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In this paper the dynamics of an inextensible capacitive elastic membrane under an
electric field is investigated in the long-wave (lubrication) leaky dielectric framework,
where a sixth-order nonlinear differential equation with an integral constraint is
derived. Steady equilibrium profiles for a non-conducting membrane in a direct current
(DC) field are found to depend only on the membrane excess area and the volume
under the membrane. Linear stability analysis on a tensionless flat membrane in a DC
field gives the growth rate in terms of membrane conductance and electric properties
in the bulk. Numerical simulations of a capacitive conducting membrane under
an alternating current (AC) field elucidate how variation of the membrane tension
correlates with the nonlinear membrane dynamics. Different membrane dynamics,
such as undulation and flip-flop, are found at different electric field strength and
membrane area. In particular a travelling wave on the membrane is found as a
response to a periodic AC field in the perpendicular direction.
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1. Introduction

The cellular membrane, comprising mainly two lipid leaflets, is essential to a wide
range of cellular functions partly because the membrane regulates the transport of
particles (such as ions and macromolecules) between interior and exterior cellular
space. The cellular membrane possesses a capacitance and a conductance, and both
weak (Antov et al. 2005) and strong electric fields are used to induce membrane
deformation and poration for delivering drug and/or DNA into living cells (see Sadik
et al. 2011 and references therein). External direct current (DC) and/or alternating
current (AC) electric fields have also been used to destabilize planar lipid membranes
for the formation of vesicles (liposomes, self-enclosing unilamellar membranes) in
electroformation (Angelova & Dimitrov 1986; Angelava & Dimitrov 1987; Angelova
et al. 1992; van Swaay & deMello 2013), where the interplay between external
electric fields and the membrane forces (such as membrane tension and bending
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Dynamics of a planar membrane in an electric field 407

forces) underlies the membrane instability. Experimental studies have revealed that
AC electric fields can effectively unbind a stack of lipid bilayer membranes close to
a substrate (Constantin et al. 2005; Lecuyer, Fragneto & Charitat 2006). It is further
found that the AC electric fields with frequencies below 100 Hz are more effective in
amplifying the fluctuations of a floating bilayer membrane (Lecuyer et al. 2006). For
giant vesicles under an electric field, the electric pulse duration and the subsequent
relaxation process are found to be essential to membrane deformation and poration
(Riske & Dimova 2005; Bezlyepkina et al. 2009; McConnell, Miksis & Vlahovska
2013; Zhang et al. 2013).

The biological lipid membrane immersed in an ionic solution has been modelled
as a thin film of non-Newtonian fluid (Maldarelli, Jain & Ivanov 1980; Maldarelli &
Jain 1982). Theoretical studies on the stability of a planar membrane under electric
fields show that both membrane thickness fluctuations (Weaver & Chizmadzhev 1996)
and bending modes (Sens & Isambert 2002; Lacoste, Lagomarsino & Joanny 2007;
Schwalbe, Vlahovska & Miksis 2011) may contribute to destabilization. Sens &
Isambert (2002) found negative membrane tension and the ion currents in the diffuse
layers near the membrane give rise to undulations of an unsupported planar membrane
under electric fields. Once the electric field is above a threshold, the planar membrane
becomes unstable and the undulation can be amplified. The linear response regime
of a planar membrane in electrolyte under a DC field has been investigated (Lacoste
et al. 2007, 2009; Ziebert, Bazant & Lacoste 2010; Ziebert & Lacoste 2010, 2011).
Having incorporated the capacitive effects of both the membrane and the Debye
layers, the electrostatic corrections to the elastic moduli due to finite membrane
thickness are computed and the resultant linear growth rate is obtained.

Membrane conductance and mismatch in dielectric properties of surrounding fluids
are also essential to the linear instability of a planar lipid bilayer membrane in
both DC (Seiwert, Miksis & Vlahovska 2012) and AC (Seiwert & Vlahovska 2013)
electric fields. Without membrane conductance it is found that mismatch in the
bulk conductivities gives rise to a transient instability in a DC field (Schwalbe
et al. 2011). With membrane conductance, the capacitive membrane can be linearly
unstable (Seiwert et al. 2012). In an AC electric field a purely capacitive membrane
can be rendered unstable at low field frequencies, while at high frequencies even a
conducting membrane can become stable (Seiwert & Vlahovska 2013).

Long-wave (lubrication) models of the electrohydrodynamics of an interface
between two leaky dielectric fluids under DC or AC (see Roberts & Kumar 2009,
2010) fields have uncovered both the linear instability and weakly nonlinear dynamics
related to pillar formation that are consistent with experiments (Schaffer et al. 2000;
Pease & Russel 2002; Thaokar & Kumaran 2005; Wu & Russel 2009). The lubrication
theory has also been successfully applied to understand the elastohydrodynamics of
an elastic sheet lubricated by a thin layer of fluid (Hosoi & Mahadevan 2004). In that
analysis the bending force is dominant over the tension, and the elastic sheet area
may vary due to the dynamics. The balance between bending force and the van der
Waals forces was found essential to the observed bursting in the elastic sheet with a
constant flux in the lubricating layer. More recently Blount, Miksis & Davis (2012)
developed a lubrication model to study flow beneath a semipermeable inextensible
membrane and obtained equilibrium solutions and bifurcation structure as a function
of drying parameters.

In this work, we apply the long-wave analysis to two layers of leaky dielectric
fluid separated by an elastic inextensible membrane which is a sharp-interface
model for the lipid bilayer membrane. The main components of the sharp-interface
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FIGURE 1. A planar lipid bilayer membrane (at height z = h(x, t)) separates two leaky
dielectric fluids. The electric potential Φ is fixed on the top electrode (Φ = 0) and bottom
electrode (Φ = −V(t)). Here n is the outward unit normal on the membrane, and t is
the unit tangent. The bulk fluid is characterized by permittivity (ε), conductivity (σ ) and
viscosity (µ).

approximation of the lipid bilayer membrane are its elastic properties, inextensibility,
capacitance and conductance. The lipid bilayer membrane is inextensible because
both the area per lipid and the total lipid number are conserved in each leaflet. In
this work we use membrane forces derived from the Helfrich membrane energy
F = ∫

Ω
((κ/2)H2 + Σ) dΩ , where Ω is the membrane surface, κ is the bending

modulus, and H is the mean curvature. The membrane tension Σ is a Lagrange
multiplier to be determined from the constant surface area constraint (Seifert
1995). The inextensible elastic membrane also acts as a (leaky) capacitor where
the trans-membrane potential varies due to the currents on and across the two leaflets.
In biological cells the trans-membrane currents may be due to pores and ion channels.
The currents on the membrane are the ohmic currents from the bulk to the membrane
in the leaky dielectric model.

The general goal of this work is to elucidate the nonlinear dynamics of a capacitive
membrane under an electric field. Specifically, we will consider the dynamics of a
planar membrane separated by two leaky dielectric fluids and bounded by two planar
electrodes (see figure 1). This simple geometry is canonical and allows a detailed
examination of the effect of the electric field on the nonlinear membrane dynamics. As
noted above, planar geometries have been studied by several authors in the linearized
case to get a better understanding of membrane dynamics. In addition the geometry is
pertinent to electroformation experiments where planar membranes are driven unstable
by an electric field across an elongated microfluidic channel (Angelova & Dimitrov
1986; Angelava & Dimitrov 1987; Angelova et al. 1992; van Swaay & deMello 2013).

This paper is organized as follows. The problem description is given at the
beginning of § 2, followed by § 2.1 where we formulate the long-wave dynamics
of an elastic, inextensible membrane separating two leaky dielectric fluids. The
equilibrium profile for a non-conducting membrane in a DC field is derived in § 2.2,
and the linear stability for a flat tension membrane in a DC field is analysed in § 2.3.
The numerical implementation of a semi-implicit scheme for solving the governing
long-wave equations is given in § 2.4. In a DC field the displacement current is
negligible and our numerical simulations show that the membrane dynamics (with
or without membrane conductance) is always towards the steady equilibrium that is
similar to those described in § 2.2. Therefore in § 3 we focus on the dynamics of
a conducting membrane in an AC field. We first examine the linear stability of a
tensionless flat membrane in an AC field in § 3.1. In the rest of § 3 we study how
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the membrane instability and its nonlinear dynamics depend on the membrane tension
and the correlation with induced surface charge distribution. In § 3.4 we present a
novel ‘alternating wave’ with large membrane excess length under strong AC fields.
We summarize our findings and provide a discussion on the implications of the results
in § 4.

2. Problem formulation

We consider two layers of leaky dielectric fluid under an imposed electric field E0ẑ.
The two fluids are separated by an inextensible elastic planar membrane (at z= h(x, t))
formed by a charge-free lipid bilayer with dielectric constant εm and conductivity σm.
The bilayer thickness d∼ 5 nm, which is small enough for us to treat the membrane
as a two-dimensional interface with effective capacitance Cm= εm/d and conductance
Gm = σm/d. As shown in figure 1, each layer of fluid is specified by its permittivity
(ε), conductivity (σ ) and viscosity (µ), with the subscripts in figure 1 denoting either
top (‘1’) or bottom (‘2’) fluid layer. The electric field is irrotational, Ej =−∇Φj. In
the leaky dielectric framework, the bulk charge is assumed to be zero as the bulk
charge relaxes over a charging time tc,j= εj/σj� 1. Therefore the electric potential Φ
satisfies the Laplace equation

∇2Φj = 0, j= 1, 2. (2.1)

Within each layer the two-dimensional fluid velocity uj = (uj, wj) satisfies the
incompressible Navier–Stokes equations

ρj

(
∂uj

∂t
+ uj · ∇uj

)
= −∇pj +µj∇2uj, (2.2)

∇ · uj = 0, (2.3)

where j = 1 or j = 2 for the top or bottom fluid. Here pj is pressure, and ρj is the
fluid density which we assume to be the same for both layers.

To complete the formulation of the problem, boundary conditions for the electric
potential are needed across the membrane. As noted earlier, the membrane is assumed
to be a capacitor which can accumulate surface charge on both of its sides. Following
Seiwert et al. (2012) and Seiwert & Vlahovska (2013), the trans-membrane potential
Vm=Φ2−Φ1 on z=h(x, t) can be determined from the conservation of normal current.
The result is

Cm

(
∂Vm

∂t
+ u · ∇sVm

)
+GmVm = σiEi + εi

(
∂Ei

∂t
+ u · ∇sEi

)
(2.4)

for i= 1, 2 along z= h(x, t). Here we define the normal electric field as Ei≡n ·Ei and
∇s = (I − nn)∇ is the surface gradient. The membrane capacitance is approximately
Cm ≈ 0.01 F m−2 and the membrane conductance varies over the range Gm ≈ 10−3 −
106 S m−2. Note that the total surface charge can now be defined as q= ε1E1− ε2E2.
For completeness, details of the derivation of this boundary condition can be found
in appendix A.
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2.1. Long-wave formulation
In the long-wave formulation, the aspect ratio (ε) of the height (h0) to the
characteristic horizontal length (l) is assumed to be small: ε = h0/l � 1. Similar
to the scaling in Hosoi & Mahadevan (2004), we non-dimensionalize equations
(2.1)–(2.4) by the characteristic length and velocity (h0/ε, h0) and (U0, εU0) in the
(x, z) directions, respectively. The pressure is scaled by µ2U0/εh0, time by h0/εU0,
and the electric potential by E0h0. The dimensionless variables (with bars) are

z̄= z
h0
, x̄= x

h0/ε
, ū= u

U0
, w̄= w

εU0
, p̄= p

µ2U0/εh0
,

t̄= t
h0/εU0

, and V̄m = Vm

E0h0
.





(2.5)

The dimensionless equations are (after dropping bars)

εRei (∂tui + ui∂xui +wi∂zui)=−µ2

µi
∂xpi + ∂2

z ui + ε2∂2
x ui, (2.6)

ε3Rei (∂twi + ui∂xwi +wi∂zwi)=−µ2

µi
∂zpi + ε2

(
∂2

z wi + ε2∂2
x wi
)
, (2.7)

∂xui + ∂zwi = 0, (2.8)
∇2Φi = ∂2

zzΦi + ε2∂2
xxΦi = 0, (2.9)

cm

(
∂Vm

∂t
+ u

∂Vm

∂x

)
+ gmVm = E1 + α

(
∂E1

∂t
+ u

∂E1

∂x

)
, (2.10)

E1 + α
(
∂E1

∂t
+ u

∂E1

∂x

)
= 1
σr

E2 + α

εr

(
∂E2

∂t
+ u

∂E2

∂x

)
. (2.11)

The dimensionless parameters are

Rei ≡ U0h0

µi/ρi
, α = ε1U0

h0σ1
ε, cm = CmU0

σ1
ε, and gm = Gmh0

σ1
. (2.12)

There are several time scales involved in this system: the capacitive membrane
charges on a time scale (Seiwert & Vlahovska 2013) tm = (h0Cm/σ1)[(1+ σr)/

(1+ gm(1+ σr))], the balance between viscous stress and the electric shear traction
gives tEHD,j = µj/εjE2

0, while bending resistance to changes in membrane curvature
gives another time scale tκ,j = µj/κQ3 for a membrane undulation with wavenumber
Q. Typical values are for the conductivity σ ≈ 10−6–10−3 S m−1, ε ≈ 10−10 F m−1,
κ ≈ 10−19 J, h0 ≈ 100 µm to several mm, µ ≈ 10−3 Pa s, E0 ≈ 1–6 kV m−1. We
choose U0 = σ1/Cmε such that cm = 1, and typically U0 ≈ O(1) due to the small
conductivity and large membrane capacitance.

At the bottom wall u2(0) = w2(0) = 0 and Φ2(0) = −ν(t), while at the top wall
u1(1)= w1(1)= 0 and Φ1(1)= 0. On the elastic membrane z= h(x, t), the kinematic
boundary condition (or no-slip boundary condition) gives

w1(x, h(x, t))=w2(x, h(x, t))= ∂th+ u1|z=h∂xh= ∂th+ u2|z=h∂xh. (2.13)

The stress balance on the elastic membrane gives

(−p1 + p2) n+ JT hd + T elK · n= f m, (2.14)
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where J·K denotes the difference between top and bottom layers. Here (T hd)ij ≡
µ(∂ivj + ∂jvi) is the ijth component of the viscous stress tensor, and (T el)ij ≡
ε(EiEj−E2δij/2) is the ijth component of the Maxwell electric stress. The membrane
force f m = κ[4H3 − 4HHG + 2∇2

s H]n − 2ΣHn + ∇sΣ , where κ the membrane
bending rigidity, H the membrane mean curvature, HG is the Gaussian curvature,
and Σ the membrane surface tension to be determined from the membrane
incompressibility condition. For the planar geometry in the long-wave limit, the
Gaussian curvature is zero and we ignore the high-order curvature term. Hence
f m =−(−2κ∇2

s H + 2ΣH)n+∇sΣ .
Following the procedures in the lubrication analysis for a porous inextensible

elastic membrane (Blount et al. 2012), the dependent variables (u,w, p) are expanded
in ε and (Φ, Σ) in ε2. At leading order the membrane outward normal n =
(−ε∂xh, 1)/

√
1+ ε2∂xh2∼ (−ε∂xh, 1), the membrane tangent t= (1, ε∂xh)/

√
1+ ε2∂xh2

∼ (1, ε∂xh), and the membrane curvature H ≡ ε2hxx/(1+ ε2∂xh2)3/2 ∼ ε2hxx. The
leading-order electric potential in the bulk satisfies the equation ∂2

xxΦ = 0 and can be
computed as Φ1 = E1(x, t)(z− 1) and Φ2 = E2(x, t)z− ν(t) with ν(t)= V(t)/V0.

The normal stress balance at z = h gives a relation between p1 and p2, and the
tangential stress balance at z=h gives a relation between the Marangoni stress and the
viscous shear stress. At leading order, the horizontal velocity field can be written as
ui= (µ2/µi)(∂xpi/2)z2+ aiz+ bi, where ai and bi are to be determined by the velocity
boundary conditions (Oron, Davis & Bankoff 1997):

a1 + b1 = − 1
2µr

(p2 + g+ β1)x ≡D′, (2.15)

ha1 + b1 − ha2 = h2

2

[
p2

(
1− 1

µr

)
− g+ β1

µr

]

x

≡ E′, (2.16)

µra1 − a2 = h (−g− β1)x −
C̄
2
∂xΣ1 − β2 ≡ F′, (2.17)

with β2 ≡ β
[
εr
(
E1E1x(h− 1)− E2

1hx
)− (E2xh− E2hx)E2

]
, g ≡ C̄Σ0∂

2
x h − ~∂4

x h, and
β1 ≡ (β/2)

(
εrE2

1 − E2
2

)
. Equation (2.15) is from u1 = 0 at z = 1, equation (2.16)

corresponds to u1 = u2 at z= h, and (2.17) is from the shear stress balance at z= h.
In addition, b2 = 0 because u2 = 0 at z= 0.

The dimensionless parameters in the above equations are defined as

β ≡ ε2E2
0h0ε

µ2U0
= ε2E2

0h0Cmε
2

µ2σ1
, ~ ≡ 2κε5

µ2U0h2
0
= 2κCmε

6

µ2σ1h2
0
, C̄≡ 2γ0ε

3

µ2U0
= 2γ0Cmε

4

µ2σ1
,

(2.18)
where γ0 is a scaling factor for membrane tension, the viscosity ratio µr = µ1/µ2,
conductivity ratio σr=σ1/σ2, and permittivity ratio εr= ε1/ε2. The solution (a1, b1, a2)

is computed as

a1 = D′ − E′ + F′h
1− h+µrh

, (2.19)

b1 =D′ − D′ − E′ + F′h
1− h+µrh

, (2.20)

a2 = µr(D′ − E′)− F′(1− h)
1− h+µrh

. (2.21)
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The membrane tension Σ ≈ Σ0 + ε2Σ1 remains to be determined from the
inextensibility (constant surface area) of the lipid membrane, which can be recast in
terms of the incompressibility condition for the velocity v on the membrane

∇s · v = ε (∂xu+ hx∂zu)+ ε3
(−(∂xh)2∂xu+ ∂xh∂xw

)+O(ε5)= 0. (2.22)

At leading order the surface incompressibility gives

[
∂xu+ hx∂zu

]
z=h =

d
dx

u(x, z= h(x, t))= 0, (2.23)

which is the condition for the local membrane area conservation. In addition, the total
surface area L is given by

L ≡
∫ L/2

−L/2

√
1+ ε2h2

xdx∼ L+ ε
2

2

∫ L/2

−L/2
h2

xdx+O(ε4). (2.24)

Consequently, at leading order O(ε2), the constant excess area L − L implies

L − L= ε
2

2

∫ L/2

−L/2
h2

xdx≡ ε
2

2
S= constant, (2.25)

where S is the scaled excess area and L is the scaled length of the domain.
The constant excess area constraint determines the homogeneous membrane tension

Σ0, while the local area conservation (2.23) gives the gradient of the spatially
inhomogeneous tension Σ1x in terms of h and p2x:

Σ1x = 1
C̄

[−(1− h)(gx + β1x)− p2x + 2β2
]− 2c1(1+ (−1+µr)h)

C̄(1− h)h
, (2.26)

where the constant c1 ≡ u(x, z= h(x, t)) is from integrating (2.23). Consequently, the
gradient of pressure p2 can be expressed as

p2x = (−1+ h)3(gx + β1x)+ f1

(1− h)3 +µrh3
, (2.27)

where f1 is a second integration constant obtained from integrating the equation that
involves p2xx. Inserting all this in (2.13), we obtain the evolution equation for h as

∂th+ ∂x

[
−(−1+ h)3h3(gx + β1x)+ f1h3

12
(
(1− h)3 +µrh3

) + c1h
2

]
= 0. (2.28)

In three dimensions, the evolution equation for h(x, y, t) is

∂th+∇ ·
[
−(−1+ h)3h3∇(G+ β1)+ fh3

12
(
(1− h)3 +µrh3

) + ch
2

]
= 0, (2.29)

with f = (f1, f2), c= (c1, c2), G≡ C̄Σ0∇2h− ~∇4h and ∇ ≡ (∂x, ∂y). In the following
we set the integration constants f and c zero as there is no imposed fluid flow at the
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boundary in electroformation experiments (Angelova & Dimitrov 1986; Angelava &
Dimitrov 1987).

At leading order the governing equation for the normal electric field strengths is
given by (2.11). The trans-membrane potential Vm≡Φ2−Φ1|z=h=E2h− ν−E1(h− 1)
satisfies (2.10). In the long-wave formulation, the convection terms vanish because we
set the integration constant u(z=h(x, t))= c=0 in deriving the leading-order equations.
As a result d/dt ≡ ∂/∂t + u∂/∂x= ∂/∂t in (2.10) and (2.11). This is consistent with
the assumption of vanishing charge convection on the membrane in the linear analyses
for a flat tensionless membrane (Seiwert et al. 2012; Seiwert & Vlahovska 2013).
Furthermore, the convection of the induced surface charge has been shown to have
little effect on the electro-deformation of a viscous drop (Feng & Beard 1991).

Equations (2.28), (2.10) and (2.11), together with the integral constraint in (2.25),
are the governing long-wave equations for an inextensible elastic membrane under
an electric field. A complete list of dimensionless parameters and their meaning is
given in table 1. In most electroformation experiments (Angelova & Dimitrov 1986;
Angelava & Dimitrov 1987; van Swaay & deMello 2013), E0 is often a few kilovolts
per metre, h0 is often of the order of millimetres, σ1 ∼ 10−4 S m−1 and ε 6 0.3 (for
a vesicle filling the channel ε = 2r0/2πr0 = 1/π ∼ 0.3). However, the lipid bilayer
membrane remains intact for E0 ∼ 30 kV m−1. Therefore the the range of physically
realizable β is computed as 0 6 β 6 300.

Six boundary conditions are needed to complete the problem formulation. In § 3
we will focus on periodic boundary conditions. For our governing long-wave equation,
the periodic boundary conditions are closely related to the boundary conditions: hx =
hxxx= (g+β1)x=0 at x=±L/2 associated with multiple blisters for a thin film (Blount
et al. 2012). For both the periodic and the multiple blister boundary conditions, the
homogeneous membrane tension Σ0 can be explicitly expressed in terms of h by
taking the derivative of (2.25) with respect to time and performing integration by parts:

Σ0 =

∫ L/2

−L/2
Fhxxx

[
~hxxxxx − β2 (εrE2

1 − E2
2)x

]
dx

C̄
∫ L/2

−L/2
Fh2

xxxdx
, (2.30)

where the function F is defined as

F=− (−1+ h)3h3

12
[
(1− h)3 +µrh3

] . (2.31)

Summary of formulation
In this paper we focus on the two-dimensional system with periodic boundary

conditions in the horizontal direction. The governing equations are (2.28), (2.10) and
(2.11) with Σ0 computed from (2.30). The horizontal velocity ui= (µ2/µi)(∂xpi/2)z2+
aiz + bi depends on Σ0 and Σ1 through the coefficients in (2.19), (2.20) and (2.21)
(b2 = 0 from the no-slip condition at z= 0).

For a DC electric field, the displacement current dE1/dt (associated with charge
relaxation on the surface) is small and often neglected because α� 1. Setting α = 0
in (2.11) gives E2 = σrE1, and (2.10) can be integrated to give

Vm = Vm(0)+ 1
cmχ(t)

∫ t

0
− χ(t′)
(1− σr)h− 1

dt′, (2.32)
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χ(t) = exp
(

gmt
cm
− 1

cm

∫ t

0

1
(1− σr)h− 1

dt′
)
. (2.33)

In the absence of membrane conductance (gm = 0), the above equation can be easily
recast to give

E1(x, t)= E1(x, 0)
−1+ (1− σr)h(x, 0)
−1+ (1− σr)h(x, t)

eI(t), (2.34)

with

I(t)= 1
cm

∫ t

0

1
−1+ (1− σr)h(t′)

dt′. (2.35)

It can be easily seen that I(t) < 0 as long as σr > 0 and 0 < h < 1. Therefore the
electric field E1→ 0 as the non-conducting capacitive membrane charges over time.

2.2. Equilibrium profile for a non-conducting membrane (gm = 0) in DC fields
For a non-conducting membrane (gm= 0) in a DC electric field (α= 0), the following
analysis gives admissible equilibrium profiles determined by the volume (area) under
the membrane and the total area (length) of the two-dimensional (one-dimensional)
membrane. No such simple equilibrium results are available for a conducting
membrane (gm > 0) or in an AC electric field (ν is a function of time).

For a non-conducting (gm = 0) capacitive membrane in a DC field, the normal
electric fields E1 and E2 decay exponentially to zero as the membrane charges up
(see (2.34) and (2.35)). At equilibrium the profile satisfies the simple equation

d
dx

[
F

dg
dx

]
= 0 (2.36)

for x∈ (−L/2,L/2) with either (i) periodic boundary conditions, or (ii) hx=hxxx=gx=
0 at x=±L/2. The function F (2.31) is non-zero as long as 0< h< 1. In addition the
leading-order excess length of the interface and area (or volume in three dimensions)
under the interface remain constant:

∫ L/2

−L/2
(hx)

2dx= S= constant,
∫ L/2

−L/2
hdx≡ θ = constant. (2.37)

Integrating (2.36) once and setting the integration constant to zero, we obtain

d
dx

[
C̄Σ0

d2h
dx2
− ~ d4h

dx4

]
= 0. (2.38)

For periodic boundary conditions, the equilibrium profile takes the form

h= a cos
(

2nπx
L

)
+ b sin

(
2nπx

L

)
+ θ

L
, (2.39)

where integer n and membrane tension Σ0 are related via n2=−(C̄Σ0/~)(L/2π)2 and
Σ0< 0. Here a and b are related to S via (2nπ/L)2 ((a2 + b2)L)/2= S. For hx= hxxx=
gx = 0 at x=±L/2, the equilibrium profile in (2.39) splits into a symmetric profile

h(x)=±
√

2S/L
2Nπ/L

cos
(

2Nπx
L

)
+ θ

L
, (2.40)
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FIGURE 2. (Colour online) (a) Equilibrium mode number as a function of excess length S
for θ/L= 1/2. (b) Equilibrium membrane tension as a function of membrane conductance
from simulations with β=1,S=6.2995 and parameters (εr, σr,µr, ~)= (1,2,1,1); β=100
for the inset. (c) The corresponding equilibrium electric field profile E1eq as the membrane
conductance increases (with a multiple of 2) from bottom (gm = 1) to top (gm =∞ for
the dashed line).

and an antisymmetric profile

h(x)=±
√

2S/L
2Nπ/L

sin
(

2Nπx
L

)
+ θ

L
(2.41)

with N2 =−(C̄Σ0/~)(L/2π)2. Here N is an integer for the symmetric profile, and a
half-integer for the antisymmetric profile.

For a given membrane excess length S and an area θ under the membrane in two
dimensions, m has to satisfy the following inequalities (from 0< h< 1):

0<−
√

2S/L
2mπ/L

+ θ
L
,

√
2S/L

2mπ/L
+ θ

L
< 1, (2.42)

with m= n for the periodic boundary conditions and m=N for the blistering boundary
conditions. The corresponding total energy of the membrane interface is computed as

E = ~
∫ L/2

−L/2
(hxx)

2 dx+Σ0C̄S=
(

2mπ

L

)2

~S. (2.43)

The most stable equilibrium will be given by one of the plausible values of m that
minimizes the membrane energy in (2.43). Figure 2(a) illustrates the variation of m
with S for θ/L= 1/2. For a capacitive membrane with conductance, no such simple
expression for the equilibrium profile was found because of the nonlinearity from the
non-vanishing E at equilibrium. For a conducting membrane (gm > 0) we compute the
steady equilibrium profiles numerically using a semi-implicit spectral code explained
in § 2.4. The same equilibrium membrane sinusoidal profiles are found in a periodic
domain as when gm = 0. However the membrane tension is no longer negative for
large membrane conductance gm and large electric field strength β, see figure 2(b).
In addition, figure 2(c) shows that E1 reaches an asymptotic profile in the large
membrane-conductance limit.

2.3. Linear stability of a tensionless flat membrane in a DC field
Linear stability analysis on a flat capacitive conducting tension-free membrane has
been conducted for both DC (Seiwert et al. 2012) and AC (Seiwert & Vlahovska
2013) fields. In contrast to the stability of a fluid interface that depends solely on
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the mismatch of the fluid dielectric properties (see Craster & Matar 2005; Roberts
& Kumar 2009), the membrane conductance is found to be essential for the linear
instability (Seiwert et al. 2012), while the linear growth rate is reduced by the electric
field frequency in the AC field (Seiwert & Vlahovska 2013). Here we will examine
the linear stability of a flat membrane in a DC field.

We linearize the long-wave equations around the flat base state

h0 = constant, E1,0 = gm

1+ gm[σrh0 + (1− h0)] , E2,0 = σrE1,0. (2.44)

The perturbed membrane profile can be written as h(x, t)= h0+ δhexp(iQx+ λt) (with
Q the wavenumber and λ the growth rate) with similar expressions for E1 and E2.
Focusing on the DC field (α = 0 and ν = 1) case, we substitute the perturbed h, E1
and E2 into the long-wave model (2.10), (2.11) and (2.28) and linearize the equations
with respect to perturbations (δh, δE1 and δE2) around the base state. In the long-wave
formulation the membrane tension responds to the bending and electric forces (2.30)
to keep the membrane inextensible. For a tensionless membrane, an analytical form
for the growth rate can be found as

λ≈ β
(
εr − σ 2

r

)
(1− σr)g3

m

96(1+µr)
[
1+ (σr + 1)gm/2

]3 Q2 − ~

96(1+µr)
Q6, (2.45)

with h0 = 1/2. From (2.45) the maximum growth rate (λmax) and the corresponding
wavenumber Qmax can be computed as

Qmax =

β(εr − σ 2

r )(1− σr)

3~

(
gm(

1+ σr+1
2 gm

)
)3



1/4

∼ ~−1/4, (2.46)

λmax = β
(
εr − σ 2

r

)
(1− σr)g3

m

144(1+µr)
[
1+ (σr + 1)gm/2

]3 Q2
max ∼ ~−1/2. (2.47)

In the limit of large membrane conductance gm→∞,

Qmax→
[

8β(εr − σ 2
r )(1− σr)

3~(σr + 1)3

]1/4

, λmax→ β
(
εr − σ 2

r

)
(1− σr)

18(1+µr)(σr + 1)3
Q2

max. (2.48)

In (2.45) the wavenumber dependence of the destabilizing component of the growth
rate is quadratic, while a cubic dependence is reported in Ziebert et al. (2010), Ziebert
& Lacoste (2011) and Seiwert et al. (2012). This difference can be attributed to the
spatial variation of the electric potential: for a finite domain the electric potential
varies linearly, while the electric potential decays exponentially with distance to the
membrane in free space (Ziebert et al. 2010; Seiwert et al. 2012). Comparisons of
predictions between the two models for the AC case would be expected to be similar
to the DC case: the condition for instability (εr − σ 2

r )(1 − σr)gm > 0 is the same
as Seiwert et al. (2012)’s result; however the wavenumber dependence is different.
Seiwert & Vlahovska (2013) conducted a thorough Floquet analysis for a membrane
under an AC field in free space. We expect the same dependence of the linear stability
on the physical parameters, and expect to see the difference in the dispersion for small
q between a free space and a finite channel. But we defer the Floquet analysis on the
long-wave equations for a membrane in an AC field to a future study, and instead
focus on using numerical code to study both the linear stability (§ 3.1) and nonlinear
dynamics (§ 3.2) of a lipid bilayer membrane under an AC field.
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2.4. Numerical implementation
The evolution equation for the membrane height (2.28) is a sixth-order nonlinear
differential equation. As a result, an explicit time-marching scheme has stringent
stability constraints and it will be impractical to simulate the physics even in the
one-dimensional case. To overcome the restriction on time-step, we formulate a
semi-implicit scheme similar to that of Veerapaneni et al. (2009). In this scheme, the
tension is treated explicitly and the terms with highest-order derivatives in (2.28) are
treated implicitly. Suppose we have evolved the membrane position until n4t and we
need to march to (n+ 1)1t. First, we compute the tension Σ0 at the nth level using
(2.30) as

Σn
0 ∼

(Sn − S0)/1t+
∫ L/2

−L/2
Fhxxx

[
~hxxxxx − β2 (εrE2

1 − E2
2)x

]
dx

C̄
∫ L/2

−L/2
Fh2

xxxdx
, (2.49)

where 4t is the time step, S0 is the initial excess area and Sn is the excess area in
(2.37) evaluated with hn at time n1t. The term (Sn − S0)/1t in the numerator is the
penalty term that adjusts the tension based on the deviation of membrane area from
the initial value S0. A similar term has been used for simulating an inextensible elastic
filament (Tornberg & Shelley 2004). Second, the membrane position is updated via a
semi-implicit time-step as

hn+1 +1t
[
Fn
(
C̄Σn

0 hn+1
xx − ~hn+1

xxxx

)
x

]
x
= hn −1t

[
Fnβ

2

(
εr(En

1)
2 − (En

2)
2
)]

x

, (2.50)

where Fn ≡ F(hn). Third, the evolution equation for the electric field E1 (2.11) is
discretized as

(
1+ gm

cm
1t
) [
(En

1 − En
2)h

n+1 − En+1
1

]− α

cm
En+1

1

=
(
1t
cm
− α

cm
− 1
)

En
1 +
(
En

1 − En
2

)
hn −1t

(
ν ′ + gm

cm
ν

)
. (2.51)

Here En+1
2 = σrEn+1

1 for α = 0; for α 6= 0 we update the electric field E2 by solving
the discretized evolution equation

En+1
2 = εr1t

α

[(
1− α

1t

)
En

1 +
α

1t
En+1

1 −
(

1
σr
− α

εr1t

)
En

2

]
. (2.52)

We solve for hn+1,En+1
1 and En+1

2 simultaneously using the GMRES method (MATLAB
2012).

For the periodic boundary conditions the spatial derivatives are computed using the
spectral collocation method (Canuto et al. 1986). Appropriate 1t and grid spacing 1x
are chosen to keep the error in excess length S smaller than 0.1 % of the initial excess
length throughout the simulations. In the following we focus on periodic boundary
conditions with L= 2π unless otherwise specified.

The code is validated to be second-order in time and spectral in space. Note that
as a check we have numerically recovered the analytical equilibrium profiles for a
non-conducting membrane (gm = 0) in a DC field. We should also note that for a

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

28
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.281


Dynamics of a planar membrane in an electric field 419

conducting membrane in a DC field, the same equilibrium profiles as in the non-
conducting case are numerically found for a given combination of (θ, S) but now the
equilibrium membrane tension Σ0 depends on the membrane conductance gm as shown
in figure 2(b). In the inset of figure 2(b) we show Σ0 versus gm for β = 100. Here
Σ0 =−1 when gm = 0, and Σ0 increases to positive values for large gm. Figure 2(c)
shows the equilibrium profile for the electric field E1eq as the membrane conductance
increases from bottom to top and in particular it shows that there is an asymptotic
profile as gm increases.

3. Results
Seiwert & Vlahovska (2013) quantified the linear instability of a tensionless

flat membrane in free space in terms of membrane conductance gm, mismatch of
fluid dielectric permittivity εr and conductivity σr, electric capillary number Ca
and electric field frequency ω. In our long-wave formulation the time scale is
based on the membrane charging time (cm = 1), and as a result their dimensionless
(starred) parameters are related to ours as: Ca∗ = (2εrβ/~)ε, ξ ∗ = (C̄/~)ε2, and
β∗ = (εrβµr)/ε

−3.
In § 3.1 we focus on the linear growth rate from numerical simulations for a

tensionless flat membrane in both DC and AC fields. Based on the linear results we
perform simulations to investigate the nonlinear dynamics of the membrane at different
values of β in § 3.2 and excess length in § 3.3. In § 3.4 we demonstrate the alternating
travelling wave on an inextensible membrane under an AC field. All the results are
presented with T = t/(2π/ω), the time scaled to the period of the underlying AC
field, to help reveal the underlying mechanisms. Results from numerical explorations
show that the nonlinear dynamics reported below can be found for a wide range
of physical parameters. Thus the choice of parameter combinations in §§ 3.2–3.4 is
made based on the physical realizability in the laboratory.

3.1. Linear stability of a tensionless flat membrane in an electric field
Seiwert & Vlahovska (2013)’s Floquet analysis shows that both membrane conductance
gm and small values of the AC field frequency ω destabilize the planar membrane,
while the linear growth rate is decreased by large ω. Here we first present numerical
results to validate our code against the linear growth rate (2.45) for a tensionless, flat
membrane in DC electric field. We then present some numerical results to qualitatively
compare with the Floquet results in figures 3 and 4 of Seiwert & Vlahovska (2013).

For the following results the initial conditions h(x, 0) = 0.5 + 0.01 cos(Qx) and
E1=E2= 0 are used in the numerical simulations. Figure 3(a) shows the linear growth
rate for a tensionless flat membrane under a DC field with (εr, σr, µr, gm, ~, α) =
(1, 10, 1, 1, 300, 0). The solid curve is from (2.45), and the symbols are computed
from the time evolution of the Fourier transform of h from numerical simulations
with the same parameters. Figure 3(b) shows the growth rate for a tensionless flat
membrane under an AC field (symbols joined by the dashed line) with ω=0.75, ν(t)=√

2 sin(ωt) and (εr, σr, µr, gm, ~, α) = (1, 10, 1, 1.25, 10−2, 0.1). The solid curve is
the DC growth rate from (2.45) with the same parameters. Figure 3(c) shows the
dependence of the growth rate on the AC field frequency (symbols joined by the
dashed line) for Q= 3.25, (εr, σr, µr, gm, ~, α)= (1, 10, 1, 1.25, 10−2, 0.1) and ν(t)=√

2 sin(ωt).
Our dimensionless frequency ω is the same as that in Seiwert & Vlahovska (2013)

as we use the membrane charging time for the time unit. The electric potential for
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FIGURE 3. (Colour online) Linear growth rate λ for a tensionless flat membrane with
β = 1. Solid curves are λ from (2.45) for a non-conducting membrane under a DC field,
and symbols are from simulations. (a) Linear growth rate λ versus Q in a DC field with
(εr, σr,µr,gm, ~, α)= (1,10,1,1,300,0). (b) λ versus Q in an AC field with ω=0.75, ν=√

2 sin(ωt), (εr, σr, µr, gm, ~, α)= (1, 10, 1, 1.25, 10−2, 0.1). (c) λ versus ω for Q= 3.25
and (εr, σr, µr, gm, ~, α)= (1, 10, 1, 1.25, 10−2, 0.1).

the base state is for an infinite domain in Seiwert & Vlahovska (2013), while for
our analysis the base-state electric potential is for a finite domain. As a result we
focus on qualitative comparison here. The growth rate versus ω in figure 3(c) is in
qualitative agreement with figure 3 of Seiwert & Vlahovska (2013): the linear growth
rate decreases to zero as the frequency increases. The wavenumber dependence in
figure 3(b) is also in qualitative agreement with results in figure 4 of Seiwert &
Vlahovska (2013). Here β = 1 is used for results in figure 3. For a different value of
β we expect a similar dispersion curve with a maximum growth rate proportional to
β3/2 from the linear analysis for a non-conducting tensionless membrane.

3.2. Effects of AC field magnitude β
In this subsection we fix ω = 0.75, L = π/Q with Q = 3.3, (εr, σr, µr, gm, ~, α) =
(1, 60, 1, 1.25, 10−2, 0.1) and ν(t)=√2 sin(ωt). The excess length is fixed at S= 0.141
as the electric field strength β is increased. These parameters are realizable in the
laboratory, therefore the nonlinear dynamics reported here is potentially observable in
an experiment.

Figure 4 shows the membrane dynamics over one period of oscillation. Under an
AC electric field, most of the time the membrane stays close to the equilibrium shape
under a DC field determined by the excess length S and the volume θ (S = 0.141
and θ = 0.5 in this subsection). However, when the electric potential approaches its
mean (zero in this subsection), the membrane undergoes fast dynamics that depends
on β. For β = 50 (figure 4a,b) a fast temporal membrane undulation is found around
ν= 0. For β= 200 (figure 4c,d) the fast membrane undulation leads to flip-flop of the
membrane profile from h to 1− h. Figures 4(b) and 4(d) show the membrane height
at x = 0 versus time (solid curves) with the dashed curves for the electric potential
ν(t).

The corresponding temporal variation of the membrane tension is shown in
figure 5(a,b,c): (a) shows Σ0 for different values of β; (b) and (c) show the correlation
between Σ0 and

〈
H2
〉= ∫ L

−L H2dx near the minimum of Σ0 for β = 50 and β = 200,
respectively. For every half a cycle the membrane tension Σ0 reaches minima (solid
curves in figure 5b,c), whereas the membrane deformation reaches maxima (dashed
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FIGURE 4. (Colour online) Membrane dynamics over one period for (εr, σr,µr,gm, ~, α)=
(1, 60, 1, 1.25, 10−2, 0.1), ω= 0.75, and ν(t)=√2 sin(ωt) is the dashed line in (b) and (d);
(a,b) β = 50 and (c,d) β = 200. (a,c) Time–space plot of h; (b,d) the membrane height at
x= 0 over one period.

lines in figure 5b,c). This is clearly illustrated by the concurrence of the maxima in〈
H2
〉

and the minimum in Σ0 in figure 5(a,b,c).
Figure 5(d,e) shows the variation in the surface-induced charge density q and the

trans-membrane potential Vm from T = 1.5 to T = 1.6. Depending on whether the
membrane flip-flops (high β) or undulates (low β) when Σ0 is close to minimum,
the distributions of q and Vm also vary with time differently. As T increases from
1.5 to 1.6 from the bottom to the top in figure 5(d), we observe the same surface
charge distribution between β = 50 (dashed curves for undulating) and β = 200 (solid
curves for flip-flopping) before T = 1.55 After T = 1.56, substantial differences in
both q and Vm are observed between the two cases. In particular, as the membrane
flip-flops the trans-membrane potential at the centre (x= 0) switches from maximum
to minimum.

The above results show that the nonlinear dynamics of an inextensible elastic
membrane in an AC field is closely related to the temporal variation of membrane
tension Σ0, which is in synchrony with the external AC field ν(t) for small and
moderate S. (See figure 6(b) for the effects of S on the correlation between Σ0 and
ν(t).) The membrane deformation gets amplified when Σ0 is around the minimum
and ν(t) is around its mean. This may be understood by the linear instability of a
tensionless membrane: when Σ0 is close to zero the tensionless membrane is linearly
unstable for (εr − σ 2

r )(1 − σr)gm > 0. At large β the undulation of the membrane
is replaced by the flip-flop of the membrane profile, and we observe overshoot in
membrane height at x = 0 before and after the flip-flop. In addition we find higher
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FIGURE 5. (Colour online) (a) Membrane tension Σ0 over one period for β = 25, 50,
100 and 200. (b) Σ0 (solid line) for β = 50 and

〈
H2
〉≡ ∫ L

−L H2dx (dashed line). (c) As (b)
but for β = 200. (d,e) Dynamics of the induced surface charge q (d) and trans-membrane
potential Vm (e) from T = 1.5 to T = 1.6 with 1T = 0.01 between two curves; β = 50 for
dashed curves and β = 200 for solid curves.

surface charge density at x= 0 in figure 5(d), where the membrane height overshoots
the most before and after the flip-flop (see figure 4).

At other times when Σ0 is large, the membrane profile stays close to the analytic
equilibrium membrane profile under a DC field. From simulations for higher
membrane conductance we find that while membrane undulation still gets amplified
when Σ0 ∼ 0, a higher electric field is needed for the membrane flip-flop.

The same nonlinear dynamics of membrane undulation and flip-flop under an AC
field can be observed for other parameter combinations, such as (εr, σr, µr, gm, ~, α)=
(1, 10, 1, 1.25, 10−2, 0.1). As the linear growth rate depends on β, σr and εr,
it is reasonable to expect (and indeed we observe numerically) that higher β is
needed to see the same nonlinear membrane dynamics when σr is decreased. For
example, both the undulation and membrane flip-flop dynamics can be observed
for (εr, σr, µr, gm, ~, α) = (1, 10, 1, 0.01, 10−2, 0.1) when β is increased to several
thousand.

3.3. Nonlinear dynamics at different excess length S
Here we investigate how membrane flip-flopping dynamics under a strong AC electric
field may depend on the membrane excess length S. Figure 6(a) shows the variation of
membrane height at x= 0 for four values of S (see caption). At β = 200 we observe
an overshoot in membrane height and the associated membrane flip-flopping for all
four values of S. In addition we find that the overshoot in membrane height (when
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FIGURE 6. (Colour online) Flip-flopping dynamics of membrane with different excess
length: S = 0.141, 0.3172, 0.564, 0.8812 for curves 1, 2, 3, and 4, respectively;
β = 200, ω = 0.75, ν(t) = √2 sin(ωt) (dashed line) and (εr, σr, µr, gm, ~, α) =
(1, 60, 1, 1.25, 10−2, 0.1). (a–c) Temporal variation of h, Σ0 and q at x = 0. (d,e)
Flip-flopping of h for S= 0.141 (d) and S= 0.8812 (e) when Σ0 ∼ 0.

Σ0 is close to zero, around its minimum) is enhanced as the excess length S increases
from 0.141 to 0.8812, as shown in figure 6(a). Figure 6(b,c) shows the corresponding
variation of Σ0 and q at x= 0, where we see Σ0∼ 0 every half a cycle, corresponding
to the overshoot in membrane height in figure 6(a). From figure 6(b) we note that the
magnitude of Σ0 increases with increasing S. Figure 6(d,e) shows space–time plots of
the membrane profile when the membrane flip-flops.

We also observe from figure 6(b) that, even though the membrane flip-flops every
half a cycle when Σ0 ∼ 0, the membrane height overshoots more when ν is positive.
When ν is negative, Σ0 reaches a maximum and therefore stabilizes the membrane
and suppresses the overshoot before and after the flip-flop. Such asymmetry between
the ν > 0 half-cycle and the ν < 0 half-cycle is also reflected in the surface charge
density: the S dependence of q is amplified when ν < 0 (figure 6c).

The corresponding space–time plots for q and Vm for two values of S are shown in
figure 7, where we observe that the trans-membrane potential is out of phase with q.
As S increases, we observe that the charge density will focus more at x= 0 around
T ∼ 1.8, just before the sudden overshoot in the membrane height and the fast change
in Vm at T ∼ 2. In addition we observe the trans-membrane potential at x= 0 has fast
temporal variation when the membrane height flip-flops during the positive half-cycles.
During the negative half-cycles, Vm has fast temporal variation at the end points.

3.4. Nonlinear ‘travelling’ wave on an inextensible elastic membrane
Numerical exploration shows that under strong electric field the nonlinear dynamics
of a membrane with a sufficiently large excess length S is no longer the periodic
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FIGURE 7. (Colour online) Variation of surface charge (a,b) and trans-membrane potential
(c,d) from the simulations in figure 6; S= 0.141 for (a,c), and S= 0.8812 for (b,d).

undulation or membrane flip-flop discussed in §§ 3.2 and 3.3. Here we present an
example from simulations for S = 0.1138, θ = 0.2, β = 300, (εr, σr, µr, gm, ~, α) =
(1, 60, 1, 0.01, 10−6, 0.1), ω = 0.1π and ν(t) = √3/2 + (√2/2) sin(ωt); 256 modes
and 1t= 1/100 are used in the simulations.

In this example the membrane is placed closer to the bottom electrode (θ = 0.2),
which is similar to the experimental setup for electroformation. At the beginning the
membrane undergoes undulation when Σ0 approaches a minimum. Very quickly the
translational symmetry is broken and a lateral net movement (from right to left in
this case) develops due to the initial condition, which is h(x, 0)= 0.2+ 0.15 cos(x)+
0.015(cos(5x)+ sin(6x)). We find opposite movement (from left to right) if the initial
condition is inverted.

The temporal variation of Σ0 (solid line) and
〈
H2
〉

(dashed line) is shown in
figure 8(a), which illustrates the correlation between maxima in

〈
H2
〉

and minima in
Σ0. Figure 8(b) shows the membrane height at x= 0 (solid line) versus time for five
periods. The corresponding charge density is shown in figure 8(c). The dashed line
in figures 8(b, c) is the electric potential ν(t). Again Σ0 reaches a minimum when
ν reaches its mean. While the tension Σ0 remains positive within a cycle, a larger
maximum is reached in the first half-cycle than the second in 8(a). The variation of
membrane height at x = 0 with T in 8(b) shows that a maximum height is reached
every half a cycle, with a clear indication of double-periodic dynamics. In 8(c) the
surface charge density q at x = 0 oscillates with the same periodicity T but with a
slightly decreasing amplitude. Figure 8(d–f ) shows time–space plots for h, q and Vm,
respectively, over one period from T = 59 to T = 60.

Figure 9 shows the lateral membrane movement. In figure 9(a–c) we show the
profiles of h, q and Vm at multiples of the period from T = 31 (dashed curve) to
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FIGURE 8. (Colour online) Non-periodic dynamics for S= 0.1138, θ = 0.2, β = 300, ω=
0.1π, ν(t)=√3/2+ (√2/2) sin(ωt) and (εr, σr, µr, gm, ~, α)= (1, 60, 1, 0.01, 10−6, 0.1).
(a) Temporal variation of Σ0 and 〈H2〉 (dashed line), (b) h and ν (dashed line), and (c)
q and ν (dashed line), all at x= 0. (d–f ) Time–space plots of membrane height, surface
charge and trans-membrane potential from T = 59 to T = 60.

T = 42 (thick solid curve). The insets show a zoomed region from T = 31 (dashed
curve) to T = 34. In figure 9(a) we see that the membrane first makes a big step to
the left from T = 31 to T = 32, then a small step to the right at T = 33 and then
again a big step to the left at T = 34. Similar dynamics is found for q and Vm in
figure 9(b) and figure 9(c), respectively. In figure 9(d–f ) we show time–space plots
sampled at multiples of the period. We clearly see a net movement from right to
left in h in figure 9(d), q in figure 9(e) and Vm in figure 9(f ). The membrane height
can be quite close to the bottom electrode. Careful numerical convergence tests have
been conducted to ensure that the nonlinear translational dynamics is not affected by
h getting close to zero.

In deriving the long-wave equation the horizontal velocity on the membrane is
set to zero for local membrane inextensibility at the leading order. Consequently the
alternating wave is actually a ‘coordinated’ movement in the vertical direction like
a Mexican wave in a soccer game: as the audience stands up and sits down in a
rhythmic way, there appears to be a ‘travelling wave’ moving in a directed fashion.
The nonlinear dynamics coordinates such individual movements into a travelling
wave.

Increasing β further to β = 600, we find that the unidirectional travelling wave is
replaced by a sloshing wave moving back and forth, almost in synchrony with the AC
field. However it is not clear how physically realizable it is to have β = 600 in the
microfluidic laboratory. We are now conducting a thorough numerical investigation of
the parameter space (εr, σr, µr, gm, ~, α) to check if there is other nonlinear dynamics
that may be realizable in a microfluidic experiment.

4. Summary

In this work we investigated the long-wave nonlinear dynamics of an inextensible
capacitive leaky (conducting) elastic membrane under electric fields. Using the
sharp-interface approximation, the inextensible membrane behaves as a capacitive
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elastic sheet with a conductance due to ions leaking through the membrane. We
derived a sixth-order nonlinear equation with an integral constraint from the membrane
inextensibility in the long-wave limit. In a DC field where the displacement current
is negligible, we analytically derived the equilibrium profile of a non-conducting
membrane for a given excess length S and the area θ under the planar membrane. We
implemented a semi-implicit iterative scheme to numerically investigate the nonlinear
dynamics of the membrane. Our long-wave model captures the linear behaviour of a
tensionless flat membrane, and we examined the different nonlinear dynamics under
varying electric field strengths and excess length with physically relevant parameters
in the simulations.

In our numerical simulations, both time step and grid spacing are adjusted to
ensure that (i) the error in the excess length never exceeds 1 % of the initial excess
length throughout the simulations, and (ii) numerically convergent solutions are
obtained. Results in § 3.2 demonstrate the important role of membrane tension Σ0 in
membrane dynamics: periodic undulation and flip-flopping of a membrane are direct
consequences of the linear instability of the membrane when the tension is close
to zero. When the tension is significantly larger than zero, the membrane profile
stays close to the equilibrium profile of a non-conducting membrane in a DC field.
As summarized in § 2.2 these equilibrium profiles depend only on the excess length
S and the area θ under the membrane. Results in § 3.3 show that the flip-flop of
the membrane profile gives rise to overshoot in membrane height when the external
electric potential ν is increasing, and the magnitude of overshoot increases with the
excess length S. During the membrane flip-flop we also find the surface charge density
focusing at x= 0 where the membrane height overshoots. Such charge focusing at the
highest-curvature location of the membrane is reminiscent of Taylor cone formation
in electrohydrodynamics (Fernandez de la Mora 2007).

Pillar formation from the instability of a fluid interface in an AC field has been
observed using a lubrication model (Roberts & Kumar 2009, 2010). This pillar
formation was not observed here for a membrane but we have observed a new type
of nonlinear dynamics. In particular, at large excess length and under a strong AC
field, we find that after two cycles of membrane flip-flop the membrane height can
get very close to the bottom wall, where min(h)≈ 10−3 for results in figure 8(d), and
then the membrane takes on a travelling motion with a double-periodic dynamics in
the sequence: a big step to the right, a small step to the left and then a big step
to the right. Careful numerical convergence tests have been conducted to ensure that
sufficient numerical resolutions are used to guarantee numerically convergent results
and that the travelling dynamics is not a numerical artifact. Within our long-wave
formulation this dynamics can be described as a ‘Mexican wave’ for the ‘coordinated’
travelling wave moving in 2− 1 steps (two steps forward, one step back).

In electroformation where an AC field is used (Angelava & Dimitrov 1987;
Constantin et al. 2005; Lecuyer et al. 2006; Le Berre et al. 2008), the AC field
frequency is several Hz, the AC strength E0 is often a few kilovolts per metre,
σ1 ∼ 10−4 S m−1, the channel height is in the range 100 µm 6 h0 6 1 mm and
the channel aspect ratio usually satisfies ε 6 0.3 for a vesicle filling the channel
(ε = 2r0/2πr0 = 1/π ∼ 0.3). In our non-dimensionalization, this gives a time
scale h0Cm/σ1 ∼ 10−1ε s. Thus the maximum growth rate from figure 3(b,c) (for
a tensionless planar membrane in an AC field) gives an estimate of several seconds
for significant membrane deformation due to linear instability, consistent with results
in Seiwert & Vlahovska (2013). However, the membrane tension may soon become
non-negligible as the membrane is under electric stress, and the linear results for a
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tensionless membrane may not be relevant after a short time (a couple of minutes as
opposed to close to an hour for vesicle formation in the experiments).

From our numerical simulations of an inextensible membrane under electric stress,
we find that the electric field needs to be increased to several tens of kilovolts
per metre for various nonlinear membrane dynamics. In practice the lipid bilayer
membrane stays intact as the electric field strength goes up to ∼30 kV m−1 and the
conductivity ratio can be as large as ∼40 (Sadik et al. 2011). Thus the parameters
used in the simulations are physically realizable in the laboratory, even though no
report of the three types of nonlinear membrane dynamics is found in the literature.
In electroformation experiments a bilayer membrane can be initially stacked and
in close contact with the substrate, hence it is possible that other factors (such as
interaction with the substrate and electrolytes) or physics (finite thickness of the
bilayer membrane) have to be included to explain the vesicle formation under
an electric field. For a nearly perfect dielectric fluid (with vanishing electrical
conductivity) the surface current is dominated by the displacement current. Therefore
we expect that an extremely high electric field is needed to observe all three types
of nonlinear membrane dynamics in a perfect dielectric fluid.

Our long-wave model can be modified to consider both (i) the van der Waals force
between the membrane and electrodes, and (ii) the effect of disjoining pressure on the
travelling wave and sloshing wave. In particular we are replacing the leaky dielectric
fluids with electrolyte solutions where the bulk charges are not zero and the charges
may accumulate away from the membrane. The membrane is found to be more
linearly unstable in the presence of these charges near the membrane (Bazant et al.
2009). It will be interesting to revisit the nonlinear dynamics of the membrane in the
electrolytic solution. In addition we are also incorporating the membrane asymmetry
due to the mismatch in lipid composition between the two leaflets to examine how
the asymmetry in the two leaflets might lead to different membrane dynamics and
equilibrium shapes under external forces.
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Appendix A
The derivation of (2.10) for the transmembrane potential Vm can be found in Seiwert

et al. (2012) and Seiwert & Vlahovska (2013). We reproduce those steps here for
completeness (see also McConnell 2013).

Begin by considering the equations for the conservation of normal current density
across the lipid monolayer facing side 1, located at z = h1(x, t) and facing side 2,
located at z= h2(x, t). Note that we distinguish between each of these monolayers for
the sake of this derivation but within our continuum model the bilayer lipid membrane
interface has zero thickness and is located at z = h(x, t). This results in the two
conservation equations

n · (J1 − Jm)=−∂q1

∂t
−∇s · (uq1) at z= h1, (A 1)
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n · (Jm − J2)=−∂q2

∂t
−∇s · (uq2) at z= h2. (A 2)

Here Ji = σiEi represents current density and qi denotes the electric charge density
along each side while Jm= σmEm is the ohmic current density crossing the membrane.
This current leaking through the membrane n · Jm will be approximated by the voltage
jump across the membrane times the membrane conductivity, i.e. n · Jm =GmVm The
right-hand side of each of these equations represents the rate of change of charge
along the monolayer of the moving interface. Using the incompressibility of the
interface, ∇s · u= 0, the convective term on the right-hand side of each equation can
be replaced with u · ∇sqi.

The surface charge density is given by q1 = n · ε1E1 − n · εmEm = n · ε1E1 − CmVm
at z = h1, where the approximation n · εmEm = CmVm is used for a thin membrane.
Similarity along z= h2 we have q2 =CmVm − n · ε2E2. Note that this implies that the
total charge is q = q1 + q2 = ε1E1 − ε2E2 as given in § 2. Putting all of the above
approximations into (A 1) and (A 2) then gives (2.10).
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