 45 τe≈ 5 ps to travel along the simulation
box. At this time, the differences between models are maxi-
mum. In subsequent times, theyare reduced, since temperature
gradients become smoother.
Figures 7a and 7b show respectively the Braginskii’s and the

M1 temperature predictions, after 45 τe, in the unmagnetized
regime. The local heating is more efficient, because of the
flux limitation which characterizes nonlocal models. The local
flux smoothens the temperature gradients more than in nonlocal
case. The SNB model provides results very close to M1.
Dashed lines in Figure 7 indicate the regions where line-

outs have been performed. Cuts for an unmagnetized
plasma along the x-direction are shown in Figure 8a, while
that along the y-direction in Figure 8b. They show a general
gradient smoothing, while a weak preheating is visible in
front of the temperature gradient, along the x-direction, in-
duced by nonlocal transport. The SNB model, also shown
in the plot, agrees with M1 predictions.
Adding a weak degree of magnetization (ωBτe= 0.1) to the

system, we observe the effect of flux rotation (∼ 5°− 10°,
in the local case), related to magnetic fields. Temperature
predictions are shown in Figures 7c (Braginskii’s predic-
tions) and 7d (M1 predictions). The SNB model provides re-
sults close to M1. Figures 8c and 8d show the horizontal and
vertical cuts of the temperature profile. The Braginskii’s
theory predicts that the gradients are less smoothed than in
the magnetized case. On the contrary, nonlocal models
(M1, SNB) are not affected by such a weak magnetization.
The nonlocal electrons behave as if they do not experience
any magnetization. The SNB and M1 models give very sim-
ilar results.
With ωBτe= 0.5, the effective MFP is reduced by a factor

∼1/(1+ Cω2
Bτ

2
e), with C∼ 1, thus fluxes are reduced: the

temperature gradients are less smoothed by the heat transport,
as shown in Figure 7e. Despite a high degree of nonlocality,
no differences can be found between Braginskii’s, SNB and
M1 predictions. The latter are shown in Figure 7f. Because of

the flux reduction, heating effects require a longer time to
appear.

Figures 9a, 9b and 9c show a temporal evolution of the
temperature profile, in the x-direction (y≈ 14 λ0), at 0,
90 τe (10 ps) and 450 τe (50 ps). As expected, temperature
gradients decrease with time leading to a homogeneous tem-
perature at the equilibrium. Considering the temperature dif-
ference evolution with time, ΔTe(t)=max[Te(t)]−min
[Te(t)], for ωBτe= 0, the local theory predicts a faster ther-
malization than the nonlocal model. The SNB and M1
models agree in this prediction. In the case of a weak magne-
tization ωBτe= 0.1, the thermalization time predicted by the
Braginskii’s theory is weakly reduced, while the Hall param-
eter is not sufficiently high to affect the nonlocal transport.
So nonlocal models behave as in the case ωBτe= 0.

A different result is obtained with a magnetization of
ωBτe= 0.5. In this case, the magnetization is strong
enough to affect both local and nonlocal models. In the
local simulations the thermalization time is strongly increased
because the heat flux is reduced. The SNBmodel gives a local
heat flux. On the contrary, the M1 model predicts a thermali-
zation time longer than the local model. This result is surpris-
ing, since it is opposite to usual expectations from the
nonlocal effects. Its explication is related to the heat flux rota-
tion, shown in Figure 6c. This rotation is weaker in the M1
simulation because of nonlocal effects, leading to a configu-
ration in which the horizontal component of the flux in x≈
0 (main flux) is the same for theM1model and for the Bragin-
skii’s theory. Nevertheless, in the nonlocal case, another flux
is present: the preheating at x≈ 3λ0, which is absent in the
local case. The preheating flux is responsible for the increase
of heating efficiency in the horizontal direction.

Comparedwith theM1model, the SNBmodel seems to over-
estimate the effects of magnetization. This difference becomes
visible at long times, sincemagnetic effects reduce the heat trans-
port, and so the temperature takes a longer time to bemodified. It
is due to the different treatments of magnetic fields, which are
phenomenological for the SNB model. The system studied
moves toward a lower degree of nonlocality, so differences are
reduced in time. In the presence of a laser field, highly nonlocal

Fig. 9. Temporal evolution of the temperature profiles along the x-direction, for ωBτe= 0 (a), 0.1 (b), and 0.5 (c). The black curve rep-
resents the initial condition, the subsequent curves represent at 90 τe and 450 τe, the temperature predicted by the local (cyan lines), the
SNB (green lines), and the M1 (blue lines) models, for different degrees of magnetization. Black arrows have been added, in order to
clarify the variation of temperature in time.
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regimes can be created. In this case, the differences, which now
appear small, could become very important.

8. CONCLUSIONS

The M1 electron transport model is extended to the domain
of magnetized plasmas. It is able to reproduce results given
by the Braginskii’s theory, in the local regime. The nonlocal
limit is studied for a wide range of cases. All of them show
that magnetic field reduces nonlocal effects but also that non-
local transport reduces magnetic effects. The analysis has
been also performed at the kinetic level, which demonstrates
the flux rotation, in the phase space.
A thermal wave propagation through a magnetized plasma

is performed. Forweaklymagnetized plasmas, the thermaliza-
tion takes more time with the nonlocal model than with the
local one because of the flux-limitation. On the contrary, in
strongly magnetized plasmas, nonlocal effects are reduced.
The temporal analysis reveals a disagreement between theM1

and the SNBmodel, which is explained by the fact that the latter
overestimates the effects of magnetization, because of an
approximate evaluation of the induced electric field effects.
In conclusion, the M1 model is able to deal with magnetized

plasmas. It provides an efficient and robust method of descrip-
tion of suprathermal electron transport in high-energy-density
plasmas, remaining formally simpler than the generalization
to magnetized plasmas of the SNB model.
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APPENDIX A
DEMONSTRATION OF THERMAL CONDUCTION
DOMINANCE

Here,wedemonstrate thedominanceof the thermal conduction,
for the plasmas considered in Section 5. This procedure can be
extended to other plasmas in the limit of low magnetization.

The local heat flux in Eq. (5) contains the thermal and ther-
moelectric components. The thermoelectricheat flux ispropor-
tional to the currentwhich has a nonzerovalue in the y-direction
(crossed between the temperature gradient and the magnetic
field). Since ωBτe is constant, Bz ∝ τ−1

e ∝ T−3/2
e and ∂Bz/

∂x=−3Bz/(2Te)∂Te/∂x. So, the current can be written as

jy = 3cBz

8πTe

∂
∂x

Te (A1)

and the y-component of the heat flux reads

qBy = −k∧
∂Te
∂x

1+ β⊥
k∧

3cBz

8πe

( )
. (A2)

The term in parenthesis can be expressed as a function of
the Hall parameter and of the dimensionless thermal con-
ductivity ��kc = ��kme/(neTeτe). Normalizing by the SH flux
qSH(x) = −kc⊥(ωBτe = 0)neTeτe/me∂Te/∂x, we have

qBy
qSH

= − kc∧
kc⊥(ωBτe = 0) 1+ β⊥

kc∧
ωBτe

3
2
mec2

Te

n2e
ω2
pe

( )
. (A3)

For the plasmas described in Section 5, at the position x= 0,
Te= 2.75 keV, ωpe= 1.8 × 1016 s−1 and τe= 1.1 × 1013 s−1

for Z= 1, and ωpe= 1.1 × 1016 s−1 and τe= 2.9 × 1014 s−1

for Z= 79. Neglecting the thermoelectric contribution
(second term in parenthesis), the error committed increases
as ωBτe increases. In particular for the plasma with Z= 1
and for ωBτe= 30, the error equals 0.06%. For the case
Z= 79 and for ωBτe= 3, the error is around 5.4% but for
ωBτe > 3 the thermoelectric term needs to be accounted
for. Thus, in the limit of our analysis (ωBτe≤ 30 for Z= 1,
and ωBτe≤ 3 for Z≫ 1), thermoelectric effects can be ne-
glected and we only consider the thermal conductivity.
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