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Abstract

In this paper we consider the pricing and hedging of financial derivatives in a model-
independent setting, for a trader with additional information, or beliefs, on the evolution
of asset prices. In particular, we suppose that the trader wants to act in a way which is
independent of any modelling assumptions, but that she observes market information in
the form of the prices of vanilla call options on the asset. We also assume that both the
payoff of the derivative, and the insider’s information or beliefs, which take the form of
a set of impossible paths, are time-invariant. In this way we accommodate drawdown
constraints, as well as information/beliefs on quadratic variation or on the levels hit by
asset prices. Our setup allows us to adapt recent work of [12] to prove duality results
and a monotonicity principle. This enables us to determine geometric properties of the
optimal models. Moreover, for specific types of information, we provide simple condi-
tions for the existence of consistent models for the informed agent. Finally, we provide
an example where our framework allows us to compute the impact of the information on
the agent’s pricing bounds.
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1. Introduction

It has long been recognised that information plays an extremely important role in the study
of modern financial markets. This is most markedly true when two parties trading the same
asset have access to different information sources, and then one can ask how the ‘insider’,
who possesses additional information, should modify her behaviour to exploit her privileged
position. In this paper, we aim to consider problems where the insider has a strong belief in
some quantitative, or qualitative, fact about the future evolution of some asset, but is otherwise
agnostic about other statistical properties determining the evolution of the asset.

A fundamental, motivating example will be the following: imagine an agent believes that
the CEO of a company will act in such a way as to ensure that the share price of the company
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will not drop below a certain level which depends on the historical maximum of the share price,
for example, because the manager is incentivised by stock options which pay out provided this
drawdown criterion is not breached. Then the agent may want to build this information into her
valuations of e.g. derivatives written on the asset. The aim in this paper is to consider problems
of this form in a model-independent framework. We claim that this is a natural framework
for these problems, since the insider’s information already rules out many ‘standard’ models
which would not usually satisfy such a constraint, and it is not immediately clear how the agent
should choose a model which includes this information.

Problems concerning insider information have a rich literature: the first work in the mathe-
matical finance literature is [43], while important subsequent work includes [5, 16, 20, 32], and
this topic is still a very active area of research. Along with different information sets, agents
may have different beliefs on the evolution of asset prices. This again will result in different
market behaviours.

In the past few years, robust approaches to finance, where no underlying probability mea-
sure is assumed a priori, have become very popular. Only very recently, additional information
and beliefs have been considered in a robust framework. In both [3] and [4], this has been mod-
elled by an enlargement of filtration. Closer to the approach of the current work are the papers
by [23], [36], [9], and [10], which model beliefs in a robust setting by excluding some paths
from the possible evolution of the asset’s price process (see Section 1.1).

The goal of this paper is to consider the pricing and hedging problems for traders with
different information and beliefs in a continuous-time, robust setting, where call prices at a
fixed maturity T are observed. Our analysis relies on two key assumptions. First, we only
consider derivatives which are time-invariant, that is, with payoffs which are independent of
the clock under which the underlying is running. These include, for example, lookback options,
barrier options, corridor options, and variance options. Secondly, we assume that beliefs and
the insider’s additional information are time-invariant and such that they allow the insider to
assume that a certain set of paths is impossible. This means specifying the set of feasible paths
on which (super-)hedging arguments are required to work. Examples of beliefs we can deal
with include those on quadratic variation and those on asset prices hitting (or not hitting) given
barriers. As for the time-invariant information, the main example we have in mind is that of
drawdown constraints, e.g. imposed by company policy, on the price process never falling
below a fixed fraction of its maximum-to-date or never falling below a certain threshold once
it has reached a certain level.

The assumption of time-invariance allows us to translate the robust pricing problem into a
constrained Skorokhod embedding problem (SEP), emulating the approach to robust finance
initiated in [35] (see also [34]). In this way, in the first part of the paper, Sections 2 and 3,
we develop a theoretical framework for our approach. We are able to extend to the current
framework the analysis developed in [12] for the unconstrained problem. Indeed, a simple
application of the results of [12] leads to a superhedging and duality result for the insider/the
constrained SEP (Theorem 3), and to a monotonicity principle which gives a necessary condi-
tion on the optimising probability measures for the insider/the constrained SEP (Theorem 4).
Leveraging on our duality result, we are able to provide simple necessary and sufficient
conditions to exclude arbitrage for the insider in terms of solutions to the constrained SEP
(Proposition 3). On the other hand, the monotonicity principle, which takes the form of geomet-
ric conditions on the support of the optimisers, often leads to barrier-type solutions. Experience
in the case without information suggests that, once the geometric structure of the support of
the optimisers is understood, it is much simpler to e.g. develop numerical methods to compute

https://doi.org/10.1017/apr.2020.50 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2020.50


32 B. ACCIAIO ET AL.

the optimisers for specific examples. The main motivation for considering the problem under
this assumption of time-invariance is that, as a consequence, we are able to prove the mono-
tonicity criteria, which, as we demonstrate, in many natural examples allow us to reformulate
the optimisation problems in terms of simpler, geometric criteria. This additional insight opens
up a wider range of mathematical and numerical tools which may be applied both to increase
understanding of the problems, and to more accurately solve the problems.

In the second part, Section 4, we illustrate that our setup allows us to further investigate
several concrete and financially meaningful situations, gaining new insights into the insider’s
behaviour in explicit situations. More precisely, we restrict ourselves to specific sets of feasible
paths (cf. (4.1)). This class is quite broad, as it includes information and beliefs mentioned
above on whether prices hit certain barriers, on whether the quadratic variation reaches certain
levels, and on drawdown constraints. Here we are interested in three interrelated questions:

(1) When does there exist arbitrage for the insider?

(2) What are the worst-case models for the insider?

(3) Can we calculate the value of the insider’s information in specific situations?

We address the question of arbitrage in Theorem 5 for the specific information encoded by
(4.1). Specialising to concrete examples, we show in Theorems 6 and 7 that the question of
arbitrage can be reduced to simple ordering properties of particular functions. To the best of
our knowledge, the present work is the first one to address the issue of arbitrage in a robust
setting with additional information/beliefs.

Concerning the characterisation of worst-case models we exemplify the power of the mono-
tonicity principle in Theorem 8 in a concrete setup. We consider the example of variance
options with drawdown constraints, and show that we are able to

(1) determine when there exists an arbitrage for the insider;

(2) characterise the class of extremal models;

(3) compute numerically the value of the insider’s information.

Specifically, in Section 4.2.1 we give a numerical example to show the impact of increasing
information on the insider’s extremal model. Thereby, we can nicely illustrate the impact of
increasing information; see Figure 5.

1.1. Literature

In the robust approach to mathematical finance, the usual setting consists in having some
assets available for dynamic trading, and some claims which are available at time zero for
static, i.e. buy-and-hold, trading. The information at the disposal of the agent is the price of
assets and claims at time zero, and the evolution of the price of assets in time. In this frame-
work, most of the literature so far has been devoted to showing pricing–hedging duality results,
that is, that the minimal cost to superhedge pathwise a given derivative, equals its maximal
price over calibrated martingale measures; see e.g. [1, 11, 14, 18, 29, 41] in discrete time, and
[12, 13, 15, 17, 27, 28, 30, 33, 36] in continuous time, within a rapidly growing literature.

The current literature on the insider problem in a robust setup is still in its infancy. In [3]
and [4] the informed agent has a richer information flow, which results in more choices for
trading strategies, and hence in cheaper robust (superhedging) prices. In [3] the authors study
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the models under which the market is complete in a semi-static sense, and through these models
they compare the robust prices of the agents with and without additional information. In [4],
pricing–hedging duality results are given when the additional information is disclosed either at
time zero or at a given future instant in time, and it is given by specific random variables.

Mathematically, our approach is closer to the approaches of [23], [36], [9], and [10]. These
papers do not consider insider information, but model beliefs or prediction sets in a robust
setting by specifying the set of feasible paths for the possible evolution of the asset’s price
process. The main aim in these papers is to study the pricing–hedging duality. In [23] the
authors work in discrete time and study duality, showing that in some cases a gap may appear,
i.e. duality may fail. In [36] a continuous-time setup is considered, and sufficient criteria are
given so that duality holds in an asymptotic sense. In [9] the authors consider a continuous-
time setting and prediction sets in the space of continuous paths, and provide several duality
results. Finally, in [10] the authors obtain duality and monotonicity results for a broad class of
constrained optimal transport problems, under some conditions on the space of paths and on
the set of admissible transports.

In the present paper we work in continuous time, so our duality results are comparable to
those in [36], [9], and [10]. However, [36] considers derivatives with uniformly continuous
payoff, so that the framework is orthogonal to the present one, where payoffs are assumed to
be invariant under time change. In [9] these restrictions are substantially weakened, but without
the inclusion of other traded options. In [10] analyticity conditions are required on the set of
admissible paths, rather than the time-invariance assumed here. Also in a similar spirit to our
results in Section 4.2 is the PhD thesis [45], which considers the situation where only finitely
many options are available for static trading and, for specific kinds of derivatives, describes the
optimal solutions for agents having beliefs on realised variance.

To the best of our knowledge, the constrained SEP has not previously been systematically
considered in the literature. To our knowledge, the only papers that consider related problems
are [7] and [6], which provide conditions under which a distribution may be embedded in
Brownian motion or a diffusion in bounded time, which have some connections to the results
in Section 4. Also, the setting in [10] covers for example the case of robust pricing in case of
bounded quadratic variation, which leads to the establishment of conditions for the existence
of Skorokhod embeddings in bounded time.

1.2. Outline of the article

In the present paper we will work in a continuous-time setup, under the assumption that
the asset’s price process S evolves continuously, and all call options for a given maturity T
are traded at time zero in the market. We perform a time change to formulate the pricing
problem as a constrained optimal stopping problem in Wiener space and resort to Skorokhod
embedding techniques. For this approach to be effective, we need to restrict our attention to
the case where both the derivatives’ payoff function and the feasibility of paths are invariant
under time changes in an appropriate sense. The key concepts and definitions for this setup
are introduced in Section 2. In Section 3, we show that the pricing–hedging duality and the
monotonicity principle of [12] can be extended in a natural way to our setting, thus allowing
us to give a geometric characterisation of the support of the optimisers in the primal problem.

Then, in Section 4, we consider specific examples of feasible sets where we may apply
the results of the previous sections to determine specific consequences of certain types of
information possessed by the insider. We first consider the implications of information which
restricts the observed paths to occur either before or after (or both) some path-dependent event.
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In this case, we are able to give sufficient conditions for the existence of arbitrage for the
insider. Next, we consider the case where feasibility corresponds to paths which do not enter
given regions of an appropriate phase space, and determine necessary and sufficient conditions
for the additional information not to introduce arbitrage possibilities. Finally, we show how
the monotonicity principle can be used to derive characterising properties of the optimisers
subject to a given information set. In particular, we consider the problem described at the start
of the introduction, where the insider believes a certain drawdown constraint is satisfied, and
wishes to understand the impact on variance derivatives. In this case, we are able to describe
the properties of the resulting optimiser, and also compute numerically an upper bound on the
value of the derivative in both the model without information and the model with information.
These numerical results give us a good indication of the impact of the information on the prices
of other derivatives.

2. Informed robust pricing

Throughout the paper, for I ⊂R, we write C(I) for the space of continuous functions
ω : I →R endowed with the topology of uniform convergence on compacts. When I ⊂ [0,∞),
we write Cx(I) for the subset of paths such that ω(0) = x.

We consider a market consisting of a risk-free asset (bond), whose price is normalised to 1,
and a risky asset (stock) which is assumed to have a continuous price evolution, though neither
a reference probability nor the dynamics are specified. The assets are continuously traded on
the fixed time horizon [0, T], 0< T <∞. Let the initial price of the stock be s0; in this way
we can think of the stock price process S as the canonical process on Cs0 [0, T] = Cs0 ([0, T]).
We assume we observe the prices of call options with maturity T for all strikes, which cor-
responds to having knowledge of the marginal distribution of S at time T , say μ, under any
pricing measure by the Breeden–Litzenberger formula, [19]. In particular,

∫
xμ(dx) = s0. We

assume
∫

(x − s0)2 μ(dx) =: V <∞. This condition is introduced in order to simplify the pre-
sentation, and can be relaxed (see e.g. [12, Section 7]). Given a derivative with payoff function
F : Cs0 [0, T] →R written on S, the robust pricing problem is to determine

sup{EQ[F(S)] : Q ∈M(μ)}, (2.1)

where M(μ) is the set of all martingale measures Q on Cs0 [0, T] such that ST ∼Q μ (by mar-
tingale measure we mean a measure under which the canonical process is a martingale). This
leads to the upper price bound for the derivative F, related to the worst-case scenario of the
evolution of the risky asset. Analogously, one can consider the infimum in (2.1), that is, the
lower price bound for F. Mathematically the maximisation and minimisation problems are
very similar, and in this article we concentrate on the former.

Often, in practice, not only are the prices of call options with given maturity available, but
an agent may have other information or beliefs relating to the evolution of the asset price.
Incorporating this information may rule out certain behaviours of the stock price S, and hence
certain models for S, which in turn leads to potentially smaller price bounds. We model this by
introducing an informed agent, also called the insider, who possesses some additional infor-
mation and beliefs which enable her to consider only a subset A⊆ Cs0 [0, T] of feasible paths
for S (precise assumptions on A will be given in (2.5)). All other paths in Cs0 [0, T] \A are
deemed negligible based on the additional information held by the insider. Hence the robust
pricing problem for the insider is

PA := sup{EQ[F(S)] : Q ∈M(μ), Q(A) = 1}. (2.2)
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To give a value to the additional information, we will talk of the uninformed agent or out-
sider when considering an agent who does not have any information other than the call prices.
Hence, the outsider’s pricing problem is the classical robust pricing problem in (2.1), which
corresponds to setting A= Cs0 [0, T] in (2.2).

In the rest of this section, we recall and adapt the setup and results from [12] and [13]
relying on [49], which will allow us to formulate and analyse (2.2) as a constrained SEP. In
order to do so, we will first (in Section 2.1) introduce a time change, that is, a different clock
under which we want to observe the paths of S. Next we will show that the pricing problem
(2.2) has an equivalent formulation as an optimal stopping problem for Brownian motion on
some probability space (Problem (2.6)), when the derivative and the additional information are
invariant with respect to this time change. Finally, we shall pass from this weak formulation of
the problem to an optimisation problem on a single probability space, the Wiener space, which
will require more general stopping rules; see (conSEP) in Proposition 2.

2.1. Time transformation

The key tool for translating (2.2) into a constrained SEP is the Dambis–Dubins–Schwarz
theorem. However, we need to be careful in defining the time change, since we want to be able
to shift pathwise inequalities from Cs0 [0, T] to the Wiener space and back. Moreover, the time
change will be a useful tool to precisely define the options we want to consider as well as the
set of feasible paths for the insider.

For ω ∈ C(R+) and n ∈N, we define the sequence of times

σ n
0 (ω) := 0, σ n

k+1(ω) := inf{t>σ n
k (ω) : |ω(t) −ω(σ n

k )| ≥ 2−n}, k ∈N.

We say that ω has quadratic variation if the sequence (Vn(ω))n∈N of functions

Vn(ω)(t) :=
∞∑

k=0

(ω(σ n
k+1 ∧ t) −ω(σ n

k ∧ t))2, t ∈R+,

converges uniformly on compacts to some function in C0(R+), and the limit function has the
same intervals of constancy as ω. We denote this limit function by 〈ω〉. We write �qv for
the space of all paths ω in Cs0 (R+) possessing such quadratic variation and such that either
〈ω〉 diverges at infinity, or 〈ω〉 is bounded and ω has a well defined limit at infinity. These
conditions are necessary in order for the map ntt given below to be well defined. It is not hard
to show that �qv is a measurable subset of C(R+).

We define the space of stopped paths as

S := {
( f , s) : f ∈ Cs0 [0, s], s ∈R+

}
,

and equip it with the distance dS defined for s< t by

dS (( f , s), (g, t)) = max
{

t − s, sup
0≤u≤s

|f (u) − g(u)|, sup
s≤u≤t

|g(u) − f (s)|
}
,

which turns S into a Polish space. The space S is a convenient way of encoding optionality of a
process in our pathwise setup (see e.g. [26, Theorem IV.97]); note that optionality is equivalent
to predictability, since we consider only continuous paths. More precisely, we set

r : Cs0 (R+) ×R+ → S, (ω, t) �→ (ω|[0,t], t),

where ω|[0,t] denotes the restriction of ω to [0,t]. Then a process X with X0 = s0 is optional if
and only if there is a Borel function H : S →R such that X = H ◦ r.
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We denote by �qv
T the set of paths in Cs0 [0, T] which have a continuation in �qv, and for

ω ∈�qv
T we define the following new clock:

τt(ω) = inf{s ∈ [0, T] : 〈ω〉s > t} ∧ T, t ∈R+, (2.3)

with the usual convention inf ∅ = +∞.
We will work with the normalising time transformation introduced by Vovk [48], which is

written as nttT :�qv
T → S , defined by

nttT (ω) = ((ωτt )t≤〈ω〉T , 〈ω〉T ).

That is, nttT (ω) is a version of the path ω run at a speed such that, for every t, its pathwise
quadratic variation at time t is exactly t. It will also be notationally useful at times to ‘forget’ the
time component, and consider the function ntt(ω), which is equal to (ωτt )t≤〈ω〉T ∈ Cs0 [0, 〈ω〉T ].
Of course, the two quantities are mathematically equivalent. The normalising time transforma-
tion is the tool that will allow us to define the class of time-invariant derivatives and the kind
of time-invariant additional information which are suitable for developing the SEP approach
to robust pricing with insider information.

Remark 1. Note that Q
(
�

qv
T

) = 1 for each Q ∈M(μ) (see [37, 48]). For this reason, when
studying the pricing problem (2.2), we only consider paths in this set.

In this article, we consider payoff functions F : Cs0 [0, T] →R which on �qv
T satisfy

F = γ ◦ nttT , (2.4)

for some Borel-measurable γ : S →R. This means that the payoff function F is identical for all
paths which are time-transformations of each other, that is, which coincide after normalisation
of the speed at which they run.

A key additional component in our model will be the information which is held by the
insider, and which is not known to the market. We will model this by assuming that the insider
knows a set of feasible paths A⊆ Cs0 [0, T]. Thanks to Remark 1, we may assume without
loss of generality that A⊆�

qv
T . As with the payoff function, we will assume that the set A of

feasible paths is time-invariant. More precisely, we will consider sets A given by

A= ntt−1
T (�) (2.5)

for some measurable subset�⊆ S , so that 1A(ω) = 1� ◦ nttT (ω). We will call� the feasibility
set. In this way, feasibility of a path ω ∈ Cs0 [0, T] is shifted to admissibility of the stopped path
(ntt(ω), 〈ω〉T ). In particular, if a path ω ∈ Cs0 [0, T] is feasible, so is any other path which is a
time-transformation of ω.

2.2. Informed robust pricing as constrained SEP

The time transformation introduced above enables us to express the robust pricing problem
(2.2) as a constrained optimal stopping problem for Brownian motion.

Proposition 1. Let F and A satisfy (2.4) and (2.5). The pricing problem for the insider, (2.2),
can be formulated as

P∗
� := sup

⎧⎪⎪⎨
⎪⎪⎩E[γ ((Wt)t≤τ , τ )] :

(�̃, (Gt)t≥0, G, P)supporting Brownian motion W,

W0 = s0, τ a G-stopping time s.t. Wτ ∼μ,

(Wt∧τ )t≥0 is u.i., and E[1�((Wt)t≤τ , τ )] = 1

⎫⎪⎪⎬
⎪⎪⎭ . (2.6)
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The condition E[1�((Wt)t≤τ , τ )] = 1 means that, when moving along a path of W, we can
stop only at times such that the stopped path lies in �. This corresponds to the fact that
informed agents only need to take into account the paths in the feasibility set,�. The condition
of uniform integrability on W·∧τ is—in the current setup—equivalent to τ being minimal; cf.
[40]. This means that, for any other stopping time τ ′ in the same filtered probability space,

τ ′ ≤ τ and W
τ
′ ∼μ imply τ ′ = τ almost surely (a.s.). (2.7)

The reformulation in (2.6) shows how the maturity time T , at which we know the marginal
distribution μ of the price process, does not play any role in the pricing problem. This is a
consequence of the time-invariance assumption.

Proof. The proof of this essentially follows from [13, Section 4]: let Q ∈M(μ), (τt)t∈R+
be the time change defined in (2.3), and (FS

t )t∈[0,T] the usual augmentation of the filtra-
tion generated by (St)t∈[0,T]. It is easy to verify that 〈S〉T is a stopping time with respect
to the filtration (FS

τt∧T )t∈R+ . Then, the Dambis–Dubins–Schwarz theorem implies that the
process (Xt)t∈R+ = (ntt(S)t∧〈S〉T )t∈R+ is a stopped Brownian motion under Q in the filtration
(FS
τt∧T )t∈R+ . Moreover, it is uniformly integrable and satisfies ntt(S)〈S〉T ∼μ. Vice versa, let W

be a Brownian motion on some probability space (�̃, (Gt)t≥0, P), and let τ be a stopping time
such that W.∧τ is uniformly integrable with Wτ ∼μ. Then, for M = (Mt)t∈[0,T] defined by

Mt := W t
T−t ∧τ ,

we have that P ◦ M−1 ∈M(μ). The result follows. �

To be able to analyse the optimisation problem (2.6), we introduce another optimisation
problem living on a single probability space, the Wiener space (Cs0 (R+),F ,W). To this end
we consider the set

M = {ξ ∈P(Cs0 (R+) ×R+) : ξ (dω, dt) = ξω(dt)W(dω), ξω ∈P(R+)

for W-almost every ω},
where P(X ) denotes the set of probability measures on a space X , and (ξω)ω∈Cs0 (R+) is a
regular disintegration of ξ with respect to the first coordinate ω. We equip M with the weak
topology induced by the continuous bounded functions on Cs0 (R+) ×R+. Each ξ ∈ M can be
uniquely characterised by the cumulative distribution function Aξ (ω, t) = ξω[0, t].

Definition 1. We say that a measure ξ ∈ M is a randomised stopping time if the corresponding
increasing process Aξ is optional, and write ξ ∈ RST. For an optional process X : Cs0 (R+) ×
R+ →R+ and ξ ∈ RST, we define Xξ as the pushforward of ξ under the mapping (ω, t) �→
Xt(ω). We denote by RST(μ) the set of all randomised stopping times such that Wξ =μ and∫

tξ (dω, dt)<∞.

Remark 2. It is well known that any randomised stopping time ξ can be identified with a
stopping time τξ on the extended probability space (Cs0 (R+) × [0, 1],F ⊗B,W⊗L), where
B denotes the Borel σ -algebra on [0,1], and L the Lebesgue measure on [0,1]. One way of
defining τξ is via

τξ (ω, u) := inf{t ≥ 0 : ξω([0, t]) ≥ u}.
As a consequence, the optional stopping theorem applies for randomised stopping times.
Indeed, any process X on Cs0 (R+) can be lifted to a process X̄ on Cs0 (R+) × [0, 1] by setting
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X̄t(ω, u) := Xt(ω), and then the classical optional stopping theorem applies for, e.g., uniformly
integrable martingales.

Considering the martingale W2
t − t, it follows from classical results on stopping times

(e.g. [34, Corollary 3.3], [12, Lemma 3.12], Remark 2 of this paper) that, for ξ ∈ RST with
Wξ =μ, the condition

∫
tξ (dω, dt)<∞ is equivalent to∫

tξ (dω, dt) =
∫

(x − s0)2μ(dx) = V, (2.8)

which is assumed to be finite in our setup.
By [12, Theorem 3.14], RST(μ) is non-empty and compact with respect to the topology

induced by the continuous and bounded functions on Cs0 (R+) ×R+. As a direct consequence
we get the following result.

Corollary 1. Let �⊆ S be closed. Then the set of feasible randomised stopping times

RST(μ;�) :=
{
ξ ∈ RST(μ) :

∫
Cs0 (R+)×R+

1� ◦ r(ω, t)ξ (dω, dt) = 1

}
(2.9)

is convex and compact with respect to the topology induced by the continuous and bounded
functions on Cs0 (R+) ×R+.

We highlight here the important feature that RST(μ; �) might be empty, which can be
understood as a robust arbitrage opportunity; see Proposition 3 and Section 4.

Proof. Since� is assumed to be closed, the function 1� ◦ r is upper semi-continuous. Hence∫
Cs0 (R+)×R+

1� ◦ r(ω, t)ξ (dω, dt) = 1

is a closed condition by the portmanteau theorem. �

Another important property of the feasible randomised stopping times is that they are pre-
cisely the joint distributions on Cs0 (R+) ×R+ of pairs (W, τ ) satisfying the constraints in (2.6).
This is a straightforward extension of [12, Lemma 3.11]. Putting everything together we have
derived a formulation of our optimisation problem (2.2) (resp. (2.6)) on the Wiener space as a
constrained SEP.

Proposition 2. In the setting described above,

P∗
� = sup

{∫
Cs0 (R+)×R+

γ ◦ r(ω, t)ξ (dω, dt) : ξ ∈ RST(μ;�)

}
. (conSEP)

We will say that (conSEP) is well posed if∫
Cs0 (R+)×R+ γ ◦ rdξ

exists with values in [−∞,∞) for all ξ ∈ RST(μ;�), and is finite for one such ξ . In particular,
(conSEP) is not well posed if RST(μ; �) = ∅, which has a pleasing financial interpretation
(cf. Proposition 3). The (unconstrained) SEP corresponds to the case �= S , when all paths
are feasible, and hence the above supremum is taken over RST(μ).
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From an analytical point of view, the formulation (conSEP) is extremely useful since we
are now dealing with a linear optimisation problem over a convex and compact set on a single
probability space. A direct consequence is the following result.

Theorem 1. Let γ : S →R be upper semi-continuous and bounded from above in the sense
that, for some constants a, b, c ∈R+,

γ ((ω(s))s≤t, t) ≤ a + bt + c sup
s≤t

ω(s)2, (ω, s) ∈ Cs0 (R+) ×R+. (2.10)

Assume that�⊆ S is closed and that RST(μ;�) is non-empty. Then the optimisation problem
(conSEP) admits a maximiser.

Proof. We claim that without loss of generality we can assume that γ is bounded from
above. Indeed, by the pathwise version of Doob’s inequality (see [2]),

sup
s≤t

ω(s)2 ≤ Mt + 4ω(t)2

for some martingale Mt starting in zero. Hence the condition (2.10) implies that

γ̃ ◦ r(ω, t) := γ ◦ r(ω, t) − a′ − b′t − c′(Mt +ω(t)2)

is bounded from above, and the term
∫

a′ − b′t − c′(Mt +ω(t)2)dξ is independent of
ξ ∈ RST(μ) by (2.8) and the assumed second moment of μ. Therefore, we can assume γ
to be bounded from above.

Finally, since RST(μ; �) is compact and r is continuous, and by the portmanteau theorem
the map ξ �→ ∫

γ ◦ rdξ is upper semi-continuous, we deduce the result. �

3. Super-replication and monotonicity principle

In this section, we show that a straightforward application of the results in [12] leads to
duality or superhedging results, and to a geometric characterisation of primal optimisers, that
is, to the monotonicity principle for constrained Skorokhod embedding.

3.1. Duality

In this section, we first show a duality result for the problem P∗
� defined in (2.6), that is,

for (conSEP), and then from it deduce a duality result for the original robust pricing problem
PA defined in (2.2). The latter is the analogue of the super-replication duality in the present
robust setting with additional information/beliefs. As in the classical (non-robust) case, this in
turn leads to a dichotomy between existence of martingale measures and existence of arbitrage
opportunities, the so-called fundamental theorem of asset pricing, which we prove at the end
of this section.

A martingale φ is called S-continuous if there exists a continuous H : S →R such that
φ = H ◦ r. Note that a martingale which is S-continuous has continuous paths, but the other
implication is in general not true.

Theorem 2. Let γ : S →R be upper semi-continuous and bounded from above in the sense of
(2.10), and let �⊆ S be closed. Set

D∗
� := inf

{∫
ψdμ :

ψ ∈ C(R), ∃ an S-continuous martingale φ, φ0 = 0 s.t.

φt(ω) +ψ(ω(t)) ≥ γ ◦ r(ω, t) for all (ω, t) ∈ r−1(�)

}
, (3.1)
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where φ, ψ satisfy

|φt(ω)| ≤ a + bt + cω(t)2, |ψ(y)| ≤ a + by2, ∀ ω ∈ Cs0 (R+), for some a, b, c> 0. (3.2)

Then we have
P∗
� = D∗

�.

Proof. Put

γ ( f , t) =
⎧⎨
⎩
γ ( f , t), ( f , t) ∈�,
−∞, ( f , t) ∈ S \�.

(3.3)

Since we assume that γ is upper semi-continuous and bounded from above in the sense of
(2.10), it is easy to see that these properties are inherited by γ . Moreover, the well-posedness
assumption of (conSEP) for γ implies that (conSEP) is still well posed for γ and �= S .
Hence, the result follows from [12, Theorem 4.2]. �

This duality result is already of interest in its own right. However, to identify it as a super-
replication result we need to recover the hedging strategies corresponding to the martingale.
For this we need some kind of pathwise martingale representation theorem. In fact Theorem 6.2
of [48] can be interpreted as such. To this end, we need to introduce some more notation.

We will need the concept of simple strategy, by which we mean a process H :�qv
T ×R+ →

R of the form

Ht(ω) =
∑
n≥0

Kn(ω)1(τn(ω),τn+1(ω)](t), (ω, t) ∈�qv
T ×R+,

where 0 = τ0(ω)< τ1(ω)< . . . are FS-stopping times such that for every ω one has
limn→∞ τn(ω) = ∞, and Kn :�qv

T →R are FS
τn

-measurable bounded functions for n ∈N. For
such a strategy, we can define the corresponding pathwise stochastic integral as

(H · S)t(ω) =
∑
n≥0

Kn(ω)(Sτn+1(ω)∧t − Sτn(ω)∧t)(ω).

Then, following exactly the line of reasoning as for the proof of [13, Theorem 3.1], one can get
the following result. We recall that F = γ ◦ nttT and A= ntt−1

T (�), and that the robust pricing
problem for the insider was defined in (2.2).

Theorem 3. Let γ be upper semi-continuous and bounded from above in the sense of (2.10),
and let �⊆ S . Set

DA := inf

{∫
ψ(y) dμ(y) :

ψ ∈ C(R), ∃ simple strategies (Hn)n s.t.

lim infn (Hn · S)T (ω) +ψ(ω(T)) ≥ F(ω) for all ω ∈A

}
,

where |ψ(y)| ≤ a + by2 and (Hn · S)t ≥ −a − bt for some a, b> 0 and all t ∈ [0, T]. Then
we have

PA = DA.

Theorem 3 is the analogue of the classical super-replication duality theorem, in the present
robust insider setting. Moreover, like its classical counterpart, it additionally implies a version
of the first fundamental theorem of asset pricing. In the following we will use Theorem 3 with
different payoff functions. To stress the dependence on the cost function we will sometimes
write PA(F), DA(F).
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Proposition 3. Under the assumptions of Theorem 3, the following are equivalent:

(i) ∃Q ∈M(μ) such that Q(A) = 1;

(ii) RST(μ; �) �= ∅;

(iii) �ε > 0, simple strategies (Hn)n, and ψ ∈ C(R) with
∫
ψdμ= 0 such that

lim inf (Hn · S)T (ω) +ψ(ω(T)) ≥ ε for all ω ∈A. (3.4)

The property (iii) means that one cannot make arbitrary profits by starting with zero capital.
Indeed, if (3.4) holds for some ε̂ > 0, then it does so for any ε > 0.

Proof. The equivalence between (i) and (ii) follows from the arguments around
Proposition 1.

(i) ⇒ (iii): Note that (i) implies DA(F̃0) = PA(F̃0) = 0 for any derivative F̃0 such that
F̃0 = 0 on A, by Theorem 3. Pick

F0 =
{

0 on A,
−∞ else.

Suppose, for contradiction, that there exist ε, (Hn)n, and ψ such that (3.4) is satisfied. Then
the pair ((Hn)n, ψ − ε) is admissible for the dual problem DA(F0). However, this implies
DA(F0) ≤ −ε for F0, which gives the desired contradiction.

(iii) ⇒ (i): By Theorem 3, if there is no measure Q ∈M(μ) such that Q(A) = 1, then
DA = PA = −∞ for all derivatives F. In particular, for

Fε =
{
ε on A,
−∞ else,

there exist (Hn)n and ψ , with
∫
ψdμ= 0, such that (3.4) holds. �

Remark 3. In this paper, we have only considered the case where the information of future
call prices at a single fixed time T is observed. Using methods similar to those developed in
[13], it is also possible to extend Theorems 2 and 3 to the case where the call prices at times
0 ≤ s1 ≤ s2 ≤ · · · ≤ sN = T are observed, and provide a related formulation in the Brownian
setup where the optimisation is over a sequence of stopping times τ1 ≤ τ2 ≤ · · · ≤ τN = τ . In
this case, it is possible to consider either the cases where call price information completely
fixes the distributions at the intermediate times, or it only determines the integral of particular
functions, or there is a mixture of some times having full information and others lacking it. In
this more general setup, it becomes possible to include a large class of options; for example, a
robust approach to discretely monitored Asian options could be included.

3.2. Constrained monotonicity principle

In this section, we provide a modified version of the monotonicity principle of [12] giving
necessary geometric conditions on the support set of an optimiser to (conSEP).

To this end, we denote the concatenation of two paths ( f , s), (g, t) ∈ S by f ⊕ g; i.e.,

f ⊕ g(u) =
{

f (u), u ≤ s,

f (s) + g(u − s) − g(0), s ≤ u ≤ s + t.

For ( f , s) ∈ S we define the process γ ( f ,s)⊕(ω, t) := γ ( f ⊕ω|[0,t], s + t).

https://doi.org/10.1017/apr.2020.50 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2020.50


42 B. ACCIAIO ET AL.

Definition 2. A pair (( f , s), (g, t)) ∈ S × S is called a feasible stop-go pair, written
(( f , s), (g, t)) ∈ SG�, if f (s) = g(t); ( f , s) ∈�; the set of (FW

t )t≥0 stopping times σ satisfy-
ing 0<E[σ ]<∞ and 1� ◦ r( f ⊕ W, s + σ ) = 1 a.s. is non-empty; and every such stopping
time satisfies

E[γ ( f ,s)⊕((Wu)u≤σ , σ )] + γ (g, t)< γ ( f , s) +E[γ (g,t)⊕((Wu)u≤σ , σ )] (3.5)

and 1� ◦ r(g ⊕ W, t + σ ) = 1 a.s., where both sides of (3.5) are well defined and the left-hand
side is finite. Here, the probability space is assumed to be rich enough to support a Brownian
motion W, and (FW

t )t≥0 denotes the natural filtration generated by W.

The interpretation is that on average it is better to stop a path at time s with history f , and
to run the paths that would have carried on from ( f, s) from a previously stopped history (g, t)
(to let (g, t) go), as long as this results in a feasible stopping rule. Note that since f (s) = g(t),
the law of the stopped process is not changed. We remark here that—as a consequence of only
considering (FW

t )t≥0 stopping times—the definition of feasible stop-go pairs is independent of
the probability space on which σ lives, as long as it is rich enough to support the Brownian
motion W. In a similar manner to [12, Section 5], one could introduce an even stronger notion
of feasible stop-go pairs by only considering one particular candidate stopping time. In this
article, we do not need this generality.

For a set � ⊂ S we denote by �< the set of all stopped paths which have a proper
extension in �:

�< := {( f , s) ∈ S : ∃(g, t) ∈ �, s< t, g|[0,s] = f }.
Definition 3. A set � ⊂� is called feasible γ -monotone if

SG� ∩ (�< × �) = ∅.

A set � ⊂ S should be viewed as a possible stopping set, i.e. a set of paths (ω|[0,τ ], τ ) for
an admissible stopping strategy τ in (conSEP). If such a set � is feasible γ -monotone then
there is no way of changing the stopping rule in a pathwise fashion, as in (3.5), to produce a
feasible stopping rule with higher payoff.

Theorem 4. (Constrained monotonicity principle.) Let γ : S →R be Borel. Assume that
(conSEP) is well posed and that ξ ∈ RST(μ; �) is an optimiser. Then there exists a feasible
γ -monotone set � ⊂ S such that

ξ (r−1(�)) = 1.

Proof. Taking γ as in (3.3), the result follows from [12, Theorem 5.7]. �

The constrained monotonicity principle will be an important tool for characterising solu-
tions to (conSEP), and in particular will allow us to deduce geometric features of optimisers.
We will illustrate this in the subsequent sections.

4. No-arbitrage, pricing, and hedging in specific information settings

Up to now we have shown that under our assumptions the robust pricing problem (2.2)
can be reformulated as a constrained SEP, for which we have established general results on
existence, superhedging, a variant of the first fundamental theorem of asset pricing, and a
characterisation of optimisers.
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The goal of this section is to illustrate the richness of our framework by considering some
natural choices for the insider’s information set A, or equivalently for the corresponding fea-
sibility set �, to show that under additional assumptions we are able to prove a variety of very
explicit results in the insider’s setting.

We use the notation ≺ to denote the convex order relation between probability measures;
specifically, we say that λ≺μ if

∫
c(x)λ(dx) ≤ ∫

c(x)μ(dx) for any convex function c.
In the examples we consider, we will typically address three related questions:

(1) Given a pair (μ,�), when does there exist any consistent model for the insider agent?
Specifically, is RST(μ; �) non-empty? We address these points in Theorems 5, 6,
and 7.

(2) Assuming RST(μ;�) �= ∅, can we characterise the worst-case scenarios for the insider,
i.e. can we characterise solutions to the constrained SEP? We provide a characterisation
of the optimisers to a specific problem in Theorem 8.

(3) Given a pair (μ,�) such that RST(μ; �) �= ∅, and a derivative with payoff F, what is
the value of P∗

�, and how does this differ from P∗
S , the price of the uninformed agent?

We answer these questions in the context of a specific example in Section 4.2.

In investigating the questions above, we will focus on the three following natural exam-
ples where the additional information/beliefs translate into stopping the Brownian motion after
and/or before given stopping times. Let τ , τ be stopping times such that τ ≤ τ and (Wt∧τ )t≥0,
(Wt∧τ )t≥0 are uniformly integrable, and consider the sets

�1 = {r(ω, t) : t ≤ τ (ω)}, �2 = {r(ω, t) : t ≥ τ (ω)}, �3 = {r(ω, t) : τ (ω) ≤ t ≤ τ (ω)}.
(4.1)

These cases notably cover the examples of additional information and beliefs mentioned at
the beginning of the paper: whether prices hit certain barriers, whether the quadratic variation
reaches certain levels (cf. Section 4.1.1), and drawdown constraints (cf. also Section 4.1.2).

In this situation we have the following basic result on the existence or absence of a consistent
model for the insider.

Theorem 5. Suppose that the insider has information given by (4.1). We write Wτ ∼μ,
Wτ ∼μ. Then

(1) �=�1: the set RST(μ; �) = ∅ if μ⊀μ;

(2) �=�2: the set RST(μ; �) = ∅ if and only if μ⊀μ;

(3) �=�3: the set RST(μ; �) = ∅ if μ⊀μ or μ⊀μ.

In particular, if any of the conditions on the measures μ, μ, μ above hold, then the insider
can make unlimited profit in the sense of (3.4).

Proof. As a consequence of Strassen’s theorem [46], a solution to the constrained problem
(2.6) exists for �2 if and only if μ≺μ. Similarly, in the case of �1, the condition μ≺μ
is a necessary condition for the existence of a stopping time τ ≤ τ for the Brownian motion
such that Wτ ∼μ, but it is not sufficient unless μ is supported on two points, by the result
of Meilijson [39] and van der Vecht [47]. A simple example can be constructed by consid-
ering the measures μ= N(0, 1), with stopping time τ = 1 and μ= ε

2 (δ1 + δ−1) + (1 − ε)δ0;
for ε sufficiently small, it is easily checked that μ≺μ, but there is no bounded stopping time
embedding μ. Combining these two observations yields the third item. �
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To the best of our knowledge, necessary and sufficient conditions for the existence of ξ ∈
RST(μ; �1) are unknown. We are able to provide them in specific settings (see Section 4.1),
while the existence of general criteria remains an interesting open problem.

Before we proceed, we would like to remark on the specific form of the feasibility sets �
in (4.1). It is clear that, in general, not all information processes/feasibility sets are of the form
(4.1). A full classification and analysis is beyond the scope of this paper. One of the various
reasons that make this analysis complicated is that the constraint τ ∈ RST(μ) may impose
additional conditions that are not immediate from the construction of�. Consider for example
the case where

�=
{

( f , t) ∈ S : sup
s≤t

f (s) − c ≤ f (t)
}

(4.2)

for some fixed c ∈R+, which corresponds to the drawdown constraint on the price process
not dropping more than c below its maximum-to-date value. Minimality (cf. (2.7)) implies
that an admissible stopping time must occur before τ := inf{t ≥ 0 : sups≤t ω(s) − c>ω(t)},
by a simple martingale argument. Hence, although there exist feasible paths in � which live
longer than τ , any τ which is in RST(μ) must, with probability one, be bounded above by τ .
Therefore, the set of feasible stopped paths in this case can be replaced by�′ = {r(ω, t) : t ≤ τ }.
Then, from the argument above, μ≺μ∼ Wτ must hold for there to exist a solution to the
constrained embedding problem.

On the other hand, if the set of admissible evolutions for the asset is

�=
{

( f , t) ∈ S : sup
s≤t

f (s) − c ≤ 1

t

∫ t

0
f (s) ds

}
,

which is a drawdown constraint where the constraint depends on the running average of the
price process, then we are not able to replace � by a ‘nice’ set �′ ⊂� as above. Here the
class of admissible stopping times is certainly bounded above by a stopping time (inf{t ≥ 0 :
max{t−1

∫ t
0 f (s) ds, f (t)} ≤ sups≤t f (s) − c}), but it is easily seen that there are inadmissible

paths which occur before this time.
In what follows we will consider the cases in Theorem 5 separately, analysing them in

specific settings. In particular, in Sections 4.1.1 and 4.1.2 we present two frameworks where
the additional information � is of the kind �1 in (4.1), and we are able to give necessary and
sufficient conditions for the set RST(μ; �) to be non-empty, hence strengthening the result
in Case (1) of Theorem 5. In Theorem 8, we will exemplify the power of the monotonicity
principle by showing the structure of the solutions to a Root-type optimisation problem with an
Azéma–Yor-type constraint. Moreover, in Section 4.2 we consider the additional information�
to be of the kind�2 in (4.1) and, for options on variance, we determine the primal optimisers by
means of our constrained monotonicity principle (Theorem 4), as well as the dual optimisers.

We remark that the first two cases imply results and constraints for the third case also;
e.g. Theorems 6 and 7 directly imply necessary conditions for the third case. More generally,
using the monotonicity principle (Theorem 4) one can derive the corresponding versions of
Root and Azéma–Yor embedding with a general space–time starting law (cf. Section 4.2 for
the case of Root). Using similar arguments as in the proof of Theorems 6 and 7, with slightly
more notation, one can derive the corresponding versions of these results keeping track also of
the condition τ ≤ t implying necessary and sufficient conditions for the case �3. We omit the
details.
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FIGURE 1: The Root solution to the SEP.

4.1. Information as barrier in a certain phase space

We now consider the case where the additional information is of the kind of�1 in (4.1) and
translates into having a barrier in a certain phase space. We will see how in this situation the
no-arbitrage condition (cf. Proposition 3, Theorem 5) imposes an order between such a barrier
and the barrier characterising the unique optimal stopping for the uninformed agent in such a
phase space. These results are notable since the ordering of barriers is a much weaker condition
than the convex order condition, significantly strengthening the results of Theorem 5.

4.1.1. The Root phase space. We recall that the Root solution of the (unconstrained) SEP for
the distribution μ is given by

τRoot(μ) = inf{t ≥ 0 : (t,Wt) ∈R},
where R is a closed barrier; that is, (t, x) ∈R implies (s, x) ∈R for s> t; see [44]. This was
one of the first known solutions to the SEP; it is optimal when γ ( f , t) = h(t) for a strictly
convex function h. The Root solution is illustrated in Figure 1. To avoid trivialities, we assume
that our barriers are regular (see [22]); that is, they are closed and {x : (0, x) �∈R} is an open
interval containing the origin. Any barrier which is not regular can be replaced by a regular
barrier without changing the hitting time. Any regular barrier can be described by its lower
semi-continuous barrier function R(x) = inf{t : (t, x) ∈R}.

For the informed agent we assume that

�= {r(ω, t) : t ≤ τ },
where the stopping time τ is the hitting time of a regular barrier B in the phase space (t,W),
i.e. a Root-type barrier:

τ = inf{t ≥ 0 : (t,Wt) ∈B}. (4.3)

As in Theorem 7 below, we are able to determine whether RST(μ; �) is empty, and hence
whether there is an arbitrage for the informed agent, through properties of the barriers.

Theorem 6. Let the set� be given by (4.5), with τ of the form in (4.3). Then the set RST(μ;�)
is non-empty if and only if

B ⊆R, (4.4)

which yields τRoot(μ) ≤ τ . In particular, if (4.4) holds, the stopping rule τRoot(μ) is admissible
for the informed agent, in the sense that ((Wt)t≤τRoot(μ), τRoot(μ)) ∈� a.s.
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FIGURE 2: Proof of Theorem 6.

Proof. We first observe that if (4.4) holds, then we immediately have τRoot(μ) ≤ τ , and
since τRoot(μ) ∈ RST(μ; �), it follows that RST(μ; �) �= ∅. To show the reverse implication,
suppose, for contradiction, that RST(μ; �) is non-empty and B �⊆R. This means that there
exist pairs (t, x) ∈B \R. Among those pairs, we consider a fixed (t̂, x̂) such that there are no
(t, x̂) ∈B \R with t< t̂, as in Figure 2.

Now consider τ ′ ∈ RST(μ; �). Denote the local time of Brownian motion in z by Lz.
Since the Root embedding maximises E

[
Lx
τ∧t

]
among all stopping times τ which are minimal

embeddings of μ (cf. (2.7)), simultaneously for all (t, x) ∈R+ ×R (e.g. by [31, Theorem 3]),
in particular

E
[
Lx̂
τ
′∧t̂

]
≤E

[
Lx̂
τRoot(μ)∧t̂

]
.

On the other hand, the path stopped at τ ′ cannot accumulate any more local time at x̂ after t̂,

i.e. E
[
Lx̂
τ
′∧t̂

]
=E

[
Lx̂
τ
′∧t

]
for all t ≥ t̂, while the Root stopping rule will do so (i.e.,

E
[
Lx̂
τRoot(μ)∧t̂

]
<E

[
Lx̂
τRoot(μ)∧t

]

when t> t̂), because the barrier is assumed to be regular. Therefore,

E
[
Lx̂
τ
′
]
=E

[
Lx̂
τ
′∧t̂

]
≤E

[
Lx̂
τRoot(μ)∧t̂

]
<E

[
Lx̂
τRoot(μ)

]
.

This gives the desired contradiction, since, for any x ∈R and any stopping time τ ∈ RST(μ),

E
[
Lx
τ

] =E [|Wτ − x|] − |x| = −uμ(x) − |x|,

where uμ is the potential function associated to μ, i.e., uμ(x) = − ∫ |y − x|μ(dy). �
4.1.2. The Azéma–Yor phase space. We let ωt := sup0≤s≤t ωs, and define the process W anal-
ogously. We start by recalling the Azéma–Yor solution of the (unconstrained) SEP. The
barycentre function bμ of a probability measure μ is defined by

bμ(x) :=
∫

[x,∞) yμ(dy)

μ([x,∞))
.
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FIGURE 3: The Azéma–Yor construction.

Denote the inverse of bμ by βμ. The solution to the SEP by Azéma and Yor (see [8]) is
given by

τAY (μ) = inf{t ≥ 0 : Wt ≤ βμ(Wt)}.
This is arguably the most renowned solution to the SEP, for which many properties are
known, among which is that it maximises stochastically the maximum of the stopped Brownian
motion. See the survey article [42] for further details. We illustrate the Azéma–Yor solution in
Figure 3.

For the informed agent, we assume that

�= {r(ω, t) : t ≤ τ }, (4.5)

where the stopping time τ is the hitting time of a barrier in the phase space (W,W):

τ = inf{t ≥ 0 : (Wt,Wt) ∈H},
where H is a Borel set H⊆ {(x, y) ∈R+ ×R : y ≤ x} induced by some increasing left-
continuous Borel function h : R+ →R via

H= {(x, y) : y ≤ h(x)},
so that (x, y) ∈H and z> x imply (z, y) ∈H. Note that this gives

τ = inf{t ≥ 0 : Wt ≤ h(Wt)}; (4.6)

thus the set� in (4.5) corresponds to the following set of feasible paths for the informed agent:

A= {ω ∈ Cs0 [0, T] :ωt > h(ωt) ∀t ∈ [0, T)}; (4.7)

that is, the paths that satisfy the drawdown constraint ω> h(ω) during the period [0, T).
We now give a result which shows that, when the agent’s information is given by A as in

(4.7), we can provide a simple necessary and sufficient condition for the existence of consistent
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FIGURE 4: Proof of Theorem 7

models for the informed agent; cf. (1) of Theorem 5. If there is no ambiguity we write βμ = β

in the following.

Theorem 7. Let the set� be given by (4.5), with τ of the form in (4.6). Then the set RST(μ;�)
is non-empty if and only if

h(x) ≤ β(x) for all x ∈R+, (4.8)

which yields τAY (μ) ≤ τ . In particular, if (4.8) holds, the stopping rule τAY (μ) is admissible for
the informed agent, in the sense that ((Wt)t≤τAY (μ), τAY (μ)) ∈� a.s.

Proof. We first observe that if (4.8) holds, then we immediately have τAY (μ) ≤ τ , and since
τAY (μ) ∈ RST(μ; �), it follows that RST(μ; �) �= ∅.

For the reverse implication, we suppose that there exists x̂ ∈R+ such that h(x̂)>β(x̂), as in
Figure 4. Then we fix τ ′ ∈ RST(μ; �) and argue as follows. Define a measure

η(A) := P(W
τ
′ ∈ A,W

τ
′ ≥ x̂)

and note that, by the martingale property,
∫

y η(dy) = x̂ · η(R). Moreover, η(A ∩ [x̂,∞)) =
μ(A ∩ [x̂,∞)), and η(A) ≤μ(A) for all Borel sets A.

Define functions �η, �μ : (−∞, x̂] →R by

�η(x) =
∫

[x,∞)
y η(dy) − x̂ · η([x,∞)) =

∫
[x,∞)

(y − x̂) η(dy),

and similarly for μ. Then �μ and �η are both increasing on (−∞, x̂], �μ(x̂) =�η(x̂), and
�μ(x) −�η(x) is increasing in x for x ∈ (−∞, x̂] since μ(dy) ≥ η(dy). Hence we deduce that
�μ(x) ≤�η(x) for x ≤ x̂.

Now we observe that η((−∞, h(x̂))) = 0, so �η(h(x̂)) = 0. On the other hand, by the
definition of the barycentre function,

β(x̂) := sup
{
y< x̂ :�μ(y) ≤ 0

}
.

It follows from �μ(x) ≤�η(x) that h(x̂) ≤ β(x̂), contradicting our original assumption. �
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Let us consider the drawdown constraint in (4.2) which corresponds to �= [[0, τ ]], with τ
given as in (4.6) for h(x) = x − c. In this case Theorem 7 implies that x − c ≤ β(x) = b−1

μ (x)
must hold for there to exist a feasible solution for the informed agent. This condition can of
course be rephrased in terms of barycentre functions, since h is the inverse of the barycentre
function associated to μ∼ Wτ (by [8]). Therefore, the existence of a consistent solution for the
insider is equivalent to b−1

μ ≤ b−1
μ , that is, bμ ≤ bμ.

Theorem 7 tells us when the pricing problem for the insider (cf. (2.2) or (2.6)) has a feasi-
ble solution, and hence an optimiser under the conditions of Theorem 1, but does not tell us
anything about the specific optimiser. On the other hand, the constrained monotonicity princi-
ple, Theorem 4, allows us to characterise the geometry of optimisers in various settings. We
illustrate this in the special situation where the agent wishes to find the stopping times τ solv-
ing (conSEP) in the case γ ( f , s) = −s2 corresponding to the payoff F(S) = −〈S〉2

T . We are
interested in characterising solutions to

min
τ∈RST(μ; �)

E[τ 2], (4.9)

where
�= {r(ω, t) : t ≤ τ }, with τ = inf{t ≥ 0 : Wt ≤ h(Wt)}, (4.10)

for a step function

h(x) =
n∑

i=1

ai1[mi−1,mi)(x)

with m0 = s0 <m1 < . . . <mn and a1 ≤ a2 ≤ . . .≤ an. We set �̃= {r(ω, t) : t< τ }, and note
that ( f , s) ∈ �̃ and mi−1 ≤ f s <mi imply that f (s)> ai.

We recall that in the unconstrained case, i.e. h(x) = −∞, the solution is the Root solution
τRoot, the first hitting time of a barrier in space–time (see also Section 4.1.1).

In the current setup, the situation is similar.

Theorem 8. Assume that RST(μ; �) �= ∅ and that the optimisation problem (4.9) is well
posed. Then for any optimiser τ̂ there exists a sequence of barriers (Ri)n

i=1 such that

τ̂ = inf{t ≥ 0 : (t,Wt) ∈R�(Wt)},

where �(m) = ∑n
i=1 i1[mi−1,mi)(m).

Moreover, for each j ≤ i it holds that(Rj ∩ [0,∞) × (ai,∞)
) ⊂ (Ri ∩ [0,∞) × (ai,∞)) .

Proof. To avoid too many minus signs, we redefine γ ( f , s) = s2, and for this proof we
consider the minimisation variant of (conSEP).

By Theorem 1 we can find a minimiser, say τ̂ , to the optimisation problem (4.9). By
Theorem 4 we can pick a feasible γ -monotone set � such that τ̂ (r−1(�)) = 1 and SG� ∩
(�< × �) = ∅.

We claim that

SG� ⊃ {(( f , s), (g, t)) ∈ �̃×� : f (s) = g(t), s> t, f s ≥ gt}. (4.11)
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Indeed, pick ( f , s), (g, t) ∈� with s> t and f (s) = g(t). It holds for any (k, u) ∈ S by convexity
of s �→ s2 (and since we are considering minimisation instead of maximisation) that

γ ( f , s) + γ (g ⊕ k, t + u)< γ ( f ⊕ k, s + u) + γ (g, t),

so that (3.5) follows by two observations. First, ( f , s) ∈ �̃ implies the existence of at least one
Brownian stopping time σ with 0<E[σ ]<∞ such that 1�( f ⊕ W, s + σ ) = 1; e.g. if mi−1 ≤
f s <mi, then the first hitting time of Brownian motion of { 1

2 ( f (s) − ai), 1
2 (mi − f (s)} is such

a stopping time. Second, any stopping time σ with 1�( f ⊕ W, s + σ ) = 1 necessarily satisfies
1�(g ⊕ W, t + σ ) = 1, since f (s) = g(t), f s ≥ gt, and the function h defining � is increasing.

Put �i = � ∩ {( f , s) ∈ S : mi−1 ≤ f s <mi} and set

Rop
i := {(s, x) : ∃(g, t) ∈ �i, g(t) = x, s> t},
Rcl

i := {(s, x) : ∃(g, t) ∈ �i, g(t) = x, s ≥ t}.
Pick (g, t) ∈ �i. Then we claim that

inf{s ∈ [0, t] : (s, g(s)) ∈Rcl
i } ≤ t ≤ inf{s ∈ [0, t] : (s, g(s)) ∈Rop

i }.
Since the first inequality holds by construction, suppose for contradiction that inf{s ∈
[0, t] : (s, g(s)) ∈Rop

i }< t. In this case, there is s< t such that (g|[0,s], s) =: ( f , s) ∈ �<i ,
(s, f (s)) ∈Rop

i , and since s< t it holds that f (s)> ai. Then there exists (k, u) ∈ �i such that
u< s and k(u) = f (s)> ai so that (k, u) ∈ �̃. However, by (4.11), this means that
(( f , s), (k, u)) ∈ SG� ∩ (�< × �), which cannot be the case.

Pick ω such that (W(ω)0≤t≤τ̂ (ω), τ̂ (ω)) ∈ �i for some 1 ≤ i ≤ n. It then follows that

τ cl
i (ω) := inf{t ≥ 0 : (t,Wt(ω)) ∈Rcl

i } ≤ τ̂ (ω) ≤ inf{t ≥ 0 : (t,Wt(ω)) ∈Rop
i } =: τop

i (ω).

Then we can conclude the existence of the barriers (Ri)n
i=1 from the observation that condition-

ally on the event {mi−1 ≤ W τ̂ <mi}, it holds that τ cl
i = τ

op
i a.s. by the strong Markov property

and the fact that Brownian motion almost surely immediately returns to its starting point.
To show the final claim, note that (4.11) implies that at each x /∈ {m1, . . . ,mn} the condition

(g, t) ∈ � ∩�with g(t) = x implies g(t) ∈ �̃. Just as in the first part of the proof, it then follows
that there is no ( f , s) ∈ �< with f (s) = x, f s ≥ gt and s> t. This gives the result. �
Example 1. Consider the case of μ= 1

3 (δs0−1 + δs0 + δs0+1), when s0 > 1. Let h be given by
the inverse barycentre function of μ, i.e. h = b−1

μ , which equals

h(x) = (s0 − 1) · 1[s0−1,s0+1/2)(x) + s0 · 1[s0+1/2,s0+1) + (s0 + 1) · 1[s0+1,∞).

In particular, in the Root-type optimisation problem (4.9) constrained by h as in (4.10), any
path which reaches level s0 + 1/2 will not be stopped at s0 − 1.

The unconstrained Root solution instead is given by the hitting time of

R= {(t, s0 − 1) : t ∈ [0,∞)} ∪ {(t, s0) : t ∈ [a,∞)} ∪ {(t, s0 + 1) : t ∈ [0,∞)},
for some a> 0. In particular, there are paths getting arbitrary close to one but which are stopped
at s0 − 1, so that the constrained Root solution is different from the unconstrained one.

Also note that this is not related to the special case of μ being atomic. Indeed, keep the
same h. Consider μ̃ to be the uniform measure on [s0 − 1, s0 + 1] whose inverse barycentre
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function is given by b−1
μ̃

(m) = 2m − s0 − 1, so that RST(μ̃; �) �= ∅ by Theorem 7. By the
same reasoning as before, it is immediate to see that the Root solution is different from the
constrained Root solution.

Remark 4. Let us consider (4.9) for the case of a general increasing function h yielding a
corresponding set of feasible paths � as in (4.10). Assume RST(μ; �) �= ∅. Approximate h
from below by step functions hn with corresponding sets of feasible paths �n and the prop-
erty that hn ≤ hn+1. Since then �n ⊇�n+1 ⊇�, it follows that RST(μ; �n) �= ∅. For each
n, pick by Theorem 1 an optimiser to (the corresponding version of) (4.9), say τ̂ n. Since
RST(μ; �n) ⊇ RST(μ; �), it follows that for all n

E[(τ̂ n)2] ≤ inf
τ∈RST(μ; �)

E[τ 2].

Since RST(μ; �1) is compact and τ̂ n ∈ RST(μ; �1) for all n, there is a converging subse-
quence and any limit point τ̂ must lie in RST(μ; �). Moreover, any limit point τ̂ must be an
optimiser by monotonicity, since

E
[
(τ̂ n)2

]
≤E

[(
τ̂ n+1)2

]
≤ inf
τ∈RST(μ; �)

E
[
τ 2].

Since, by Theorem 8, each τ̂ n is given as the hitting time of barriers in space–time indexed by
the running maximum, it is then plausible to conjecture that this remains true for τ̂ as well. To
make this argument rigorous seems to be outside the scope of this article; however, we note
that (4.11) still holds in the limit.

Remark 5. If in (4.9) we consider a maximisation problem instead of a minimisation problem,
the corresponding version of (4.11) turns into

SG� ⊃ {(( f , s), (g, t)) ∈ �̃×� : f (s) = g(t), s< t, f s ≤ gt}.
Following the line of reasoning of Theorem 8, one can show that the optimal stopping time
will be the hitting of a sequence of inverse barriers indexed by the running maximum, i.e. the
corresponding version of constrained Root solutions. Using similar ideas one can identify the
optimal solutions and worst-case scenarios in various other setups.

4.2. Option pricing in the presence of insider information: variance options

In this section, we consider the impact on the insider’s pricing bounds which comes from
additional information. Specifically, we suppose that the information is on the drawdown, in
a similar manner to the previous discussion, for example, as in (4.10), and we look to find
bounds on the prices of options on variance: that is, we consider the motivating example from
the introduction, where we think of a trader who believes that the CEO of the company is
attempting to satisfy a drawdown constraint, and wishes to understand the impact on pricing
bounds of variance options on the same company.

To understand the structure of the derivatives, we consider an asset which follows a model
of the form dSt = Stσt dWt, where St is the discounted asset price, and Wt a Brownian motion.
The process σt is the volatility, and

∫ t
0 σ

2
r dr is known as the integrated variance. A variance

option is then a contract which pays the holder G(
∫ t

0 σ
2
r dr). The most common example is

the variance call, where G(v) = (v − K)+. Note that the integrated variance process can be
determined as 〈lnS〉t, the quadratic variation of the logarithm of the asset price. For further
details, we refer the reader to [21, 24, 25, 38].
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The standard method for pricing such options is to time-change the process St by a
time change τt such that Xt := Sτt is a geometric Brownian motion. With this time change,
(Xt, t) = (Sτt , 〈lnS〉τt ); that is, the time-scale in the transformed picture corresponds to the inte-
grated variance process. In particular, the problem of finding a model St which minimises
E[G(〈lnS〉T )] subject to ST ∼μ is equivalent to finding a stopping time τ for X to minimise
E[G(τ )] subject to Xτ ∼μ.

We would therefore like to compare the minimal (model-independent) price of the variance
option for the insider, to that for the uninformed agent. To keep things simple, we consider
an option which pays the holder the square root of the arithmetic variance, Vt := ∫ t

0 S2
rσ

2
r dr,

which corresponds to choosing a time change τt so that Xt = Sτt is a Brownian motion. This
places us trivially in the setup of the rest of this paper.

Our problem of interest now may be posed as follows: consider an agent who has inside
information on the future evolution of the asset, specifically, who knows that the price will
never drop below h(St), where h is an increasing function. The agent plans to exploit this
information by trading in derivatives written on the asset, and does not have strong modelling
beliefs, so wishes to profit from their information under any potential model. Suppose variance
options with payoff

√
VT are liquidly traded. To profit, they plan to sell the derivative and set

up a model-independent superhedging strategy. They want to know at what price level they are
guaranteed to make a profit. If the agent also knows the feasibility set � given by (4.10), then
their problem becomes to find

sup{EP[
√
τ ] : Wτ ∼μ, W.∧τ is u.i., τ ≤ τ a.s.}. (4.12)

By Theorem 3, if we can identify the solution to this problem, then there exists a corresponding
superhedging strategy. However, it follows from Theorem 8 that the solution must be a nested
sequence of barriers, which depend on the running maximum. To see how these barriers, and
more specifically the price bound, may depend on the information set, we consider the problem
numerically under some additional structural examples.

4.2.1. Numerical results. In this section we illustrate the previous example with some numer-
ical evidence. In particular, we are interested in illustrating how the insider’s price changes as
the information set changes.

Our basic setup is as follows: we suppose that the insider’s information set� is determined
by (4.10), where the function h is of the form h(x) = a11[m0,∞); that is, there is a single step in
the constraint, which comes in at the point where the maximum first exceeds the level m0. In
the examples, we will consider the case where the information set is determined by the value of
m0. Moreover, we will assume that the measure to be embedded consists of 4 atoms, at points
{x0, x1, x2, x3}, and we have a1 = x1. It follows that the main issue to be determined is the
value of the barrier at the level x1 when the level m0 has not yet been reached, and the barrier
at x2 both before and after reaching m0. From Theorem 8, we know that the barriers at x2 are
ordered—that is, the earliest time at which we stop at x2 before reaching m0 is later than the
earliest time we stop at x2 after reaching m0. Since the embedding constraint has two degrees
of freedom (there are four atoms of mass, but two values are fixed by the requirement that the
probabilities sum to one and the requirement that the embedded mass have mean equal to s0),
this means that we can compute the optimal barrier by optimising over the single remaining
degree of freedom.

We implement a simple numerical algorithm, inspired by the partial-differential-equation
characterisation of [25], which finds the potential of the stopped process. By optimising over
the potential functions of the measure embedded before and after reaching m0, we are able to
compute the critical times at which the barriers must start. Here, the potential uλ(x) associated
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FIGURE 5: Effect of changing m0 on barrier. For values below about 17.9, there is no feasible model, and
therefore there is an arbitrage if the option can be sold at any finite price. Since the upper range of the
price distribution, x3 = 25, m0 = 25, corresponds to having no additional information, the maximal price
in the plot (attained when m0 = 25) is accordingly the model-independent upper bound on the price in
the absence of any additional information.

FIGURE 6: The cumulative distribution function of the realised quadratic variation of S in the extremal
model, for four different values of m0.

with a measure on R is defined to be uλ(x) = ∫ |y − x| λ(dy). The numerical implementation
was performed in Python. A Jupyter notebook containing the code used to produce the figures
in this paper can be downloaded from https://github.com/amgc500/SEPInsider. In Figure 5 we
plot the price of the variance option as a function of m0. Moreover, we can see how the law of
the quadratic variance in the extremal model varies as we change m0: this is shown in Figure 6
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FIGURE 7: The values determining the barrier for different values of m0. In the figure, the values of the
barriers at x1, x2 before hitting m0 and at x2 after hitting m0 are shown. All other barrier values are either
0 or ∞.

for several values of m0, while the values of the barrier at x1 and x2 before and after hitting m0
are shown in Figure 7.

Under the restriction to a small number of atomic masses, the optimal models are relatively
easy to find numerically in simple examples such as these. However, Theorem 8 provides
only necessary conditions for a given barrier to be optimal. An open, and interesting, question
is whether it is possible to provide sufficient conditions, and moreover, whether a numerical
scheme to compute the corresponding bounds can be implemented. Doing this appears to us to
be a challenging problem, and we leave it as an open question for future work.
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