
TLP 18 (2): 167–223, 2018. C© Cambridge University Press 2018

doi:10.1017/S1471068418000042

167

Interval-based resource usage verification
by translation into Horn clauses and

an application to energy consumption�

P. LOPEZ-GARCIA

IMDEA Software Institute, Madrid, Spain

Spanish Council for Scientific Research (CSIC), Madrid, Spain

(e-mail: pedro.lopez@imdea.org)

L. DARMAWAN

IMDEA Software Institute, Madrid, Spain

(e-mail: luthfi.darmawan@imdea.org)

M. KLEMEN and U. LIQAT

IMDEA Software Institute, Madrid, Spain

Universidad Politécnica de Madrid (UPM), Madrid, Spain

(e-mails: maximiliano.klemen@imdea.org, umer.liqat@imdea.org)

F. BUENO

Universidad Politécnica de Madrid (UPM), Madrid, Spain

(e-mail: bueno@fi.upm.es)

M. V. HERMENEGILDO

IMDEA Software Institute, Madrid, Spain

Universidad Politécnica de Madrid (UPM), Madrid, Spain

(e-mail: manuel.hermenegildo@imdea.org)

submitted 16 February 2017; revised 28 March 2018; accepted 29 March 2018

Abstract

Many applications require conformance with specifications that constrain the use of resources,

such as execution time, energy, bandwidth, etc. We present a configurable framework for static

resource usage verification where specifications can include data size-dependent resource usage

functions, expressing both lower and upper bounds. Ensuring conformance with respect to

such specifications is an undecidable problem. Therefore, to statically check such specifications,

our framework infers the same type of resource usage functions, which safely approximate

the actual resource usage of the program, and compares them against the specification. We

review how this framework supports several languages and compilation output formats by

translating them to an intermediate representation based on Horn clauses and using the

configurability of the framework to describe the resource semantics of the input language.

We provide a detailed formalization and extend the framework so that both resource usage

specification and analysis/verification output can include preconditions expressing intervals

� This research was partially funded by EU FP7 318337 ENTRA, Spanish MINECO TIN2012-39391
StrongSoft, and TIN2015-67522-C3-1-R TRACES projects, and the Madrid M141047003 N-GREENS
program.

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

http://orcid.org/0000-0002-1092-2071
http://orcid.org/0000-0001-9104-8410
https://doi.org/10.1017/S1471068418000042

168 P. Lopez-Garcia et al.

for the input data sizes for which assertions are intended to hold, proved, or disproved.

Most importantly, we also extend the classes of functions that can be checked. We also

report on and provide results from an implementation within the Ciao/CiaoPP framework,

as well as on a practical tool built by instantiating this framework for the verification of

energy consumption specifications for imperative/embedded programs. Finally, we show as an

example how embedded software developers can use this tool, in particular, for determining

values for program parameters that ensure meeting a given energy budget while minimizing

the loss in quality of service.

KEYWORDS : static analysis, resource usage analysis and verification, Horn clause-based

analysis and verification, energy consumption, program verification and debugging.

1 Introduction and motivation

The conventional understanding of software correctness is the absence of errors

or bugs, expressed in terms of conformance of all possible executions of the

program with a functional specification (like type correctness) or behavioral

specification (like termination or possible sequences of actions). However, in an

increasing number of computing applications, ranging from those running on

devices with limited resources (e.g., the ones used in Internet of Things applications,

sensors, smart watches, smart phones, portable/implantable medical devices, or

mission critical systems), to large data centers and high-performance computing

systems, it is also important and sometimes essential to ensure conformance with

respect to specifications expressing non-functional global properties such as energy

consumption, maximum execution time, memory usage, or user-defined resources.

For example, in a real-time application, a program completing an action later than

required is as erroneous as a program not computing the correct answer. The same

applies to an embedded application in a battery-operated device (e.g., a portable

or implantable medical device, an autonomous space vehicle, or even a mobile

phone), if the application makes the device run out of batteries earlier than required,

making the whole system useless in practice. In general, high-performance embedded

systems must control, react to, and survive in a given environment, and this in turn

establishes constraints about the system’s performance parameters including energy

consumption and reaction times. Therefore, a mechanism is necessary in these

systems in order to prove correctness with respect to specifications about such

non-functional global properties.

In the previous work, we have developed a general approach to the automated

verification based on a novel combination of assertion-based partial specifications,

static analysis, run-time checking, and testing (Bueno et al., 1997; Hermenegildo

et al., 1999; Puebla et al., 2000b; Hermenegildo et al., 2005; Mera et al., 2009), and

which has been implemented in the CiaoPP framework. In addition to different

functional properties (supported by “pluggable” abstract domains1), such as types,

1 By pluggable abstract domains, we refer to the fact that in CiaoPP, new abstract domains can
be integrated easily as modules implementing a well-defined interface. This interface connects each

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000042

Interval-based resource usage verification 169

modes, or groundness, this framework can also deal with a large class of properties

related to resource usage, including upper and lower bounds on execution time,

memory, energy, and, in general, user-definable resources (the latter in the sense

of Navas et al., 2007, 2009). Such bounds are given as functions on input data sizes

(see Navas et al., 2007 for the different metrics that can be used to measure data

sizes, such as list length, term depth, or term size).

In order to make our framework parametric with respect to programming

languages and program representations at different compilation levels, each input

language supported (e.g., Java source, Java bytecode, XC source, Ciao, LLVM

intermediate representation—LLVM IR, or Instruction Set Architecture—ISA)

is translated into an intermediate program representation which is based on Horn

clauses Méndez-Lojo et al. (2007)—see Figure 1. All analysis and verification

is performed on this Horn clause-based representation, that we will refer to as

“HC IR” from now on. That is, given program p in an input language Lp plus

a definition of the semantics of Lp, p is translated into a set of Horn clauses

capturing the semantics of the program, [[p]], or an abstraction of it, [[p]]α (see

Section 2 for a description of this notation). A Horn clause (HC) is a first-order

predicate logic formula of the form ∀(S1 ∧ . . . ∧ Sn → S0), where all variables in

the clause are universally quantified over the whole formula, and S0, S1, . . . , Sn are

atomic formulas, also called literals. It is usually written S0 :− S1, . . . , Sn. This HC

IR consists of a set of connected code blocks, each block represented by a Horn

clause: < block id > (< params >) :− S1, . . . , Sn. Each such block has an entry

point, that we call the head of the block (to the left of the :− symbol), with a

number of parameters < params >, and a sequence of steps (the body, to the right

of the :− symbol). Each of these Si steps (or literals) is either (the representation

of) a call to another (or the same) block or an operation. Such operations depend

on the input language represented, i.e., they can be bytecode instructions (from a

Java bytecode program), ISA instructions (from an ISA program), calls to built-ins

or constraints (from a logic program), LLVM instructions, etc. The semantics of

each bytecode, instruction, built-in, etc. is provided compositionally to the analyzers

by means of trust assertions (see Section 2.2). In the case of resources, the set

of these assertions constitutes the resource model (see Figs. 1 and 4). The HC

IR representation offers a good number of features that make it very convenient for

analysis such as supporting naturally static single assignment (SSA) and recursive

forms, making all variable scoping explicit, reducing the semantics of all constructs

(loops, conditionals, switches, etc.) to a simple form, etc. Méndez-Lojo et al. (2007).

The CiaoPP analyzers handle the HC IR uniformly, regardless of its origin. In

particular, the resource analysis infers resource usage functions in terms of input

data sizes, for all the predicates in the HC IR program, which are then reflected back

to the input language or representation also as assertions. This analysis can infer

different classes of resource usage functions such as, e.g., polynomial, exponential,

abstract domain to the built-in abstract interpretation algorithms (the “fixpoints”), giving rise to
different program analyzers. The same interface also connects the domains to other parts of the
system that are based on abstractions, such as, e.g., the abstract partial evaluators.

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000042

170 P. Lopez-Garcia et al.

Java Source
+Assertions

javac

Java Bytecode

Transformation
(soot)

Transformation
(java parser)

Ciao Source
+Assertions

XC Source
+Assertions

xcc

ISA/LLVM/...

Transformation
(llvm/isa)

HC IR
(Horn clauses) Code Assertions

Static Analyzers
(e.g. Resource Analysis)

Analysis Results

Static
Comparator

Verification
Results

Fig. 1. Overview of the framework for analysis and verification of different input

programming languages, using Horn clauses as intermediate language.

summation, or logarithmic, using the techniques of Debray et al. (1990), Debray

et al. (1997), Debray and Lin (1993), Navas et al. (2007), Navas et al. (2008), and

Serrano et al. (2014). Verification implies comparing specifications (in our case,

the resource consumption specifications, given in the form of assertions) against

analysis results. Our focus in this paper is on this comparison process, rather than

on the resource analysis, which is described in Navas et al. (2007), Serrano et al.

(2014) and references therein. We do not cover the debugging aspect either, i.e.,

process of finding the cause of an assertion violation. Since both static analysis

and verification are in general undecidable our techniques used are necessarily

approximate. Nevertheless, such approximations are safe, in the sense that they are

guaranteed to be correct considering all possible executions, i.e., they provide correct

answers or return “unknown.”

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000042

Interval-based resource usage verification 171

#pragma check fact(n)
: (1 <= n) ==> (6.0 <= energy_nJ <= 2.3*n+9.0)

int fact(int N) {
if (N <= 0) return 1;
return N * fact(N - 1);

}

Fig. 2. An XC source (factorial) function.

Example 1

Assume that we are interested in verifying specifications about energy consumption.

Consider, for example, the recursive factorial function definition fact in Figure 2,

written in the XC C-style language (Watt, 2009). The ISA program corresponding

to it is generated using the XC compiler, XCC (left-hand side of Fig. 3). The

resulting ISA program is passed to a translator (see Fig. 1) that generates the

associated Horn clauses (right-hand side of Fig. 3). Such HC IR program, together

with the information contained in the energy models at the ISA level (represented

also by using assertions, see Fig. 4 for a simple example), is passed to the resource

analysis (as represented in Fig. 1), which outputs the energy consumption analysis

results and the verification results for all procedures in the HC IR program. More

specifically, the energy model provides the information on the energy consumed by

basic operations (ISA instructions in this case). This information is taken (trusted)

by the static analyzer, which propagates it, during the abstract interpretation of the

program, through code segments, conditionals, loops, recursions, etc., mimicking the

actual execution of the program with symbolic “abstract” data instead of concrete

data, in order to infer energy consumption functions for higher-level entities, such as

procedures and functions in the program. The analysis of recursive procedures gives

rise to recurrence equations, whose closed form solutions are the resource usage

functions, which depend on input data sizes, resulting from the analysis. The XC

assertion:

#pragma check fact(n) : (1 <= n) ==> (6.0 <= energy nJ <= 2.3*n+9.0).

is a resource usage specification that also gets translated into the HC IR

representation to be checked by CiaoPP (the Ciao assertion language (Puebla et al.,

2000a; Hermenegildo et al., 2012)), as shown in lines 1–3 in Fig. 3 (right):2

:- check pred fact(N,Ret) : intervals(nat(N),[i(1,inf)])

+ costb(energy nJ,6.0,2.3*nat(N)+9.0).

The assertion expresses that the cost of fact(N,Ret), in terms of the resource

“energy in nano-Joules,”3 must lie in the interval [6.0, 2.3 ∗ nat(N) + 9.0] nJ. In the

HC IR representation, the return values of functions are represented as additional

arguments (Ret as second argument to fact). The assertion uses the costb/3

property for expressing both a lower and an upper bound, in the second and

2 See Section 6 for further details on specifications in XC syntax and Section 2.2 for their counterpart
in the HC IR.

3 1 nano-Joule = 10−9 Joules.

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000042

172 P. Lopez-Garcia et al.

1 .
2 .
3 .
4 .

6 <fact>:
7 001: entsp 0x2
8 002: stw r0, sp[0x1]
9 003: ldw r1, sp[0x1]

10 004: ldc r0, 0x0
11 005: lss r0, r0 , r1
12 006: bf r0 , <008>

16 007: bu <010>
17 010: ldw r0, sp[0x1]
18 011: sub r0, r0 , 0x1
19 012: bl <fact>

21 013: ldw r1, sp[0x1]
22 014: mul r0, r1 , r0
23 015: retsp 0x2

26 008: mkmsk r0 , 0x1
27 009: retsp 0x2

1 :- check pred fact(N, Ret)
2 : intervals(nat(N),[i(1,inf)])
3 + costb(energy_nJ ,6.0,
4 2.3*nat(N)+9.0).

6 fact(R0 ,R0_3) :-
7 entsp(0x2),
8 stw(R0 ,Sp0x1),
9 ldw(R1 ,Sp0x1),

10 ldc(R0_1 ,0x0),
11 lss(R0_2 ,R0_1 ,R1),

12a bf(R0_2 ,0x8),
12b fact_aux(R0_2 ,Sp0x1 ,R0_3 ,R1_1).

15 fact_aux(1,Sp0x1 ,R0_4 ,R1) :-
16 bu(0x0A),
17 ldw(R0_1 ,Sp0x1),
18 sub(R0_2 ,R0_1 ,0x1),

19a bl(fact),
19b fact(R0_2 ,R0_3),
21 ldw(R1 ,Sp0x1),
22 mul(R0_4 ,R1 ,R0_3),
23 retsp(0x2).

25 fact_aux(0,Sp0x1 ,R0 ,R1) :-
26 mkmsk(R0 ,0x1),
27 retsp(0x2).

Fig. 3. ISA program for Figure 2 (left) and its Horn-clause representation (right).

third arguments, respectively, on a cost given in terms of a particular resource,

in the first argument. The intervals/2 property specifies the set of input sizes,

under a particular metric, for which the assertion has to be checked. The first

argument indicates the input argument that is being considered, together with the

corresponding size metric. The second argument indicates the set of values as a

union of intervals, represented by a list of i/2 properties, which in this example

contains only one interval, (1,∞). It provides bounds on the energy to be consumed

by fact(N,Ret) given as functions on the size of the input argument N. Since such

argument is numeric, the size metric used is its “non-negative value,” defined as

nat(N)
def
= max(0, N). The nat(N) size metric is applied to a numeric variable N,

not to arithmetic expressions. However, our size analysis understands arithmetic

expressions, and can give the size of an output argument as an arithmetic function

that depends on the nat(N) values of variables that represent input arguments.

As mentioned before, the verification of resource usage specifications is performed

by comparing the abstract intended semantics (i.e., the resource usage specifications)

with the safe approximation of the concrete semantics inferred by the resource

analysis. We say that a program property φ# is a safe approximation of a

property φ, if the set of program traces, where φ holds is included in the set

of program traces where φ# holds. The idea of using safe approximations is further

explained in Section 2. In our original work on resource usage verification, reported,

e.g., in Hermenegildo et al. (2005) and previous papers, for each property expressed

in an assertion, the possible outcomes are true (property proved to hold), false

(property proved not to hold), and unknown (the analysis cannot prove true or false).

However, it is very common for the cost functions involved in the comparisons to

have intersections, so that for some input data sizes one of them is smaller than the

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000042

Interval-based resource usage verification 173

Fig. 4. A simple energy model, expressed in the Ciao assertion language.

Fig. 5. Interval-based resource usage verification.

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000042

174 P. Lopez-Garcia et al.

other one, and for others, it is the other way around. The first major contribution

of this paper is to generalize our approach so that the answers of the comparison

process can now include conditions under which the truth or falsity of the property

can be proved. Such conditions can be parameterized by attributes of inputs, such

as input data sizes or value ranges. In particular, the outcome of the comparison

process can now be that the original specification holds for input data sizes that lie

within a given set of intervals, does not hold for other intervals, and the result may

be unknown for some others. This is illustrated in Figure 5. We can see that the

specification gives both a lower and upper bound cost function, so that for any input

data size n (ordinate axis), the specification expresses that the resource usage of the

computation with input data of that size must lie in the interval determined by both

functions (which depend on n). Similarly, the bound cost functions inferred by the

static analysis determine a resource usage interval for any n, in which the resource

usage of the computation (with input data of size n) is granted to lie. We can see

that in the (input data size) interval C in the ordinate axis, the program is correct

(i.e., it meets the specification), because for any n in such interval, the resource usage

intervals inferred by the analysis are included in those expressed by the specification.

In contrast, the program is incorrect in the data size intervals A and E because

the resource usage intervals inferred by the analysis and those expressed by the

specification are disjoint. In interval A, this is proved by the sufficient condition that

says that the lower bound cost function inferred by the analysis is greater than the

upper bound cost function expressed in the specification (in that interval). A similar

reasoning applies to the interval E (using the upper bound of the analysis and the

lower bound of the specification). However, nothing can be ensured for the intervals

B and D. This is because for any data size n in such intervals, the resource usage of

the computation for some input data of size n may lie within the interval expressed

by the specification; but for other input data of the same size, the resource usage

may lie outside the interval expressed by the specification.

Furthermore, intervals can now also appear in specifications, i.e., our approach

can check specifications that include preconditions expressing intervals of input data

sizes. In that case, the data size intervals automatically generated by the system are

subintervals of the ones given in the specification by the user.

Example 2

Continuing with Example 1, using the techniques proposed herein (and the prototype

implemented), the outcome of static checking for the assertion in Figures 2 and 3 is

the following set of assertions:

:- false pred fact(N,Ret) : intervals(nat(N),[i(1,1),i(13, inf)])

+ (costb(energy nJ, 6.0, 2.3*nat(N)+9.0)).

:- checked pred fact(N,Ret) : intervals(nat(N),[i(2,12)])

+ (costb(energy nJ, 6.0, 2.3*nat(N)+9.0)).

meaning that the specification does not hold for values of n belonging to the

interval [1, 1] ∪ [13,∞], and that it does hold for values of n in the interval [2, 12],

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000042

Interval-based resource usage verification 175

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

nat(N)

E
n
er

g
y
(n

J
)

upper-bound specification

upper/lower bound analysis

lower-bound specification

Fig. 6. Resource usage functions for the factorial program: Specification and analysis results.

where n = nat(N). In order to produce that outcome, first, CiaoPP’s resource

analysis infers the upper and lower bound functions for the energy consumption

of the factorial program, which in this particular case are both the same: the

function (2.845 n + 1.94) nJ, which obviously implies that this is the exact cost

function for fact/2. It is depicted as a continuous line in Figure 6. Thus, the

resource usage of the computation of fact/2 with input data of a given size n

is granted to lie in the resource usage interval [2.845 n + 1.94, 2.845 n + 1.94].4

These functions are then compared against the specification resource functions,

depicted in Figure 6 as dashed lines. For any value n (ordinate axis) of the input

data size in the interval [2, 12], the resource usage interval inferred by CiaoPP (i.e.,

[2.8 n + 1.9, 2.8 n + 1.9]) is included in the resource usage interval expressed by the

specification, namely, [6.0, 2.3 n+9.0]. Therefore, after performing the resource usage

function comparison, using the techniques that we present, CiaoPP’s output indicates

that the assertion is checked in that data size interval. Conversely, the assertion is

reported as false for n = 1 or n ∈ [13, ∞], because for this interval the lower

bound resource usage function inferred by the analysis is greater than the upper

4 As mentioned before, we refer the reader to (Navas et al., 2007; Serrano et al., 2014) for more details
on the user-definable version of the resource analysis and references.

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000042

176 P. Lopez-Garcia et al.

bound resource usage function expressed in the specification (and consequently, the

corresponding resource usage intervals are disjoint).

The process of checking of resource usage specifications against the analysis

information obviously involves the comparison of arithmetic functions. In our

previous work (again, see Hermenegildo et al., 2005 and references therein), the

approach to cost function comparison was relatively simple, basically consisting on

performing function normalization and then using some syntactic and asymptotic

comparison rules. The second major contribution of this work is to provide stronger

techniques for this purpose, extending the types of functions that can be dealt

with in the specifications and in the analysis results to a much larger class. We

also provide the benchmarking results for the proposed interval based, function

comparison techniques.

As a final contribution, and in order to illustrate the usefulness of the techniques

developed, we report on a specialization of the proposed framework for a practical

application: verifying energy consumption specifications, i.e., comparing inferred

energy bound functions and specifications. We study the particular case of programs

written in the XC language and running on the XMOS XS1-L architecture, already

illustrated in the previous examples. However, using our Horn-clause translation

approach, the proposed approach and its implementation in CiaoPP are general

and can be applied to the resource verification of other programming languages

and architectures. We also illustrate through a case study, how embedded software

developers can use the tool developed, in particular, for determining values for

program parameters that ensure meeting a given energy budget while minimizing

the loss in quality of service.

This paper unifies, improves, and extends our previous work in Lopez-Garcia

et al. (2012, 2010, and 2015), especially by adding operations that allow dealing with

a richer set of usage functions, including summation, exponential, and logarithmic

cost functions, as well as multi-variable functions (see Section 4). We also present

a more detailed formalization than in Lopez-Garcia et al. (2012) and López-Garcı́a

et al. (2010).

The overall contributions of this work can be summarized as follows:

• We have developed a configurable framework for static resource usage

verification, where specifications can include data size-dependent resource

usage functions, expressing both lower and upper bounds.

• We have extended the criteria of software correctness to resource usage

specifications. In particular, we have defined a resource usage semantics

and its approximation, and devised sufficient conditions for program

correctness/incorrectness based on such semantics.

• We have defined operations to check such sufficient conditions that compare

the (possibly abstract) intended semantics of a program with approximated

semantics inferred by static analysis. Such comparison can deal with a rich class

of resource usage functions (polynomial, summation, exponential, logarithmic),

as well as multi-variable functions.

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000042

Interval-based resource usage verification 177

• Our framework produces a refined output of the assertion checking process,

that may determine a partition of the set of possible input values (by inferring

intervals for input data sizes), in place of a unique interval of values. Each

subinterval of such partition may correspond to different outcomes of the

verification.

• Our framework also deals with specifications containing assertions that include

preconditions expressing intervals for the input data sizes.

• We have implemented a prototype and provided experimental results.

• We have specialized our framework for its application to the energy

consumption verification of imperative (XC) programs.

In the rest of the paper, Section 2 provides an overview of the foundations of

the CiaoPP verification framework, and of the Ciao assertion language used for

specifications. Then, Section 3 describes how this traditional framework is extended

for the data size, interval-dependent verification of resource usage properties,

presenting also the formalization of the framework. In particular, we define an

abstract semantics for resource usage properties and operations to compare the

(approximated) intended semantics of a program with approximated semantics

inferred by static analysis. Section 4 presents our extended techniques for the

comparison of (arithmetic) resource usage functions. Section 5 reports on the

implementation of our techniques within the Ciao/CiaoPP system, providing

experimental results. Section 6 describes a specialization of the framework for

its application to the energy consumption analysis of XC programs, and explains

how embedded software developers can use this tool in the case study already

mentioned. Finally, Section 7 discusses related work and Section 8 summarizes our

conclusions.

2 Basics of the verification framework

This section summarizes some relevant parts of our previous work in Hermenegildo

et al. (2005) and previous papers (Bueno et al., 1997; Hermenegildo et al., 1999;

Puebla et al., 2000b), that together form the basis for the resource usage verification

techniques described in the following sections, which are the contributions of this

paper. The section is based mostly on Bueno et al. (1997), which provides a basic

introduction to abstract verification from a conceptual point of view. A more detailed

description of the verification framework can be found in Puebla et al. (2000b).

As mentioned before, the verification framework of CiaoPP uses analyses, based on

the abstract interpretation technique, which are provably correct and also practical,

in order to statically compute safe approximations of the program semantics. These

safe approximations are compared with specifications, in the form of assertions that

are written by the programmer, in order to prove such specifications correct or

incorrect. In the following, we restrict ourselves to the important class of fixpoint

semantics. Under these assumptions, the meaning of a program p, i.e., its concrete

semantics, denoted by [[p]], is the least fixpoint of a monotonic operator associated

with the program p, denoted Sp, i.e., [[p]] = lfp(Sp). Such operator is a function

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000042

178 P. Lopez-Garcia et al.

defined on a domain D, which we assume to be a complete lattice. We will refer to

D as the concrete domain. We will assume for simplicity that the elements of D are

sets and that the order relation in D is set inclusion.

In the abstract interpretation technique, a domain Dα is defined, called the abstract

domain, which also has a lattice structure and is simpler than the domain D.

In particular, D is finite or, if the lattice contains infinite ascending chains, the

abstract domain defines operations that accelerate the convergence of the fixpoint

computation, ensuring termination. The concrete and abstract domains are related

via a pair of monotonic mappings: abstraction α : D
→ Dα, and concretization

γ : Dα
→ D, which relate the two domains by a Galois connection (Cousot and

Cousot, 1977). Abstract operations over Dα are also defined for each of the (concrete)

operations over D. The abstraction of a program p is obtained by replacing the

(concrete) operators in p by their abstract counterparts. The abstract semantics

of a program p, i.e., its semantics w.r.t. the abstract domain Dα, is computed (or

approximated) by interpreting the abstraction of the program p over the abstract

domain Dα. One of the fundamental results of abstract interpretation is that an

abstract semantic operator Sα
p for a program p can be defined which is correct w.r.t.

Sp in the sense that γ(lfp(Sα
p)) is an approximation of [[p]], and, if certain conditions

hold, then the computation of lfp(Sα
p) (i.e., the analysis of p) terminates in a finite

number of steps. We will denote lfp(Sα
p), i.e., the result of abstract interpretation for

a program p, its abstract semantics, as [[p]]α.

Typically, abstract interpretation guarantees that [[p]]α is a safe over-approximation

of the abstraction of the concrete semantics of p (α([[p]])), i.e., α([[p]]) ⊆ [[p]]α. When

[[p]]α meets such a condition, we denote it as [[p]]α+ . Alternatively, the analysis can

be designed to safely under-approximate the abstraction of the concrete semantics

of p, i.e., to meet the condition [[p]]α ⊆ α([[p]]). In this case, we use the notation

[[p]]α− to express that the result of the analysis, [[p]]α, meets such a condition.

Program verification compares the concrete semantics [[p]] of a program p with

an intended semantics for the same program, which we will denote by I . This

intended semantics embodies the user’s requirements, i.e., it is an expression of the

user’s expectations. In Table 1, we summarize the classical understanding of some

verification problems in a set-theoretic formulation as simple relations between [[p]]

and I . Using the concrete or intended semantics for automatic verification is in

general not realistic, since the concrete semantics is typically only partially known,

infinite, too expensive to compute, etc. Since the technique of abstract interpretation

allows computing safe approximations of the program semantics, the key idea of

the CiaoPP approach (Bueno et al., 1997; Hermenegildo et al., 1999; Puebla et al.,

2000b) is to use the abstract approximation [[p]]α directly in program verification

tasks (and in an integrated way with other techniques such as run-time checking

and with the use of assertions).

2.1 Abstract verification

In the CiaoPP framework, the abstraction [[p]]α of the concrete semantics [[p]] of

the program is actually computed and compared directly to the abstract intended

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000042

Interval-based resource usage verification 179

Table 1. Set theoretic formulation of verification problems

Property Definition

p is partially correct w.r.t. I [[p]] ⊆ I

p is complete w.r.t. I I ⊆ [[p]]

p is not partially correct w.r.t. I [[p]] �⊆ I

p is incomplete w.r.t. I I �⊆ [[p]]

Table 2. Verification problems using approximations

Property Definition Sufficient condition

p is partially correct w.r.t. Iα α([[p]]) ⊆ Iα [[p]]α+ ⊆ Iα
p is complete w.r.t. Iα Iα ⊆ α([[p]]) Iα ⊆ [[p]]α−
p is not partially correct α([[p]]) �⊆ Iα [[p]]α− �⊆ Iα, or

w.r.t. Iα [[p]]α+ ∩ Iα = ∅ ∧ [[p]]α+ �= ∅ ∧ [[p]]α− �= ∅
p is incomplete w.r.t. Iα Iα �⊆ α([[p]]) Iα �⊆ [[p]]α+

semantics, which is given in terms of assertions (Puebla et al., 2000a), following

almost directly the scheme of Table 1. A program specification Iα is an abstract

value Iα ∈ Dα, where Dα is the abstract domain of computation. Program verification

is then performed by comparing Iα and [[p]]α. Table 2 shows sufficient conditions for

correctness and completeness w.r.t. Iα, which can be used when [[p]] is approximated.

Several instrumental conclusions can be drawn from these relations.

Analyses, which over-approximate the concrete semantics (i.e., those denoted

as [[p]]α+), are specially suited for proving partial correctness and incompleteness

with respect to the abstract specification Iα. It will also be sometimes possible to

prove incorrectness in the case in which the semantics inferred for the program

is incompatible with the abstract specification, i.e., when [[p]]α+ ∩ Iα = ∅. On the

other hand, we use [[p]]α− to denote the (less frequent) case in which analysis

under-approximates the concrete semantics. In such case, it will be possible to prove

completeness and incorrectness.

Since most of the properties being inferred are in general undecidable, the

technique used to infer such properties, in our case abstract interpretation,

is necessarily approximate. Nevertheless, such approximations are also always

guaranteed to be safe, in the sense that they are never incorrect, i.e., they are

strict over- (conversely under-) approximations of a property for the set of all

possible program behaviors.

2.2 Expressing Iα: A relevant subset of the Ciao assertion language

In order to instantiate the language used to express the intended semantics, Iα, and, in

particular, resource usage properties, we introduce the assertion language that we will

use throughout the paper. These assertions are part of the Ciao assertion language.

For brevity, we only introduce here the class of “pred” assertions, since they suffice

for our purposes. We refer the reader to Puebla et al. (2000a); Hermenegildo et al.

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000042

180 P. Lopez-Garcia et al.

(2005, 2012) and references therein for a full description of the Ciao assertion

language.

Pred assertions: These assertions follow the schema:

:- pred Pred [: Precond] [=> Postcond] [+ Comp-Props].

where Pred is a predicate symbol applied to distinct free variables, and Precond and

Postcond are logic formulae about execution states. An execution state is defined

by the set of variable/value bindings associated with a given execution step. The

assertion indicates that in any call to Pred, if Precond holds in the calling state and

the computation of the call succeeds, then Postcond should hold in the success state.

Also, the set of Preconds for all the pred assertions for a given Pred describes all the

possible call states, i.e., for any call state for a predicate, there must be at least one

pred assertion for that predicate whose Precond holds in that state.

A new property we introduced in this work and used throughout the paper is the

following (see Section 3.2 for further details):

intervals(SizeA, [Int1, . . . , Intn])

which expresses that the size SizeA for a given argument A belongs to some

of the intervals in the list [Int1, . . . , Intn], where Intj = i(Lo,Up), j � 1 and

{Lo,Up} ∈ � ∪ {inf}. Finally, the Comp-Props field (appearing after the “+”

operator) is used to describe properties of the whole computation for calls to

predicate Pred that meet Precond. In our application, the Comp-Props are precisely

the resource usage properties. As already shown in Example 1, another global non-

functional property we introduce in this paper is costb/3, which expresses such

resource usages, and follows the schema:

costb(Res Name, Low Arith Expr, Upp Arith Expr)

where Res Name is a user-provided identifier for the resource the assertion refers to

Low Arith Expr and Upp Arith Expr are arithmetic functions that map input data

sizes to resource usages, representing, respectively, lower and upper bounds on the

resource consumption. Similarly to costb/3, the cost/3 property allows expressing

only one resource usage function on input data sizes that follows this schema:

cost(Bound Type, Res Name, Arith Expr)

where Res Name is the same as in costb/3, Arith Expr is similar to Low Arith Expr

and Upp Arith Expr in costb/3, but it can be either upper or lower bound depending

on the value of Bound Type, which are lb for lower bounds and ub for upper bounds.

This is illustrated in Example 6.

Example 3

Figure 7 shows an assertion for a typical append/3 predicate. The assertion states

that for any call to predicate append/3 with the first and second arguments bound

to lists and the third one unbound, where the length of the first list lies in the

interval [1,∞], it holds that if the call succeeds, then the third argument will also

be bound to a list. It also states that length(A) + 1 is both a lower and upper

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000042

Interval-based resource usage verification 181

:- pred append(A, B, C)
: (list(A), list(B), var(C),

intervals(length(A),[1,inf])
)

=> list(C)
+ costb(steps , length(A)+1, length(A)+1).

Fig. 7. An example Ciao resource assertion for append/3.

bound on the number of resolution steps required to execute any of such calls. The

property length/1 represents a size metric, in particular, the length of a list. In this

case, the assertion expresses an exact cost, since the lower- and upper-bound cost

functions coincide.

Assertion status: Each assertion has an associated status, marked with one of the

following prefixes, placed just before the pred keyword: check (indicating that the

assertion is to be checked), checked (the assertion has been checked and proved

correct by the system), false (it has been checked and proved incorrect by the

system; a compile-time error is reported in this case), trust (the assertion provides

information coming from the programmer in order to guide the analyzer, and it will

be trusted), or true (the assertion is a result of static analysis and thus correct, i.e.,

it is a safe approximation of the concrete semantics). The default status, i.e., if no

status appears before pred, is check.

3 Extending the framework to data size-dependent resource usage verification

As mentioned before, our data size-dependent resource usage verification framework

is characterized by being able to deal with specifications that include both lower

and upper bound resource usage functions (i.e., specifications that express intervals

where the resource usage is supposed to be included in), and, in an extension of the

classical model (Bueno et al., 1997; Hermenegildo et al., 2005) and (López-Garcı́a

et al., 2010), that include preconditions expressing intervals within which the input

data size of a program is supposed to lie (Lopez-Garcia et al., 2012).

We start by providing a formalization of our data size-dependent resource usage

verification framework, assuming that the programs that we are dealing with are

written in the HC IR language (i.e., they are logic programs). However, as mentioned

before, the techniques apply to other languages, by applying our transformation to

Horn clauses. Furthermore, the concepts are in fact also applicable directly to other

languages, with some adaptations and changes in terminology.

3.1 Resource usage semantics

Given a program p, let Cp be the set of all calls to p. The concrete resource usage

semantics of a program p, for a particular resource of interest, [[p]], is a set of pairs

(p(̄t), r) such that t̄ is a tuple of terms (not necessarily ground), p(̄t) ∈ Cp is a call to p

with actual parameters t̄, and r is a number expressing the amount of resource usage

of the computation of the call p(̄t). Such a semantic object can be computed by

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000042

182 P. Lopez-Garcia et al.

a suitable operational semantics, such as SLD-resolution (Selective Linear Definite

clause resolution), adorned with the computation of the resource usage. We abstract

away such computation, since it will in general be dependent on the particular

resource r it refers to. The concrete resource usage semantics can be defined as a

relation [[p]] ⊆ Cp ×�, where � is the set of real numbers (note that depending

on the type of resource we can take another set of numbers, e.g., the set of natural

numbers). Such relation is usually a function. In other words, the domain D of the

concrete semantics is 2Cp×�, so that [[p]] ∈ D. Recall that, as described in Section 2,

D is a complete lattice, and the abstract domain, Dα has also a lattice structure. The

concretization and abstractions functions (γ and α, respectively) are mappings that

relate both domains, altogether composing a Galois connection Cousot and Cousot

(1977).

We define an abstract domain Dα whose elements are sets of pairs of the form

(p(v̄) : c(v̄),Φ), where p(v̄) : c(v̄), is an abstraction of a set of calls and Φ is an

abstraction of the resource usage of such calls. We refer to such pairs as call-

resource pairs. Specifically, v̄ is a tuple of variables and c is a property on terms, so

that p(v̄) : c(v̄) represents the set of all calls p(̄t) such that v̄ = t̄→ c(v̄) holds.

The abstraction c(v̄) is some subset of the abstract domains available for the

analyzer, i.e., those loaded in the CiaoPP system, expressing program states. An

example of c(v̄) (in fact, the one used in Section 5 in our experiments) is a

combination of properties that are in the domain of the regular type analysis,

eterms Vaucheret and Bueno (2002), and properties such as groundness and freeness

present in the shfr abstract domain (Muthukumar and Hermenegildo, 1992). For

conciseness, we refer to such combination as the mode/type abstract domain. A

regular type is a set of terms, which is the language accepted by a (possibly non-

deterministic) finite tree automaton, although regular types can be expressed using

several type representations. Internally, the eterms regular type analysis Vaucheret

and Bueno (2002) uses a representation based on regular term grammars, equivalent

to Dart and Zobel (1992) but with some adaptations. This analysis produces

abstractions, represented by using regular term grammars, that over-approximate the

set of terms that can occur at all program points. Such abstractions are presented

to the user in the form of predicates, as will be illustrated later.

We refer to Φ as a resource usage interval function for p, defined as follows.

Definition 1

A resource usage bound function for p is a monotonic arithmetic function, Ψp : S
→
�∞, for a given subset S ⊆ �k , where � is is the set of natural numbers, k is

the number of input arguments to predicate p, and �∞ is the set of real numbers

augmented with the special symbols ∞ and −∞. We use such functions to express

lower and upper bounds on the resource usage of predicate p depending on its input

data sizes.

Definition 2

A resource usage interval function for p is an arithmetic function, Φ : S
→ RI ,

where S is defined as before and RI is the set of intervals of real numbers, such

that Φ(n̄) = [Φl(n̄),Φu(n̄)] for all n̄ ∈ S , where Φl(n̄) and Φu(n̄) are resource usage

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000042

Interval-based resource usage verification 183

:- module(rev , [nrev/2], [assertions ,regtypes ,
nativeprops ,predefres(res_steps)]).

:- entry nrev(A,B) : (list(A, gnd), var(B)).
:- check pred nrev(A,B)

+ costb(steps , length(A), 10*length(A)).

nrev([],[]).
nrev([H|L],R) :- nrev(L,R1), append(R1,[H],R).

Fig. 8. A module for the naive reverse program.

bound functions that denote the lower and upper endpoints of the interval Φ(n̄),

respectively, for the tuple of input data sizes n̄.5 We require that Φ be well defined

so that ∀n̄ (Φl(n̄) � Φu(n̄)).

Intuitively, Φ defines a resource usage band, and Φ(n̄) = [Φl(n̄),Φu(n̄)] is resource

usage interval.

In order to relate the elements p(v̄) : c(v̄) and Φ in a call-resource pair as the

one described previously, we assume the existence of two functions inputp and sizep
associated with each predicate p in the program. Assume that p has k arguments

and i input arguments (i � k). The function inputp takes a k-tuple of terms t̄ (the

actual arguments of a call to p) and returns a tuple with the input arguments to p.

This function is generally inferred by using existing analysis that infer groundness,

freeness and sharing information, but can also be given by the user by means

of assertions. The function sizep(w̄) takes a i-tuple of terms w̄ (the actual input

arguments to p) and returns a tuple with the sizes of those terms under a given

metric. The metric used for measuring the size of each argument of p is automatically

inferred (based on type analysis information), but again can also be given by the

user by means of assertions (Navas et al., 2007).

Example 4

Consider, for example, the naive reverse (Ciao) Prolog program in Figure 8, with the

classical definition of predicate append. The first argument of nrev/2 is declared

input, and the two first arguments of append are consequently inferred to be also

input. The size measure for all of them is inferred to be list-length. Then, we have

that:

inputnrev((x, y)) = (x), inputapp((x, y, z)) = (x, y),

sizenrev((x)) = (length(x)) and sizeapp((x, y)) = (length(x), length(y)).

We define the concretization function γ : Dα
→ D as follows:

∀E ∈ Dα, γ(E) =
⋃
e∈E

γ1(e)

where γ1 is another concretization function, applied to call-resource pairs e’s of the

form (p(v̄) : c(v̄),Φ). We define:

γ1((p(v̄) : c(v̄),Φ)) = {(p(̄t), r) | t̄ ∈ γm(c(v̄)) ∧ n̄ = sizep(inputp (̄t)) ∧ r ∈ [Φl(n̄),Φu(n̄)]}

5 Although n̄ is typically a tuple of natural numbers, we do not restrict the framework to this case.

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000042

184 P. Lopez-Garcia et al.

where γm is the concretization function of the mode/type abstract domain. We use

the subscript m as a short name for such a mode/type domain for conciseness.

The concretization function γ1 returns a set of concrete pairs (p(̄t), r). As already

stated, each such set is an element of the concrete domain D = 2Cp×�, where t̄ is a

tuple of terms, p(̄t) ∈ Cp is a call to predicate p with actual parameters t̄, and r is a

number expressing the amount of resource usage of the complete computation of the

call p(̄t).

Example 5

Assume that p is the predicate nrev in Figure 8, v̄ is (x, y), and c(v̄) is the property

defined as the conjunction list(x) ∧ var(y), represented as (list(x), var(y)) in the

assertions, since we use the comma (,) as the symbol for the conjunction operator. The

property list() is a regular type, which can be inferred by CiaoPP by performing

the analysis with the eterms abstract domain Vaucheret and Bueno (2002), and is

represented as a predicate:

list([]).
list([H|R]) :- list(R).

The property var() can also be inferred by CiaoPP, with the shfr abstract

domain (Muthukumar and Hermenegildo, 1992).

Under these assumptions, γm(c(v̄)) is the infinite set:

γm(c(v̄)) = γm(list(x) ∧ var(y)) = {([], y), ([a], y), ([a, b], y), ([a, b, c], y), . . .}.

Assume also that inputnrev((x, y)) = (x) and sizenrev((x)) = (length(x)), as explained

in Example 4. Let {eα} ∈ Dα, such that:

eα ≡ ((nrev(x, y) : (list(x) ∧ var(y))), [Φl
nrev,Φ

u
nrev]),

where the resource usage bound functions Φl
nrev and Φu

nrev are defined as:

Φl
nrev(n) = 2× n, and Φu

nrev(n) = 1 + n2.

We have that ([a, b, c], y) ∈ γm(list(x) ∧ var(y)) and sizenrev(inputnrev([a, b, c], y)) =

sizenrev([a, b, c]) = length([a, b, c]) = 3. Thus, Φl
nrev(3) = 2 × 3 = 6 and Φu

nrev(3) =

1 + 32 = 10, which means that any pair (nrev([a, b, c], y), r) such that r ∈ [6, 10],

belongs to γ1(eα), e.g., (nrev([a, b, c], y), 6) ∈ γ1(eα) and (nrev([a, b, c], y), 7) ∈ γ1(eα).

Therefore, we have that γ1(eα) = e, where e ∈ D is the infinite set:

e = {(nrev([], y), 0), (nrev([], y), 1), (nrev([a], y), 2), (nrev([a, b], y), 4),

(nrev([a, b], y), 5), (nrev([a, b, c], y), 6), (nrev([a, b, c], y), 7), (nrev([a, b, c], y), 10) . . .}

Finally, γ({eα}) = γ1(eα) = e.

The definition of the abstraction function α : D
→ Dα is straightforward, given

the definition of the concretization function γ above.

Intended meaning. As already mentioned, the intended semantics is an expression of

the user’s expectations, and is typically only partially known. For this reason, it is in

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000042

Interval-based resource usage verification 185

general not realistic to use the exact intended semantics and we use an approximated

intended semantics instead. We define the approximated intended semantics Iα of a

program as a set of call-resource pairs (p(v̄) : c(v̄),Φ), identical to those previously

used in the abstract semantics definition. However, the call-resource pairs defining

the approximated intended semantics are provided by the user by means of the

Ciao assertion language, introduced in Section 2.2, while the pairs corresponding to

the approximated semantics of the program are automatically inferred by CiaoPP’s

analysis tools. In particular, each one of such pairs is represented as a resource

usage assertion for predicate p in the program.

As mentioned in Section 2.2, we will be using pred assertions. The most

common syntactic schema of a pred assertion that describes resource usage and its

correspondence to the call-resource pair it represents is the following:

:- pred p(v̄) : c(v̄) + Φ.

which expresses that for any call to predicate p, if (precondition) c(v̄) is satisfied in

the calling state, then the resource usage of the computation of the call is in the

interval represented by Φ. Note that c(v̄) is a conjunction of program execution state

properties, i.e., properties about the terms to which program variables are bound to.

As already said, we use the comma (,) as the symbol for the conjunction operator.

If the precondition c(v̄) is omitted, then it is assumed to be the “top” element of

the lattice representing calls, i.e., the one that represents any call to predicate p. The

syntax used to express the resource usage interval function Φ is a conjunction of

costb/3 or cost/3 properties.

Assuming that Φ(n̄) = [Φl(n̄),Φu(n̄)], where n̄ = sizep(inputp(v̄)), Φ can be

represented in the resource usage assertion as the conjunction:

(cost(lb, r,Φl(n̄)), cost(ub, r,Φu(n̄)))

or, alternatively, using the costb/3 property:

costb(r,Φl(n̄),Φu(n̄))

We use Prolog syntax for variable names (variables start with uppercase letters).

Example 6

In the program of Figure 8 one could use the assertion:

:- pred nrev(A,B) : (list(A, gnd), var(B))

+ (cost(lb, steps, 2 * length(A)),

cost(ub, steps, 1 + exp(length(A), 2))).

to express that for any call to nrev(A,B) with the first argument bound to a

ground list and the second one a free variable, a lower (resp. upper) bound on the

number of resolution steps performed by the computation is 2 × length(A) (resp.

1 + length(A)2). The property list(,) is represented as a higher order predicate:

list([], T).
list([H|R], T) :- T(H), list(R).

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000042

186 P. Lopez-Garcia et al.

and the property gnd(), expressing “groundness,” can also be inferred by CiaoPP,

with the shfr abstract domain Muthukumar and Hermenegildo (1992).

In this example, p is nrev, v̄ is (A, B), c(v̄) is (list(A, gnd), var(B)),

n̄ = sizenrev(inputnrev((A,B))) = (length(A)), where the functions sizenrev and inputnrev
are those defined in Example 4, and the interval Φrev(n̄) approximating the number

of resolution steps is [2× length(A), 1+ length(A)2] (in other words, we are assuming

that Φl
nrev(x) = 2×x and Φu

nrev(x) = 1+x2). If we omit the cost property expressing

the lower bound (lb) on the resource usage, the minimum of the interval is

assumed to be zero (since the number of resolution steps cannot be negative). If we

assume that the resource usage can be negative, the interval would be (−∞, 1 + n2].

This information can be given by the user when providing the assertions that

constitute the definition of a particular resource and its cost model (which expresses

the resource usage of basic elements of a program/language). A detailed description

of our user-definable resource analysis framework is given in Navas et al. (2007).

Similarly, if the upper bound (ub) is omitted, the upper limit of the interval is

assumed to be ∞.

Example 7

The assertion in Example 6 is applicable for the following concrete semantic pairs:

(nrev([a,b,c,d,e,f,g],X), 35) (nrev([],Y), 1)

but it is not applicable to the following ones:

(nrev([A,B,C,D,E,F,G],X), 35) (nrev(W,Y), 1)

(nrev([a,b,c,d,e,f,g],X), 53) (nrev([],Y), 11)

Those in the first line above do not meet the assertion’s precondition c(v̄): the

leftmost one because nrev/2 is called with the first argument bound to a list of

unbound variables (denoted by using uppercase letters), and the other one because

the first argument of nrev/2 is an unbound variable. The concrete semantic pairs on

the second line will never occur during execution because they violate the assertion,

i.e., they meet the precondition c(v̄), but the resource usage of their execution is not

within the limits expressed by Φ.

3.2 Comparing abstract semantics: Correctness

The definition of partial correctness has been given by the condition [[p]] ⊆ I in

Table 1. However, we have already argued that we are going to use an approximation

Iα of the intended semantics I , where Iα is given as a set of call-resource pairs of the

form (p(v̄) : c(v̄),Φ).

Definition 3 (Input-size set)

Let eα be a call-resource abstract pair (p(v̄) : c(v̄),Φ). We define the input-size set of

eα, denoted input size set(eα) as the set {n̄ | ∃ t̄ ∈ γm(c(v̄)) ∧ n̄ = sizep(inputp (̄t))}. The

input-size set is represented as an interval (or a union of intervals). We obviously

require that input size set(eα) ⊆ Dom(Φ) for any call-resource abstract pair eα, where

Dom(Φ) denotes the domain of function Φ.

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000042

Interval-based resource usage verification 187

Definition 4

We say that p is partially correct with respect to a call-resource pair (p(v̄) : cI (v̄),ΦI)

if for all (p(̄t), r) ∈ [[p]] (i.e., p(̄t) ∈ Cp and r is the amount of resource usage of the

computation of the call p(̄t)), it holds that: if t̄ ∈ γm(cI (v̄)) and n̄ = sizep(inputp (̄t)),

then r ∈ ΦI (n̄), where γm is the concretization function of the mode/type abstract

domain.

Lemma 1

p is partially correct with respect to Iα, i.e. [[p]] ⊆ γ(Iα) if:

• For all (p(̄t), r) ∈ [[p]], there is a pair (p(v̄) : cI (v̄),ΦI) in Iα such that t̄ ∈
γm(cI (v̄)), and

• p is partially correct with respect to every pair in Iα.

Note that the notion of p being partially correct with respect to a call-resource

pair (p(v̄) : cI (v̄),ΦI) is different from the notion of p being partially correct with

respect to a singleton set {(p(v̄) : cI (v̄),ΦI)}, i.e., an intended semantics: if for all

(p(̄t), r) ∈ [[p]] it holds that t̄ �∈ γm(cI (v̄)), then p is partially correct with respect to

(p(v̄) : cI (v̄),ΦI) but p is not partially correct with respect to {(p(v̄) : cI (v̄),ΦI)}.
As mentioned before, we use a safe over-approximation of the program semantics

[[p]], that we denote [[p]]α+, and is automatically computed by the static analysis

in Navas et al. (2007) and Serrano et al. (2014) as a set of call-resource pairs of

the form (p(v̄) : c(v̄),Φ). For simplicity, we assume that [[p]]α+ is a set made up of a

single call-resource pair. The description of how the resource usage bound functions

appearing in [[p]]α+ are computed is out of the scope of this paper, and it can be

found in (Navas et al., 2007; Serrano et al., 2014) and references therein. The safety

of such resource usage analysis can be expressed as follows.

Lemma 2 (Safety of the static resource usage analysis)

Let eα = (p(v̄) : c(v̄),Φ) and [[p]]α+ = {eα}. For all (p(̄t), r) ∈ [[p]], it holds that:

t̄ ∈ γm(c(v̄)), input size set(eα) ⊆ Dom(Φ), and r ∈ Φ(n̄), where n̄ = sizep(inputp (̄t)).

Let c1(v̄) and c2(v̄) be two elements of the mode/type abstract domain

already mentioned, each one representing a set of calls. The inclusion operator

�m is the order relation in such abstract domain, and meets the condition:

c1(v̄) �m c2(v̄) if and only if γm(c1(v̄)) ⊆ γm(c2(v̄)). In our case, we use the

comparison operator �m implemented in the CiaoPP system, which uses finer grain

comparison operators for program state properties. In particular, it uses the type

comparison operator of the eterms abstract domain (Vaucheret and Bueno, 2002)

(based on adaptations of the type inclusion operations of Dart and Zobel (1992))

and the mode comparison operator of the shfr abstract domain (Muthukumar and

Hermenegildo, 1992) (which represents groundness and freeness properties).

Example 8

Let c1(v̄) be list(x, gnd) ∧ var(y), and c2(v̄) be list(x) ∧ var(y). Note that the

property list(x, y), of arity 2, already defined in Example 6, is a higher-order

predicate that succeeds if x is a list whose elements meet the property y of arity

1. The property gnd(z), of arity 1, is true if z is a ground term (i.e., it does

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000042

188 P. Lopez-Garcia et al.

not contain any unbound variable). Thus, list(x, gnd) succeeds if x is a list of

ground elements. Note also that since the higher order predicate list(x, y) assumes

that the second argument y is a first-order predicate of arity 1, we just need to

specify the name of that predicate when calling list(x, y). In this example, we just

specify the name gnd, although list(x, gnd) will call gnd(z) for all elements z of x

when running. The property list(x), of arity 1, defined in Example 5, is a first-order

predicate that succeeds if x is a list, and its elements can be any term, including

ground terms, variables, etc. In other words, list(x) does not impose any constraint

on the type of the elements of x. Thus, in this example, we have that c1(v̄) �m c2(v̄),

but c2(v̄) ��m c1(v̄). Similarly, (list(x, gnd) ∧ var(y)) �m (gnd(x) ∧ var(y)), but

(gnd(x) ∧ var(y)) ��m (list(x, gnd) ∧ var(y)).

Definition 5

Let Φ1 and Φ2 be two resource usage interval functions, i.e., Φ1 : Dom(Φ1)
→ RI ,

and Φ2 : Dom(Φ2)
→ RI , where Dom(Φ1) ⊆ �k and Dom(Φ2) ⊆ �k . Let S be a set

such that S ⊆ Dom(Φ1) and S ⊆ Dom(Φ2). We define the inclusion relation �S and

the intersection operation �S as follows:

• Φ1 �S Φ2 if and only if for all n̄ ∈ S , Φ1(n̄) ⊆ Φ2(n̄).

• We say that Φ1 �S Φ2 = Φ3 if and only if for all n̄ ∈ S , Φ1(n̄) ∩ Φ2(n̄) = Φ3(n̄).

Definition 6

Let eI be a pair (p(v̄) : cI (v̄),ΦI) in the intended meaning Iα, and eα the pair

(p(v̄) : c(v̄),Φ) in the computed abstract semantics [[p]]α+. For simplicity, we assume

the same tuple of variables v̄ in all abstract objects. We say that eα � eI iff

cI (v̄) �m c(v̄) and Φ �S ΦI , where S = input size set(eI).

Note that the condition cI (v̄) �m c(v̄) is needed to ensure that we select resource

analysis information that can safely be used to verify the assertion corresponding to

the pair (p(v̄) : cI (v̄),ΦI). If cI (v̄) �m c(v̄), then input size set(eI) ⊆ input size set(eα).

Definition 7

We say that (p(v̄) : c(v̄),Φ) � (p(v̄) : cI (v̄),ΦI) = ∅ if:

cI (v̄) �m c(v̄) and Φ �S ΦI = Φ∅,

where Φ∅ represents the constant function identical to the empty interval.

Theorem 1

Let eα = (p(v̄) : c(v̄),Φ) and [[p]]α+ = {eα}. Let eI = (p(v̄) : cI (v̄),ΦI). If eα � eI then

p is partially correct with respect to eI .

Proof

If eα � eI , then cI (v̄) �m c(v̄) (by Definition 6), what implies that γm(cI (v̄)) ⊆
γm(c(v̄)) and hence input size set(eI) ⊆ input size set(eα). We are going to prove

that the condition of Definition 4 holds. For all (p(̄t), r) ∈ [[p]], it holds that: if

t̄ ∈ γm(cI (v̄)), then t̄ ∈ γm(c(v̄)) (because γm(cI (v̄)) ⊆ γm(c(v̄))), and thus r ∈ Φ(n̄),

where n̄ = sizep(inputp (̄t)) (by Lemma 2). Since Φ �S ΦI , where S = input size

set(eI) (Definition 6), and input size set(eI) ⊆ input size set(eα), we have that

r ∈ ΦI (n̄). �

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000042

Interval-based resource usage verification 189

Similarly, we have the following result:

Theorem 2

If (p(v̄) : c(v̄),Φ)� (p(v̄) : cI (v̄),ΦI) = ∅ and (p(v̄) : c(v̄),Φ) �= ∅, then p is not partially

correct w.r.t. (p(v̄) : cI (v̄),ΦI).

In order to prove or disprove program partial correctness, we compare call-

resource pairs by using Theorems 1 and 2 (thus, ensuring the sufficient conditions

given in Table 2). This means that whenever cI (v̄) �m c(v̄), we have to determine

whether Φ �S ΦI or Φ�S ΦI = Φ∅. To do this in practice, we compare resource usage

bound functions in the way expressed by the following Corollary 1 of Theorems 1

and 2.

Corollary 1

Let (p(v̄) : cI (v̄),ΦI) be a pair in the intended abstract semantics Iα (given in a

specification), and [[p]]α+ = {(p(v̄) : c(v̄),Φ)} the abstract semantics inferred by

analysis. Let S be the input-size set of (p(v̄) : cI (v̄),ΦI). Assume that cI (v̄) �m c(v̄).

Then, we have that

1. if ∀n̄ ∈ S : (Φl
I (n̄) � Φl(n̄)∧Φu(n̄) � Φu

I (n̄)), then p is partially correct with respect

to (p(v̄) : cI (v̄),ΦI);

2. if ∀n̄ ∈ S : (Φu(n̄) < Φl
I (n̄) ∨ Φu

I (n̄) < Φl(n̄)), then p is not partially correct with

respect to (p(v̄) : cI (v̄),ΦI).

Note that the sufficient condition 1 (resp., 2) above implies that Φ �S ΦI (resp.

Φ �S ΦI = Φ∅, where, as already said, Φ∅ represents the constant function identical

to the empty interval. In practice, we also use the condition (∀n̄ ∈ S : Φu(n̄) <

Φl
I (n̄)) ∨ (∀n̄ ∈ S : Φu

I (n̄) < Φl(n̄)), although it is stronger than condition 2. When Φu
I

(resp., Φl
I) is not present in a specification, we assume that ∀n̄ (Φu

I (n̄) = ∞) (resp.,

Φl
I = −∞ or Φl

I (n̄) = 0, depending on the resource). With this assumption, one of the

resource usage bound function comparisons in the sufficient condition 1 (resp., 2)

above is always true (resp., false) and the truth value of such conditions depends on

the other comparison.

Inferring preconditions on data sizes for different verification outcomes. If none of

the conditions 1 or 2 in Corollary 1 hold for the input-size set S of the pair

(p(v̄) : cI (v̄),ΦI), our proposal is to partition S in a number of nS subsets Sj ,

1 � j � nS , for which either condition holds. Thus, as a result of the verification

of (p(v̄) : cI (v̄),ΦI), we produce a set of pairs (p(v̄) : cjI (v̄),ΦI), 1 � j � nS , whose

input-size set is Sj . Such pairs will be represented as assertions in the output of our

implementation prototype.

For the particular case where resource usage bound functions depend on one

argument, the element cjI (v̄) (in the assertion precondition) is of the form cI (v̄) ∧ dj ,

where dj defines an interval for the input data size n to p. This allows us to give

intervals dj of input data sizes for which a program p is (or is not) partially correct.

The definition of input-size set can be extended to deal with data size intervals

dj ’s in a straightforward way:

Sj = {n | ∃ t̄ ∈ γm(c(v̄)) ∧ n = sizep(inputp (̄t)) ∧ n ∈ dj}.

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000042

190 P. Lopez-Garcia et al.

From the practical point of view, in order to represent properties like n ∈ dj , we

have added to the Ciao assertion language a new intervals(A, B) property, which

expresses that the input data size A belongs to some of the intervals in the list B. To

this end, in order to show the result of the assertion checking process to the user,

we group all the (p(v̄) : c
j
I (v̄),ΦI) pairs that meet the above sufficient condition 1

(applied to the set Sj) and, assuming that df1
, . . . , dfb are the computed input data

size intervals for such pairs, an assertion with the following syntactic schema is

produced as output:

:- checked pred p(v̄) : cjI (v̄),intervals(sizep(inputp(v̄)),[df1
, . . . , dfb]) + ΦI .

Similarly, the pairs meeting the sufficient condition 2 are grouped and the following

assertion is produced:

:- false pred p(v̄) : cjI (v̄),intervals(sizep(inputp(v̄)),[dg1
, . . . , dge]) + ΦI .

Finally, if there are intervals complementary to the previous ones w.r.t. S (the

input-size set of the original assertion), say dh1
, . . . , dhq , the following assertion is

produced:

:- check pred p(v̄) : cjI (v̄),intervals(sizep(inputp(v̄)), [dh1
, . . . , dhq]) + ΦI .

The description of how the input data size intervals dj ’s are computed is given in

Section 4.

Dealing with preconditions expressing input data size intervals. So far, we have seen

that a call-resource pair in the intended semantics Iα has the form (p(v̄) : cI (v̄),ΦI),

where cI (v̄) is a conjunction of type and mode properties that is used to represent a set

of calling data to p. In order to allow checking assertions that include preconditions

expressing intervals within which the input data size of a program is supposed to lie

(i.e., using the intervals(A, B) property), we also allow adding conjuncts to cI (v̄)

that are constraints over the sizes of the data represented by cI (v̄). Such constraints

can represent intervals for such data sizes. Accordingly, we replace the concretization

function γm by an extended version γ′m. To this end, given an abstract call-resource

pair: (p(v̄) : cI (v̄) ∧ d,ΦI), where d represents an interval, or the union of several

intervals, for the input data sizes to p, we define:

γ′m(cI (v̄) ∧ d) = {̄t | t̄ ∈ γm(cI (v̄)) ∧ sizep(inputp (̄t)) ∈ d}.

We also extend the definition of the �m relation accordingly. With these extended

operations, all the previous results in Section 3 are applicable.

In the case where there are multi-variable resource usage bound functions, instead

of intervals represented as pairs of numbers, we use arithmetic expressions that

represent more general size constraints (see Section 4.7), usually inequalities. In this

case, the interval d above will be replaced by the set of values that satisfy such size

constraints.

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000042

Interval-based resource usage verification 191

4 Resource usage bound function comparison

Fundamental to our approach to verification are the operations that compare two

cost bound functions. In particular, sufficient conditions 1 and 2 of Corollary 1 for

proving and disproving program correctness and incorrectness, respectively, involve

comparisons of a cost bound function inferred by the static analysis with another

given in a specification as an assertion present in the program.

Since our resource analysis is able to infer different types of functions (e.g.,

polynomial, exponential, summation, logarithmic, factorial, etc.), it is also desirable

to be able to compare as many classes as possible of these functions.

Assume that we have to compare two cost functions f(x̄) and g(x̄) that depend

on input data sizes x̄ ∈ S for a given input-size set S . Also, given a function

f(x̄), let fl(x̄) and fu(x̄) denote a lower and an upper bound on f(x̄), respectively,

i.e., ∀x̄ ∈ S : fl(x̄) � f(x̄) and ∀x̄ ∈ S : f(x̄) � fu(x̄). In the cases in which the

techniques we will describe in the following sections cannot be applied to give sound

results for a given comparison, say ∀x̄ ∈ S : f(x̄) � g(x̄), then we replace any of

the functions by an upper or lower bound on it, in a way that ensures obtaining

sufficient conditions for such comparison. This is expressed by the following lemma

whose proof is obvious.

Lemma 3

Let be f(x̄) and g(x̄) be cost functions and S an input-size set. Then,

1. if any of the conditions:

∀x̄ ∈ S : fu(x̄) � gl(x̄),

∀x̄ ∈ S : fu(x̄) � g(x̄), or

∀x̄ ∈ S : f(x̄) � gl(x̄)

holds, then ∀x̄ ∈ S : f(x̄) � g(x̄) holds; and

2. if ∀x̄ ∈ S : fu(x̄) �= f(x̄) and ∀x̄ ∈ S : gl(x̄) �= g(x̄), then any of the conditions

above is also a sufficient condition for ∀x̄ ∈ S : f(x̄) < g(x̄).

4.1 Single-variable cost function comparison

We define two operations for comparing cost functions, namely, <f and �f . The

definition of <f (Ψ1,Ψ2, S) is described in Figure 9 as a function. Function �f is

similar to <f , but it uses the condition Ψ1(n) � Ψ2(n), which implies that there

are endpoints of the intervals in Step 3 that are closed. As already said, S is a

subset of natural numbers, S ⊆ �, and usually S = �, which is extracted from the

specification, taking into account its precondition. In general, S is given as a union

of intervals of natural numbers. However, the cost bound functions Ψ1 and Ψ2 are

continuous functions defined over a subset of real numbers, i.e., Dom(Ψi) ⊆ � and

S ⊂ Dom(Ψi) for i = 1, 2. Thus, for simplicity, in the definition of <f and �f , we first

infer intervals of real numbers (see Steps 1–4 of Fig. 9), and, from them, we produce

the intervals of natural numbers with the appropriate endpoints, as described in

Steps 5 and 6. Note that, in Step 2, we ignore the negative roots of f(x) because

they cannot be endpoints of any interval of natural numbers. Since Ψ1 and Ψ2 are

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000042

192 P. Lopez-Garcia et al.

<f (Ψ1, Ψ2, S)
Takes two single-variable cost bound functions, Ψ1 and Ψ2, and an input-size set S, S ⊆ N.
Returns a set IS of intervals such that ∀I ∈ IS : (∀n ∈ I : (Ψ1(n) < Ψ2(n) ∧ n ∈ S)).

1. Let f(x) = Ψ2(x) − Ψ1(x), and assume that Dom(f) ⊆ R;
2. Let x1, . . . , xm be the non-negative real roots of equation f(x) = 0, i.e.:

∀i(1 ≤ i ≤ m) : (xi ∈ R ∧ xi ≥ 0 ∧ f(xi) = 0);
3. Let IS1 = {[0, x1), (x1, x2), . . . , (xm−1, xm), (xm,∞)};
4. Let IS2 = {I | I ∈ IS1 ∧ f(v) > 0, for an arbitrary value v ∈ I};
5. Let IS3 = {[a
 , �b�] | (a, b) ∈ IS2};
6. Let IS = {I ∩ S | I ∈ IS3};
7. return IS.

Fig. 9. A function for comparing two single-variable cost functions.

continuous, in Step 4, we have that ∀(a, b) ∈ IS2 : (∀x ∈ (a, b) : (Ψ1(x) < Ψ2(x))).

Then, in Step 5, we generate intervals of natural numbers, and it holds that for any

interval of real numbers (a, b) ∈ IS2, we have that (�a� , �b�) is the largest interval of

natural numbers included in (a, b), and hence it holds that ∀n ∈ [�a� , �b�] : (Ψ1(n) <

Ψ2(n)).

As already explained, given the input-size set S of a call-resource pair in an

intended semantics, which can also express data size intervals in the precondition,

our goal is to partition S in a number of nS subsets Sj such that for any Sj , 1 � j � nS ,

either sufficient condition 1 or 2 of Corollary 1 holds. This can be done by using

the comparison operators <f and �f described above, with the appropriate values

for Ψ1 and Ψ2, and performing intersections or unions of the resulting intervals,

depending on whether the condition is a conjunction or disjunction, respectively.

Consider again Step 2 of Figure 9. If f(x) is a polynomial function, then there exist

efficient algorithms for obtaining its roots. For the other functions (e.g., exponential,

logarithmic, or summation), we have to approximate them using polynomials. We

discuss this in the following sections, including a detailed description of the concept

of “safety” of such approximations in Section 4.5.

4.2 Finding roots of polynomial functions

According to the fundamental theorem of algebra, a polynomial equation of order

m has m roots, whether real or complex numbers. General methods exist that allow

computing all these roots, although in our approach we discard complex roots and

negative real roots since they are not needed. All the roots of a polynomial equation

can be obtained analytically until polynomial order four. Numerical methods must

be used for polynomial orders greater than four. In our implementation, we have

used the GNU Scientific Library (Galassi et al., 2009) for this purpose. This library

offers specific polynomial function root finding methods that are analytical or

numerical depending on the polynomial order, as mentioned above.

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000042

Interval-based resource usage verification 193

hanoi(N,A,_B,C) :- N=1, print(A,C).
hanoi(N,A,B,C) :-

N > 1,
N1 is N - 1,
hanoi(N1,A,C,B),
print(A,C),
hanoi(N1,B,A,C).

Fig. 10. A “Towers of Hanoi” program.

4.3 Finding roots of non-polynomial functions

Two non-polynomial cost function classes that the CiaoPP analyses can infer are

exponential and logarithmic. We approximate exponential functions with Taylor

polynomials and for approximating logarithmic functions and we replace them with

other functions that bound them from above or below. After finding the roots of the

approximant polynomials by using the method described above, we apply a post-

process for checking whether the original functions have additional roots, which is

described in Section 4.4.

Exponential function approximation using polynomials. This approximation is

carried out using these formulae:

ex = Σ∞n=0

xn

n!
= 1 + x +

x2

2!
+

x3

3!
+ . . . for all x

ax = ex ln a = 1 + x ln a +
(x ln a)2

2!
+

(x ln a)3

3!
+ . . . for all x

Our experiments show that in practice these series can typically be limited to order 8,

since higher orders do not bring significant differences. Also, in the implementation,

the computation of the factorials is done separately and the results are memoized

in order to reuse them.

Example 9

Consider the program in Figure 10 that prints the shortest sequence of moves to

solve the “Towers of Hanoi” problem with N disks. The first argument of hanoi/4

represents the number of disks to move, while the remaining ones represent the peg

where the disks are, the auxiliary peg and the target peg, in that order.

Consider the following assertion:

:- check hanoi(N, , ,)

: intervals(nat(N),[i(1,inf)])

+ costb(steps,2**(nat(N)-3) + 2, 2**(nat(N)-3) + 30).

which expresses that for any call to hanoi(N,T1,T2,T3), a lower (resp. upper)

bound on the number of resolution steps performed by the computation is 2n−3 +2

(resp. 2n−3 + 30), where n = nat(N).

The analysis infers 2n+1 − 2 as both upper and lower bound cost function for

n � 1. The output of the assertion checking considering this result is (see Fig. 11):

:- false pred hanoi(N, , ,)

: intervals(nat(N),[i(1,1),i(5,inf)])

+ costb(steps,2**(nat(N)-3) + 2, 2**(nat(N)-3) + 30).

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000042

194 P. Lopez-Garcia et al.

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

nat(N)

st
ep

s

upper-bound specification

upper/lower bound analysis

lower-bound specification

checked falsefalse

Fig. 11. Resource usage functions for hanoi: Specification and analysis results.

:- checked pred hanoi(N, , ,)

: intervals(nat(N),[i(2,4)])

+ costb(steps,2**(nat(N)-3) + 2, 2**(nat(N)-3) + 30).

which express that for n ∈ [2, 4], the specification given by the assertion is met,

while for n ∈ [1, 1] ∪ [5,∞] it is never met. The real interval verifying 2n−3 + 2 �
2n+1 − 2 � 2n−3 + 30 is approximately [1.09311, 4.09311], and the largest interval of

natural numbers included in it, and in the interval expressed in the precondition

of the specification, is [�1.09311� , �4.09311�] = [2, 4]. Therefore, the result obtained

from the comparison is exact, in the context of the specification and the � domain.

Logarithmic function approximatio. Assume that we have to perform the comparison

f(x) � g(x), where any of the two functions f or g is logarithmic. In this case, by

Lemma 3, we can replace such functions by upper or lower bounds on them,

depending on the case, to obtain sufficient conditions. For example, given the

logarithmic function log(h(x)), our approach will use h(x) as an upper bound

on it.

Thus, log(h(x)) � g(x) would be replaced by the sufficient condition h(x) � g(x).

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000042

Interval-based resource usage verification 195

simple_log(N, N) :-
N=<1,!.

simple_log(N, S) :-
N>1,
N1 is N/2,
simple_log(N1,S1),
S is S1 + N.

Fig. 12. A simple example with logarithmic cost.

Example 10

Consider the program in Figure 12 that calculates the sum N+N/2+N/22 + . . .+1,

given N as input. Consider the following assertion:

:- check pred simple log(N,) + costb(steps, 0, 3000).

in order to find intervals of possible sizes of N for which the number of resolution

steps of any call to simple log(N,) will be less or equal than 3, 000. Let n = nat(N),

the analysis infers that the cost of a call to this predicate will be upper/lower bounded

by log2(
n
8
) + 4. With this information, the assertion checking process returns the

following two assertions:

:- check pred simple log(N,)

: intervals(nat(N),[i(23969,inf)])

+ costb(steps,0,3000).

:- checked pred simple log(N,)

: intervals(nat(N),[i(0,23968)])

+ costb(steps,0,3000).

which expresses that for n � 23, 968 the specification given by the assertion is met,

while for n > 23, 969 the assertion cannot be proved nor disproved. This result is

correct but obviously it is an approximation.

4.4 Checking additional roots for non-polynomial functions

In this section, we describe a post-process that ensures the correctness of the function

comparison approach that we have presented so far, for the cases in which there are

functions that have been approximated by polynomials, e.g., exponential functions,

for which generally the number of roots is unknown.

Consider the comparison operator <f described in Section 4.1, in particular, Step 1

of Figure 9, where we define f(x) = Ψ2(x)−Ψ1(x). Assume that we approximate f(x)

by a polynomial P (x) and find the non-negative real roots of P (x), say x′1, . . . , x
′
k .

Then, x′1, . . . , x
′
k might not include all the non-negative real roots of f(x), denoted

x1, . . . , xm in Step 2.

To ensure that there is no other root of f(x) inside any of the computed

intervals for P (x), i.e., [0, x′1), (x
′
1, x
′
2), . . . , (x

′
k−1, x

′
k), (x

′
k,∞), we proceed as follows.

We first consider all the intervals but the last one (x′k,∞), i.e., let IS ′ =

{[0, x′1), (x′1, x′2), . . . , (x′k−1, x
′
k)}, and IS ′′ = {[�a� , �b�] | (a, b) ∈ IS ′}. First, we check

that:

∀I ∈ IS ′′ : (∀n ∈ I : f(n) > 0)

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000042

196 P. Lopez-Garcia et al.

by enumerating the finite number of values, i.e., natural numbers, in each interval

I . It is always possible of course to give up and return unknown if this number is

above a certain threshold, or use the procedure below.

However, in the last interval (x′k,∞), we obviously have to use a different procedure

to ensure whether a function is indeed always bigger than the other. Our procedure

uses a set of syntactic rules to compare the two functions Ψ1(x) and Ψ2(x) together

with a constraint x > x′k , which expresses that the comparison only holds from the

largest root to infinity. More specifically, we have implemented a modification of

the comparison algorithm in (Albert et al., 2010, 2015). Note that we only use such

comparison algorithm for this very particular case, since it can be given constraints

of the form x > c, where c is a constant, which represents the interval (c,∞) in

our approach. If such comparison returns true, then it is ensured that one of the

functions to compare is greater than the other, in the context of the given constraints;

otherwise, nothing can be ensured. Thus, such a comparison is complementary to

ours for this particular case, i.e., checking the last interval already computed by

our approach, when non-polynomial functions are approximated by polynomials.

However, we do not use it for anything else, since, among other things, it cannot

infer preconditions involving intervals for which one function is greater or smaller

than the other, as our approach does.

In addition, we also use the derivatives of the functions, which tend to be simpler

and easier to verify. In particular, we exploit the fact that if Ψ1(x) < Ψ2(x) on x = a,

then such functions will never intersect for all x > a as long as their derivatives

satisfy Ψ′1(x) < Ψ′2(x) for all x > a.

Although our algorithm is not complete, it is correct in the sense that when

checking Ψ1(x) < Ψ2(x), if the algorithm returns true, then for some x′k , such

inequality holds for all x ∈ (x′k,∞). If this cannot be ensured by our algorithm, then

the algorithm returns unknown.

4.5 Safety of the approximation

The roots obtained for function comparison are in some cases approximations

of the actual roots. The errors in approximations come from two sources: (a) the

numerical method for root calculation of polynomials, and (b) the difference between

the original non-polynomial function and its polynomial approximant. In any case,

we must guarantee that their values are safe, in the sense that they can be used

for verification purposes, in particular, for proving sufficient conditions 1 and 2 in

Corollary 1. In turn, such conditions depend on the comparison operators <f and

�f already described. To this end, the concept of safety of the roots is meaningful

in the context of a given comparison operator. Consider for example operator <f ,

and Steps 1 and 2 of its definition in Figure 9, assuming that x1, . . . , xm are exact

roots of function f(x).

Definition 8

Let f(x) be a continuous function such that Dom(f) ⊆ �, and let X =

{x1, . . . , xm} be the set of its exact non-negative real roots. Let IS =

{[0, x1), (x1, x2), . . . , (xm−1, xm), (xm,∞)} such that for any I ∈ IS either ∀x ∈ I :

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000042

Interval-based resource usage verification 197

f(x) > 0 or ∀x ∈ I : f(x) < 0. For any root xi ∈ X, 1 � i � m, there are two

intervals that have xi as an endpoint: (a, xi), where a = xi−1 or a = 0, and (xi, b),

where b = xi+1 or b = ∞. We then define the concept of safe approximation as

follows. For any root xi ∈ X, we say that x′i is a safe approximation of xi for interval

(a, xi), where a = xi−1 or a = 0, if a < x′i � xi. Similarly, x′i, where 1 � i � m− 1, is

a safe approximation of xi for interval (xi, xi+1) if xi � x′i < xi+1, and x′m is a safe

approximation of xm for interval (xm,∞) if xm � x′m.

In the context of this definition, given any interval I such that ∀x ∈ I : f(x) > 0,

it is clear that if we replace any endpoint (or both) of I by safe approximations for

I , we obtain a smaller interval I ′, and it holds that ∀x ∈ I ′ : f(x) > 0.

For example, in Step 4 of Figure 9, it holds that ∀I ∈ IS2 : (∀x ∈ I : f(x) > 0),

which implies that ∀I ∈ IS2 : (∀x ∈ I : Ψ1(x) < Ψ2(x)). Thus, if we replace the

endpoints of the intervals in IS2 by safe approximated roots for them, we can ensure

that, if IS is the result of <f (Ψ1,Ψ2, S), then ∀I ∈ IS : (∀n ∈ I : (Ψ1(n) < Ψ2(n))).

A similar reasoning can be done for operator �f .

When we say that we safely check a given condition, we mean that we possibly

use safe approximated roots for building intervals for which our algorithm says that

the condition holds, and thus such intervals may be smaller than the ones for which

the condition actually holds. In addition, our verification approach works with the

approximations of the concrete semantics and safely checks sufficient conditions to

prove or disprove program partial correctness and incorrectness. This implies that

our approach may infer stronger sufficient conditions.

Assume for example that we want to check whether ∀x ∈ S : Φu(x) � Φu
I (x),

where Φu and Φu
I are resource usage bound functions, the former is part of the

result of program analysis and the latter appears in an assertion declared in the

program. This check is part of the sufficient condition 1 in Corollary 1. In this case,

we can use the operator �f (Φu,Φu
I , S), which defines f(x) = Φu

I (x)− Φu(x). Assume

that ∀x ∈ S : f(x) � 0. Then, it holds that ∀x ∈ S : Φu(x) � Φu
I (x). Since �f may

use safe approximated roots, it may return a set S ′ smaller than S , i.e., S ′ ⊂ S .

Assume also that Φl
I is not given in the assertion, meaning that the specification

does not state any lower bound for the resource usage, i.e., the lower endpoint of any

resource usage interval is 0, which means that ∀x ∈ S : Φl
I (x) � Φl(x) is true. Thus,

if ∀x ∈ S : f(x) � 0, we can state that sufficient condition 1 of Corollary 1 holds.

Similarly, assume that we use <f (Φu
I ,Φ

l , S), which defines f(x) = Φl(x) − Φu
I (x).

Then, we can say that ∀x ∈ S : Φu
I (x) < Φl(x) if ∀x ∈ S : f(x) > 0, proving

that sufficient condition 2 of Corollary 1 holds. We can reason similarly in the

comparisons involving a lower bound in the assertion, i.e., Φl
I . Thus, we focus

exclusively on checking that ∀x ∈ S : f(x) > 0 or ∀x ∈ S : f(x) � 0, where f(x) is

conveniently defined in each case.

We now focus on a method we propose for obtaining safe approximated roots.

Assume that the exact roots of function f(x) are x1, ..., xm, and that x′1, ..., x
′
m are

approximated roots obtained by using the techniques already explained, so that for

each approximated root x′i, 1 � i � m, there is a value ε such that xi ∈ [x′i− ε, x′i + ε].

Consider an interval I for which we need to ensure that ∀x ∈ I : f(x) > 0. Assume

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000042

198 P. Lopez-Garcia et al.

f(x)

f(xsafe)

xsafe

f(xi) = 0x′
i + κ

e′ = f(x′
i + κ)

x′
i

e = f(x′
i)

Fig. 13. Case 1. xi > x′i (since e′ > e). xsafe is a safe approximated root of xi.

that I = (x′i, b) for some 1 � i � n and some endpoint b. In this case, the condition

for x′i to be a safe root of xi for I is xi � x′i. Then, we first determine the actual

relative position of x′i and xi, and, if it is not compatible with condition xi � x′i, i.e.,

if x′i is “to the left” of xi, then we start an iterative process that increments x′i by

some 0 < δ < 1 so that after m iterations we have that x′′i = x′i + m δ, and x′′i is a

safe root of xi for I . We can reason similarly for the case in which I = (b, x′i). In this

case, if x′i is “to the right” of xi, then we start an iterative process that increments

x′i by some −1 < δ < 0, so that x′′i is a safe root of xi. This is explained in more

detail in the rest of this section.

Determining the relative position of the exact root. To determine the relative position

of the exact root xi and its approximated value x′i, we use the gradient of f(x) around

x = x′i. For determining the gradient, we use the values of e = f(x′i) and e′ = f(x′i+κ),

with κ > 0 a relatively small number. Whether the approximated root is greater or

smaller than the exact root depends on the following conditions:

1. if e < 0 and e′ > e then xi > x′i
2. if e > 0 and e′ > e then xi < x′i
3. if e > 0 and e′ < e then xi > x′i
4. if e < 0 and e′ < e then xi < x′i

From Figure 13, we can see the rationale behind the first case. If e′ > e, then f(x)

is increasing, but, since e < 0, then f(x) > 0 can only occur for values of x greater

than x′i. The other cases follow an analogous reasoning.

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000042

Interval-based resource usage verification 199

Iterative process for computing the safe root. Once we have determined the relative

position of the exact root xi and its approximated value x′i, we set up an appropriate

value for δ. If we have to ensure that xi � x′i but it actually holds that xi > x′i, then

we take 0 < δ < 1 so that we iterate on the addition x′′i = x′i + δ until f(x′′i) > 0.

In this case, the iteration goes to the right. Such an iteration is apparent in the

following pseudo-code:

1: xsafe ← x′i
2: while f(xsafe) < 0 do xsafe ← xsafe + δ

3: end while

4: return xsafe

Conversely, if we have to ensure that x′i � xi but it actually holds that x′i > xi,

then we take −1 < δ < 0 so that the iteration goes to the left.

Our approach ensures that there are no other roots of f(x) between x′i and xsafe.

As already said, we approximate f(x) by a polynomial P (x), and the techniques we

use can find all the roots of polynomials. If f(x) is not a polynomial, then f(x) can

have more roots than P (x), but we use the techniques described in Section 4.4 to

deal with this possible case and ensure that there are no additional roots inside the

inferred intervals. In addition, as already said, based on the sign of the gradient, we

infer whether f(x) is increasing or decreasing. But we also check this after computing

xsafe: if the derivative of f(x) is positive (resp. negative) between x′i and xsafe, then

f(x) is increasing (resp. decreasing) between x′i and xsafe, which implies that there

are no other roots of f(x) between x′i and xsafe.

Example 11

Consider the following assertion for the classical fibonacci program:

:- check pred fib(N,F) : (nat(N), var(F))

+ cost(ub, steps, exp(2, nat(N))-1000).

which expresses that for any call to fib(N,F) with the first argument bound to a

natural number and the second one a free variable, an expected upper bound on

the number of resolution steps performed by its whole computation is given by the

function Φu
I (x) = 2x − 1000, where x is the size of the first argument N. Since such

argument is a natural number the size metric used for it is its value.

The lower bound inferred by the static analysis is Φl(x) = 1.45 × 1.62x − 1. The

intersection of Φl(x) and Φu
I (x) occurs at x ≈10.22. However, the root obtained by

our root finding algorithm is x ≈ 10.89. By doing an iterative approximation from

10.89 to the left, we finally obtain a safe approximate root of x ≈10.18.

As already said, and this example illustrates, usually cost functions depend on

variables that range over natural numbers. For this reason, in this case, we will

take the closest natural number to the left or right of the safely approximated root

computed by the iterative algorithm described above, depending on the gradient,

to obtain a safe value in the domain of the resource usage function. Thus, in this

example, we will take the value 10 for x.

It turns out that the analysis also infers the same cost function as both a lower

and upper bound (i.e., it infers the exact function). Thus, the upper bound cost

function is given by Φu(x) = 1.45 × 1.62x − 1.

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000042

200 P. Lopez-Garcia et al.

Once the interval endpoints have been computed, we can reason as follows: to

the left of the safe root x = 10, the cost upper bound declared in the specification

given by the check assertion is less than the (safe) lower bound inferred by the

analysis, therefore, the assertion is false in the interval [0, 10]. Since in this example

we are dealing with exponential functions, we also have to verify every point in

such interval, as already explained in Section 4.4. Moreover, to the right of the safe

root x = 10, the cost upper bound declared in the specification is greater than the

(safe) upper bound inferred by the analysis, and therefore the assertion is true in

the interval [11,∞]. Our algorithm from Section 4.4 also verifies that the functions

never intersect in such interval, and thus we can ensure that the specification is met

in it. Finally, the output of our assertion checking algorithm for the fibonacci

program is:

:- false pred fib(N,F) : intervals(nat(N), [i(0,10)])

+ cost(ub, steps, exp(2,nat(N))-1000).

:- checked pred fib(N,F) : intervals(nat(N), [i(11,+inf)])

+ cost(ub, steps exp(2,nat(N))-1000).

meaning that the system has proved that the assertion is false for values of the input

argument N in the interval [0, 10], and true for N in the interval [11,∞). Thus, the

system infers a precondition, involving an interval of natural numbers, on which the

assertion can be proved false, and another precondition, involving the rest of the

range of the natural numbers, on which it can be proved true.

4.6 Comparing summation functions

Dealing with summation functions can be important in the analysis of recursive

programs, and hence of imperative programs that contain loops. However, the

function comparison operation is not straightforward when at least one of the

operands contains a summation function, even in the case in which other operands

are just simple arithmetic functions.

A summation cost function C is an expression of the form C(n) =
∑n

i=a f(i),

where a, n ∈ �, and f is a cost function. Our approach consists in transforming it

into an equivalent closed form function Ct, i.e., an expression that does not contain

any subexpressions built by using the
∑

operand. Instead, Ct is built by using only

elementary arithmetic functions, e.g., constants, addition, subtraction, multiplication,

division, exponential, or even factorial functions. Such transformation is based on

finite calculus Gleich (2005). The closed form function Ct can be a polynomial,

but also other non-polynomial function. Thus, the set of functions that can be

represented as summation expressions is a superset of the functions that can be

represented as polynomials. Finally, we replace the summation cost function C

by its closed form transformation Ct, and use the function comparison techniques

explained in the previous sections.

Prior to explaining our algorithm for obtaining Ct, we provide some necessary

background. We start by recalling the relation between infinite calculus and finite

calculus, focusing on the concepts of derivative and antiderivative functions.

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000042

Interval-based resource usage verification 201

Relating finite and infinite calculus. In infinite calculus, the derivative of a function

f(x), denoted d
dx
f(x) or f′(x), is defined as d

dx
f(x) = limh→0

f(x+h)−f(x)
h

. A similar

concept is defined in finite calculus for a discrete function f(x), the discrete derivative,

denoted Δf(x), by assuming discrete increments h for variable x. Since the closest

we can get to 0 is 1, in the limit, i.e., h = 1, we obtain the following definition.

Definition 9

The discrete derivative of function f(x) is Δf(x) = f(x + 1)− f(x).

In infinite calculus, if d
dx
F(x) = f(x), then we say that F(x) is an antiderivative

function of f(x). For any constant c, F(x) + c, is also an antiderivative of f(x).

Since the number of antiderivatives of f(x) is infinite, we denote the class of such

antiderivatives F(x) + c as
∫
f(x) dx, which is also called the indefinite integral

of f(x). Also, the definite integral of f(x) over the interval [a, b] is denoted as∫ b

a
f(x) dx. According to the fundamental theorem of calculus, if f(x) is a real-

valued continuous function on [a, b] and F(x) is an antiderivative of f(x) in [a, b],

then
∫ b

a
f(x) dx = F(x)|ba = F(b)− F(a). Similarly, in finite calculus, if ΔF(x) = f(x),

then F(x) is a discrete antiderivative of f(x), and
∑

f(x) dx denotes the discrete

indefinite integral of f(x), i.e., F(x) + c, where c is an arbitrary constant. The

following definition allows extending the analogy.

Definition 10

The discrete definite integral of f(x) over the discrete interval [a, b], denoted as∑b
a f(x) dx, is defined as:

b∑
a

f(x) dx = F(x)|ba = F(b)− F(a)

where F(x) is a discrete indefinite integral of f(x), i.e., F(x) =
∑

f(x) dx. Then, we

get the following result, which makes it possible to transform a summation into a

definite integral, and further into a closed form function.

Theorem 3

The fundamental theorem of finite calculus is:

b∑
x=a

f(x) =

b+1∑
a

f(x) dx

Proof

Let F(x) be a discrete indefinite integral of f(x), i.e., ΔF(x) = f(x). According to

Definition 9, we have that ΔF(x) = F(x + 1)− F(x) = f(x). Then:

∑b
x=a f(x) =

∑b
x=a(F(x + 1)− F(x))

= F(a + 1)− F(a) + F(a + 2)− F(a + 1) + · · ·+ F(b)− F(b− 1) + F(b + 1)− F(b)

= F(b + 1)− F(a)

=
∑b+1

a f(x) dx (according to Definition 10) �

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000042

202 P. Lopez-Garcia et al.

The falling power in finite calculus is defined as:

x0 = 1
xm = (x− (m− 1)) xm−1 if m > 0

Equivalently, if m > 0, then xm = x (x− 1) (x− 2) · · · (x− (m− 1)). For example:

x1 = x, x2 = x (x− 1), x3 = x (x− 1) (x− 2), and so on.

The use of the falling power allows to define derivative and integration rules in

finite calculus that are analogous to the corresponding ones in infinite calculus. For

example, in infinite calculus, given the function f(x) = xm, its derivative is given by
d
dx

f(x) = m xm−1, and its indefinite integral is
∫
f(x) dx = 1

m+1
xm+1 + c, where c is

an arbitrary constant. The rules for the falling power in finite calculus are analogous:

given a discrete function f(x) = xm, its derivative is given by Δf(x) = m xm−1, and

its discrete indefinite integral is
∑

f(x) dx = 1
m+1

xm+1 + c.

Table 3 provides a set of rules for computing integrals and derivatives in finite

calculus, including the ones already seen for the falling power.

We can perform a translation from regular powers into falling powers, which is

needed prior to applying some rules in Table 3, by using the following theorem:

xm =

m∑
k=0

{
m

k

}
xk (1)

where
{
m
k

}
is a Stirling number of the second kind, which represents the number

of ways of partitioning n distinct objects into k non-empty sets Gleich (2005). For

example:

x0 = x0 since by definition x0 = 1 and x0 = 1, but also:

x0 =
{

0
0

}
x0 = 1 x0

x1 =
{

1
0

}
x0 +

{
1
1

}
x1 = 0 x0 + 1 x1 = x1

x2 =
{

2
0

}
x0 +

{
2
1

}
x1 +

{
2
2

}
x2 = x2 + x1

x3 =
{

3
0

}
x0 +

{
3
1

}
x1 +

{
3
2

}
x2 +

{
3
3

}
x3 = x3 + 3x2 + x1

Thus, the Δf(x) and
∑

f(x) dx functions in finite calculus are analogous to

the derivative (d
dx
f(x)) and antiderivative (

∫
f(x) dx) functions in infinite calculus,

respectively. Note also, that the integer number 2 in finite calculus is analogous to

Euler’s number e in infinite calculus, in the sense that Δ2x = 2x and d
dx
ex = ex, as

well as
∑

2x dx = 2x + c and
∫
ex dx = ex + c.

Our algorithm for rewriting summations. Based on Theorem 3 and Definition 10,

given a summation of the form
∑b

x=a f(x), where a, b ∈ �, we rewrite it as a definite

integral in finite calculus:6

b∑
x=a

f(x) =

b+1∑
a

f(x) dx = F(b + 1)− F(a) (2)

6 For simplicity of exposition we assume that a, b ∈ �, but our algorithm can be also applied even
when a and b are arithmetic expressions, i.e., functions a, b : �→ �.

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000042

Interval-based resource usage verification 203

Table 3. A set of finite calculus rules used in our approach

#Rule f(x) Δf(x) Σf(x)dx

1 xm m xm−1 1
m+1

xm+1 + c

2 2x 2x 2x + c

3 ax (a− 1) ax 1
a−1

ax + c

4 amx+n (am − 1) amx+n 1
am−1

amx+n + c

5 u(x) + v(x) Δu(x) + Δv(x) Σu(x) dx + Σv(x) dx + c

6 k u(x) k Δu(x) k Σu(x) dx + c

7 u(x) v(x) v(x + 1) Δu(x) + u(x) Δv(x)

8 u(x) Δv(x) u(x) v(x)− Σv(x + 1) Δu(x) dx + c

where F(x) is the indefinite integral function of f(x), i.e., F(x) =
∑

f(x) dx, and is

obtained by using the integration rules provided in the fourth column of Table 3

for different classes of functions f(x), specified in the second column of the table.

The third column of the table shows some rules for obtaining the derivatives of

the functions in the second column, which are needed for the application of the

integration rule 8 provided in the fourth column, row 8.

The rules in Table 3 are applied to the resulting expression until it does not

contain any integral nor summation. Note that u− v and u
v

can rewritten as u+(−v)
and u 1

v
, respectively. However, we use the corresponding specialized rules for the

subtraction and division.

For illustration purposes, we include here a simple and a more complex example

of the application of such rules.

Example 12

In order to find a closed form of
∑a

x=1 2x, we proceed as follows:

1. Rewrite it as
∑a+1

1 2x dx, according to Theorem 3.

2. Compute the corresponding discrete indefinite integral
∑

2x dx. This is done by

using integration rule 2, so that
∑

2x dx = 2x. Note that we omit the constant c

that appears in the rules of Table 3 since it is not relevant for the final result.

3. By using Definition 10 and the previous results, we have that:∑a
x=1 2x =

∑a+1
1 2x dx (Theorem 3)

= 2x|a+1
1 (Definition 10 and integration rule 2)

= 2a+1 − 21 = 2a+1 − 2

Example 13

A closed form of
∑a

x=1 x 2a−x is obtained as follows:

1. Rewrite it as
∑a+1

1 x 2a−x dx (Theorem 3).

2. Compute the corresponding discrete indefinite integral
∑

x 2a−x dx by using

integration by parts rule 8, making u(x) = x and Δv(x) = 2a−x dx. Thus, Δu(x) =

1 x0 dx = dx (derivative rule 1), and v(x) =
∑

2a−x dx = 1
2−1−1

2a−x = −2 2a−x

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000042

204 P. Lopez-Garcia et al.

(integration rule 4). Now, we have:∑
x 2a−x dx = x (−2 2a−x)−

∑
−2 2a−(x+1) dx

= −x 2a+1−x −
∑
−2a−xdx = −x 2a+1−x +

∑
2a−xdx

= −x 2a+1−x + (−2 2a−x) (integration rule 4, as before)

= −x 2a+1−x − 2a+1−x = −2a+1−x (x + 1)

3. By Definition 10 and the previous result, we have that:∑a+1
1 x 2a−x dx = −2a+1−x (x + 1)|a+1

1

= −2a+1−(a+1) ((a + 1) + 1) + 2a+1−1 (1 + 1) = −20 (a + 2) + 2a 2

= 2a+1 − a− 2

4. Thus,
∑a

x=1 x 2a−x =
∑a+1

1 x 2a−x dx = 2a+1 − a− 2.

Termination of the algorithm. The proof of termination of the recursive application

of the rules of Table 3 is based on: (a) in any of the derivative rules (third column),

the depth of the resulting expression, with respect to the derivative operator Δ, is

always 0 (rules 1–4) or decreases by 1 (rules 5–7); and (b) in any of the integration

rules (fourth column), the depth of the resulting expression, with respect to the

integral operator Σ dx, is always 0 (rules 1–4) or decreases by 1 (rules 5, 6, and 8).

In addition, in integration rule 8, we apply the derivative rules to the polynomial

part, so that eventually, the depth of the resulting expression will shrink down to a

constant.

Finally, as already said at the beginning of this section, our approach for

comparing summation functions consists in transforming any summation cost

function C into an equivalent closed form cost function Ct that does not contain any

summation subexpressions, and then applying the comparison techniques explained

in the previous sections to the resulting closed form functions. In general, such

transformation is an undecidable problem. However, Table 3 provides a decidable

fragment of summation expressions, which cover a large class of the functions that

are produced by the analysis that we use. In addition, we detect functions that are

not covered by our approach and report them to the user.

4.7 Multiple variable cost function comparison

Given two resource usage functions Ψ1(n̄) and Ψ2(n̄), where n̄ is the abbreviation of

k variables n1 . . . nk representing input data sizes, we want to know which values of n̄

meet the constraint Ψ1(n̄) � Ψ2(n̄), so that we can view this problem as a constraint

satisfaction problem.

If the functions involved are linear functions the problem can be solved by using

standard constraint programming techniques. In our implementation, we use the

Parma Polyhedra Library to compute the solutions in this case. However, constraint

programming cannot solve the problem for polynomial functions in general.

Unlike the case of single-variable cost functions, where we have numerically

bounded intervals as (input data size) preconditions, in case of multiple-variable cost

functions, we need to be able to express relations between variables as preconditions.

For example, given a function x + y − 10 � 0, all combinations of values for x and

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000042

Interval-based resource usage verification 205

Table 4. Sufficient conditions checked by our general verification process for different

scenarios depending on the available bounds

Specification

Upper Lower Upper and lower

bound (Sub) bound (Slb) bound

Analysis Upper c1 → T , where c3 → F , where c3 → F

bound (Aub) c1 ≡ Sub � Aub c3 ≡ Slb > Aub ¬c3 → C

Lower c2 → F , where c4 → T c2 → F

bound (Alb) c2 ≡ Sub < Alb c4 ≡ Slb � Alb ¬c2 → C

Upper and c1 → T c4 → T c1 ∧ c4 → T

lower c2 → F c3 → F c2 ∨ c3 → F

bound ¬c1 ∧ ¬c2 → C ¬c3 ∧ ¬c4 → C ¬(c1 ∧ c4) ∧ ¬(c2 ∨ c3)→ C

y that satisfy the inequality cannot be concisely represented as intervals in the

preconditions. Therefore, instead of using only intervals represented as pairs of

numbers, we use arithmetic expressions that represent more general size constraints.

Table 4 summarizes the sufficient conditions used by our general verification process,

which can be applied to both multi- and single-variable cost functions, showing the

size constraints that need to be checked for different cases, depending on whether

the specification provides an Upper bound cost function (denoted as Sub), a Lower

bound cost function (Slb), or both (columns 2–, respectively). A symbol representing

the result of the verification process (T , F or C), when such size constraints are

true, is shown at the right-hand side of the implication symbol (→), meaning that

the specification has been verified (T), is false (F), or it cannot be proved whether

the specification is true or false. Short names for the size constraints (c1 to c4) are

also used in order to achieve a compact representation. The first column (Analysis)

divides the table into three different scenarios, each one corresponding to a row,

depending on whether the available analysis is able to infer upper-bound cost

functions, lower bounds, or both. As already explained, in this work, we use the

parametric resource analysis integrated in CiaoPP (see Navas et al., 2007; Serrano

et al., 2014 and references therein), which infers both upper and lower bounds.

Note that the conditions c1 ∧ c4 and c2 ∨ c3 given in the last column and row of

Table 4, correspond to sufficient conditions 1 and 2 of Corollary 1, respectively. Such

conditions assume that both lower- and upper-bound cost functions are available

for both analysis and specification. Either condition c1 or c4 in isolation is also

equivalent to sufficient condition 1 of Corollary 1 if default, safe values for the

corresponding missing bounds are assumed. The same applies to conditions c2 and

c3, which are equivalent to sufficient condition 2 of Corollary 1.

Example 14

Consider the inc append/3 predicate in Figure 14, which is an extension of the

classical append/3, also concatenating two lists of numbers, A and B, but which

also increments by 1 all the elements of the second list (B) beforehand. The user

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000042

206 P. Lopez-Garcia et al.

:- check pred inc_append(A,B,C) + (cost(ub , steps , 2*length(A)-10)).

inc_append(A, B, C) :-
inc_list(B, B1),
append(A, B1, C).

inc_list([], []).
inc_list([E|R], [E1|T]) :-

E1 is E + 1,
inc_list(R, T).

append([],L,L).
append([A|R],S,[A|L]) :-

append(R,S,L).

Fig. 14. Append with increment example.

assertion specifies that the upper bound on the cost of the program, in terms of the

number of resolution steps, is 2 ∗ length(A)− 10, where A is the first list to append.

The analysis infers both an upper and a lower bound cost function, which in this

case both bounds coincide, namely, length(B) + length(A) + 3. The output of the

assertion checking is

:- false pred inc append(A,B,C)

: intervals([[lt(-13,-length(A)+length(B))]])

+ cost(ub,steps,2*length(A)-10).

:- checked pred inc append(A,B,C)

: intervals([[leq(13,length(A)-length(B))]])

+ cost(ub,steps,2*length(A)-10).

meaning that when −13 < −length(A) + length(B) the assertion is false, and when

13 � length(A)− length(B) the assertion is correct.

5 Generic implementation and experimental results

In order to assess the accuracy and efficiency (as well as the scalability) of the resource

usage verification techniques presented, we have implemented and integrated them in

by extending the function comparison capabilities of the Ciao/CiaoPP framework.

Table 5 shows some experimental results obtained with our prototype

implementation on an Intel Core i5 2.5 GHz with 2 cores, 10GB 1333 MHz DDR3

of RAM, running MacOS Sierra 10.12.6. The column labeled Program shows the

name of the program to be verified, the upper (ub) and lower (lb) bound resource

usage functions inferred by CiaoPP’s analyzers, the input arguments, and the size

measure used.

The scalability of the different analyses required is beyond the scope of this paper.

We will just mention that in the case of the core resource analysis, i.e., the one

that processes the HC IR (to which other languages are translated into), and infers

cost functions, its scalability follows generally from its compositional nature. Our

study focuses on the scalability of the assertion comparison process. To this end,

we have added a total number of 390 assertions to several programs that are then

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000042

In
terva

l-b
a
sed

reso
u
rce

u
sa

g
e

verifi
ca

tio
n

2
0
7

Table 5. Results of the interval-based static assertion checking integrated into CiaoPP

Time (ms)

Program+ Analysis info + AvT ID Assertion Verif. result Tot Avg

Fibonacci A1 :- pred fib(N,R) F in [0, 10] 106.4 35.4

lb,ub: 1.45 ∗ 1.62x +cost(ub,steps, T in [11,∞]

+0.55 ∗ −0.62x − 1 exp(2,nat(N))-1000).

x = nat(N) A2 :- pred fib(N,R) F in [0, 10] ∪ [15,∞]

AvT= 1402.6 ms
65 a = 21.5ms

a + (cost(ub,steps, T in [11, 13]

exp(2,nat(N))-1000), C in [14, 14]

cost(lb,steps,

AvT= VTime
#Asser exp(2,nat(N))-10000)).

A3 :- pred fib(N,R) F in [1, 10]

:(intervals(nat(N),[i(1,12)])) T in [11, 12]

+ (cost(ub,steps,

exp(2,nat(N))-1000),

cost(lb,steps,

exp(2,nat(N))-10000)).

Naive Reverse B1 :- pred nrev(A,B) F in [0, 3]

59.1

29.5

lb,ub: 0.5x2 + 1.5x + 1 + (cost(lb,steps,length(A)), T in [4,∞]

x = length(A) cost(ub,steps,

AvT= 1171.5 ms
54 a = 21.6ms

a exp(length(A),2))).

B2 :- pred nrev(A, 1) F in [0, 0] ∪ [17,∞]

+ (cost(lb, steps, length(A)), T in [1, 16]

cost(ub, steps, 10*length(A))).

Quick Sort C1 :- pred qsort(A,B) F in [0, 2] 160.8 80.4

lb: x + 5 + cost(ub, steps, C in [3,∞]

ub: (
∑x

j=1 j2
x−j) + x2x−1 exp(length(A),2)).

+2 ∗ 2x − 1 C2 :- pred qsort(A,B) C in [0,∞]

x = length(A) + cost(ub, steps,

AvT= 1028.2 ms
56 a = 18.3ms

a exp(length(A),3)).

https://doi.org/10.1017/S1471068418000042 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1471068418000042

2
0
8

P
.
L

o
p
ez-G

a
rcia

et
a
l.

Table 5. Continued

Time (ms)

Program+ Analysis info + AvT ID Assertion Verif. result Tot Avg

Client D1 :- pred main(Op, I, B) C in [1, 7] 31.8 10.6

ub: 8x + cost(ub, bits received, T in [0, 0] ∪ [8,∞]

x = length(I) exp(length(I),2)).

AvT= 1682.7 ms
60 a = 28.04ms

a D2 :- pred main(Op, I, B) T in [0,∞]

+ cost(ub, bits received,

10*length(I)).

D3 :- pred main(Op, I, B) T in [1, 10] ∪ [100,∞]

: intervals(length(I),

[i(1,10),i(100,inf)])

+ cost(ub, bits received,

10*length(I)).

Reverse E1 :- pred reverse(A, B) F in [0, 0] 30.0 30.0

lb,ub: x + 2 + (cost(ub, steps, T in [1,∞]

x = length(A) 500 * length(A))).

AvT= 760.9 ms
60 a = 12.6ms

a

Palindrome F1 :- pred palindrome(X,Y) F in [0,∞] 31.5 15.7

lb,ub: x2x−1 + 2 ∗ 2x − 1 + cost(ub,output elements,

x=length(X) exp(length(X),2)).

AvT= 1187.1 ms
52 a = 22.8ms

a F2 :- pred palindrome(X,Y) F in [0, 2] ∪ [5,∞]

+ cost(ub,output elements, T in [3, 4]

exp(length(X),3)).

Powerset G1 :- pred powset(A,B) C in [0, 1] ∪ [17,∞] 35.5 35.5

ub: 0.5 ∗ 2x+1 + cost(ub,output elements, T in [2, 16]

x = length(A) exp(length(A),4)).

AvT= 880.9 ms
49 a = 17.9ms

a

Hanoi H1 :- pred hanoi(A,B,C,D) F in [0, 1] ∪ [5,∞] 121.2 121.2

lb,ub: 2x+1 − 2 + costb(steps, exp(2,nat(A)-3) + 2, T in [2, 4]

x = nat(A) exp(2,nat(A)-3) + 30).

AvT= 1114.6 ms
64 a = 17.41ms

a

https://doi.org/10.1017/S1471068418000042 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1471068418000042

Interval-based resource usage verification 209

Table 6. Comparison of assertion checking times for two methods

Intervals

ID Method [1,12] [1,100] [1,1000] [1,10000]

A3 Root 58.1 64.6 71.7 66.5

Eval 257 256.2 261.1 262.9

D3 Root 11.2 9 8.2 9.3

Eval 39.7 41.5 38.8 55.2

statically checked. Column Program shows an expression AvT = VTime
#Asser

for each

program giving the total time VTime in milliseconds spent by the verification of the

number assertions given by the denominator #Asser, and the resulting average time

per assertion (AvT). A few of those assertions are shown as examples in column

Assertion, where ID is the assertion identifier. Some assertions specify both upper

and lower bounds (e.g., A2 or A3), but others only specify upper bounds (e.g.,

A1 or C1). Also, some assertions include preconditions expressing intervals within

which the input data size of the program is supposed to lie (A3 and D3). The

column Verif. result shows the result of the verification process for the assertions in

column Assertion, which in general express intervals of input data sizes for which

the assertion is true (T), false (F), or it has not been possible to determine whether it

is true or false (C). Column Tot (under Time) shows the total time (in milliseconds)

spent by the verification of the assertions shown in column Assertion and Avg shows

the average time per assertion for these assertions. In all the experiments, in Table 5,

the comparison of resource usage functions was precise, in the sense that the input

data size intervals for which one function is greater, equal or smaller than another

were exact, i.e., coincided with the actual intervals.

Note that, as mentioned before, the system can deal with different types of resource

usage functions: polynomial functions (e.g., Naive Reverse), exponential functions

(e.g., Fibonacci), and summation functions (Quick Sort). In general, polynomial

functions are faster to check than other functions, because they do not need

additional processing for approximation. However, the additional time to compute

approximations is very reasonable in practice. Finally, note that the prototype was

not able to determine whether the assertion C2 in the Quick Sort program is true or

false. This is because of two reasons: (a) the analysis inferred an imprecise upper-

bound cost function, exponential,7 and (b) our approach to finding the data size

intervals based on a transformation for removing summations and an approximation

by polynomials did not cover such function. In some cases, either reason (a) or (b)

in isolation can be the cause for our approach to fail to prove a given assertion.

Even in the case when the cost bound function inferred by the analysis is precise, if

7 This is due to the particular configuration of the analysis used in the experiments. Note, however, that
the CiaoPP system also includes techniques that allow obtaining tighter bounds for divide-and-conquer
programs, and in particular for this benchmark (Debray et al., 1997).

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000042

210 P. Lopez-Garcia et al.

Assertions

pragma check
pragma trust

...

XC Code

int f(int arg){
...

Energy Model

HC IR
Translator

XC
Compiler

Static
Analysis

#pragma true

Static
Comparator

#pragma check

#pragma false

#pragma checked

Inferred

Disproved

Unknown

Proved

Energy Consumption Analysis & Verification Tool

Program

Fig. 15. Specialization of CiaoPP for energy consumption verification in XC programs.

it is too complex, our approach may still fail to find roots and data size intervals,

and hence to prove the assertion.

Table 6 shows assertion checking times (in milliseconds) for different input data

size intervals (columns under Intervals) and for two methods: the one described so

far (referred to as Root), and a simple method (Eval) that evaluates the resource

usage functions for all the (natural) values in a given input data size interval and

compares the results. Column ID refers to the assertions in Table 5. We can see

that checking time grows quite slowly compared to the length of the interval, which

grows exponentially.

Root is expected to be slower than Eval in the comparison of non-polynomial

functions (A3), because Root must look for the functions intersections, and then

must check every value in the intervals to ensure the absence of other roots. This

behavior is not exhibited in this experiment because the intervals encountered by

Root are narrow, and therefore the cost of checking every value in them is negligible.

On the other hand, in the last interval, which grows wider as we increase the input

data size interval, Eval is penalized by the task of checking every value in the

interval, but Root is not penalized because it uses syntactic comparison.

6 Application to energy verification of imperative/embedded programs

As an application of the techniques presented, in this section, we provide an overview

of a prototype tool that we have developed for performing static energy consumption

verification of XC programs running on the XMOS XS1-L architecture. The tool

has been implemented by specializing the CiaoPP general verification framework to

process XC source, LLVM IR Lattner and Adve (2004), and ISA code. Figure 15

shows an overview diagram of the architecture of the tool. Hexagons represent

different tool components and arrows indicate the communication paths among

them. The tool takes as input an XC source program (left part of Fig. 15) that can

optionally contain assertions in a C-style syntax. As explained in Section 1, such

assertions are translated into the Ciao assertion language.

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000042

Interval-based resource usage verification 211

In our tool, the user can choose between performing the analysis at the ISA

or LLVM IR levels (or both). We refer the reader to (Liqat et al., 2016) for an

experimental study that sheds light on the trade-offs implied by performing the

analysis at each of these two levels, which can help the user to choose the level that

fits the problem best.8

The associated ISA and/or LLVM IR representations of the XC program are

generated using the xcc compiler. Such representations include useful metadata. The

HC IR translator component (which will be described in Section 6.1) produces the

internal representation used by the tool, HC IR, which includes the program and

possibly specifications and/or trusted information (expressed in the Ciao assertion

language). The HC IR translator performs several tasks:

1. Transforming the ISA and/or LLVM IR into HC IR.

2. Transforming specifications (and trusted information) written as C-like assertions

(as described in Section 6.2) into the Ciao assertion language.

3. Transforming the energy model at the ISA level Kerrison and Eder (2015),

expressed in JSON format, into the Ciao assertion language. In this specialization,

such assertions express the energy consumed by individual ISA instruction

representations, information which is required by the analyzer in order to

propagate it during the static analysis of a program through code segments,

conditionals, loops, recursions, etc., in order to infer analysis information (energy

consumption functions) for higher-level entities such as procedures, functions,

or loops in the program, as mentioned in Example 1. Figure 4 shows the

transformed energy model in the Ciao assertion language. Each trust assertion

provides information for one machine instruction. The model of the figure is

simple, providing just constant upper and a lower bounds (and which are the

same in most cases), but the bounds given (model for the instruction) can be

functions of input data to the instruction (such as operand sizes) or context

variables (such as voltage or clock speed, previous instruction, pipeline state,

cache state, etc.).

4. In the case that the analysis is performed at the LLVM IR level, the HC IR

translator component produces a set of Ciao assertions expressing the energy

consumption corresponding to LLVM IR block representations in HC IR.

Such information is produced from a mapping of LLVM IR instructions with

sequences of ISA instructions and the ISA-level energy model. The mapping

information is produced by the mapping tool that was first outlined in López-

Garcı́a (2014) (Section 2 and Attachments D3.2.4 and D3.2.5) and is described

in detail in Georgiou et al. (2017).

Then, the CiaoPP parametric static resource usage analyzer (Navas et al.,

2007, 2008; Serrano et al., 2014) takes the HC IR, together with the assertions,

which express the energy consumed by LLVM IR blocks and/or individual ISA

8 As a brief summary of the conclusions of Liqat et al. (2016), the ISA level allows somewhat tighter
bounds when the analyzer can generate precise functions, but the LLVM IR level allows the analyzer
to produce precise functions more often, because more structural information is preserved at that
level. Overall, the LLVM IR level emerges as a good compromise.

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000042

212 P. Lopez-Garcia et al.

instructions, and possibly some additional (trusted) information, and processes them,

producing the analysis results, which are expressed also using Ciao assertions. Such

results include energy usage functions (which depend on input data sizes) for each

block in the HC IR (i.e., for the whole program and for all the procedures and

functions in it.). The procedural interpretation of the HC IR programs, coupled

with the resource-related information contained in the (Ciao) assertions, together

allow the resource analysis to infer static bounds on the energy consumption of the

HC IR programs that are applicable to the original LLVM IR and, hence, to their

corresponding XC programs.

The verification of energy specifications is performed by the general component

already described (see Section 1 and Fig. 15), which compares the energy

specifications with the (safe) approximated information inferred by the static resource

analysis, and produces the possible verification outcomes for different input-data

size intervals.

6.1 ISA/LLVM IR to HC IR transformation

In this section, we briefly describe the transformations into the HC IR representation

described in Section 2.2 that we developed in order to achieve the verification tool

presented in Section 1 and depicted in Figure 15. The transformation of ISA code

into HC IR was described in Liqat et al. (2014). We provide herein an overview of

the LLVM IR to HC IR transformation.

LLVM IR programs are expressed using typed assembly-like instructions. Each

function is in SSA form, represented as a sequence of basic blocks. Each basic block

is a sequence of LLVM IR instructions that are guaranteed to be executed in the

same order. Each block ends in either a branching or a return instruction. In order

to represent each of the basic blocks of the LLVM IR in the HC IR, we follow a

similar approach as in the ISA-level transformation (Liqat et al., 2014). However,

the LLVM IR includes an additional type transformation as well as better memory

modelling. It is explained in detail in Liqat et al. (2016). The main aspects of this

process, are the following:

1. Infer input/output parameters to each block.

2. Transform LLVM IR types into HC IR types.

3. Represent each LLVM IR block as an HC IR block and each instruction in the

LLVM IR block as a literal (Si).

4. Resolve branching to multiple blocks by creating clauses with the same signature

(i.e., the same name and arguments in the head), where each clause denotes one

of the blocks the branch may jump to.

The translator component is also in charge of translating the XC assertions to

Ciao assertions and back. Assuming the Ciao type of the input and output of

the function is known, the translation of assertions from Ciao to XC (and back)

is relatively straightforward. Assuming the schema for pred assertions described

in Section 2.2, the Pred field of the Ciao assertion is obtained from the scope of

the XC assertion to which an extra argument is added representing the output of

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000042

Interval-based resource usage verification 213

〈assertion〉 ::= ‘#pragma’ 〈status〉 〈scope〉 ‘:’ 〈body〉
〈status〉 ::= ‘check’ | ‘trust’ | ‘true’ | ‘checked’ | ‘false’

〈scope〉 ::= 〈identifier〉 ‘(’ ‘)’ | 〈identifier〉 ‘(’ 〈arguments〉 ‘)’

〈arguments〉 ::= 〈identifier〉 | 〈arguments〉 ‘,’ 〈identifier〉
〈body〉 ::= 〈precond〉 ‘==>’ 〈cost bounds〉 | 〈cost bounds〉
〈precond〉 ::= 〈upper cond〉 | 〈lower cond〉 | 〈lower cond〉 ‘&&’ 〈upper cond〉
〈lower cond〉 ::= 〈ground expr〉 ‘<=’ 〈identifier〉
〈upper cond〉 ::= 〈identifier〉 ‘<=’ 〈ground expr〉
〈cost bounds〉 ::= 〈lower bound〉 | 〈upper bound〉 | 〈lower bound〉 ‘&&’ 〈upper bound〉
〈lower bound〉 ::= 〈expr〉 ‘<=’ ‘energy nJ’

〈upper bound〉 ::= ‘energy nJ’ ‘<=’ 〈expr〉
〈expr〉 ::= 〈expr〉 ‘+’ 〈mult expr〉 | 〈expr〉 ‘-’ 〈mult expr〉
〈mult expr〉 ::= 〈mult expr〉 ‘*’ 〈unary expr〉 | 〈mult expr〉 ‘/’ 〈unary expr〉
〈unary expr〉 ::= 〈identifier〉

| 〈integer〉
| ‘sum’ ‘(’ 〈identifier〉 ‘,’ 〈expr〉 ‘,’ 〈expr〉 ‘,’ 〈expr〉 ‘)’

| ‘prod’ ‘(’ 〈identifier〉 ‘,’ 〈expr〉 ‘,’ 〈expr〉‘,’ 〈expr〉 ‘)’

| ‘power’ ‘(’ 〈expr〉 ‘,’ 〈expr〉 ‘)’

| ‘log’ ‘(’ 〈expr〉 ‘,’ 〈expr〉 ‘)’

| ‘(’ 〈expr〉 ‘)’

| ‘+’ 〈unary expr〉
| ‘-’ 〈unary expr〉
| ‘min’ ‘(’ 〈identifier〉 ‘)’

| ‘max’ ‘(’ 〈identifier〉 ‘)’

Fig. 16. Syntax of the XC assertion language.

the function. The Precond fields are produced directly from the type of the input

arguments: for each input variable, its regular type and its regular type size are

added to the precondition, while the added output argument is declared as a free

variable. Finally, the Comp-Props field is set to the usage of the resource energy by

using the costb property, which also includes the lower and upper bounds from the

XC energy consumption specification.

6.2 The XC assertion language

The assertions within XC files are essentially equivalent to those of the Ciao

assertion language, but written using a syntax that is closer to standard C notation

and friendlier for C developers. These assertions are transparently translated into

Ciao assertions (Puebla et al., 2000a; Hermenegildo et al., 2012) when XC files are

loaded into the tool. The Ciao assertions output by the analysis are also translated

back into XC assertions and added inline to a copy of the original XC file.

More specifically, the syntax of the XC assertions accepted by our tool is given

by the grammar in Figure 16, where the non-terminal 〈identifier〉 stands for a

standard C identifier, 〈integer〉 stands for a standard C integer, and the non-terminal

〈ground expr〉 for a ground expression, i.e., an expression of type 〈expr〉 that does

not contain any C identifiers that appear in the assertion scope (the non-terminal

〈scope〉).

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000042

214 P. Lopez-Garcia et al.

XC assertions are directives starting with the token #pragma followed by the

assertion status, the assertion scope, and the assertion body. The assertion status can

take several values, including check, checked, false, trust or true, with the same

meaning as in the Ciao assertions.

The assertion scope identifies the function the assertion is referring to, and

provides the local names for the arguments of the function to be used in the body of

the assertion. For instance, the scope biquadCascade(state, xn, N) refers to the

function biquadCascade and binds the arguments within the body of the assertion

to the respective identifiers state, xn, N. While the arguments do not need to be

named in a consistent way w.r.t. the function definition, it is highly recommended

for the sake of clarity. The body of the assertion expresses bounds on the energy

consumed by the function and optionally contains preconditions (the left-hand side

of the ==> arrow) that constrain the argument sizes.

Within the body, expressions of type 〈expr〉 are built from standard integer

arithmetic functions (i.e., +, -, *, /) plus the following extra functions:

• power(base, exp) is the exponentiation of base by exp;

• log(base, expr) is the logarithm of expr in base base;

• sum(id, lower, upper, expr) is the summation of the sequence of the

values of expr for id ranging from lower to upper;

• prod(id, lower, upper, expr) is the product of the sequence of the values

of expr for id ranging from lower to upper;

• min(arr) is the minimal value of the array arr;

• max(arr) is the maximal value of the array arr.

Note that the argument of min and max must be an identifier appearing in the

assertion scope that corresponds to an array of integers (of arbitrary dimension).

6.3 Using the tool for energy verification: Example

In this section, we illustrate the use of the tool described above for the energy

verification application, in a scenario where an embedded software developer has

to decide values for program parameters that meet an energy budget. In particular,

we consider the development of an equalizer (XC) program using a biquad filter.

In Figure 17, we can see what the graphical user interface of our prototype looks

like, with the code of this biquad example ready to be verified. The purpose of an

equalizer is to take a signal, and to attenuate/amplify different frequency bands. For

example, in the case of an audio signal, this can be used to correct for a speaker or

microphone frequency response. The energy consumed by such a program directly

depends on several parameters, such as the sample rate of the signal, and the number

of banks, typically between 3 and 30 for an audio equalizer. A higher number of

banks enables the designer to create more precise frequency response curves.

Assume that the developer has to decide how many banks to use in order to meet

an energy budget while maximizing the precision of the frequency response curves

at the same time. In this example, the developer writes an XC program, where the

number of banks is a variable, say N. Assume also that the energy constraint to be

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000042

Interval-based resource usage verification 215

Fig. 17. Graphical user interface of the prototype with the XC biquad program.

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000042

216 P. Lopez-Garcia et al.

met is that an application of the biquad program should consume less or equal than

122 nJ (nanojoules). This constraint is expressed by the following check assertion:

#pragma check biquadCascade(state,xn,N) :

(1 <= N) ==> (energy nJ <= 122)

where the precondition 1 <= N in the assertion (left-hand side of ==>) expresses that

the constraint should hold when the number of banks is greater than 1.

Then, the developer makes use of the tool by selecting the following menu options,

as shown in the right-hand side of Figure 17: check assertions, for Action Group;

res plai, for Resource Analysis; llvm, for Analysis Level (which will tell the

analysis to take the LLVM IR option by compiling the source code into LLVM

IR and transforming it into HC IR for analysis); source, for Output Language

(the language in which the analysis/verification results are shown, in this case,

the original XC source); and finally, yes for Plot results (in order to obtain a

graphical representation of the results). After clicking on the Apply button below

the menu options, the analysis is performed, which infers a lower and an upper

bound function for the consumption of the program. Specifically, those bounds are

represented by the following assertion, which is included in the output of the tool:

#pragma true biquadCascade(A,B,C) :

(16.502*C+5.445 <= energy nJ && energy nJ <= 16.652*C+5.445)

Then, the verification of the specification, i.e., check assertion, is performed by

comparing the energy bound functions above with the upper bound expressed in the

specification, i.e., 122 nJ, a constant value in this case, as illustrated in Figure 18.

Such figure has been automatically generated by our tool and includes the plots

of both the specification and the analysis results, which contributes to a better

understanding of the results. The x-axis represents the input data size, in this case,

the number of banks given by N, on which the cost function depends, and the

y-axis represents the energy consumption. The flat (blue) region corresponds to

the specification, whereas the sloping green region that lies between two red lines

represents the area bounded by the cost functions automatically inferred by the

analyzer.

As a result of the comparison, the following two assertions are produced and

included in the output file of the tool:

#pragma checked biquadCascade(state,xn,N) :

(1 <= N && N <= 7) ==> (energy nJ <= 122)

#pragma false biquadCascade(state,xn,N):(8 <= N)==>(energy nJ <= 122)

The first one expresses that the original assertion holds subject to a precondition

on the parameter N, i.e., in order to meet the energy budget of 122 nJ, the number

of banks N should be a natural number in the interval [1, 7] (precondition

1 <= N && N <= 7). The second one expresses that the original specification is

not met (status false) if the number of banks is greater or equal to 8.

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000042

Interval-based resource usage verification 217

Fig. 18. Visualization of analysis results and specifications in the tool.

Since the goal is to maximize the precision of the frequency response curves and

to meet the energy budget at the same time, the number of banks should be set

to 7. The developer could also be interested in meeting an energy budget but this

time ensuring a lower bound on the precision of the frequency response curves. For

example, by ensuring that N � 3, the acceptable values for N would be in the range

[3, 7].

In the more general case, where the energy function inferred by the tool depends

on more than one parameter, the determination of the values for such parameters

is reduced to a constraint solving problem. The advantage of this approach is that

the parameters can be determined analytically at the program development phase,

without the need of determining them experimentally by measuring the energy of

expensive program runs with different input parameters, which in any case cannot

provide hard guarantees.

Our tool produces sound results, provided of course that the energy model

expresses correct information. Also, the accuracy of the bounds obtained depends

on the accuracy of the energy model. Note that, if the objective is to choose

parameters that guarantee completely that the specifications are met, even not very

tight bounds will be better than testing/profiling, which, as mentioned before, cannot

provide hard guarantees. On the other hand, having tight bounds is always desirable,

in order to get more efficient values.

In order to illustrate this, assume that the user uses a slightly different energy

model for the verification, which considers a 10% error in its energy measurements,

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000042

218 P. Lopez-Garcia et al.

Fig. 19. Visualization of analysis results and specifications, using a different energy model.

and assume that this model, expressed again as a set of trust assertions in the

Ciao assertion language, as in Figure 4, is contained in file energy llvm 10. In this

case, the user needs to provide this information to the tool as follows:

#pragma model <energy_llvm_10>

Following the same procedure as before, after running the tool the following results

are obtained:

#pragma true biquadCascade(A,B,C) :

(14.851*C+4.9 <= energy nJ && energy nJ <= 18.317*C+5.989)

#pragma checked biquadCascade(state,xn,N) :

(1 <= N && N <= 6) ==> (energy nJ <= 122)

#pragma check biquadCascade(state,xn,N) :

(7 <= N && N <= 7) ==> (energy nJ <= 122)

#pragma false biquadCascade(state,xn,N) :

(8 <= N) ==> (energy nJ <= 122)

As we can see, the area delimited by the lower and upper bound functions inferred

is wider, and the verification results include an additional check assertion for N = 7.

The assertion with status check indicates that for the value of the argument N = 7,

the verification cannot conclude if the energy budget will be met or not. This fact

is represented in Figure 19, where the sloping/green analysis region intersects the

flat/blue specification region but is not completely included in it.

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000042

Interval-based resource usage verification 219

7 Related work

The closest related work we are aware of presents a method for comparison of

cost functions inferred by the COSTA system for Java bytecode (Albert et al., 2010,

2015). The method proves whether a cost function is smaller than another one for

all the values of a given initial set of input data sizes. The result of this comparison

is a boolean value. However, as mentioned before, in our approach the result is in

general a set of intervals in which the initial set of input data sizes is partitioned,

so that the result of the comparison is different for each subset. Also, (Albert et al.,

2010) differs in that comparison is syntactic, using a method similar to what was

already being done in the CiaoPP system: performing a function normalization

and then using some syntactic comparison rules. In this work, we go beyond these

syntactic comparison rules. Note also that, although we have presented our work

applied to Horn clause programs and XC programs, the CiaoPP system can also

deal with Java bytecode (Navas et al., 2009; Méndez-Lojo et al., 2007).

In a more general context, using abstract interpretation in verification, debugging,

and related tasks has now become well established. To cite some early work,

abstractions were used in the context of algorithmic debugging in Lichtenstein

and Shapiro (1988). Abstract interpretation has been applied by Bourdoncle

(1993) to debugging of imperative programs and by Comini et al. (1995) to the

algorithmic debugging of logic programs (making use of partial specifications

in Comini et al., 1999), and by Cousot (2003) to verification, among others.

The CiaoPP framework (Bueno et al., 1997; Hermenegildo et al., 1999, 2005)

was pioneering, offering an integrated approach combining abstraction-based

verification, debugging, and run-time checking with an assertion language.

This approach has recently also been applied in a number of contract-based

systems (Fähndrich and Logozzo, 2011; Tobin-Hochstadt and Van Horn, 2012;

Nguyen and Horn, 2015).

Horn clauses are used in many different applications nowadays as compilation

targets or intermediate representations in analysis and verification tools (Navas

et al., 2009; Méndez-Lojo et al., 2007; Grebenshchikov et al., 2012; Hojjat et al.,

2012; de Moura and Bjørner, 2008; Bjørner et al., 2014; Kafle et al., 2016).

8 Conclusions

Taking as starting point our configurable framework for static resource usage

verification where specifications can include both lower and upper bound, data

size-dependent resource usage functions, we have reviewed how this framework

supports different programming languages (both declarative and imperative) as

well as different compiler representations. This is achieved by a translation of the

corresponding input language to an internal representation based on Horn clauses

(HC IR). The framework is architecture independent, since we use low-level resource

usage models that are specific for each architecture, describing the resource usage

of basic elements and operations.

We have also generalized the assertions supported to include preconditions

expressing intervals within which the input data size of a program is supposed to

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000042

220 P. Lopez-Garcia et al.

lie (i.e., intervals for which each assertion can be tested). These extended assertions

can be used both in specifications and in the output of the analyzers. In addition,

we have provided a formalization of how the traditional framework is extended for

the data size interval-dependent verification of resource usage properties.

Our framework can deal with the different types of resource usage functions (e.g.,

polynomial, exponential, summation, or logarithmic functions), in the sense that the

analysis can infer them, and the specifications can involve them.

A key aspect of the framework is to be able to compare these mathematical

functions. We have proposed methods for function comparison that are safe/sound,

in the sense that the results of verification either give a valid answer (true or

false) or return “unknown.” In the case, where the resource usage functions being

compared depend on one variable (which represents some input argument size), our

method reveals particular numerical intervals for such variable, if they exist, which

might result in different answers to the verification problem: a given specification

might be proved for some intervals but disproved for others. Our current method

computes such intervals with precision for polynomial and exponential resource

usage functions. Moreover, we have proposed an iterative post-process to safely

tune up the interval bounds by taking as starting values the previously computed

roots of the polynomials.

We have also reported on a prototype implementation of the proposed general

framework for resource usage verification and provided experimental results, which

are encouraging, suggesting that our techniques are feasible and accurate in practice.

We have also specialized such implementation for verifying energy consumption

specifications of imperative/embedded programs. Finally, we have shown through

an example, and using the prototype implementation for the XC language and XS1-

L architecture, how our verification system can prove whether energy consumption

specifications are met or not, or infer particular conditions under which the

specifications hold. We have illustrated through this example how embedded software

developers can use this tool, in particular, for determining values for program

parameters that ensure meeting a given energy budget while minimizing the loss in

quality of service.

References

Albert, E., Arenas, P., Genaim, S., Herraiz, I. and Puebla, G. 2010. Comparing cost

functions in resource analysis. In Proc. of 1st International Workshop on Foundational and

Practical Aspects of Resource Analysis (FOPARA’09). Lecture Notes in Computer Science,

vol. 6234. Springer, 1–17.

Albert, E., Arenas, P., Genaim, S. and Puebla, G. 2015. A Practical Comparator of Cost

Functions and its Applications. Science of Computer Programming 111, 483–504. Special

Issue on Foundational and Practical Aspects of Resource Analysis (FOPARA 2009).

Bjørner, N., Fioravanti, F., Rybalchenko, A. and Senni, V., Eds. 2014. In Proc. of Workshop

on Horn Clauses for Verification and Synthesis. Electronic Proceedings in Theoretical

Computer Science.

Bourdoncle, F. 1993. Abstract debugging of higher-order imperative languages. In

Programming Languages Design and Implementation. R. Cartwright, Ed. ACM, 46–55.

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000042

Interval-based resource usage verification 221

Bueno, F., Deransart, P., Drabent, W., Ferrand, G., Hermenegildo, M. V., Maluszynski, J.

and Puebla, G. 1997. On the role of semantic approximations in validation and diagnosis

of constraint logic programs. In Proc. of the 3rd International Workshop on Automated

Debugging (AADEBUG’97). University of Linköping Press, Linköping, Sweden, 155–170.

Comini, M., Levi, G., Meo, M. C. and Vitiello, G. 1999. Abstract diagnosis. Journal of Logic

Programming 39, 1–3, 43–93.

Comini, M., Levi, G. and Vitiello, G. 1995. Declarative diagnosis revisited. In 1995

International Logic Programming Symposium. MIT Press, Cambridge, MA, Portland, Oregon,

275–287.

Cousot, P. 2003. Automatic verification by abstract interpretation, invited tutorial. In Proc

of 4th International Conference on Verification, Model Checking and Abstract Interpretation

(VMCAI’03). Number 2575 in Lecture Notes in Computer Science. Springer, 20–24.

Cousot, P. and Cousot, R. 1977. Abstract interpretation: A unified lattice model for

static analysis of programs by construction or approximation of fixpoints. In Proc.

of ACM Symposium on Principles of Programming Languages (POPL’77). ACM Press,

238–252.

Dart, P. and Zobel, J. 1992. A regular type language for logic programs. In Types in Logic

Programming. MIT Press, 157–187.

de Moura, L. M. and Bjørner, N. 2008. Z3: An efficient SMT solver. In Proc of 14th

International Conference on Tools and Algorithms for the Construction and Analysis of

Systems (TACAS’08), C. R. Ramakrishnan and J. Rehof, Eds. Lecture Notes in Computer

Science, vol. 4963. Springer, 337–340.

Debray, S. K. and Lin, N. W. 1993. Cost analysis of logic programs. ACM Transactions on

Programming Languages and Systems 15, 5 (November), 826–875.

Debray, S. K., Lin, N.-W. and Hermenegildo, M. V. 1990. Task granularity analysis

in logic programs. In Proc. of ACM Conference on Programming Language Design and

Implementation (PLDI’90). ACM Press, 174–188.

Debray, S. K., López-Garcı́a, P., Hermenegildo, M. V. and Lin, N.-W. 1997. Lower bound

cost estimation for logic programs. In Proc. of International Logic Programming Symposium.

MIT Press, Cambridge, MA, 291–305.

Fähndrich, M. and Logozzo, F. 2011. Static contract checking with abstract interpretation.

In Proc. of International Conference on Formal Verification of Object-oriented Software

(FoVeOOS’10). Lecture Notes in Computer Science, vol. 6528. Springer, 10–30.

Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Alken, P., Booth, M. and

Rossi, F. 2009. GNU Scientific Library Reference Manual - 3rd ed. (v1.12). Network Theory

Ltd. Available at http://www.gnu.org/software/gsl/.

Georgiou, K., Kerrison, S., Chamski, Z. and Eder, K. 2017. Energy transparency for

deeply embedded programs. ACM Transactions on Architecture and Code Optimization 14, 1

(March), 8:1–8:26.

Gleich, D. F. 2005. Finite Calculus: A Tutorial for Solving Nasty Sums. Combinatorics,

Stanford University.

Grebenshchikov, S., Gupta, A., Lopes, N. P., Popeea, C. and Rybalchenko, A. 2012.

HSF(C): A software verifier based on Horn clauses — (competition contribution). In

TACAS, C. Flanagan and B. König, Eds. Lecture Notes in Computer Science, vol. 7214.

Springer, 549–551.

Hermenegildo, M. V., Bueno, F., Carro, M., López, P., Mera, E., Morales, J. and Puebla,

G. 2012. An overview of Ciao and its design philosophy. Theory and Practice of Logic

Programming 12, 1–2 (January), 219–252. http://arxiv.org/abs/1102.5497.

Hermenegildo, M. V., Puebla, G. and Bueno, F. 1999. Using global analysis, partial

specifications, and an extensible assertion language for program validation and debugging.

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

http://www.gnu.org/software/gsl/
https://doi.org/10.1017/S1471068418000042

222 P. Lopez-Garcia et al.

In The Logic Programming Paradigm: A 25–Year Perspective, K. R. Apt, V. Marek,

M. Truszczynski, and D. S. Warren, Eds. Springer-Verlag, 161–192.

Hermenegildo, M. V., Puebla, G., Bueno, F. and Lopez-Garcia, P. 2005. Integrated program

debugging, verification, and optimization using abstract interpretation (and the Ciao system

preprocessor). Science of Computer Programming 58, 1–2 (October), 115–140.

Hojjat, H., Konecný, F., Garnier, F., Iosif, R., Kuncak, V. and Rümmer, P. 2012.

A verification toolkit for numerical transition systems—Tool paper. In Proc. of

Formal Methods (FM’12). Lecture Notes in Computer Science, vol. 7436. Springer,

247–251.

Kafle, B., Gallagher, J. P. and Morales, J. F. 2016. RAHFT: A tool for verifying Horn

clauses using abstract interpretation and finite tree automata. In Proc. of 28th International

Conference on Computer Aided Verification Part I (CAV’16), Toronto, ON, Canada, July

17–23, S. Chaudhuri and A. Farzan, Eds. Lecture Notes in Computer Science, vol. 9779.

Springer, 261–268.

Kerrison, S. and Eder, K. 2015. Energy modeling of software for a hardware multithreaded

embedded microprocessor. ACM Transactions on Embedded Computing Systems 14, 3

(April), 1–25.

Lattner, C. and Adve, V. 2004. LLVM: A compilation framework for lifelong program

analysis and transformation. In Proc. of the International Symposium on Code Generation

and Optimization (CGO’04). IEEE Computer Society, 75–88.

Lichtenstein, Y. and Shapiro, E. Y. 1988. Abstract algorithmic debugging. In Proc. of 5th

International Conference and Symposium on Logic Programming, R. A. Kowalski and K. A.

Bowen, Eds. MIT, Seattle, Washington, 512–531.

Liqat, U., Georgiou, K., Kerrison, S., Lopez-Garcia, P., Hermenegildo, M. V., Gallagher,

J. P. and Eder, K. 2016. Inferring parametric energy consumption functions at different

software levels: ISA vs. LLVM IR. In Proc. of 4th International Workshop on Foundational

and Practical Aspects of Resource Analysis (FOPARA’15), London, UK, April 11, 2015.

Revised Selected Papers, M. V. Eekelen and U. D. Lago, Eds. Lecture Notes in Computer

Science, vol. 9964. Springer, 81–100.

Liqat, U., Kerrison, S., Serrano, A., Georgiou, K., Lopez-Garcia, P., Grech, N.,

Hermenegildo, M. V. and Eder, K. 2014. Energy consumption analysis of programs

based on XMOS ISA-level models. In Proc. of 23rd International Symposium on Logic-Based

Program Synthesis and Transformation (LOPSTR’13), Revised Selected Papers, G. Gupta

and R. Peña, Eds. Lecture Notes in Computer Science, vol. 8901. Springer, 72–90.

López-Garcı́a, P., Ed. 2014. Initial Energy Consumption Analysis. ENTRA Project: Whole-

Systems Energy Transparency (FET project 318337). Deliverable 3.2, http://entraproject.eu.

López-Garcı́a, P., Darmawan, L. and Bueno, F. 2010. A framework for verification and

debugging of resource usage properties. In Proc. of Technical Communications of the

26th International Conference on Logic Programming (ICLP’10), M. V. Hermenegildo and

T. Schaub, Eds. Leibniz International Proceedings in Informatics (LIPIcs), vol. 7. Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 104–113.

Lopez-Garcia, P., Darmawan, L., Bueno, F. and Hermenegildo, M. V. 2012. Interval-based

resource usage verification: Formalization and prototype. In Proc. of 2nd International

Workshop on Foundational and Practical Aspects of Resource Analysis (FOPARA’11),

Revised Selected Papers, R. P. na, M. Eekelen, and O. Shkaravska, Eds. Lecture Notes

in Computer Science, vol. 7177. Springer-Verlag, 54–71.

Lopez-Garcia, P., Haemmerlé, R., Klemen, M., Liqat, U. and Hermenegildo, M. V.

2015. Towards energy consumption verification via static analysis. In Proc. of Workshop

on High Performance Energy Efficient Embedded Systems (HIP3ES’15), arXiv:1501.03064.

arXiv:1512.09369.

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000042

Interval-based resource usage verification 223

Méndez-Lojo, M., Navas, J. and Hermenegildo, M. 2007. A flexible (C)LP-based approach

to the analysis of object-oriented programs. In Proc. of 17th International Symposium on

Logic-based Program Synthesis and Transformation (LOPSTR’07). Number 4915 in Lecture

Notes in Computer Science. Springer-Verlag, 154–168.

Mera, E., López-Garcı́a, P. and Hermenegildo, M. V. 2009. Integrating software testing

and run-time checking in an assertion verification framework. In Proc. of 25th International

Conference on Logic Programming (ICLP’09). Lecture Notes in Computer Science,

vol. 5649. Springer-Verlag, 281–295.

Muthukumar, K. and Hermenegildo, M. 1992. Compile-time derivation of variable

dependency using abstract interpretation. Journal of Logic Programming 13, 2/3 (July),

315–347.

Navas, J., Méndez-Lojo, M. and Hermenegildo, M. 2008. Safe upper-bounds inference of

energy consumption for Java Bytecode applications. In Proc of The 6th NASA Langley

Formal Methods Workshop (LFM’08). 29–32. Extended Abstract.

Navas, J., Méndez-Lojo, M. and Hermenegildo, M. V. 2009. User-definable resource

usage bounds analysis for Java Bytecode. In Proc. of the Workshop on Bytecode Semantics,

Verification, Analysis and Transformation (BYTECODE’09). Electronic Notes in Theoretical

Computer Science, vol. 253. Elsevier–North Holland, 65–82.

Navas, J., Mera, E., López-Garcı́a, P. and Hermenegildo, M. 2007. User-definable resource

bounds analysis for logic programs. In Proc. of 23rd International Conference on Logic

Programming (ICLP’07). Lecture Notes in Computer Science, vol. 4670. Springer.

Nguyen, P. and Horn, D. V. 2015. Relatively complete counterexamples for higher-order

programs. In Proc. of Programming Language Design and Implementation (PLDI’15). ACM,

446–456.

Puebla, G., Bueno, F. and Hermenegildo, M. V. 2000a. An assertion language for

constraint logic programs. In Analysis and Visualization Tools for Constraint Programming,

P. Deransart, M. V. Hermenegildo, and J. Maluszynski, Eds. Number 1870 in Lecture Notes

in Computer Science. Springer-Verlag, 23–61.

Puebla, G., Bueno, F. and Hermenegildo, M. V. 2000b. Combined static and dynamic

assertion-based debugging of constraint logic programs. In Proc. of Logic-based Program

Synthesis and Transformation (LOPSTR’99). Number 1817 in Lecture Notes in Computer

Science. Springer-Verlag, 273–292.

Serrano, A., Lopez-Garcia, P. and Hermenegildo, M. V. 2014. Resource usage analysis

of logic programs via abstract interpretation using sized types. In Theory and Practice

of Logic Programming, 30th International. Conference on Logic Programming (ICLP’14)

Special Issue 14, 4–5, 739–754.

Tobin-Hochstadt, S. and Van Horn, D. 2012. Higher-order symbolic execution via

contracts. In Proc. of Object-Oriented Programming, Systems, Languages, and Applications

(OOPSLA’12). ACM, 537–554.

Vaucheret, C. and Bueno, F. 2002. More precise yet efficient type inference for logic

programs. In Proc. of 9th International Static Analysis Symposium (SAS’02). Lecture Notes

in Computer Science, vol. 2477. Springer-Verlag, 102–116.

Watt, D. 2009. Programming XC on XMOS Devices. XMOS Limited.

https://doi.org/10.1017/S1471068418000042 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000042

